Port Authority of New South Wales Overseas Passenger Terminal Berthing Infrastructure Project -Dredging and Scour Protection Review of Environmental Factors

263976-00-RPT-0005

Issue 1 | 17 September 2020

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 263976-00

Arup Pty Ltd ABN 18 000 966 165

Arup Level 5 151 Clarence Street Sydney NSW 2000 Australia www.arup.com



# **Non-technical summary**

#### The proposal

Port Authority of New South Wales (Port Authority of NSW) proposes to undertake maintenance and capital dredging and scour-protection works at the Overseas Passenger Terminal (OPT) on the western side of Circular Quay in Sydney Harbour.

The proposal is to deepen and expand the OPT berth pocket to increase the underkeep clearance of larger cruise ships and to protect the toe of the quay wall with scour protection.

The proposal's key features are:

- Installing a sheet pile retaining wall of about 70 m long at the southern end of the OPT berth pocket.
- Dredging approximately 20,000 m<sup>3</sup> of sediment to deepen and expand the berth pocket.
- Dredging approximately 20,000 m<sup>3</sup> of sediment to deepen the berth pocket
- Disposal of dredge material either by land disposal or offshore disposal (three Nautical Miles beyond State Waters).

A site compound would be used at Glebe Island to store equipment. The site may also be used for the casting of articulated concrete mattresses for the scour protection and the transfer of dredged materials from the barge to trucks. Activities at Glebe Island would be subject to the existing determination that allows Berths 1 and 2 to be used as a multi-user facility as obtained at the time under Part 5 of the NSW Environmental Planning and Assessment Act 1979 (EP&A Act) on 6 August 2013.

The proposed works are anticipated to be split. The sheet piling works would take place in Q3 & Q4 of 2020 and the dredging and scour protection works would take place in mid-2021. It would take around two months to complete the sheet piling works, while it would take about three-to-four months to carry out the dredging and scour protection works.

#### Need for the proposal

It is essential that the OPT berth continues to operate as efficiently and safely as possible, and that the infrastructure is maintained and progressively upgraded to continue to meet cruise vessel demands; including any anticipated increase in the size of visiting vessels. The identified scour and accretion issues pose potential hazards to vessel operations. This includes the potential for further decreasing the under-keel clearance for incoming cruise ships. There is a need for safe, efficient and reliable berthing to ensure the ongoing operation of the OPT.

#### Proposal objectives and development criteria

Objectives were developed to respond to the proposal's need. They included preventing erosion of the quay wall, preventing sediment movement within the berth pocket, reducing the risk of damage to berthing ships and providing enough depth for ships to berth.

#### **Options considered**

The option of doing nothing was initially considered. However, this was discounted as it would not meet the objectives of the proposal to improve safe vessel berthing and would lead the quay wall exposed to further erosion. Various dredging, sediment disposal and scour protection options were then considered.

The preferred option (the proposal) was considered to provide the best combination of positive project outcomes and minimised social and environmental impacts.

#### Statutory and planning framework

State Environmental Planning Policy (Infrastructure) 2007 permits development on any land for the purpose of port facilities to be carried out by or on behalf of Newcastle Port Corporation (Port Authority of NSW) without consent, providing the development is directly related to an existing port facility.

As the proposal is development for the purpose of a port facility and is to be carried out by Port Authority of NSW it can be assessed and determined under Division 5.1 of the *Environmental Planning and Assessment Act 1979* (EP&A Act).

#### **Environmental impacts**

The main environmental impacts of the proposal and the safeguards and management measures to address the impacts are summarised below.

#### Physical marine environment

There would be localised sediment disturbance during construction from installing piles and dredging. A safeguard has been proposed to install a silt boom around the backhoe dredger, minimising sediment disturbance. There is also the potential for acid sulfate soils and contaminants within the sediment to be released and impact on water quality during transfer for disposal. Sediment would be kept damp if taken to Glebe Island before treated and disposed of on land in a suitable facility. To reduce the risk of spills during the movement of dredging for disposal, a polymer would be added to absorb excess water and reduce the risk of overtopping of contaminated sediments.

#### **Biodiversity**

The proposal is unlikely to cause significant impact to any threatened aquatic or terrestrial species, populations or ecological communities or their habitats. The proposal and compound are not located within or near any protected areas, and no threatened or key habitat is expected to occur locally. Impacts on the surrounding substrate and sediment in Sydney Harbour would be limited through proposing to use a silt boom. A Marine Ecology Management Plan would be prepared as part of the CEMP.

#### Noise and vibration

The noise and vibration assessment concluded that at the OPT during night-time works there would only be minor impacts to residents. Exceedances in noise management levels would mainly be felt for non-residential receivers including Quay Restaurant, Cruise Bar, Squires Landing, Yuki's at the Quay) and MCA museum. Glebe Island residents would experience minor noise impacts.

Vibration impacts are minor due to the distance of residents. Safeguards have been proposed and a noise and vibration construction management plan would be prepared.

#### Landscape character and visual impact

The proposal would have temporary visual impacts to the landscape character and visual amenity. Impacts are considered to have a low to high visual impact for receivers of the OPT. Viewpoints with high visibility of the proposal would be from the Sydney-Opera House Forecourt and Concourse. Due to the sensitivity of the Sydney Opera House there would be a moderate to high impact.

The visual impact of the proposal would be minimised through safeguards including directional lighting and moving barges and equipment when not in use.

#### Socioeconomic

There would be a temporary loss of amenity for pedestrians and users of the OPT wharf public space as the OPT quay would be closed-off for periods during works. When works are not being undertaken access for pedestrians would be retained. Noise impacts from night-time works would have a temporary adverse impact on residents living near the OPT within the Rocks, and hotel residents in Campbell Cove.

There would be temporary short-term impacts for commercial vessel access at Campbells Cove and the Commissioners Steps during works.

Safeguards would include a communication plan as part of the construction environmental management plan to help provide timely and accurate information to stakeholders during construction.

#### Non-Aboriginal heritage

The proposed dredging works would have an impact on the former Campbell's Cove Wharf No.7. The works would remove in situ piles, sections of cut piles and other timber structural remains associated with the former wharf.

This is not considered to be a major impact as the remainder of the site located in Campbell's Cove would remain unaffected. A permit would be required from Heritage NSW, DPC, prior to dredging and scour protection works commencing. Safeguarding measures would include recording remains of the wharf and archaeological testing of material.

#### Aboriginal heritage

There is a low potential for Aboriginal site to be within the Proposal footprint due to previous activity and dredging. Should unknown archaeology be discovered during works a permit maybe required.

#### Traffic, transport and access

The proposal would result in a minor temporary increase in traffic during construction from construction workers, deliveries of equipment and concrete trucks. Most of the works (e.g. concrete pumping for scour protection) would occur at night when there is less traffic on the roads. The additional traffic movements would have a negligible effect on the existing road network. Importantly, there would be no construction traffic movement during cruise ship berth days.

During dredging works, barge movements would be required to remove dredged material offsite. These would be minimal and on average there would be one vessel movement a day to Glebe Island or two to three for offshore disposal.

#### Spoil, dredging and waste management

The proposed works would create spoil from the dredging of sediment. Material if disposed on land would be taken to Glebe Island for offloading and transported to appropriate waste facility. During transport of material by barge there is the risk of over spill. Works would be managed under a Sediment and Water Management Plan when transporting material off site to reduce impacts and a polymer added to absorb water.

During installation of concrete mattresses, concrete would be delivered to site only when needed and removed once pumping has finished. Materials would be barged to site, including fuels, oils and other required liquids which would be stored in bunded containers on the vessels. All waste removed from the site would be transferred by a licenced contractor to a licenced receiving facility.

#### Hazards and risks

Hazards and risks have been identified for the proposal. These include physical injury to construction workers and public from hazards associated with construction activities and objects falling from vessels, generation of sediment plumes leading to degradation of sensitive marine species and accidental fuel spills.

#### Odour

The proposal has the potential to create odour as a result of dredging sediments. Dredging is anticipated to be carried out over 10 weeks, depending on the dredge disposal location either on land or offshore; therefore, odour generation due to the proposal would be temporary and for a short duration. Once barges are fully loaded, they would be towed to Glebe Island for unloading and subsequent transport to a suitable disposal facility or towed to the offshore spoil ground for disposal. As any odour would be associated with the dredged materials, any potential impact would likely end once the material is removed from Circular Quay.

#### **Justification and conclusion**

The need for the proposal was identified due to a need for safe, efficient and reliable berthing to ensure the ongoing operation of the OPT.

The assessment of the environmental and social impacts has determined the proposal is not likely to have a significant impact and therefore assessment under Part 5.1 of EP&A Act is not needed.

## Contents

|   |         |                                                                                 | Page |
|---|---------|---------------------------------------------------------------------------------|------|
| 1 | Introd  | uction                                                                          | 10   |
|   | 1.1     | Proposal identification                                                         | 10   |
|   | 1.2     | Report purpose                                                                  | 13   |
| 2 | Need f  | or the proposal                                                                 | 14   |
|   | 2.1     | Strategic need                                                                  | 14   |
|   | 2.2     | Existing infrastructure                                                         | 15   |
|   | 2.3     | Proposal objectives and development criteria                                    | 16   |
|   | 2.4     | Alternatives and options considered                                             | 17   |
| 3 | Propos  | sal description                                                                 | 19   |
|   | 3.1     | The proposal                                                                    | 19   |
|   | 3.2     | Key design features                                                             | 20   |
|   | 3.3     | Work method                                                                     | 21   |
|   | 3.4     | Traffic management and access                                                   | 27   |
| 4 | Statute | ory and planning framework                                                      | 30   |
|   | 4.1     | Environmental Planning and Assessment Act 1979                                  | 30   |
|   | 4.2     | State environmental planning policies                                           | 31   |
|   | 4.3     | Commonwealth legislation                                                        | 40   |
|   | 4.4     | Confirmation of statutory position                                              | 40   |
| 5 | Notific | cations                                                                         | 41   |
|   | 5.1     | Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005 notification | 41   |
|   | 5.2     | Fisheries Management Act 1994 notification                                      | 41   |
| 6 | Enviro  | onmental assessment                                                             | 42   |
|   | 6.1     | Physical environment                                                            | 42   |
|   | 6.2     | Biodiversity                                                                    | 57   |
|   | 6.3     | Noise and vibration                                                             | 65   |
|   | 6.4     | Landscape character and visual impact                                           | 75   |
|   | 6.5     | Socioeconomic                                                                   | 81   |
|   | 6.6     | Non-Aboriginal heritage                                                         | 87   |
|   | 6.7     | Aboriginal heritage                                                             | 95   |
|   | 6.8     | Traffic, transport and access                                                   | 99   |
|   | 6.9     | Spoil, dredging and waste management                                            | 105  |
|   | 6.10    | Hazards and risks                                                               | 108  |
|   | 6.11    | Odour                                                                           | 109  |
|   | 6.12    | Other impacts                                                                   | 111  |

|    | 6.13                         | Cumulative impacts                            | 112 |
|----|------------------------------|-----------------------------------------------|-----|
| 7  | Environmental management     |                                               | 118 |
|    | 7.2                          | Summary of safeguards and management measures | 118 |
| 8  | Justification and conclusion |                                               | 132 |
|    | 8.1                          | Justification                                 | 132 |
|    | 8.2                          | Objects of the EP&A Act                       | 133 |
|    | 8.3                          | Conclusion                                    | 135 |
| 9  | Certification                |                                               | 137 |
| 10 | Refere                       | nces                                          | 138 |

#### **Figures**

- Figure 1: Proposal location and compound site at Glebe Island
- Figure 2: Local setting
- Figure 3: Existing infrastructure
- Figure 4: Installation of pumped and articulated concrete mattresses
- Figure 5: Example backhoe dredger and waiting barge
- Figure 6: Location of Exceedances of Sediment Contaminants
- Figure 7: Final cumulative sediment deposition thickness and volume settled in dredge pocket for the scenario assuming maximum dredging rate over a 6 day period
- Figure 8: Final cumulative sediment deposition thickness and volume settled in dredge pocket for the scenario assuming average dredging rate over a 16 day period
- Figure 9: Timeseries of total suspended sediment concentrations at surface, mid water and nearbed levels, at four reference sites
- Figure 10: Noise sensitive receiver locations surrounding the OPT site and NCAs
- Figure 11: Landscape character zones around the OPT
- Figure 12: Location of viewpoints near the OPT
- Figure 13: Location of nearby Heritage items listed on heritage registers
- Figure 14: 1960s aerial photograph showing the configuration of the OPT after the expansion works and Wharf No.7 to the north
- Figure 15: AHIMS Search results

#### **Tables**

- Table 1: Existing infrastructure and berth
- Table 2: Proposal development criteria
- Table 3:
   Engineering and design constraints
- Table 4:
   Construction and dredging activities
- Table 5: Indicative plant and equipment
- Table 6:
   Construction vessel movements at OPT

- Table 7:
   Expected road traffic movements
- Table 8: Aims of the Sydney Harbour SREP
- Table 9: Zone W1 Maritime Waters objectives
- Table 10:Division 2 matters
- Table 11: Heritage objectives
- Table 12: Other relevant NSW legislation
- Table 13: Aquatic environment safeguards and management measures
- Table 14: Aquatic pest species
- Table 15: Biodiversity safeguards and management measures
- Table 16:
   Existing ambient acoustic noise environment for Circular Quay
- Table 17: NCAs and description
- Table 18:
   Residential receivers
- Table 19: Non-residential receivers
- Table 20: Construction noise assessment criteria
- Table 21:
   Road traffic criteria for traffic generating development residential receivers
- Table 22:
   Recommended minimum working distances for vibration intensive plant
- Table 23: Noise and vibration safeguards and management measures
- Table 24: Landscape character and visual impact rating matrix
- Table 25: Overseas Passenger Terminal: landscape character zones
- Table 26: Overseas Passenger Terminal: viewpoint locations
- Table 27: Temporary landscape character impacts
- Table 28: Temporary visual impacts
- Table 29:
   Landscape character and visual amenity safeguards and management measures
- Table 30:Statistical Data for The Rocks suburb census 2016
- Table 31: Socioeconomic safeguards and management measures
- Table 32:
   Summary of listed heritage items within the surrounding area
- Table 33:
   Non-Aboriginal heritage safeguards and management measures
- Table 34:Preservation potential by site type
- Table 35: Aboriginal heritage safeguards and management measures
- Table 36:
   Traffic, transport and access safeguards and management measures
- Table 37:
   Spoil, dredging and waste management safeguards and management measures
- Table 38:
   Hazard and risk safeguards and management measures
- Table 39: Other impacts
- Table 40:
   Other safeguards and management measures
- Table 41: Present and future projects
- Table 42:Potential cumulative impacts

Table 43:Summary of site-specific environmental safeguardsTable 44:Objects of the EP&A Act

#### Appendices

- Appendix A Proposal Drawings
- Appendix B Consideration of Clause 228(2) Factors and Matters of National Environmental Significance
- Appendix C Statutory Consultation Checklist
- Appendix D Hydrodynamic Modelling
- Appendix E Noise and Vibration Assessment
- Appendix F Maritime Archaeological and Indigenous Heritage Assessment and Statement of Heritage Impacts
- Appendix G Sediment Contamination Assessment Report

# 1 Introduction

This chapter introduces the proposal and provides the context of the environmental assessment. The development history is outlined along with the purpose of the report.

## 1.1 Proposal identification

Port Authority of New South Wales (Port Authority of NSW) proposes to undertake maintenance and capital dredging and scour-protection works at the Overseas Passenger Terminal (OPT) on the western side of Circular Quay in Sydney Harbour.

The proposal is to deepen and expand the OPT berth pocket to increase the underkeep clearance of larger cruise ships berthing at the facility. Scour protection would be installed along the whole length of the quay wall to prevent undermining from hydraulic instability. Currently, there is a risk of some incoming cruise ships having less than 0.5 m under-keep clearance and therefore berthing with operational restrictions.

The proposal's key features are (see Appendix A).

- Installing a sheet pile retaining wall approximately 70 m long at the southern end of the OPT berth pocket.
- Dredging approximately 20,000 m<sup>3</sup> of sediment to deepen the berth pocket.
- Installing scour protection over an area of approximately 12,000 m<sup>2</sup> in the form of pumped or articulated concrete mattresses.

There are two options proposed for the disposal of the dredged material. These are:

- Option 1 transporting the material to a location at Glebe Island for processing prior to disposal to an appropriately licenced waste management facility.
- Option 2 transporting the materials offshore for disposal at the Sydney Offshore Spoil Ground located outside of State Waters.

This report assesses the potential for environmental impacts of the dredging and scour protection works. It also considers the impacts of transporting materials to Glebe Island (Option 1) or out to the State Water limit (Option 2).

- Activities at Glebe Island would be subject to the existing determination that allows Berths 1 and 2 to be used as a multi-user facility as obtained at the time under Part 5 of the *NSW Environmental Planning and Assessment Act 1979* (*EP&A Act*) on 6 August 2013.
- Offshore disposal under Option 2 would take place in Commonwealth Waters. The Australian Government Department of Agriculture, Water, and Environment (DAWE) would need to permit the ocean disposal under the *Environment Protection (Sea Dumping) Act 1981.*

The proposal compound location where the transported material would be unloaded at Glebe Island is presented on Figure 1. This is a nominal location, with the exact unloading location needing to be determined closer to the time of use due to ongoing port operational requirements. The OPT local setting is shown in Figure 2. Appendix A presents a plan of the key proposal features within the OPT.



Figure 1 Proposal location and compound site at Glebe Island



Figure 2: Local setting (proposal footprint shown in yellow)

## **1.2 Report purpose**

Arup has prepared this review of environmental factors (REF) on behalf of Port Authority of NSW. For the purposes of the work, Newcastle Port Corporation (trading as Port Authority of NSW) is the proponent and the determining authority under Division 5.1 of the NSW *Environmental Planning and Assessment Act 1979* (EP&A Act). The purpose of the REF is to describe the proposal, document its likely environmental impacts, and detail the protective measures that would be implemented to safeguard against and minimise impacts.

The description of the proposed work and assessment of associated environmental impacts has been carried out in the context of Clause 228 of the *Environmental Planning and Assessment Regulation 2000 NSW*, the factors in *Is an EIS Required? Best Practice Guidelines for Part 5 of the Environmental Planning and Assessment Act 1979* (Is an EIS required? Guidelines, DUAP, 1995/1996), the NSW Biodiversity Conservation Act 2016 (BC Act), the NSW Fisheries *Management Act 1994* (FM Act), and the Australian Government's Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act).

In doing so, the REF helps to fulfil the requirements of Section 5.5 of the EP&A Act including that Port Authority of NSW "examine and take into account to the fullest extent possible, all matters affecting or likely to affect the environment by reason of the activity".

The findings of the REF would be considered when assessing:

- Whether the proposal is likely to have a significant impact on the environment and therefore the need for an environmental impact statement to be prepared and approval to be sought from the Minister for Planning and Places under Division 5.2 of the EP&A Act.
- The significance of any impact on threatened species as defined by the BC Act and/or FM Act, and in accordance with Section 1.7 of the EP&A Act and therefore the requirement for a Species Impact Statement (SIS) or a Biodiversity Development Assessment Report (BDAR).
- The significance of any impact on nationally listed biodiversity matters under the EPBC Act including whether there is a real possibility that the activity may threaten long-term survival of these matters, and whether offsets are required and able to be secured.
- The potential for the proposal to significantly impact any other matters of national environmental significance or Commonwealth land and the need, subject to the EPBC Act strategic assessment approval, to make a referral to the DAWE for a decision by the Commonwealth Minister on whether assessment and approval is required under the EPBC Act.

As mentioned above, the REF provides an assessment of the proposed works including two options for disposal of dredged materials.

# 2 Need for the proposal

This chapter discusses the proposal's need and objectives. It identifies the various options considered in selecting the preferred option.

## 2.1 Strategic need

Approximately 350 cruise ships visited Sydney Harbour in 2017/18 handling some 1.6 million passengers. Approximately 220 cruise ships berthed at the OPT, which is basically at full capacity during the primary cruise season from October to March each year.

There are currently two dedicated cruise passenger terminals within Sydney Harbour; the OPT, located east of the Sydney Harbour Bridge, and the White Bay Cruise Terminal (WBCT); located west of the Sydney Harbour Bridge. WBCT opened in April 2013 and it has a primary cruise ship berth and a secondary cruise ship berth known as White Bay berth 4. Access to WBCT requires passage under the Sydney Harbour Bridge, which is not possible for the larger cruise ships visiting Sydney.

It is essential that the OPT continues to operate as efficiently and safely as possible due to the above limitation. This means its infrastructure is maintained and progressively upgraded to continue to meet forward cruise vessel demands.

Since 2011, cruise ships have mainly berthed at the terminal under Azipod and bow thruster power only, rather than with the assistance of tugs. Recent hydrographic and diver surveys identified that scouring is occurring at both the southern and northern end of the OPT berth pocket. There is also evidence of loss of the existing scour protection, deposition of large rocks and slumping of an embankment into the berth pocket at the southern end due to scouring.

The observed scour and accretion can be attributed to:

- Significant increase in vessel size and changes in vessel power and berthing configurations since the construction of the berth in 1959.
- Use of Azipods and thrusters since 2011.

The identified scour and accretion issues pose potential hazards to vessel operations. This includes the potential for further decreasing the under-keel clearance for incoming cruise ships. There is a need for safe, efficient and reliable berthing to ensure the ongoing operation of the OPT.

## 2.2 Existing infrastructure

Table 1 and Figure 3 provide details on the existing berth infrastructure and berth pocket.

 Table 1: Existing infrastructure and berth

| Element                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | The existing berth pocket is 375 m long (Ch -35 m to Ch 340 m) by 50 m wide, with a declared depth of -10 m chart datum (CD).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Existing berth<br>pocket   | Shoaling areas encroach up to 15 m into the berth pocket within the northern part of the OPT between Ch 310 and Ch 340 with a minimum depth of 6.5 m. Shoaling areas encroach 2 m into the berth pocket within the southern part between Ch -8 and Ch -1 with a minimum depth of 9.4 m.                                                                                                                                                                                                                                                                                                               |
|                            | The berth is split into three sections on the quay side.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            | The southern end of the OPT (Ch $-35 -$ Ch $.0$ ) consists of a sheet pile wall at the back of an embankment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Quay side and              | At the middle of the OPT (Ch $0 -$ Ch 220) the berth contains a reinforced concrete caisson structure with a rubble apron at the toe. This rock apron is separated into an inner and outer scour with varying rock size and dimensions.                                                                                                                                                                                                                                                                                                                                                               |
| berthing<br>infrastructure | The northern end of the OPT (Ch 220 – Ch 280) is supported by a sheet<br>pile wall, which passes through an existing rock revetment up to the end of<br>the berth. Imported 20 mm aggregate engineering fill material is used as<br>backfill at the rear of the sheet pile wall. Between the northern end of the<br>OPT and the northern mooring dolphin (Ch 280 – Ch 340), the seabed<br>consists of marine deposit made up of sand, silt and clay with some<br>remnant scour protection rock. The seabed level rises to its shallowest<br>adjacent to the mooring dolphin at approximately -6 m CD. |



Figure 3: Existing infrastructure

## 2.3 **Proposal objectives and development criteria**

This section lists the proposal's objectives and development criteria.

## **2.3.1 Proposal objectives**

The proposal's objectives are to:

- Prevent undermining of the caisson toe and erosion of the embankment south of the caisson wall.
- Prevent the movement of sediment and rock within the berth pocket.
- Reduce the risk of damage to berthing cruise ships from the accretion/movement of sediment and rock.
- Maintain stability of the existing quay infrastructure, including the southern sheet pile wall, caisson wall, northern sheet pile wall and northern mooring dolphin.
- Provide enough depth in the berth pocket for bidirectional berthing of all design vessels.

## 2.3.2 Development criteria

The proposal has been developed against the following themes and design principles.

| Table 2. I Toposal development criteria | Table 2: Pro | posal deve | lopment | criteria |
|-----------------------------------------|--------------|------------|---------|----------|
|-----------------------------------------|--------------|------------|---------|----------|

| Theme                        | Relevant principles                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design depth and<br>dredging | The design depth of the OPT berth pocket has been developed in<br>accordance with the guidelines presented in World Association for<br>Waterborne Transport Infrastructure (PIANC) WG121 Harbour Approach<br>Channels Design Guidelines, 2014 and WG 152 Guidelines for Cruise<br>Terminals 2016.<br>The design depth is to be achieved by dredging and it would provide<br>enough under-keep clearance for berthing vessels without operational |
|                              | restriction, accounting for several vessel-related factors and dredging tolerances.                                                                                                                                                                                                                                                                                                                                                              |
| Scour protection             | The installation of scour protection would facilitate dredging works and prevent undermining of the quay wall toe.                                                                                                                                                                                                                                                                                                                               |

## 2.4 Alternatives and options considered

This section describes the alternatives and options considered to deliver the proposal.

## 2.4.1 **Preliminary considerations**

#### Do nothing

The 'do nothing' option would involve carrying out regular maintenance activities consistent with current operations.

Although it would present the lowest initial capital cost and it would result in the least environmental impact, this option was discounted as it would not meet the objectives of the proposal. It would not provide safe clearance for cruise ships to berth. It would also potentially shorten the terminal's life as it would leave the quay wall exposed and susceptible to erosion and therefore increased destabilisation.

It would potentially result in a higher overall operational cost across the terminal's life due to the need to periodically dredge the berth pocket, while it may result in lost revenue if the larger cruise ships are unable to berth in the future.

#### Carry out the proposed work

After discounting the 'do nothing' option, consideration was then given to expanding and deepening the OPT berth pocket by dredging, reinforcing and protecting the berth by:

- Installing a sheet pile retaining wall at the southern end of the OPT berth pocket.
- Dredging and installing scour protection over an area of approximately 12,000 m<sup>2</sup> along the base of the berth infrastructure.
- Transporting the dredged materials for disposal either:
  - On land
  - Back in Circular Quay under a waste exemption
  - Offshore at the Sydney Spoil Ground.

#### Method for selecting the preferred option

The method used by Port Authority of NSW to develop options for carrying out the works considered:

- Existing and future
  - Passenger use
  - Service demand
  - Future ship sizes
- Engineering design requirements and current structural integrity
- Passenger safety
- Environmental and social constraints

- Build cost
- Stakeholder feedback.

#### **Preferred options**

The preferred options are to deepen the existing OPT berth pocket and to either transport the materials for disposal on land or offshore.

Disposing of material back into other parts of Circular Quay was discounted due to its potential social impact on what is one of Sydney's most iconic and busiest areas. The decision whether to dispose of the materials on land or offshore would depend on several factors that Port Authority of NSW is still investigating. For this reason, two disposal options remain; both with their own benefits and impacts.

#### 3 **Proposal description**

This chapter describes the proposal, its design, and the construction methods that would be used to carry out the works.

#### 3.1 The proposal

The proposal's aim is to address scour and undermining of the OPT quay wall and expand the berth pocket. It would involve maintenance and capital dredging of around 20,000 m<sup>3</sup> of sediment and installing approximately 12,000 m<sup>2</sup> of scour protection along the western edge of the berth pocket and southern embankment.

Appendix A shows the proposed works and construction footprint at the OPT.

#### **Design criteria** 3.1.1

The proposal and works have been designed to NSW, Australian and international maritime engineering and safety standards and guidelines developed by:

- Building Code of Australia: landside and superstructure •
- Standards Australia: AS4997: 2005 Guidelines for the Design of Maritime Structures.
- PIANC.

These standards describe the criteria that were adopted when designing the works as they provide detail on:

- Access and safety requirements for navigation and berthing.
- Enough dredging depths to safely berth without the risk of either grounding or • causing notable sediment disturbance and scour from propeller wash.
- Appropriate scour protection material selection and durability. .

#### 3.1.2 **Engineering constraints**

Table 3 lists the main constraints to development and discusses how they have been addressed in the concept design.

| Constraint                                                                                                                                                   | Design provision                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wind, wave,<br>current and<br>climate change                                                                                                                 | Develop a design that provides erosion protection from wind and wave<br>impacts with allowance for climate change and storm events. Scour<br>protection is proposed. This is outlined in section 3.2. |
| Heritage valuesEnsure the design is sensitive to the area's heritage values (see Secti<br>6.6).<br>Respect the Aboriginal heritage values (see Section 6.7). |                                                                                                                                                                                                       |

#### Table 3: Engineering and design constraints

263976-00-RPT-0005 | Issue 1 | 17 September 2020 | Arup

| Constraint                                | Design provision                                                                                                                                                                                                     |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Existing ferry traffic                    | Ensure navigational management measures are implemented through delivery of a navigation risk assessment (see Section 6.8).                                                                                          |
| Social and<br>community<br>infrastructure | Deliver a design to enable a safe passenger terminal in the long-term.<br>Ensure construction works are managed to avoid disturbance to the social<br>and community infrastructure and neighbours (see Section 6.5). |

## **3.2 Key design features**

This section describes the proposal's main design features. The construction method is described in section 3.3.

#### Proposed berth pocket design

The existing berth pocket would be dredged up to -12.1 m CD before placing scour protection mattresses. This would increase the declared depth to -10.7 m CD. The dredge depth includes an additional 0.5 m over-dredging allowance for installing scour protection to achieve the increase in declared depth.

Pumped or articulated concrete mattresses would be installed in front of the southern sheet pile and caisson walls. The mattresses would protect the existing quay wall and berth pocket from the scouring impacts.

Figure 4 shows an example of the installation of pumped and articulated concrete mattresses.



Source: Synthetex

# Figure 4: Installation of pumped (left) and articulated (right) concrete mattresses

#### Sheet pile wall

A 70 m long underwater steel sheet pile wall would be installed from the southern end of the OPT structure. The sheet pile wall would support the toe of the southern embankment to allow the berth pocket to be dredged and deepened.

The harbour bed would be slightly reprofiled to the west of the underwater sheet pile wall. This would allow the concrete mattresses to be installed over an area of approximately  $1,500 \text{ m}^2$  (see Appendix A).

## **3.2.1** Construction and dredging method

The appointed contractor would confirm the final construction activities in discussion with Port Authority of NSW. As such, this section only indicates a likely method and work plan as it may vary due to: the identification of additional constraints before work starts; detailed design refinements; and contractor requirements/limitations. Should the work method differ from what is proposed in this REF then the contractor would consult with Port Authority of NSW to determine if additional assessment is needed.

## 3.3 Work method

The proposal would be built under a construction environmental management plan (CEMP). The plan would cover environmental performance and management supplemented by aspects such as materials storage and management, and erosion and sediment control. The proposal would likely comprise a sequence of work activities consistent with the preliminary summary in Table 4.

| Activity                                                  | Associated work                                                                                                                                                                                                                                            |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1: site establishment and<br>navigation safety provisions | Notify the public, public transport companies, Transport for NSW, local council and other stakeholders before work starts (see section 5.7).                                                                                                               |  |
|                                                           | Carry out prework inspections (see Chapter 7), and other investigation work before starting work.                                                                                                                                                          |  |
|                                                           | Set out, mark and establish a maritime navigation exclusion zone in the harbour and no-go zone areas on land.                                                                                                                                              |  |
|                                                           | Establish the site compound.                                                                                                                                                                                                                               |  |
|                                                           | Install environmental management controls.                                                                                                                                                                                                                 |  |
|                                                           | Install temporary drainage controls (where needed).                                                                                                                                                                                                        |  |
| 2: enabling works – Sheet pile wall installation          | Install sheet piles via a crane mounted on a barge.                                                                                                                                                                                                        |  |
| 3: stabilise southern<br>embankment                       | Reprofile the southern embankment using a backhoe dredger.<br>Remove excess material offsite for disposal either on land via<br>Glebe Island (Option 1) under an existing approval, or offshore<br>(Option 2) under a separate approval (see section 1.1). |  |
|                                                           | Install scour protection in the form of pumped or articulated concrete mattresses.                                                                                                                                                                         |  |

| Table 4: | Construction  | and | dredging | activities |
|----------|---------------|-----|----------|------------|
|          | constituction | anu | urcuging | activities |

| Activity                                                                                                                   | Associated work                                                                                                                                                                                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 4: extending and deepening the berth pocket                                                                                | Dredge the harbour bed using an excavator off a barge or a backhoe.                                                                                                                                                 |  |  |  |
|                                                                                                                            | Transfer the dredged material to a waiting barge.                                                                                                                                                                   |  |  |  |
| 5: Materials transportation                                                                                                | Transport the material to either Glebe Island for land disposal (Option 1) or to the offshore disposal grounds (Option 2).                                                                                          |  |  |  |
| 5a: Option 1: materials and spo<br>(which would take placed under                                                          | il management, testing (as needed), road transport and disposal<br>r an existing approval as described in section 1.1).                                                                                             |  |  |  |
| 5b: Option 2: materials disposal offshore (which would take place under a separate approval as described in section 1.1.). |                                                                                                                                                                                                                     |  |  |  |
| 6. install scour protection for                                                                                            | Articulated concrete mattresses                                                                                                                                                                                     |  |  |  |
| the berth pocket                                                                                                           | Transport articulated concrete mattresses by barge.                                                                                                                                                                 |  |  |  |
|                                                                                                                            | Lift and install the articulated concrete mattresses using a crane, within the berth pocket and along the embankment south of the quay wall. Placement of articulated concrete mattresses to be assisted by divers. |  |  |  |
|                                                                                                                            | Pumped concrete mattresses                                                                                                                                                                                          |  |  |  |
|                                                                                                                            | Transport geotextile and mobile concrete trucks.                                                                                                                                                                    |  |  |  |
|                                                                                                                            | Lay geotextile and pump grout mattress by divers.                                                                                                                                                                   |  |  |  |
| 7: site finalisation and                                                                                                   | Demobilise the site compound and remove temporary:                                                                                                                                                                  |  |  |  |
| demobilisation                                                                                                             | Maritime navigation exclusion and no-go zones.                                                                                                                                                                      |  |  |  |
|                                                                                                                            | Environmental and safety controls (see Chapter 7).                                                                                                                                                                  |  |  |  |

## **3.3.1** Construction hours

This section describes the proposed timeframe and working hours.

#### Start date and length of construction

The current proposal is to award contract for the works in Q3 2020, with the intent to carry out the enabling and sheet piling works in late Q3 or Q4 of 2020 (see Activity 1 and Activity 2 in Table 4). It would take around four-to-six weeks to carry out these works. The remaining activities would then take place in mid-2021 taking around three-to-four months to complete. Dredging would last up to 10 weeks and the scour protection works would take about 12 weeks to complete; with these two activities overlapping.

The program would be developed further once more is known about the 2021 cruise ship schedule. The construction program would also be affected by the need to coordinate with Transport for NSW, Port Authority of NSW, Property NSW, and other key stakeholders (see Chapter 5).

#### Working hours

The OPT works would take place during day, evening and at night over the construction program. However, most works at the OPT, including piling, dredging, and concrete work in the harbour, would need to take place at night. This is due to safety reasons and so that these works can occur when the waters of Circular Quay are far less busy and generally calmer. The duration of activities is anticipated to be as follows:

- Piling (sheet piled wall): six weeks
- Dredging: 10 weeks
- Mattress placement (scour protection): 12 weeks.

There would be some overlap between dredging and mattress placement activities.

Where night-time piling works are proposed, they would likely be scheduled as follows:

- 7:30pm to 8:30pm: Carry out checks, pre-start meetings.
- 8:30pm to 9pm: Set up
- 9pm to 5am: Pile pitching and vibropiling, followed by back-driving of piles
- 5am to 6am: Pack up.

Any night-time piling and hammering works would take place intermittently during the above periods. While piling may also take place during the day it would not be scheduled or permitted between 12pm and 2pm. This would be to ensure that the amenity of the area is preserved in its busiest time as discussed further in section 6.3.4.

On average, a pile would be pitched and vibrated every hour. Vibropiling would only last for approximately two to five minutes and it would be relatively quiet for the rest of the hour. Back-driving or hammering of the piles would occur during the last 30 to 60 minutes of the shift. Individual piles would be hammered for five to 10 minutes, followed by a relatively quiet period for the next five minutes or more before the pile is progressed.

For reference: the use of Glebe Island would generally take place within standard working hours between 7am and 6pm Monday to Friday and 8am to 1pm on Saturday. However, during dredging works, the Glebe Island site would be operated as needed seven days a week and in accordance with the existing 2013 approval (see section 1.1).

## 3.3.2 Workforce

During peak activities of dredging and scour placement, approximately 26 workers would be working at the OPT.

## 3.3.3 Plant and equipment

The largest and most complex of the equipment needed to carry out the work would be used during the dredging and piling activities. Table 5 indicates the plant and equipment that would be likely used onsite. The final plant and equipment schedule would be confirmed by the contractor.

| OPT - Plant/equipment                                            | Plant/equipment used to transport materials  |
|------------------------------------------------------------------|----------------------------------------------|
| Backhoe dredger                                                  | 2 x hopper barges (unpowered) - intermittent |
| 50 tonne long-reach excavator                                    | Long-arm backhoe                             |
| 2 x hopper barges (unpowered) -<br>intermittent                  | Tug/vessel to move barges - intermittent     |
| Tug/vessel to move barges - intermittent                         | Supply barge (unpowered) - intermittent      |
| Concrete/grout boom pump                                         | Crane                                        |
| Barge-mounted crane (200 to 250 tonnes crawler crane)            |                                              |
| Barge-mounted backhoe and a barge-<br>mounted/jack-up piling rig |                                              |
| Impact piling hammer (3 to 5 tonnes)                             |                                              |
| Vibropiling and drop hammer                                      |                                              |
| Storage barge (unpowered)                                        |                                              |
| Mattress lifting frame                                           |                                              |
| Day maker                                                        |                                              |
| Dive equipment                                                   |                                              |
| Work punt and dive vessel                                        |                                              |
| Generator                                                        |                                              |
| Concrete delivery trucks                                         |                                              |
| Light vehicles                                                   |                                              |

#### Table 5: Indicative plant and equipment

## **3.3.4** Sheet pile wall

The sheet pile wall would be installed using a vibropiling method followed by back-driving or hammering of piles operated from a barge restrained by spuds. The sheet piles would be stored on the deck of the barge before being installed.

A steel frame pile gate supported on temporary piles would be installed along the required alignment of the new wall and pairs of sheet piles pitched into the gate. A vibropiling method would install the sheet piles. The piles would then be embedded using a drop hammer.

The pile gates would then be removed and moved to the next location. Once the sheet piles are installed, they would be cut down to the correct level by divers. The southern embankment alongside the sheet pile wall would be reprofiled using a backhoe dredger or an excavator mounted on a barge to redistribute material. The concrete mattress scour protection would then be installed. The method for installation is described in section 3.3.6.

## **3.3.5** Dredged method and spoil management

A barge-mounted backhoe dredger would be used to carry out the dredging. The backhoe would remove sediment from the harbour floor in a closed bucket, lifting it through the water column before transferring it into an adjacent waiting barge. Figure 5 shows a typical backhoe dredging operation.



Figure 5: Example backhoe dredger and waiting barge

#### **Option 1: transport to Glebe Island**

Once the barge is filled, it would be transported to Glebe Island. It is expected that the dredged material would have a high moisture content once loaded into the hopper. As such, two long arm excavators would first mix the dredged material in the barge with polymer. This would absorb any excess water to allow dredged material to be spread. This would allow the dredged material to be handled and loaded into trucks for road transport. Absorbent polymer would be delivered by road in sealed bulker bags that would be stored at Glebe Island.

The polymer would be mixed through the dredged sediment in the hopper barge and left for up to a 12-hours to cure while the barge is moored at Glebe Island. No excess water from the dredged material is expected to be discharged from the hopper barge while moored at Glebe Island.

#### **Option 2: transport offshore**

Once the barge is filled it would travel through Sydney Harbour to the Sydney Offshore Spoil Ground. While the barge is transporting material offsite, another barge would continue to be filled. There would be approximately three movements out of the Harbour per day, working 24-hours per day seven day per week. The final transport movements would be confirmed in consultation with the Harbour Master.

## 3.3.6 Scour protection

The concrete mattresses would be installed following piling and dredging works.

#### **Option A: pumped concrete mattresses**

Concrete mattresses, comprising rolled-up fabric formed bags, would be delivered to the OPT site by boat or truck. The mattress fabric would be rolled out by divers and secured prior to being filled with concrete. The mattress fabric would then be filled from the quayside using a long-arm concrete pump once positioned on the harbour bed. Concrete would be pumped through a boom that would be connected to the mattresses by divers. The concrete would be delivered to the OPT by trucks.

The pumped concrete mattresses would be installed by two groups of workers positioned on each end of the OPT. Regular bathymetric surveys would be undertaken to ensure the extent of mattresses are on the correct alignment and depth. Each work-front would install an average of two mattresses per shift. Each mattress would require approximately 25 m<sup>3</sup> of concrete with an approximate total of 16 to 18 truck movements per shift. On average a shift would be approximately 10 hours.

#### **Option B: articulated concrete mattresses**

Articulated concrete mattresses would be cast at Glebe Island and brought to the OPT site, most likely by barge. These would be stacked onto a deck of the crane barge and then positioned and lowered into place using a lifting frame and global positioning system (GPS) to about half a metre above the harbour bed. Divers would then provide final directions to position the mattresses into place. Regular bathymetric surveys would be undertaken to ensure the extent of mattresses are on the correct alignment and depth. An average of six mattresses would be placed in each shift.

## **3.3.7** Source and material quantities

Various standard construction materials that are readily available across the Sydney Metropolitan region would be needed to carry out the works. The main materials needed to construct the proposal would comprise:

- Marine-grade steel for the sheet pile wall.
- Geotextile lining and grout/concrete mix to be pumped or prefabricated for the scour protection system.

## 3.3.8 Ancillary facilities

Given the limited space and road access, the preference would be to ship any major machinery and equipment to the OPT when needed; potentially making use of an offshore storage barge. When not in use, the storage barge would return to, and berth at, Glebe Island or White Bay, with the location depending on berth availability.

A shipping container may be placed on the OPT site for the duration of the work to store equipment, machinery and some key materials and equipment. Other equipment and materials may be temporarily stored at the Glebe Island site. The specific requirements for these sites would be confirmed by the contractor. Ideally, these sites would be:

- Away from biodiversity and heritage values
- Outside of flood prone land
- On previously disturbed areas
- More than 100 m from residential property
- Outside the drip line of trees and on level ground wherever possible.

As certain equipment maybe stored near Sydney Harbour, additional drainage and containment controls would be installed to prevent spills, leaks, leaching and/or sediment discharge (see Section 6.1).

For reference: a compound site would be provided at Glebe Island, nominally at Berths 1 & 2 (see Figure 1). Depending on the option taken, this may be used to:

- Transfer of dredged spoil from barge to trucks
- Cast articulated concrete mattresses.

## **3.4** Traffic management and access

This section describes how water and land-based traffic would be managed during construction including expected traffic movements.

## **3.4.1** Marine navigational traffic management

Most of the materials and equipment would be delivered by barge. Additional barge movements would take place at the OPT to deliver equipment and machinery.

#### **Option 1: transport to Glebe Island**

There would be one to two barge trips per day to and from Glebe under Option 1 (two to four movements).

#### **Option 2: transport offshore**

There would be several barge movements to and from the offshore ground per day under Option 2.

#### **Both options**

During cruise ship days, should these occur during construction, the OPT work site would be demobilised, and this could see movements to and from Glebe Island (or White Bay) increase to four barge trips if alternative moorings are not available.

There would also be a barge-mounted backhoe and a barge-mounted/jack-up piling rig located in the construction footprint at any point during construction. These would be located at Glebe Island (or White Bay) when not in use.

The expected vessel movements required to undertake the works are outlined in Table 6.

| Construction Phase                                                  | Approximate number of<br>expected vessel<br>movements <sup>1</sup> during<br>construction. | Approximate<br>length of time<br>(may vary during<br>works) |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Dredging works and on land disposal<br>(Option 1, see section 1.1)  | 200                                                                                        | 6-10 weeks                                                  |
| Dredging works and offshore disposal<br>(Option 2, see section 1.1) | 200                                                                                        | 6-10 weeks                                                  |
| Piling                                                              | 10                                                                                         | 3-4 weeks                                                   |
| Articulated concrete mattresses (Option A, see section 3.3.6).      | 400                                                                                        | 11-12 weeks                                                 |
| Pumped concrete mattresses (Option B, see section 3.3.6).           | 100                                                                                        | 11-12 weeks                                                 |

Table 6: Construction vessel movements at OPT

A maritime navigation exclusion zone would be set up around the construction footprint to prevent both commercial and recreational traffic entering the area. A Marine Works Management Plan (MWMP) would be developed by the Contractor in consultation with the Harbour Master, Transport for NSW (Maritime) and other relevant stakeholders, and would define specifics such as exclusion zones, methods of marking the zones, clearance distances, mooring plans, communication protocols, emergency and incident response procedures, contact details of all parties and responsible persons, and transit routes.

The MWMP would be approved by the Harbour Master in advance of the works commencing. It is noted that Harbour Master approval would be required under Clause 67ZN of the Ports and Maritime Administration Regulation 2012 prior to any disturbance of the seabed.

263976-00-RPT-0005 | Issue 1 | 17 September 2020 | Arup

<sup>&</sup>lt;sup>1</sup> Based on movements. One trip would equate to two movements

NGLOBAL ARUP.COMAUSTRALASIAISYD/PROJECTS/263000/263976-00 OPT EROSION STABILISATION/WORK/INTERNAL/ENVIRONMENTAL ASSESSMENT/263976-00-RPT-0005 - ISSUE 1.DOCX

## **3.4.2** Road traffic management

Despite proposing to deliver most of the material and equipment by barge, road traffic deliveries are expected to the OPT.

Vehicles arriving and leaving OPT would likely access the site via George Street and Circular Quay West Road. Road and turning restrictions mean there would be restrictions on the size and type of vehicles that could access the quayside. Site workers would be prevented from driving to site.

#### **Table 7 Expected road traffic movements**

| Activity                                                                                                   | Approximate number of vehicle movements                                                                              |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
| Overseas passenger terminal                                                                                |                                                                                                                      |  |
| Concrete trucks                                                                                            | $1,500 \text{ movements}^2 \text{ over } 12 \text{ weeks during the mattress placement works (see section 3.3.1).}$  |  |
| Other vehicles (Light vehicles –<br>Supervisors, divers, concrete testing, etc.<br>and general deliveries) | 1,000 movements <sup>3</sup> over four months the dredging<br>and mattresses placement works (see<br>section 3.3.1). |  |

Road traffic access and management would be considered further during the detailed design including limits on the type, size and number of vehicles arriving and leaving the OPT. Any road traffic would be managed under a construction traffic management plan (see Section 6.8).

<sup>&</sup>lt;sup>2</sup> This is equivalent to 750 trips

<sup>&</sup>lt;sup>3</sup> This is equivalent to 500 trips

# 4 Statutory and planning framework

This chapter provides the statutory and planning framework for the proposal and considers the statutory requirements including of the Environmental Planning and Assessment Act 1979 (EP&A Act), the Environmental Planning and Assessment Regulation 2000 (EP&A Regulations) and the provisions of relevant environmental planning instruments.

## 4.1 Environmental Planning and Assessment Act 1979

The proposed activity is subject to examination, determination and approval under Division 5.1 of the EP&A Act. Relevantly, the proposed activity is not declared to be State Significant Infrastructure (SSI) under Division 5.2 because:

- Based on the conclusions of this REF, Port Authority of NSW has formed the opinion that the activity is not likely to significantly affect the environment and therefore would not require the preparation of an EIS against the provisions of Section 5.7 of the EP&A Act (Clause 1, Schedule 3 of *State Environmental Planning Policy (State and Regional Development) 2011*, SRD SEPP, see section 4.2).
- The proposed activity does not meet the \$30 million capital investment value (CIV) threshold to declare development for the purpose of port and wharf facilities to be SSI (Schedule 3, Clause 2 of SRD SEPP). The proposed activity has not otherwise been specifically declared to be SSI by a SEPP, nor has the Minister for Planning and Public Spaces separately declared the activity to be SSI by way of an Order made under Section 5.12 of the EP&A Act.

Port Authority of NSW is the determining authority for the proposed activity under Division 5.1 of the EP&A Act due to the provisions of Clause 68 of ISEPP.

The EP&A Act outlines the matters that need to be considered when determining and approving an activity under Division 5.1 of the Act. Section 5.5 of the EP&A Act states:

"For the purpose of attaining the objects of this Act relating to the protection and enhancement of the environment, a determining authority in its consideration of an activity shall, notwithstanding any other provisions of this Act or the provisions of any other Act or of any instrument made under this or any other Act, examine and take into account to the fullest extent possible all matters affecting or likely to affect the environment by reason of that activity."

The environmental impact of the activity has been assessed in section 6 and the supporting technical studies including the noise and vibration assessment (Appendix E), Maritime Archaeological and Indigenous Heritage Assessment and Statement of Heritage Impacts (Appendix F), and Sediment Contamination Assessment (Appendix G).

The authority for a proposed activity is required to determine if an activity will have a significant affect on the environment. To determine this, Port Authority has examined the proposal against the matters for consideration under Clause 228 of the EP&A Regulations (see Appendix B and in the context of the factors in *Is an EIS Required? Best Practice Guidelines for Part 5 of the Environmental Planning and Assessment Act 1979* (Is an EIS required? Guidelines, DUAP, 1995/1996), the NSW *Biodiversity Conservation Act 2016* (BC Act), the NSW *Fisheries Management Act 1994* (FM Act), and the Australian Government's *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act).

## 4.2 State environmental planning policies

#### **State Environmental Planning Policy (Infrastructure) 2007**

State Environmental Planning Policy (Infrastructure) 2007 (ISEPP) aims to facilitate the effective delivery of infrastructure across the State.

Clause 68(1) of the ISEPP permits development for the purpose of port facilities by or on behalf of Newcastle Port Corporation (Port Authority of NSW), without consent on any land providing the development is directly related to an existing port facility. Clause 68(6) of the ISEPP, in reference to development for the purpose of port facilities, also specifically permits dredging, or bed profile levelling, of existing navigation channels or to create new navigation channels.

As the proposal is directly related to an existing port facility (the OPT) and is being undertaken by or on behalf of Newcastle Port Corporation (Port Authority of NSW), the proposed activity is therefore permissible without consent and can be determined and approved under Division 5.1 of the EP&A Act.

Development consent from Council is not needed.

#### **State Environmental Planning Policy (State and Regional Development) 2011**

The main aim of the SRD SEPP is to identify development that is State Significant Development (SSD) or State Significant Infrastructure (SSI) under Parts 4 and 5 of the EP&A Act respectively. Clause 8(1) of the SRD SEPP states that development is declared to be SSD if:

"(a) the development on the land concerned is, by the operation of an environmental planning instrument, not permissible without development consent under Part 4 of the Act [i.e. is not development that can be carried out under Part 5 of the EP&A Act as development without consent], and (b) the development is specified in Schedule 1 or 2.

The proposed activity is not listed under Schedule 1 or 2 of the SRD SEPP which identifies certain activities, and certain activities located on identified sites, as being SSD. Accordingly, the proposed activity is not declared to be SSD. The proposed activity is permitted without development consent under Clause 68 of ISEPP.

Clause 14(1) of the SRD SEPP states that development is declared to be SSI if:

"(a) the development on the land concerned is, by the operation of a State environmental planning policy, permissible without development consent under Part 4 of the Act, and (b) the development is specified in Schedule 3."

As stated above, the proposed activity is permissible without development consent under Clause 68 of the ISEPP and therefore an approval under Part 4 of the EP&A Act is not required. The development is not listed under Schedule 3 of the SRD SEPP and is not development that would require an EIS (pursuant to Schedule 3, Clause 1(1)) to be prepared under Division 5.2 of the EP&A Act. Hence, the proposed activity is not SSI.

#### State Environmental Planning Policy (Coastal Management) 2018

The aim of this SEPP is to promote an integrated and coordinated approach to land use planning in the coastal zone in a manner consistent with the objects of the NSW *Coastal Management Act 2016*. The SEPP focusses on protecting the environmental asset of the coast, establishing a framework for land use planning, and defining areas where specific development controls should be implemented.

In terms of the proposal, the construction footprint and transport routes are within a coastal environment area. It is unclear if the site is in a costal vulnerability area as the mapping of these areas is still being prepared.

Despite this:

Clause 13(3) of the SEPP notes that the development controls covering coastal environmental areas do not apply to land with the Foreshores and Waterways Areas within the meaning of the Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005. As described below the proposal is entirely within the above designation.

#### Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005

The proposal is located within the Sydney Harbour Catchment and is subject to the Sydney Regional Environmental Plan (SREP, Sydney Harbour Catchment) 2005, which is a deemed SEPP, meaning its policies are still relevant and treated in the same way as a SEPP.

#### The aims of the SREP

Table 8 considers the aims of Clause 2 the Sydney Harbour SREP.

#### Aim Comment (a) To ensure that the Chapter 7 of this REF includes safeguards to protect and catchment, foreshores, maintain the natural and heritage values of the area. This waterways and islands of would ensure the values of Sydney Harbour are recognised, Sydney Harbour are recognised, protected, enhanced and maintained. protected, enhanced and maintained: (i) as an outstanding natural asset (ii) as a public asset of national and heritage significance, for existing and future generations. (b) To ensure a healthy, Provided the relevant measures and controls are sustainable environment on land implemented and monitored, as described in Chapter 7, the and water. environmental impacts of the proposal are expected to be safeguarded and minimised. Therefore, the land and water environments near the harbour would be protected. (c) To achieve a high quality The proposal aims to reduce the frequency of maintenance and ecologically sustainable dredging of the OPT and safeguard the existing structure urban environment. and berth pocket by installing scour protection, which is designed to protect the asset for 30 years. (d) To ensure a prosperous The proposal would allow for continued and safe berthing of working harbour and an cruise ships at the OPT, helping ensure the retention of a effective transport corridor. prosperous working harbour. There would be minimal impact to public ferry transport during the construction phase. It is not expected that changes to public transport services and wharf closures would be required. Any changes would be communicated with commuters ahead of time and direct them to alternative transport options as outlined in section 6.8. (e) To encourage a culturally The proposal would continue to provide access to cruise rich and vibrant place for ships to Sydney Harbour and Circular Quay. Cruise ship people. visitors would therefore continue to contribute to the economy through spending money at local restaurants and shops, maintain a vibrant place. The proposal would not change the operational movements (f) To ensure accessibility to and along Sydney Harbour and and management of the existing OPT. its foreshores. Road closures would not be required during construction, however access along the OPT quay would be temporarily restricted for pedestrians during working hours. (g) To ensure the protection. The proposal would have no significant impact on notable maintenance and rehabilitation terrestrial or marine environments or values in the area. of watercourses, wetlands, Additional standard controls would be implemented to riparian lands, remnant prevent any indirect impact on the wider ecological vegetation and ecological environment from spills and sediment disturbance, connectivity. mobilisation and smothering. (h) To provide a consolidated, The proposal is being delivered under the relevant planning simplified and updated provisions covering waterfront and port development set at a legislative framework for future State and Commonwealth level.

#### **Table 8: Aims of the Sydney Harbour SREP**

planning.

VGLOBALARUP.COM/AUSTRALASIA/SYD/PROJECTS/263000/263976-00 OPT EROSION STABILISATION/WORK/INTERNAL/ENVIRONMENTAL ASSESSMENT/263976-00-RPT-0005 - ISSUE 1.DOCX

#### Maritime Waters Zone and Sydney Opera House Buffer Zone

The proposal is within the W1: Maritime Waters Zone and the Sydney Opera House Buffer Zone but is not within a Wetland Protection Area. The proposal has been considered in respect of the objectives from Clause 17 of the SREP Sydney Harbour Zone W1 Maritime Waters objectives shown in Table 9.

#### **Table 9: Zone W1 Maritime Waters objectives**

| Objective                                                                                                                                                                                                                                                   | Comment                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) To give preference to and<br>protect waters required for the<br>effective and efficient<br>movement of commercial<br>shipping                                                                                                                           | The proposal would ensure continued and safe use of the<br>OPT to receive cruise ships. Minor disruption would be<br>caused during construction from increased vessel<br>movements however most of works would be undertaken<br>during night-time to minimise impacts.                                                                                                                                                       |
| (b) To allow development only<br>where it is demonstrated that it<br>is compatible with and will not<br>adversely affect the effective<br>and efficient movement of,<br>commercial shipping, public<br>water transport and maritime<br>industry operations, | The proposal includes maintenance and capital dredging<br>works within an existing cruise ship berthing facility to<br>ensure the continued safe berthing of ships. The dredging<br>pocket would be within a similar extent of the existing berth<br>area. Measures will be put in place to minimise impacts to<br>ferry services at Circular Quay and other shipping and<br>maritime industry operations in Sydney Harbour. |
| (c) To promote the equitable use<br>of the waterway                                                                                                                                                                                                         | The proposal works would be undertaken mainly at night-<br>time to minimise disruption impacts to other users and<br>public ferry transport. Cruise ships would continue to berth<br>as scheduled with all equipment being removed during these<br>times.                                                                                                                                                                    |

Under Clause 18 of the Sydney Harbour SREP, the proposal is permissible with consent in the W1 Zone. In any case, the development is permissible without development consent pursuant to the provisions of the ISEPP which override the zoning provisions of the Sydney Harbour SREP (see clause 7(5) of the Sydney Harbour SREP).

#### Matters for consideration

The matters for consideration listed in Division 2 at Clause 21 to Clause 27 of the Sydney Harbour SREP are provided in Table 10.

#### Table 10: Division 2 matters

| Division 2 matter                                                      | Comment                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clause 21 Biodiversity, ecology<br>and environment protection          | Section 6.2 describes the terrestrial and marine impact<br>associated with the proposal. In summary, there is not<br>predicted to be any significant environmental impact within<br>the meaning or definition of the <i>Fisheries Management Act</i><br><i>1994</i> or <i>Biodiversity Conservation Act 2016</i> with the<br>implementation of the mitigation measures outlined in<br>Section 7 of this REF. |
| Clause 22 Public access to, and<br>use of, foreshores and<br>waterways | Access to the foreshore at the OPT in the immediate<br>vicinity of the works would be restricted, as required, for<br>safety. There would be no changes to public access to and<br>use of the foreshore area following completion of<br>construction activities.                                                                                                                                             |
| Clause 23 Maintenance of a working harbour                             | The proposal would allow cruise ships to continue to safely<br>berth at the OPT and reduce the frequency of maintenance<br>dredging.                                                                                                                                                                                                                                                                         |
| Clause 24 Interrelationship of waterway and foreshore uses             | Access to the foreshore at the OPT in the immediate<br>vicinity of the works would be restricted, as required, for<br>safety. There would be no changes to the existing<br>interrelationship of waterway and foreshore use at the OPT<br>following completion of construction activities.                                                                                                                    |
| Clause 25 Foreshores and waterways scenic quality                      | There would be temporary visual impacts during works<br>however these would have no lasting change once the<br>proposal is complete.                                                                                                                                                                                                                                                                         |
| Clause 26 Maintenance,<br>protection and enhancement of<br>views       | Section 6.4 describes the landscape character and visual<br>impacts associated with the proposal. The overall<br>construction impact would be low as people accept there<br>being a port facility operating in this location, and<br>temporary. There would be no change to existing views<br>once construction activities are complete.                                                                     |
| Clause 27 Boat storage facilities                                      | There is no boat storage work associated with, or impacted by, the proposal.                                                                                                                                                                                                                                                                                                                                 |

Clause 31 of the Sydney Harbour SREP requires consultation for certain development proposals not requiring development consent. Consultation, including under the Sydney Harbour SREP is discussed in Chapter 5.

Part 5 of the Sydney Harbour SREP contains heritage provisions that are to be considered in respect of Division 5.1 activities. The Sydney Opera House is located 370 m east of the proposal footprint and is of World and National heritage importance. The Sydney Harbour Bridge is located 250 m west of the proposal footprint and is of National importance. The heritage objectives from the Sydney Harbour SREP in Clause 53(1) and Clause 53(2) are considered in Table 11 below.
#### **Table 11: Heritage objectives**

| Objective                                                                                                                                                                         | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(a) To conserve the<br>environmental heritage of the<br>land to which this Part applies.                                                                                         | The proposal would impact on part of the former historic Wharf No.7 in Campbells Cove. Dredging would remove around 18 percent of the heritage material associated with the Wharf. A permit under section 140 of the <i>Heritage Act 1977</i> would be needed to allow the work to progress. The Wharf heritage would be recorded before work starts and relics collected.                                                                                                                                                |
| 1(b) To conserve the heritage<br>significance of existing<br>significant fabric, relics, settings<br>and views associated with the<br>heritage significance of heritage<br>items. | The remains of the wharf on the harbour bed would be<br>recorded before starting construction to help understand the<br>site formation processes associated with the demolition of<br>the wharf.                                                                                                                                                                                                                                                                                                                          |
| 1(c) To ensure that that<br>archaeological sites and places<br>of Aboriginal heritage<br>significance are conserved.                                                              | There are no registered Aboriginal sites within the proposal footprint. The potential for submerged remains is considered to be low-to-moderate. Should relics be identified during dredging they would be recorded and an Aboriginal Heritage Impact Permit (AHIP) maybe required under Section 90 of the <i>National Parks and Wildlife Act 1974</i> .                                                                                                                                                                  |
| 1(d) To allow for the protection<br>of places which have the<br>potential to have heritage<br>significance but are not<br>identified as heritage items.                           | Works would be carried out within the vicinity of the OPT<br>and not within proximity to the Opera House. While the<br>proposal is within the buffer zone, it comprises 'minor<br>works' in accordance with Clause 58c of the SREP. This is<br>because the works are temporary and comprise of<br>alternations to the quay wall carried out below ground level.<br>Minor works are exempt from the requirements of the buffer<br>zone set out in the SREP.                                                                |
| 2(a) To establish a buffer zone<br>around the Sydney Opera House<br>to give added protection to its<br>world heritage value.                                                      | Following the end of each shift, all equipment and barge<br>mounted cranes would remain temporarily within the OPT<br>berth when cruise ships are not mooring at the OPT. When a<br>cruise ship is berthing, all equipment and barges will be<br>removed to Glebe Island. There would be temporary impacts<br>to the character of the setting of the Sydney Opera House.<br>Following construction, there would be no change to the<br>setting and views within the Sydney Opera House buffer<br>zone and Campbells Cove. |
| 2(b) To recognise that views<br>and vistas between the Sydney<br>Opera House and other public<br>places within that zone<br>contribute to its world heritage<br>value.            | There will be no change to existing views and vistas<br>between the Opera House and other public places once<br>construction activities are complete following the<br>completion of construction activities.                                                                                                                                                                                                                                                                                                              |

Clause 55 to Clause 60 of the SREP provide protection for heritage items. A heritage impact assessment has been carried out in accordance with Clause 54 to Clause 60 (see Appendix F). As noted in section 6.7.2, no Aboriginal sites or relics were identified and therefore there is no need to seek permission or consult in accordance with Clause 57.

#### Other relevant NSW legislation

Table 12 lists the NSW legislation relevant to the proposal or the land on which the proposal would be built.

| Legislation and application                                                                                                                                                                                                                                           | Relevance to the proposal and further requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>National Parks and Wildlife Act</i><br>1974: which provides for the<br>protection of Aboriginal<br>heritage values, national parks<br>and ecological values                                                                                                        | There are no registered Aboriginal sites present within the<br>proposal footprint. Submerged remains of Aboriginal<br>features are low to moderate potential. If Aboriginal objects<br>are discovered during dredging, a Aboriginal Heritage<br>Impact Permit (AHIP) would be applied for under section 90<br>of the Act.                                                                                                                                                                                                                                                                                                                                            |
| <i>Heritage Act 1977</i> : which<br>provides for the protection and<br>conservation of buildings,<br>works, maritime heritage<br>(wrecks), archaeological relics<br>and places of heritage value<br>through their listing on various<br>State and statutory registers | A heritage impact assessment has been carried out in<br>accordance with the requirements of the <i>Heritage Act</i> (see<br>Appendix F). The proposal would lead to the removal of 18<br>percent of the historic remains of Wharf No. 7 within<br>Campbell's Cove. The Wharf is of local significance.<br>Measures have been put in place to ensure that material<br>associated with the Wharf removed during dredging is<br>recorded and tested. This would ensure that there would not<br>be a significant impact from the partial removal of buried<br>remains of the Wharf. Prior to the commencement of these<br>works, a Section 140 permit would be required. |
| <i>Fisheries Management Act</i><br>1994: which provides for the<br>protection of fishery resources                                                                                                                                                                    | The proposal would not result in a significant impact on<br>critical marine flora and fauna habitat, or marine threatened<br>species, populations and ecological communities and their<br>habitat. As such, SIS would not be required as per Section<br>221 of the Act.<br>This is supported by the ecology assessment (see<br>section 6.2) carried out to support the REF, which concluded<br>that any impacts would not significantly affect aquatic<br>ecology.<br>Consultation has been carried out with the Minister for<br>Primary Industries (NSW Fisheries) in accordance with<br>Section 199 of the Act.                                                    |
| <i>Contaminated Land</i><br><i>Management Act 1997</i> , which<br>sets out requirements for<br>investigating, remediating and<br>managing land that is<br>considered to pose a human<br>health of environmental risk.                                                 | Investigation works have been carried out on the harbour<br>bed material. This confirmed the presence of certain<br>contaminants of concern. The proposal would remove the<br>dredged material to Glebe Island where it could be tested<br>and (waste) classified. It would then be disposed of at an<br>appropriate licenced waste facility. If the option is taken to<br>dispose of the materials offshore, then this Act would not                                                                                                                                                                                                                                |

#### Table 12: Other relevant NSW legislation

<sup>\\</sup>GLOBALARUP.COMAUSTRALASIA\SYD\PROJECTS\263000/263976-00 OPT EROSION STABILISATION\WORK\INTERNAL\ENVIRONMENTAL ASSESSMENT\263976-00-RPT-0005 - ISSUE 1.DOCX

| Legislation and application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Relevance to the proposal and further requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | apply. However, in securing a sea dumping permit (see<br>section 1.1), Port Authority of NSW would need to<br>demonstrate the suitably of the materials for ocean disposal<br>against the National Assessment Guidelines for Dredging<br>2009.                                                                                                                                                                                                                                                                                                                                                    |
| Protection of the Environment<br>Operations Legislation<br>Amendment (Scheduled<br>Activities) Regulation 2019<br>under the Protection of the<br>Environment Operations Act<br>1997, which focusses on<br>environmental protection and<br>provisions for the reduction of<br>water, noise and air pollution,<br>and the storage, treatment and<br>disposal of waste. It introduces<br>licencing provisions for<br>scheduled activities that are of a<br>nature and scale that have a<br>potential to cause environmental<br>pollution. | Pollution management measures will be undertaken during<br>the works to prevent impacts to water, noise and air<br>pollution. These are set out in Chapter 7. If Option 1 is taken<br>(see section 3.3.5) then a licence is likely needed under<br>Clause 47 of Schedule 1 of the <i>Protection of the</i><br><i>Environment Operations Act 1997</i> due to the use of a<br>polymer agent to cure the dredged material. This is<br>considered a mobile waste processing activity.<br>Further consultation should be carried out with the NSW<br>EPA to discuss additional licencing requirements. |
| Waste Avoidance and Resource<br>Recovery Act 2001, which<br>defines the waste hierarchy of<br>avoidance, recovery and<br>recycling over disposal while<br>the Guidelines support waste<br>classification.                                                                                                                                                                                                                                                                                                                              | The proposal would classify the dredged material for waste<br>classification prior to disposal to a licenced facility. Due to<br>contaminants present within the sediment, material would<br>not be reused. If the option is taken to dispose of the<br>materials offshore, then this Act would not apply.                                                                                                                                                                                                                                                                                        |
| Work Health and Safety Act<br>2011 and Work Health and<br>Safety Regulation 2017, which<br>provide a framework to protect<br>the health, safety and welfare of<br>all workers at work. It also<br>protects the health and safety of<br>all other people who might be<br>affected by the work.                                                                                                                                                                                                                                          | The works would be carried out by a qualified and registered<br>contractor who would need to demonstrate its ability to<br>protect the workforce and public when carrying out work.<br>This extends to on-land and over-water safety, including<br>navigation safety.                                                                                                                                                                                                                                                                                                                             |
| Marine Pollution Act 2012,<br>which sets out pollution<br>provisions in the marine<br>environment.                                                                                                                                                                                                                                                                                                                                                                                                                                     | The proposal is unlikely to result in any oil, noxious liquid, pollutant, sewage or garbage discharge as controlled under this Act, providing relevant standard controls are implemented and monitored (see Chapter 7).                                                                                                                                                                                                                                                                                                                                                                           |
| Ports and Maritime<br>Administration Regulation<br>2012, which requires Harbour<br>Master permission to change<br>any structure or disturb the                                                                                                                                                                                                                                                                                                                                                                                         | The dredging works would disturb sediment on the harbour<br>bed and therefore require permission from the Harbour<br>Master before this work starts pursuant to Clause 67ZN of<br>this Regulation.                                                                                                                                                                                                                                                                                                                                                                                                |

| Legislation and application                                                                                                                                                                                                                                                                                                                                                                                                            | Relevance to the proposal and further requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| harbour floor within Sydney<br>Harbour.                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <i>Biosecurity Act 2015</i> , which<br>provides for the control of<br>noxious weeds and other plant<br>and pathogen species. It places a<br>responsibility on landowners to<br>control, remove and eradicate<br>noxious weeds while managing<br>the introduction of marine pest<br>species.                                                                                                                                            | It is possible that pest species could be introduced due to the<br>movement of vessels into and out of the construction<br>footprint. This impact is expected to minimal, provided the<br>relevant standard controls are introduced and monitored in<br>accordance with the guidelines set out by the Department of<br>Primary Industries as discussed in section 6.2.                                                                                                                                                                                                                                                                                                                                                                                        |
| Marine Safety Act 1998 and<br>Marine Safety Regulation 2016,<br>which set out the requirements<br>for marine safety and the roles<br>of the Harbour Master and<br>marine pilots. It includes<br>provisions relating to marine<br>and navigational safety<br>including collision prevention,<br>spill limits, no-wash zones,<br>shipping operation restrictions,<br>and controls on reckless,<br>dangerous and negligent<br>navigation. | The <i>Marine Safety Act 1998</i> aims to ensure the safe and<br>responsible operation of vessels in ports and other<br>waterways to protect the safety and amenity of other users of<br>those waters and occupiers of adjoining land. The proposed<br>activity would minimise impacts to users of the waters of<br>Circular Quay and Sydney Harbour by setting up a maritime<br>navigation exclusion zone around the construction footprint<br>and developing a vessel traffic management plan in<br>consultation with, and to the satisfaction of, the Harbour<br>Master. In addition, Harbour Master approval will be<br>obtained under clause 67ZN of the Ports and Maritime<br>Administration Regulation 2012 prior to any disturbance of<br>the seabed. |
| <i>Biodiversity Conservation Act</i> 2016, which provides for the strategic approach to biological conservation in NSW. It includes provisions for the risk-based assessment of native plant and animal impacts, including the Biodiversity Assessment Method (BAM) to assess the impact of actions on threatened species, ecological communities and their habitats.                                                                  | Due to the high volume of boat traffic and disturbed nature<br>of the site, it is unlikely to provide significant habitat<br>features for threatened plant and marine species. An<br>assessment has been undertaken in section 6.2 supporting<br>this conclusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <i>Coastal Management Act 2016</i> ,<br>which aims to protect and<br>enhance natural coastal<br>processes and coastal<br>environmental values, while<br>facilitating ecological<br>sustainable development in the<br>coastal zone                                                                                                                                                                                                      | As noted, while the proposal is in a coastal environmental<br>area and coastal use area none of the provisions of the <i>State</i><br><i>Environmental Planning Policy (Coastal Management)</i><br>2018 apply to the proposal or its development. Despite this,<br>the assessment has considered the objects of the Act in<br>ensuring the proposal is consistent with principles protecting<br>the coastal environment in an ecologically sustainable<br>manner for the social, cultural and economic well-being of<br>the people of the State, as described in Chapter 6.                                                                                                                                                                                   |

## 4.3 Commonwealth legislation

### 4.3.1 Environment Protection and Biodiversity Conservation Act 1999

Under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) a referral is required to the Australian Government for proposed 'actions that have the potential to significantly impact on matters of national environmental significance or the environment of Commonwealth land'. These are considered in Appendix B and Chapter 6 of the REF.

The assessment of the proposal's impact on matters of national environmental significance and the environment of Commonwealth land found that there is unlikely to be a significant impact on relevant matters of national environmental significance or on Commonwealth land. Accordingly, the proposal has not been referred to the Australian Government Department of Agriculture, Water and the Environment under the EPBC Act.

## 4.4 **Confirmation of statutory position**

The proposal is categorised as development for the purpose of a port facility and is being carried out by or on behalf of Newcastle Port Corporation (Port Authority of NSW). Under Clause 68 of the ISEPP, the proposal is permissible without consent. As the proposal is not SSI, it can be determined and approved as an activity under Division 5 of the EP&A Act. Accordingly, Port Authority of NSW is the determining authority for the proposal, with this REF fulfilling the obligation under Section 5.5 of the EP&A Act "to examine and take into account to the fullest extent possible all matters affecting or likely to affect the environment by reason of the activity".

## 5 Notifications

This chapter presents a summary of the notification submitted to Foreshores and Waterways Planning and Development Advisory Committee and NSW Fisheries department by Port Authority of NSW.

## 5.1 Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005 notification

Under the provisions of Clause 31 of the Sydney Harbour SREP, Port Authority of NSW is required to consult with the Foreshores and Waterways Planning and Development Advisory Committee (Department of Planning, Industry and Environment). In the case of the proposal, it triggers the consultation provisions of Part 3: Division 3, Clause 31 of the above Plan due to the works including dredging.

Accordingly, the Foreshores and Waterways Planning and Development Advisory Committee was notified on 17 January 2020. A response was received on 13 February 2020 from the Committee that they did not have any specific issues with the proposal.

## 5.2 Fisheries Management Act 1994 notification

Division 3 of Part 7 of the FM Act relates to dredging and reclamation. The objects of this Division are to "conserve the biodiversity of fish and aquatic vegetation and to protect fish habitat by providing for the management of dredging and reclamation work".

As discussed in section 6.2, no protected marine vegetation is known to occur in the study area therefore impacts on marine flora and fauna are considered highly unlikely.

In accordance with Section 199 of the FM Act, a public authority needs to write to the Minster for Primary Industries and consider any raised matters concerning the proposed activity within 28 days before carrying out dredging works.

Port Authority notified the Department of Primary Industries on 17 January 2020. No response was received during the 28-day feedback period.

## 6 Environmental assessment

This chapter provides a detailed description of the potential environmental impacts associated with the its construction and operation. All aspects of the environment potentially impacted upon by the proposal are considered. This includes consideration of:

- Potential impacts on matters of national environmental significance under the EPBC Act.
- The factors specified in the guidelines Is an EIS required? (DUAP 1995/1996), Marinas and Related Facilities EIS Guideline (DUAP, 1995) as required under Clause 228(1) of the Environmental Planning and Assessment Regulation 2000 (DUAP, 1996, see Appendix B).

Site-specific safeguards and management measures are also provided to mitigate against identified potential impacts.

As noted in section 1.1 either disposal option would be carried out under an existing determination (Option 1: land disposal) or a separate approval (Option 2: offshore disposal)

## 6.1 Physical environment

This section describes the predicted hydrodynamic and physical environmental impacts from carrying out the proposed works.

## 6.1.1 Method

Published mapping and data were used to define the hydrodynamic and physical characteristics of the harbour and marine environment. This included:

- Hydrographic and Dredge Plume Modelling report prepared by MetOcean Solutions (May 2020).
- Circular Quay Investigation: Sediment Contamination Assessment Report (GHD, December 2019)

#### **Construction assessment**

The assessment considered how the proposed construction activities, work methods, and required management controls (see section 3.3) would temporarily affect the physical characteristics of the harbour and marine environment at the OPT including localised sediment and pollutant disturbance and dispersion and any secondary aquatic ecology impacts.

#### Assessment criteria

The assessment was supported by a contamination report produced by GHD that assessed the results of sediment sampling within the proposal footprint. This report also considered the potential for acid sulfate soils (ASS).

263976-00-RPT-0005 | Issue 1 | 17 September 2020 | Arup

Samples of the sediment within the proposal footprint were analysed and provisionally classified under the Waste Classification Guidelines (NSW EPA, 2014), the National Assessment Guidelines for Dredging (NAGD, Australian Government 2009), and Australian Water Quality Guidelines for Fresh and Marine Water Quality ('the ANZECC Guidelines, ANZECC/ARMCANZ, 2000).

## 6.1.2 Existing environment

#### Marine environment: overseas passenger terminal

#### Sea level and tides

Sydney Harbour is tidally influenced, and the cycle is semi-diurnal meaning there is 12.5 hours between high tides. At Fort Denison the tidal conditions are as follows:

- Mean spring tide is 1.23 m above Australian Height Datum (AHD).
- Mean neap tide is 0.75 m above AHD.
- Mean high water is about 0.5 m above AHD.
- Mean low tide can be about one metre below AHD.
- The highest high tide that would occur once every 50 years is about 1.6 m above AHD.

#### **Bathymetry (water depth)**

The harbour bed is approximately -10.7 m CD, varying from -16 m to 0 m CD across the proposal footprint, with CD defined as -0.95 m AHD. The elevated section of harbour bed is located north-west and south-west of the site.

The existing berth pocket is 375 m long by 50 m wide, with a declared depth of -10.1 m CD. These levels have been maintained by undertaking dreading, as required, to allow for safe access of ships.

#### **Currents and circulation**

Sydney Harbour is influenced by the East Australian Current (EAC). It generally provides a nutrient depleted sub-tropical water mass (Sydney Institute of Marine Science, 2016). Average offshore current speeds are about 1.5 m/s, meaning that the water flowing past the heads is being constantly renewed. This allows for mixing, flushing and seawater exchange.

While no tide, current or gauge data were obtained in Circular Quay, it is appropriate to consider the current speeds to be at or close to zero. This reflects the sheltered and enclosed environment. However, the stormwater runoff from the land, in combination with seaward groundwater movement, would mean that the water would trend towards the main deep channel and heads. Over any tidal cycle there would therefore be a very small (likely about 0.01 m/s) net current towards the heads. There is also likely to be a localised swash created by propeller turbulence and general vessel movements and activities. This has no influence other than immediately within Circular Quay. It creates turbid conditions locally.

#### Wind conditions

Three dominant wind patterns affect Sydney Harbour. The strongest winds, which occur for about 17 percent of the time, come from the south. These affect the northern shoreline. The most frequently observed winds come from the north east (about 22 percent of the time), and the third most common pattern are winds coming from the west, which occur for about 17 percent of the time mainly during the winter (Sydney Institute of Marine Science, 2016).

Sydney Harbour is largely an enclosed system. This means the waves are typically only wind generated. The maximum wave heights are closer to the heads and across the main channels however they are typically less than one metre peak to trough. However, the low-energy and sheltered nature of the many bays, including Circular Quay, means that the conditions are further limited, resulting in very small waves and typically calm to still conditions other than in storm conditions.

#### Water exchange (flushing) and quality

Sydney Harbour, including the OPT, receives stormwater surface runoff from the surrounding land. The waters around the terminal are highly disturbed from propeller wash, vessel movements and other human activity. This creates turbid water of poor quality.

While water is regularly exchanged in this part of the Harbour due to the tidal influence, it is still affected by stormwater runoff and general human activity. Poor water quality is typically experienced after a dry period followed by a storm; an effect known as first flush runoff. The water quality is also likely affected by the corresponding poor sediment quality (see the following heading). When disturbed, any sediment bound contaminants may transfer into solution (e.g. dissolve) affecting the water quality.

#### Aquatic geology and sedimentology

The geology and sedimentology of the proposal footprint is characterised by the following layers:

- Hawkesbury Sandstone underlies the Harbour. This is medium-to-coarse with minor shale and laminate. Its depth and composition vary locally within Circular Quay. It is overlain by alluvial and estuarine sediments. The top of the sandstone is -5 to -39 m CD across the area, with the shallowest section occurring north-east of the proposal footprint. The change in depth across the proposal footprint corresponds approximately to changes in sediment thickness.
- Alluvial and estuarine deposits, consisting of clay-to-sand quaternary sediment with layers of shale, range from 0 to -30 m CD across the proposal footprint. The thinnest section is in the north-west corner and along the quay wall.

#### Sediment chemistry

Contamination testing was undertaken on collected sediment samples. The results are presented in the Sediment Contamination Assessment Report (see Appendix G) and summarised below.

Under the National Assessment Guidelines for Dredging 2009, the following was identified:

Exceedances of:

- Soil quality guideline (SQG) screening levels for:
  - (SQG-low) copper, lead, mercury, silver and zinc
  - (SQG-high) zinc and lead.

Detected:

- Polycyclic aromatic hydrocarbons (PAHs)
- Total polychlorinated biphenyl (PCBs)
- Tributyltin (TBT, normalised to total organic carbon, TOC).

Undetected (e.g. below the laboratory reporting limits):

- Total petroleum hydrocarbons (TPH)
- Cyanide, herbicides, chlorinated hydrocarbons, explosives, nitroaromatics, nitrosamines and phthalates.

TOC ranged from 0.05 to 2.82 percent.

See Figure 6 for the location of exceedances of contaminants.



**Figure 6 Location of Exceedances of Sediment Contaminants** 

\GLOBALARUP.COM\AUSTRALASIA\SYD\PROJECTS\263000\263976-00 OPT EROSION STABILISATION\WORK\INTERNAL\ENVIRONMENTAL ASSESSMENT\263976-00-RPT-0005 - ISSUE 1.DOCX

#### Acid sulfate soils

Potential acid sulfate soils (PASS) are present in the sediments.

#### 6.1.3 **Potential impacts**

#### Hydrodynamic effects

The proposed piling, dredging and the installation of the concrete scour mattresses would physically disturb the marine and harbour environment. The scale of the disturbance would be minimal and insufficient to cause any dynamic changes in current speed, wave characteristics, saline/freshwater mixing or flushing. As the location of the proposal footprint is within a sheltered area of the harbour disturbance from changes in wave movement would be only during a peak ebb flow and flood conditions. Works would only be typically carried out during calm conditions therefore the proposal activities would have a minimal impact.

#### **Erosion and scour**

During construction, the dredging and piling would be the only main activities that may impact the harbour bed. However, dredging works would be temporary and would not cause any significant scouring. The piling would also be a temporary activity taking place over a short period. It would take place during calm conditions. This would reduce any potential scour and erosion.

While anchors and spud would be used during construction the associated erosion and scour would be limited as they would remain in place for a short time. They would also have a minimal impact compared to the disturbance created by the dredging and piling works.

#### Sedimentation dispersion, deposition and smothering

The proposal would disturb sediment during dredging creating turbidity.

The results of the hydrodynamic modelling report (see Appendix D) shows that at a worst case, the maximum level of temporary suspended sediment concentrations (turbidity) would be higher within the vicinity of the dredging location. Finer sediments would disperse and transport across a larger area beyond Circular Quay.



Source: MetOcean Solutions, 2020, Hydrodynamic and Dredge Plume Modelling

Figure 7 Final cumulative sediment deposition thickness [m] and volume settled in dredge pocket for the scenario assuming maximum dredging rate over a 6-day period



Source: MetOcean Solutions, 2020, Hydrodynamic and Dredge Plume Modelling

# Figure 8 Final cumulative sediment deposition thickness [m] and volume settled in dredge pocket for the scenario assuming average dredging rate over a 16-day period

The proposal would generate a limited amount of sediment as shown in Figure 7 and Figure 8. The maximum thickness of the sediment deposition (settlement) is shown to be below 1 mm within the proximity of the proposal footprint. The sediment within this area would reduce quickly over time, while the finer sediment (a thickness of 0.2 mm and below) would deposit and settle over a larger area. This concentration of finer sediments is far less than the natural variability in

dispersion and settlement patterns that occurs during storm events and shipping movements (e.g. propeller wash).

The results of the turbidity levels presented within Appendix D were modelled without mitigation of a silt boom. With a silt boom in place, the levels of turbidity outside the boom would be reduced. Further monitoring during dredging works is proposed to ensure impacts are maintained to an acceptable level.

#### Accidental spills (sediment and pollutant discharge)

The works would be undertaken by machinery and barges as described in section 3.3.3. There is the potential for accidental spills. Should accidental spills occur these would result from:

- Accidents during loading, unloading and installation work.
- Leaks and drips from poorly maintained machinery and equipment.
- The mismanaged storage of waste materials, including potential for debris to enter the water. This would be greatest when loading, transporting and unloading the dredged sediment.

The principal impact from any spills would be pollution and reduction in water quality. The impact would depend on the quantity and type of materials spilt. However, providing relevant standard controls are implemented the impacts are expected to be minimised.

#### Acid sulfate soils

There is the potential for water quality and health impacts from transporting the dredged sediments. ASS generate sulphuric acid once dried out and exposed to the oxygen in air. The sediment would therefore be classified and/or treated in accordance with the NSW Environment Protection Authority's (EPA) Waste Classification Guidelines – Part 4: Acid Sulfate Soils (2014) for onshore disposal and dampened down to reduce potential oxidisation of sediment.

Under either disposal option (see section 1.1) then then they would be prevented from drying out during transportation. Sediment would be monitored during transit. Where required the sediments would be sprayed with sea water and kept moist to prevent drying out. If the decision is taken to dispose of the material on land (see section 1.1) a polymer would be used to absorb excess water. They would remain wet to a level that would reduce the risk for ASS generation (GHD, 2020, pers comms).

These provisions would be included with the Acid Sulfate Soil Management Plan.

#### Localised pollutant disturbance

Given the history of the surrounding area and marine traffic, it is likely that contaminated sediments and poor water quality, particularly following storm events and runoff from the surrounding land, would be encountered within the proposal footprint. As described above, the sediment contamination assessment (see Appendix G) identified contaminants and pollutants to include heavy metals that exceed the soil quality guidelines (see the sediment chemistry heading above). While a range of hydrocarbons were detected along with TBT, concentrations were less than the ANZECC guidelines for fresh and marine water quality.

The contaminants could be transported in a sediment-bound form through dredging activities, including the activity of lifting the sediment through the water column and transferring it to a barge at the OPT. The hydrocarbon and benzo(a)pyrene contaminants could pass into solution and be dispersed into the water column.

GHD prepared a series of hydrodynamic modelling plots to consider the above. Appendix D describes the modelling. A small portion of the dredged material would remain in suspension for enough time that they would be carried beyond Circular Quay and transported around Bennelong Point and Dawes Point on the ebb and flood tides respectively. The pollutant concentrations dispersed over this area would be well below any trigger or water quality levels.

#### **Odour generation**

The hydrocarbon and organic carbon present in the sediment has the potential to be odour generating if it oxidizes (e.g. exposed to the air). This could happen once the sediments are lifted onto a barge and transported to Glebe Island. Odours could also potentially occur if any of the organic material has broken-down below the surface, as this can release gases through the water column. However, this pathway is considered unlikely. Section 6.11 describes the odour impact in more detail and its potential effect on receivers in the area.

#### **Creation of migration pathways**

The presence of marine sediments over sandstone, coupled with the shallow depth to groundwater means that any piling activities could create a pollution pathway into the underlying groundwater. Sheet piles would be installed using a vibropiling method followed by back-driving or hammering of piles operated from a barge restrained by spuds (see section 3.3.4).

There is the potential for pollution impacts from the creation of such pathways during piling. Standard controls would be implemented within a CEMP to ensure the potential for significant impacts are managed.

#### 6.1.4 Safeguards and management measures

Table 13 lists the safeguards and management measures that would be implemented to protect the aquatic environment to account for the impacts identified in section 6.1.3.

| Table 13: aquatic environment | t safeguards and | l management measures |
|-------------------------------|------------------|-----------------------|
|-------------------------------|------------------|-----------------------|

| Ref. | Impact             | Environmental safeguard                                                                                                                                                                                                                                                                       | Responsibility | Timing                            |
|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|
| 1    | Sediment and water | A <b>Sediment and Water Management Plan</b> (SWMP) would be prepared and<br>implemented as part of the CEMP. The SWMP would outline all reasonably<br>potential risks relating to sediment erosion and water pollution and describe<br>how to address these risks throughout construction.    | Contractor     | Pre-construction/<br>construction |
| 2    | Sediment and water | The SWMP would include turbidity monitoring requirements that would be implemented before starting the dredging works and maintained throughout. The plan would involve the following steps and activities:<br>Develop and submit a <b>Water Quality Monitoring Plan</b> to Port Authority of | Contractor     | Pre-construction/<br>construction |
|      |                    | NSW at least one month before deploying instrumentation.                                                                                                                                                                                                                                      |                |                                   |
|      |                    | Establish turbidity monitoring system to capture (baseline) data before starting work and while the work is taking place. As a minimum the system would comprise monitoring equipment, buoys, anchoring system, data management, timing, quality assurance and an equipment failure plan.     |                |                                   |
|      |                    | Install and commission the water quality monitoring instrumentation at least 10 days before starting dredging. Operate the equipment for up to 14 days or as agreed with Port Authority of NSW after the completion of post dredge clearance survey.                                          |                |                                   |
|      |                    | Fit a water sensor at each monitoring location to record turbidity. The sensors would be installed approximately 1 m below the surface.                                                                                                                                                       |                |                                   |
|      |                    | Deploy twin turbidity sensors at each monitoring location to allow the collection of two independent data sources. The two data sources shall undergo automatic processing noting that:                                                                                                       |                |                                   |
|      |                    | • Any difference in turbidity readings within 20% then the average value shall be used                                                                                                                                                                                                        |                |                                   |

| Ref. | Impact | Environmental safeguard                                                                                                                                                                                    | Responsibility | Timing |
|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
|      |        | • If the difference in turbidity readings is greater than 20%, then the minimum value shall be used.                                                                                                       |                |        |
|      |        | • Calibrate and clean water quality sensors as required, just prior to dredging and no longer than two-week intervals.                                                                                     |                |        |
|      |        | • Ensure the water quality loggers provide continuous logging of data, with anti-fouling guards and sensor wiping apparatus to prevent interference to sensors from marine growth.                         |                |        |
|      |        | • Carry out continuous water quality monitoring for each location and data shall be fed live onto a secure website and processed for real-time viewing by key project personnel and Port Authority of NSW. |                |        |
|      |        | • Ensure the water quality monitoring system provides automatic instantaneous notifications to identify when the water quality thresholds are met or exceeded.                                             |                |        |
|      |        | • Controls for sediment and rock debris.                                                                                                                                                                   |                |        |
|      |        | • Controls to avoid concrete pour spills.                                                                                                                                                                  |                |        |
|      |        | • Oil/fuel/chemical storage and spill management.                                                                                                                                                          |                |        |
|      |        | • Machinery and engine maintenance schedule to minimise risk of oil/fuel leakage.                                                                                                                          |                |        |
|      |        | • Response for accidental waste/material overboard (e.g. construction materials fallen into harbour).                                                                                                      |                |        |

| Ref. | Impact                | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Responsibility | Timing                            |
|------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|
| 3    | Sediment and<br>water | <ul> <li>Turbidity limits would be in accordance with Table 3.3.3 of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 1 (ANZECC, 2000) and (in the absence of local limits) the relative increase criteria is set out under Turbidity Water Quality Standards Criteria Summaries; A Compilation of State/Federal Criteria (USEPA, 1998) where relative to background concentrations the following would be achieved:</li> <li>Seven-day rolling average criterion: no more than a 5 nephelometric</li> </ul> | Contractor     | Pre-construction/<br>construction |
|      |                       | turbidity units (NTU) increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                   |
|      |                       | <ul> <li><i>24-nour rolling average criterion</i>: No more than a 10 NTU increase</li> <li><i>Instantaneous criterion</i>: No more than a 10% increase when<br/>background concentrations are above 50 NTU or above.</li> </ul>                                                                                                                                                                                                                                                                                                                 |                |                                   |
| 4    | Sediment and water    | Should the monitoring record an exceedance of the instantaneous criterion or detect an abnormal reading at the 'near field' monitor then:                                                                                                                                                                                                                                                                                                                                                                                                       | Contractor     | Pre-construction/<br>construction |
|      |                       | Dredging works and any water discharge would stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                   |
|      |                       | Work would only recommence once the near-field readings had<br>stabilised/normalised over a 30-minute period and the there was also no<br>exceedance of the instantaneous criterion for the same period.                                                                                                                                                                                                                                                                                                                                        |                |                                   |
| 5    | Sediment and water    | Should the monitoring record an exceedance of the 24-hour or seven-day rolling average criteria then:                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contractor     | Pre-construction/<br>construction |
|      |                       | • Dredging would stop if there were three exceedances of either criteria within a 24-hour period.                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                   |
|      |                       | • Work would only recommence once limits had dropped to below the associated criteria relative to the rolling average.                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                   |

| Ref. | Impact                | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Responsibility | Timing                               |
|------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------|
| 6    | Sediment and water    | A silt boom would be installed around the backhoe dredger bucket when dredging the harbour bed. The boom would only be removed when dredging work is complete or if required for maintenance once the sediment concentrations in the water column inside the silt boom had dropped to below the 24-hour rolling average criterion described in <b>safeguard 3</b> above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contractor     | Construction                         |
| 7    | Sediment and water    | A silt boom would also be placed around the vessel when unloading materials<br>onshore if the option is taken to dispose of the material on land via Glebe<br>Island.<br>The material transfer between the barge and quayside would be carefully<br>managed to limit any transfer loss into the marine environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contractor     | Construction                         |
| 8    | Sediment and<br>water | An Acid Sulfate Soil Management Plan (ASSMP) would be prepared in line<br>with the requirements of the Acid Sulphate Soils Management Advisory<br>Committee Guidelines (ANZECC/ARMCANZ 2000) and implemented as part<br>of the CEMP.<br>Sediment would be kept damp to reduce potential oxidisation. This includes<br>during the period when the sediment would be temporarily stored at Glebe<br>Island or transported offsite. Sediment would be monitored during transit.<br>Where required the sediments would be sprayed with sea water and kept moist<br>to prevent drying out.<br>It would also include the need for adequate sampling and testing prior to<br>disposal in line with the wider requirements of <b>safeguard 50</b> in Table 37<br>below to classify waste before disposal in accordance with Waste<br>Classification Guidelines: Part 1 Classifying Waste (DECCW, 2014). Where<br>possible the material to be dredged will be classified prior to dredging based<br>on sampling data and confirmation from NSW EPA that the dredged material<br>meets general solid waste criteria. | Contractor     | Detailed design/pre-<br>construction |

| Ref. | Impact             | Environmental safeguard                                                                                                                                                                                                                                                                                                                                           | Responsibility | Timing       |
|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 9    | Sediment and water | Weather forecasts would be frequently checked during construction. Should<br>severe weather be forecasted, works would stop, and all equipment and<br>materials would be removed from the construction area or secured.                                                                                                                                           | Contractor     | Construction |
| 10   | Water quality      | A <b>Spill Management Plan</b> would be prepared, implemented as part of the CEMP and communicated to all staff working on site.<br>Any spill, whether it occurred in water or on land and subsequently entered the water, must be immediately reported to Sydney Vessel Traffic Service (VTS).<br>Aquatic spill kits are to be kept on site during construction. | Contractor     | Construction |
| 11   | Water quality      | All equipment and machinery would be maintained in good condition and regularly inspected visually for leaks.                                                                                                                                                                                                                                                     | Contractor     | Construction |
| 12   | Water quality      | Any fuels or chemicals stored on Glebe Island, at the OPT or on barges, would<br>be stored in a bunded area to prevent any chemical leaks or spills entering the<br>water.                                                                                                                                                                                        | Contractor     | Construction |
| 13   | Water quality      | Work involving barges and piling should take place during calm conditions<br>and at night where possible to minimise scouring and other impacts.                                                                                                                                                                                                                  | Contractor     | Construction |

## 6.2 **Biodiversity**

This section describes the predicted terrestrial and marine ecology impacts from carrying out the proposed works.

## 6.2.1 Method

The assessment included a desk review of State and Commonwealth records, data and literature to confirm the likely presence of threatened flora, fauna and endangered communities in the local aquatic environment. The following published records were reviewed:

- NSW Wildlife Atlas: containing information on State protected species.
- NSW Fisheries species profiles, 'Primefact' publications and expected distribution maps.
- Department of Primary Industries (Fisheries) Policy and Guidelines for Fish Habitat Conservation and Management (2013).
- Protected Matters Search Tool: containing information on Commonwealth protected species.
- Foreshore and Waterways Area Development Control Plan: Ecological Communities and Landscape characteristics map.
- PlantNet Database: containing information on sensitive and rare plants.
- BioNet Atlas of Wildlife: containing information on threatened and protected fish species.
- List of Noxious Weeds: containing information on non-native plant species that are listed as noxious weeds.

The impact assessment was prepared with consideration of the:

- BioBanking Handbook for Local Government (DECCW, 2008)
- Significant Impact Guidelines 1.1: Matters of National Environmental Significance (Commonwealth Department of Environment and Energy, 2013).

The assessment focussed on a desk review to confirm if the ecological potential in the area was enough to warrant further investigation (e.g. a maritime ecology or dive survey). Based on the desk review, no further investigation was carried out. Also, the lack of ecological value and nature of proposed works resulted in the conclusion of there being no potential impact on protected matters of national environmental significance. As such, no assessment was made against the EPBC Act Significant Impact Guidelines 1.1 and the proposal was not referred to the Australian Government DAWE.

The assessment considered the impacts from the activities descried in Chapter 3.

Once the works were complete, there would be no change in operation. As such, there is predicted to be no operational impacts.

263976-00-RPT-0005 | Issue 1 | 17 September 2020 | Arup

## 6.2.2 Existing environment

#### Marine environment: Overseas Passenger Terminal

#### Protected areas and key ecological communities

The proposal is not located close to any protected areas, namely wetlands of international significance, seagrass habitat, coastal saltmarsh, coastal wetlands, fish spawning or nursery areas, wetland protection areas (see Section 4.1.1 SREP policy objectives), or mangrove habitat (as reviewed on Creese *et al* 2009 mapping habitats of NSW estuaries). While there is currently no mapping to show coastal vulnerability areas, it is considered unlikely that the proposal footprint is in such an area.

A review of the Foreshore and Waterways Area Development Control Plan: Ecological Communities and Landscape characteristics map did not show the presence of terrestrial or aquatic ecological communities within or close to the proposal footprint.

#### Habitat

A search of the Protected Matters Search Tool identified no threatened ecological communities in proximity to the proposal footprint. Due to the high volume of boat and ship traffic, the type of berth construction and disturbed nature of the area, it is unlikely to provide significant habitat features for threatened species that are recorded elsewhere in parts of Sydney Harbour such as black rock cod, sygnathiformes (e.g. White's seahorse) or turtles.

White's seahorse *Hippocampus whitei*, is endemic to Sydney Harbour and found throughout its reaches, including west of the Harbour Bridge up to Mort Bay at Balmain. They have been listed as endangered under Part 1 Schedule 4 of the FM Act.

The substrate habitat is bare sand, which under the Department of Primary Industries (Fisheries) Policy and Guidelines for Fish Habitat Conservation and Management (2013), is identified as a key fish habitat (KFH) type 3. Type 3 is a minimally sensitive KFH that is represented by unvegetated subtidal sediment, intertidal mudflat with sparse infauna and intertidal seawall.

#### **Threatened flora**

No threatened plant species were identified from a desk study review. Due to the bare sand substrate within the proposal footprint, there is lack of supporting habitat for seagrass cover.

#### **Threatened fauna**

A review of the BioNet Atlas of NSW and the NSW Fisheries Species Profiles identified that vulnerable shark species (grey nurse and great white) and other fish had been sighted locally. However, due to the habitat of the proposal footprint being bare unvegetated substrate (harbour floor), the potential for it to support habitat for threatened species or for foraging is unlikely. Circular Quay is a very busy part of Sydney Harbour and is heavily used by a variety of vessels and cruise ships berthing regularly. The vessels create significant propeller wash; particularly with cruise ships generating significant thrust causing disturbance of the harbour bed. This means any megafauna are only likely to enter the area by exception, potentially when chasing prey or occasionally for protection.

#### Other fauna

A range of benthic or sub-benthic sessile fauna and infauna species are likely to be present in the sediment. These species are common to any sediment and create an important function in supporting primary production. They provide an indication of wider ecological health. While no benthic sampling was carried out, the level of activity in Circular Quay, coupled with the sediment quality (see section 6.1) means the benthic communities are likely limited and provide no real value to the wider ecology of the Harbour.

Native and non-native bird species have also been sighted in the area. These are non-threatened species and common to many parts of Sydney Harbour and its foreshores (e.g. ibis, gulls, cormorants).

#### Pests

Aquatic pest species can reduce local aquatic values and introduce toxins into the marine environment. Table 14 lists the aquatic pest species and pathogens that have a moderate-to-high potential of occurring locally due to ship movements.

| Habitat                                                        | Description                         | Effect                                                                                                     |
|----------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------|
| <i>Caulerpa taxifolia:</i> seaweed                             | Ballast water and ship hull fouling | Leading to habitat degradation through outcompeting key habitats.                                          |
| <i>Alexandrium sp.:</i><br>dinoflagellate:<br>aquatic plankton | Cysts carried in benthic sediment   | Can introduce neurotoxins in the water<br>column leading to fish kill and<br>bioaccumulation in shellfish. |

Table 14: Aquatic pest species

#### Underwater noise sensitivity

Large megafauna and fish are sensitive to the impacts of underwater noise. While they can perceive piling generated noise up to 400 metres from its source, they typically avoid coming within 30 metres (Engell-Sorensen, K, *et al.*, 2000). If they do come within 30 metres of any piling work, then they could be injured or harmed through hearing loss or in extreme instances they can be killed; a term known as acoustic shock.

#### Terrestrial

The landside of the terminal is considered to have limited habitat potential. The area is made up of hardstand within an urbanised area. There is evidence of native pest and vermin in the area. Due to limited habitat potential on the landside, this has not been included in the assessment of impacts.

## 6.2.3 **Potential impacts**

#### Marine environment: overseas passenger terminal

#### Protected areas and threatened species

As identified above, the proposal footprint and compound are not located within or near any protected areas, and no threatened or key habitat is expected to occur locally. While threatened fauna have been recorded in the area, these species are unlikely to rely on its habitat or values for foraging or their survival. Any recorded species are wide-ranging, and they would likely use other parts of the harbour. As such, there is unlikely to be any direct or indirect impact on protected areas or threatened species.

#### Loss of aquatic vegetation and habitat

The dredging and scour protection work would directly impact the harbour bed. However, given the location of the proposal in an area of high traffic and the disturbed nature of the proposal footprint, it is unlikely that any notable vegetation or habitat would be directly lost to the proposal.

The harbour bed in the proposal footprint is identified as a Type 3 KFH lowsensitive habitat. The loss of this habitat from dredging would have no associated material impact.

#### Smothering and light preclusion

Impacts on the surrounding substrate and sediment in Sydney Harbour would be somewhat mitigated using a silt boom (see Table 13).

There would be some additional sediment disturbance from the temporary increase in vessel movements, the piling, and from the use of spuds and anchors to stabilise the dredger. While none of these have not been modelled, the associated level of disturbance would be unlikely to have any material benthic or primary production impact on the area's ecological values despite some thin-layer smothering (see section 6.1.3) of nearby low-value benthic habitat including infauna burrows.

As described in section 6.1.3 and Appendix D, the maximum depth of deposition would be 1 mm without the use of a boom. Most benthic fauna and habitat communities can tolerate a temporary covering of sediment to this depth without critical loss or impact. It is also likely that the natural variability of sediment deposition across the harbour bed is far greater than the deposition caused as a result of the proposal; again, noting that the modelled results are a worse case because they do not include the silt boom.



Source: MetOcean Solutions, 2020, Hydrodynamic and Dredge Plume Modelling

Figure 9 Timeseries of total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, at four reference sites

Figure 9 shows a time series of turbidity levels in and local to Circular Quay. The figure shows that the peak turbidity levels at the surface, mid-level and bottom of the harbour at different times. However, the turbidity levels are predicted to return to ambient concentrations within three to four days after dredging. Concentrations would also vary during the dredging works, depending on the rate of work and natural conditions.

While turbidity levels may be up to 10 times that of the natural conditions without using a silt boom, this would only occur for about an hour over a very localised area in Circular Quay, with concentrations being near to ambient conditions farther-a-field. Given the limited amount of time the water would remain turbid and the small area this would cover, this is unlikely to cause any impact through the loss of light. Further, there are no important photosynthetic communities within the dredge-impact footprint.

#### **Injury and mortality**

While there is the potential for large fauna to pass through the area, including grey nurse and great white shark, the risk of injury or death is currently present due to the existing movement of ferries, cruise ships and other vessels in the area. Any temporary increase in activity due to the barges or boats required for construction would present minimal additional boat strike impact or risk.

There is the potential for any benthic fauna and infauna and sessile species near the proposal footprint to be injured or killed due to the dredging, piling work and/or use of spuds and anchors impacting on the harbour floor. Similarly, benthic and sessile species may be injured or killed due to the localised smothering of these species. The nature of these impacts is considered unlikely to have a material impact on ecological function or value in the harbour. Impacts would be further reduced by introducing the safeguards and management detailed in section 6.2.4. Providing these are in place and effective, then any associated impacts could be avoided or minimised.

#### **Entrapment and impingement**

A silt boom would be provided around the backhoe dredger bucket to manage and help reduce larger sediment dispersion. This is unlikely to have an impact on entrapment of fish as there would be no curtain to trap fish. The silt boom would float on the surface.

#### **Underwater noise**

The potential for underwater noise impacts is minimal due to several reasons:

- The potential for aquatic megafauna to pass through the proposal footprint is low and they would likely avoid any dredging or scour protection activities.
- Although there are fish present in the area, they would likely avoid any underwater noise sources.
- Drilling of piles (the key underwater noise impact) would occur intermittently over a six-week period. Pile hammering typically happens for two to five minutes, followed by a relatively quiet period of 30 minutes or more before the next stage begins.

The most likely impact would be any startled response from the start of the drilling of piles. This would be avoided by gradually increasing the piling rate to avoid startling surrounding fish and megafauna.

#### Key threatening processes

The proposal would not include a key threatening process listed under Part 7A of the FM Act.

#### **Indirect and secondary impacts**

There is potential for sediment discharge, accidental spills and localised scour and unplanned erosion to occur during construction. By including standard safeguards described in section 6.2.4, the impact on the marine environment is assessed to be low.

There would be a small increase in vessel movements through Sydney Harbour during the works (see Table 6). This would have negligible impact in terms of any disturbance to fish and megafauna due to the existing shipping activity in the area.

#### **Pest species**

Pest species may be introduced due to the movement of vessels into and out of the proposal footprint and while in transport to and from Glebe Island and offshore. This impact is expected to be minimal provided the relevant standard controls are introduced and monitored.

#### **Terrestrial environment**

While noise and lighting would be temporarily introduced during construction, along with general disruption in the area, this is unlikely to have any terrestrial ecology impacts. This is due to there being no terrestrial habitat loss; while any fauna in the area is habituated (used to) the high level of human activity in Circular Quay.

#### **Conclusion on significance impacts**

The proposal is unlikely to cause significant impact to any threatened aquatic or terrestrial species, populations or ecological communities or their habitats, within the meaning of the BC Act or FM Act, and thus a SIS is not needed.

The proposal is also unlikely to cause significant impact to threatened aquatic or terrestrial species, populations or ecological communities or migratory species, within the meaning of the EPBC Act. Therefore, a referral to the Australian Government DAWE is not required for matters relating to biodiversity.

#### 6.2.4 Safeguards and management measures

Table 15 lists the aquatic biodiversity safeguards and management measures that would be implemented to account for the impacts identified in section 6.2.3.

263976-00-RPT-0005 | Issue 1 | 17 September 2020 | Arup

#### Table 15: biodiversity safeguards and management measures

| Ref. | Impact               | Environmental safeguard                                                                                                                                                                                                                                                                                         | Responsibility | Timing           |
|------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|
| 14   | Aquatic biodiversity | <ul> <li>A Marine Ecology Management Plan would be prepared as part of the CEMP. This would include, but not limited to, measures relating to the following activities:</li> <li>Aquatic fauna management</li> <li>Biological hygiene (e.g. prevention of noxious species spreading on and off site)</li> </ul> | Contractor     | Pre-construction |
| 15   | Biodiversity         | If a previously unidentified threatened aquatic species is observed in the proposal footprint during construction works would temporarily stop until a suitably qualified expert has advised that works can recommence.                                                                                         | Contractor     | Construction     |
| 16   | Biodiversity         | Work would stop if large aquatic fauna is observed nearby.                                                                                                                                                                                                                                                      | Contractor     | Construction     |
| 17   | Biodiversity         | Gradual start-up piling to allow undetected aquatic fauna to move away from the area.                                                                                                                                                                                                                           | Contractor     | Construction     |
| 18   | Pest species         | Equipment and machinery would be locally sourced and/or procured from<br>areas where the risk of introducing pest species is low. Regular inspection of<br>machinery, materials and equipment would be carried out where needed to<br>ensure the importation of pests or weeds to the area is prevented.        | Contractor     | Construction     |
| 19   | Biodiversity         | Positioning work barges, drilling and pile driving should occur during calm conditions.                                                                                                                                                                                                                         | Contractor     | Construction     |

## 6.3 Noise and vibration

This section describes the proposal's predicted noise and vibration impacts during construction. Changes are not proposed to the day-to-day operation of the OPT therefore no operational assessment has been undertaken. Appendix E contains the supporting technical paper.

Note: Appendix E also considered the noise amenity impacts from carrying out the works at Glebe Island under Option 1 (see section 1.1). This was to ensure the impact on the community was consistent with the assessment carried out in 2013.

## 6.3.1 Method

The construction assessment was undertaken from a review of the proposed activities and methodology. The assessment focussed on impacts from:

- Construction activity noise
- Construction traffic noise
- Construction vibration.

A baseline review of background noise data was undertaken and inputted into a model to predict noise emissions. Noise background data presented in the following environmental assessments were used:

• Overseas Passenger Terminal Wharf Extension: Construction Noise and Vibration Assessment (AECOM, 2014).

## 6.3.2 Existing environment

#### Ambient noise levels

#### **Overseas passenger terminal**

The OPT is located within an area of relatively low-to-medium ambient noise. The main activities and sources that contribute to the ambient noise are:

- Harbour-related activities such as boat noise, ferry movements, and major shipping movements.
- Residential and commercial activities, including traffic, bars and restaurants, visitors.

Table 16 presents the background noise levels (AECOM, 2014), which are discussed further in Appendix E. The table also details the noise monitoring locations.

| Monitoring Location                                 | RBL: rating background level <sup>1</sup><br>dB(A) <sup>3</sup> |         |       |  |
|-----------------------------------------------------|-----------------------------------------------------------------|---------|-------|--|
|                                                     | Day                                                             | Evening | Night |  |
| Holiday Inn, 55 George Street, The Rocks            | 61                                                              | 60      | 57    |  |
| Quay Grand, 61 Macquarie Street, East Circular Quay | 63                                                              | 62      | 52    |  |
| Destination NSW Office, Level 2, 88 Cumberland St.  | 61                                                              | 61      | 57    |  |
| Park Hyatt, 7 Hickson Rd, The Rocks                 | 61 <sup>2</sup>                                                 | 59      | 56    |  |

#### Table 16: Existing ambient acoustic noise environment for Circular Quay

1 - Day is defined as the period from 7 am to 6 pm Monday to Saturday; or 8 am to 6 pm on Sundays and Public Holidays. Evening is the period from 6 pm to 10 pm. Night is the remaining period.

2 - Denotes results in which all periods were affected by rain or wind noise.

3 - Db (A) denotes a single number sound pressure level that includes a frequency weighting to reflect the sound level.

Note: The noise monitoring was undertaken from 23 July 2013 to 1 August 2013 at the first two locations and further logging was conducted at two additional locations from 8 November 2013 to 2 November 2013.

The local background noise levels represent the activity in the area, with noise levels remaining high during the day, evening and at night compared to other areas of Sydney. It was noted that in three locations, the Holiday Inn, Destination NSW office and the Park Hyatt, background levels were within 1dB or each other. Therefore, the Holiday Inn monitoring location was used to represent the background noise at all receivers on the western side of Circular Quay. Measurement results from the Quay Grand were used to represent background noise at receivers east of Circular Quay.

#### **Sensitive receivers**

#### **Overseas passenger terminal**

The proposal footprint is near to non-residential and residential receivers.

Heritage structures have also been identified within 100 m of the OPT (see Appendix F). The heritage buildings are considered structurally sound, and in accordance with industry standards (BS7385- $2^4$ ), these are not considered to be more sensitive than other surrounding structures. Based on the distance of the heritage items from the proposal footprint, vibration is not anticipated to be an issue.

Residential receivers located within similar environments and with comparable relationship to surrounding noise sources have been grouped into Noise Catchment Areas (NCAs). They are shown in Figure 10 and described in Table **17**.

<sup>&</sup>lt;sup>4</sup> British Standard 7385 Part 2-1993

| NCA   | Description           | Noise environment                                                                                                                                                                 |
|-------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCA 1 | Eastern Circular Quay | Background levels dominated by road traffic along<br>Cahill Expressway, local road traffic and surrounding<br>local activity from entertainment venues or commercial<br>premises. |
| NCA 2 | Western Circular Quay | Generally, background levels are dominated by local<br>intermittent road traffic, local activity and natural<br>sources.                                                          |

#### Table 17 NCAs and description

Residential receivers with the potential to be impacted by the proposed construction are listed in Table 18.

| Receiver<br>ID | Address                         | No. of<br>floors | Approximate<br>distance to site [m] |
|----------------|---------------------------------|------------------|-------------------------------------|
| R1             | 1-3 Macquarie Street, Sydney    | 12               | 260                                 |
| R2             | 3-7 Macquarie Street, Sydney    | 12               | 260                                 |
| R3             | 61-69 Macquarie Street, Sydney  | 15               | 270                                 |
| R4             | 8 Hickson Road, Dawes Point     | 6                | 160                                 |
| R5             | 54 Gloucester Street, The Rocks | 2                | 250                                 |
| R6             | 2 Phillip Street, Sydney        | 27               | 320                                 |

#### Table 18: Residential receivers

The nearest non-residential sensitive receivers to the OPT are listed in Table 19. All identified receivers are also shown in Figure 10.

#### Receiver Name Address No. of Approximate ID floors distance to site [m] Commercial C1 Northern Commercial 3 <10 **Overseas Passenger** Terminal, The Rocks Premises (Quay Restaurant, The Squire's Landing) Southern Commercial 3 C2**Overseas Passenger** <10 Terminal, The Rocks Premises (Cruise Bar, Yuki's at the Quay) C3 7 Hickson Road, The 5 110 Park Hyatt Rocks C4 Opera Bar Sydney Opera House, 1 320 Macquarie Street, Sydney C5 Holiday Inn Old 55 George Street, The 5 130 Sydney1 Rocks

#### Table 19: Non-residential receivers

263976-00-RPT-0005 | Issue 1 | 17 September 2020 | Arup

| Receiver<br>ID                                                                                                                                                                                                                                                                                                              | Name                                                                                                 | Address                               | No. of<br>floors | Approximate<br>distance to site [m] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|-------------------------------------|
| Educational                                                                                                                                                                                                                                                                                                                 | Facilities                                                                                           |                                       |                  |                                     |
| E1                                                                                                                                                                                                                                                                                                                          | APM College of<br>Business and<br>Communication,<br>Torrens University<br>Australia, William<br>Blue | 1-5 Hickson Road,<br>The Rocks        | 5                | 70                                  |
| E2                                                                                                                                                                                                                                                                                                                          | Julian Ashton Art<br>School                                                                          | 117 George Street,<br>The Rocks       | 3                | 140                                 |
| Passive Reci                                                                                                                                                                                                                                                                                                                | reation Area                                                                                         |                                       |                  |                                     |
| PR1                                                                                                                                                                                                                                                                                                                         | First Fleet Park                                                                                     | George Street, The<br>Rocks           | 0                | 130                                 |
| PR2                                                                                                                                                                                                                                                                                                                         | Hickson Road<br>Reserve                                                                              | Hickson Road, The<br>Rocks            | 0                | 140                                 |
| PR3                                                                                                                                                                                                                                                                                                                         | Foundation Park                                                                                      | Gloucester Walk, The<br>Rocks         | 0                | 200                                 |
| Cultural                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                       |                  |                                     |
| H1                                                                                                                                                                                                                                                                                                                          | Australian Steam<br>Building                                                                         | 1-5 Hickson Road,<br>The Rocks        | 5                | 70                                  |
| H2                                                                                                                                                                                                                                                                                                                          | Cadman's Cottage                                                                                     | 110 George Street,<br>The Rocks       | 2                | 70                                  |
| Н3                                                                                                                                                                                                                                                                                                                          | Museum of<br>Contemporary Art                                                                        | 136-140 George<br>Street, The Rocks   | 6                | 50                                  |
| H4                                                                                                                                                                                                                                                                                                                          | The Rocks Discovery<br>Museum                                                                        | Kendall Lane, The<br>Rocks            | 3                | 130                                 |
| Н5                                                                                                                                                                                                                                                                                                                          | Susannah Place                                                                                       | 58/64 Gloucester<br>Street, The Rocks | 2                | 260                                 |
| 1In accordance with the NSW Interim Construction Noise Guidelines 2009, hotel residents are classified as non-residential receivers. However, hotel guests would experience some sleep disturbance as identified within section 6.3.4. Mitigation measures for residential receivers would also be applied to hotel guests. |                                                                                                      |                                       |                  |                                     |

263976-00-RPT-0005 | Issue 1 | 17 September 2020 | Arup



Figure 10: Noise sensitive receiver locations surrounding the OPT site and NCAs

#### 6.3.3 Assessment criteria

The assessment of noise impacts was assessed against criteria discussed in detail in Appendix E. Table 20 to Table 22 summarises the key criteria used for the assessment.

| <b>Fable 20 Construction</b> | ı noise | assessment | criteria |
|------------------------------|---------|------------|----------|
|------------------------------|---------|------------|----------|

| Aspect                       | Criteria (LAeq (15 min)1)    |                                       |
|------------------------------|------------------------------|---------------------------------------|
| Work activity                | Residents: Standard hours    | Noise affected: RBL + 10dB            |
| noise                        |                              | Highly noise affected: 75dBA          |
| externally                   | Residents: out of hours      | RBL + 5 dB                            |
| RBL: rating background level | Residents: sleep disturbance | LA902 noise level by more than 15 dB3 |
|                              | Passive recreation areas     | 60 dB(A)                              |
|                              | Active recreation areas      | 65 dB(A)                              |
|                              | Educational institutions     | 45 dB(A)                              |
|                              | Museums                      | 45 dB(A)2                             |
|                              | Commercial premises          | 70 dB(A)                              |

1 The average equivalent ('eq') continuous sound level, used to describe the level of a time-varying sound or vibration measurement.

2 The sound level exceeded for 90% of the measurement period. The L90 is often defined as the 'average minimum' or 'background' noise level for a period of measurement. For example, 45 dBLA90,15 min indicates that the sound level is higher than 45 dB(A) for 90% of the 15-minute measurement period. 3 Not applied to traffic noise.

#### Table 21 Road traffic criteria for traffic generating development - residential receivers

|                                          |                                                                                                                   | Assessment criteria – dBL <sub>Aeq</sub>    |                                            |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|
| Road category                            | Type of project/land use                                                                                          | Day<br>(7 am-10 pm)                         | Night<br>(10 pm-7 am)                      |
| Freeway/arterial/ sub-<br>arterial roads | Existing residences affected by<br>additional traffic on existing<br>roads generated by land use<br>developments. | L <sub>Aeq,(15 hour)</sub> 60<br>(external) | L <sub>Aeq,(9 hour)</sub> 55<br>(external) |

Note: These criteria are for assessment against façade corrected noise levels when measured in front of a building façade.

The following guidance provides recommended minimum safe working distances for vibration intensive plant. These are based on international standards and guidance and reproduced in Table 22 below for reference.

|                       |                    | Minimum working distance     |                                                 |  |
|-----------------------|--------------------|------------------------------|-------------------------------------------------|--|
| Plant Item            | Rating/description | Cosmetic damage<br>(BS 7385) | Human response<br>(OH&E Vibration<br>Guideline) |  |
| Vibratory pile driver | Sheet piles        | 2 m to 20 m                  | 20 m                                            |  |

## Table 22: Recommended minimum working distances for vibration intensiveplant

## 6.3.4 **Potential impacts**

#### **Overseas Passenger Terminal**

#### Activity-based noise

The construction works would include different activity stages, each with different types of equipment in each construction work area. Equipment sound power levels are provided in Appendix E. These define the noise levels emitted at the source of the equipment.

The OPT works would take place during day, evening and at night over the construction program. Most of works at the OPT, including piling, dredging, and concrete work in the harbour, would mainly take place at night. This is due to safety reasons and the water tends to be calmer at night and the harbour is least busy, however there may be a need to undertake these activities during the day.

As assessment has been carried out to consider works taking place during the day, evening and at night (see section 3.3.1 construction hours).

#### Activity-based noise impacts at the OPT

Chapter 6 of Appendix E describes the detail of the noise impacts. In summary, and in relation to Table 4 Construction and dredging activities:

- There would be no impact during the **day**.
- Residents and hotel guests in Campbells Cove would be affected **at night** and they may have their sleep disturbed when: installing the sheet piling (enabling works), stabilising the embankment, and extending and deepening the berth pocket (dredging). These include:
  - R1: 1-3 Macquarie Street, Sydney
  - R2: 3-7 Macquarie Street, Sydney
  - R3: 61-69 Macquarie Street, Sydney
  - R6: 2 Phillip Street, Sydney

Exceedances of NMLs for non-residential receivers would mainly impact the commercial receivers (Quay Restaurant, Cruise Bar, Squires Landing, Yuki's at the Quay) and MCA museum. They would be affected when they are open.
The duration of these impacts would depend on the final work schedules and whether the identified works would take place during the evening or at night (see section 3.3.1).

While noisy activities including piling and hammering may also take place during the day it would not be scheduled or permitted between 12pm and 2pm. This would reduce impacts during the busiest time of day for commercial receivers within Campbells Cove and the MCA museum, as well reducing impacts on the public amenity for receivers passing through the area.

#### Road-traffic noise impacts at the OPT

Construction works at the OPT are proposed to be 24/7 operation. A worst-case assessment has been undertaken for traffic generated during the night-time period of 10pm to 6am. A maximum of 20 daily truck movements is anticipated for construction works at the OPT. A workforce of 22 has been assumed to arrive within one hour during the night-time.

The predicted traffic-generated noise levels at the nearest residential receiver, 8 Hickson Road, Dawes Point (R4) would be noticeable however they would not exceed the criteria in Table 23 (see Chapter 6 of Appendix E).

#### Activity-based vibration impacts

Vibratory sheet piling would be the only activity that could give rise to potential vibration impacts. As this work would be more than 20 m from the nearest receiver a safe working distance could be maintained (see Table 25).

### **Glebe Island**

Appendix E includes a noise assessment of the works at Glebe Island. This was to see if the impacts of the planned activities are consistent with the impact predicted in 2013. In summary:

- The noise impact from the planned works would be in general accordance with the 2013 assessment.
- The influence of the shipping movements to and from Glebe Island would have negligible influence on the overall noise emissions. This is because the vessels produce a comparatively low level of noise compared to the other planned activities and they only arrive and leave site a few times each day (see section 3.4.1).

### 6.3.5 Safeguards and management measures

Table 23 summarises the noise and vibration safeguards and management measures that would be implemented to account for the impacts identified in section 6.3.3.

| Ref. | Impact | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Responsibility | Timing           |
|------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|
| 20   | Noise  | <ul> <li>A Construction Noise and Vibration Management Plan would be prepared and implemented as part of the CEMP. This will specify the actual plant to be used and will include updated estimates of the likely levels of noise and the scheduling of activities. The Plan would include: <ul> <li>All potential significant noise and vibration generating activities associated with the activity</li> <li>Feasible and reasonable mitigation measures to be implemented</li> <li>A monitoring program to assess performance against relevant noise and vibration criteria.</li> </ul> </li> <li>Arrangements for consultation with affected neighbours and sensitive receivers, including notification and complaint handling procedures, and contingency measures to be implemented in the event of non-compliance with noise criteria.</li> </ul> | Contractor     | Pre-construction |
| 21   | Noise  | <ul> <li>Electric/hydraulic equipment would be used where possible using the smallest equipment as is practical. All plant and equipment used on site would be:</li> <li>Maintained in a proper and efficient condition.</li> <li>Operated in a proper and efficient manner.</li> <li>All vehicles, plant and equipment would be turned off when not in use.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contractor     | Construction     |
| 22   | Noise  | The offset distance between noisy plant and adjacent sensitive receivers would be<br>maximised. Plant used intermittently would be throttled or shut down. Noise-<br>emitting plant would be directed away from sensitive receivers where possible.<br>Truck movements and haulage routes would be planned to avoid residential streets<br>where possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contractor     | Construction     |

### Table 23 noise and vibration safeguards and management measures

| Ref. | Impact                 | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                  | Responsibility                      | Timing           |
|------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|
| 23   | Noise                  | Non-tonal reversing beepers (or an equivalent mechanism) would be fitted and used<br>on all mobile site-based vehicles, plant and equipment.                                                                                                                                                                                                                                                             | Contractor                          | Construction     |
| 24   | Noise and<br>vibration | All works would be scheduled with the aim of avoiding particularly noisy works<br>(installing the sheet piling, stabilising the embankment, and dredging) after 10pm<br>and before 6am, noting that these works will likely have to take place at night due<br>to safety and operational reasons.<br>Piling and particularly noisy works would be restricted and not undertaken between<br>12pm and 2pm. | Contractor                          | Pre-construction |
| 25   | Noise and<br>vibration | Advanced warning of works and potential disruptions to the community would be provided. The notification may consist of a letterbox drop (or equivalent) detailing work activities, time periods over which these will occur, impacts and mitigation measures. This would be in accordance with the provisions in <b>Safeguard B</b> in Table 43 below.                                                  | Contractor/Port<br>Authority of NSW | Pre-construction |

#### 6.4 Landscape character and visual impact

This section describes the proposal's potential landscape character and visual impacts.

#### 6.4.1 Method

### Landscape character and visual impacts

A desk review of the landscape character and visual receivers was undertaken for the site and surrounding area through online mapping. The landscape assessment for the Overseas Passenger Terminal Wharf Extension REF by AECOM (2017) was reviewed to identify key viewpoints to assist in the assessment.

The assessment of impacts used the ratings outlined in the Guidelines for Landscape Character and Visual Impact Assessment (EIA-N04, Roads and Maritime, 2013) to determine:

- The sensitivity of viewpoints and the landscape character to changes in form, setting and composition from carrying out the proposed works.
- The scale of change in the landscape and to people's views.

The grading matrix from EIA-N04 is shown in

Table 24 below. This has been considered within the assessment of potential impacts.

. .

. .

| Table 24: landscape | character and | i visuai impaci | rating matrix |
|---------------------|---------------|-----------------|---------------|
|                     |               |                 |               |

. .

|             | Magnitude            |                              |                                |                                |              |  |  |
|-------------|----------------------|------------------------------|--------------------------------|--------------------------------|--------------|--|--|
|             |                      | <ul> <li>High</li> </ul>     | Moderate                       | Low                            | • Negligible |  |  |
| Sensitivity | • High • High impact |                              | • High-moderate • Moderate • N |                                | • Negligible |  |  |
|             | Moderate             | • High-moderate              | <ul> <li>Moderate</li> </ul>   | • Moderate-low                 | • Negligible |  |  |
|             | Low                  | <ul> <li>Moderate</li> </ul> | • Moderate-low                 | • Low                          | • Negligible |  |  |
|             | • Negligible         | • Negligible                 | ● Negligible                   | <ul> <li>Negligible</li> </ul> | • Negligible |  |  |

### Lighting impacts

TT 11 04 1

An assessment of light spill activities at the OPT was undertaken with reference to AS4282-1997: Control of the Obtrusive Effects of Outdoor Lighting (Standards Australia, 1997).

Only construction impacts have been assessed as the operation of the proposal would remain unchanged.

# 6.4.2 Existing environment

### **Overseas passenger terminal**

### Landscape character and context

The OPT is in Sydney Harbour within a visually prominent location with uninterrupted views to and from Circular Quay, Sydney Opera House and the Harbour Bridge. The OPT lies within the Sydney Opera House World Heritage Site buffer zone (see section 4.1.1).

The landscape character of the area is defined by its urban waterside setting and the context of key tourist landmarks and high-rise residential and office buildings.

The waterfront is locally characterised by the regular movement of ferries, tourist craft, water taxis and cruise ships, which tend to dominate and temporarily change the area's local character. The level of tourist activity and movement helps shape and place-make the area. This collectively leads to creating a distinct sense of place, which is characterised differently by locals, commuters, tourists and visitors, who hold different values to the area's landscape characteristics. For instance, tourists' reference and value the key iconic structures and the area's relationship with the Sydney Opera House and Sydney Harbour Bridge. By comparison, commuters see the area more functionally, characteristically valuing the transport interchange between light rail, bus, rail and ferry services.

The landscape characteristics have been divided into four key zones within the local area of the OPT. Each has distinct and recognisable components and patterns. Table 25 describes the key LCZs in the local area along with their characteristics, quality and sensitivity to change. These LCZs are presented in Figure 11.

| Zone                           | Land use characteristics                                                                                                                                                                                             | Sensitivity to change                                                          |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| LCZ1:<br>The Rocks             | Forms the backdrop to the OPT.<br>Characteristic of historic buildings and mix of high rise<br>and low-rise buildings.<br>Urban character of bars, shops and restaurants.<br>Views across to the Sydney Opera House. | • Moderate<br>due to the historic<br>nature of the area.                       |
| LCZ2:<br>Circular<br>Quay      | Characteristics of open water within a busy ferry port.<br>The backdrop of Circular Quay is characterised by high<br>rise buildings and Sydney CBD.                                                                  | • Low<br>due to the nature of the<br>area as a busy ferry<br>hub.              |
| LCZ3:<br>Sydney<br>Opera House | Characterised as a tourist landmark.<br>Prominent views of the harbour and harbour bridge, as<br>well as Circular Quay and the Rocks.<br>World Heritage Site.<br>Provides public open space and tourism.             | • High<br>given the heritage and<br>national/world<br>importance of this site. |

| Zone                | Land use characteristics                                                                                                                                                                                   | Sensitivity to change                                                                                    |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| LCZ4:<br>Kirribilli | Characteristic of a residential urban area with mix of<br>medium to low rise buildings.<br>Adjacent to the harbour with prominent views of the<br>city, Sydney Opera House, Harbour Bridge and the<br>OPT. | • Low<br>due to changeable<br>views of construction<br>sites within the city and<br>movement of ferries. |



### Figure 11: landscape character zones around the OPT

The character areas provide moderate-to-high amenity value due to the provision of public spaces and an historic built form.

### Viewpoints and receivers

A review of the Overseas Passenger Terminal Wharf Extension REF (AECOM, 2017) identified key landmark viewpoints to and from the OPT. These are also relevant for this proposal as the works are within the same location. These viewpoints are listed in Table 26 and shown on Figure 12.

| Viewpoint                         | Location                                                               | Sensitivity to change                                               |  |
|-----------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| VP1: tourists                     | Sydney Opera House<br>Forecourt                                        | • High, due to high number of observers and visitors.               |  |
| VP2: tourists                     | Sydney Opera House concourse                                           | • High, due to high number of observers and visitors.               |  |
| VP3: tourists                     | Cahill Walk lookout point                                              | • Moderate, due to the moderate number of users.                    |  |
| VP4: tourists                     | Museum of Contemporary<br>Art (MCA) café                               | • Moderate, due to the moderate number of users.                    |  |
| VP5: tourists and residents       | Harbour Bridge walk entry                                              | • High, due to high number of observers and visitors to the bridge. |  |
| VP6: tourists                     | Cadman's Cottage                                                       | • Moderate, due to the moderate number of users.                    |  |
| VP7: tourists and residents       | Dawes Point                                                            | • High, due to high number of observers and visitors.               |  |
| VP8: tourists                     | Harbour Bridge Pylon                                                   | • High, due to high number of observers and visitors.               |  |
| VP9:<br>commuters and<br>tourists | Sydney Harbour view<br>from the ferries and<br>recreational boat users | • High, due to high number of observers and visitors.               |  |

| Table 26: Overseas Passenger Terminal: viewpoint location |                  | 0        | D         | <b>T</b> • 1 | •     | • •  | 1        |
|-----------------------------------------------------------|------------------|----------|-----------|--------------|-------|------|----------|
|                                                           | <b>Table 26:</b> | Overseas | Passenger | Terminal:    | viewi | oont | location |

### Ambient light levels

Sydney Harbour and Circular Quay are lit at night from the surrounding land uses. The proposal footprint therefore experiences a high level of lighting from the OPT terminal and adjacent properties.



Note: VP9 shown on the figure represents boat users through the harbour

### Figure 12 Location of viewpoints near the OPT

### 6.4.3 **Potential impacts**

#### **Overseas passenger terminal**

#### Landscape character and visual amenity

The works would be perceptible within the landscape setting as they would involve a distinct activity that does not normally take place in the area. Given this distinction it may temporarily distract from the key and important landscape values and landmarks in the area as summarised in Table 33.

| Table 27: | temporary | landscape char | acter impacts |
|-----------|-----------|----------------|---------------|
|-----------|-----------|----------------|---------------|

| Zone                                                                        | Sensitivity                  | Magnitude    | Impact                           |
|-----------------------------------------------------------------------------|------------------------------|--------------|----------------------------------|
| LCZ1: The Rocks                                                             | <ul> <li>Moderate</li> </ul> | • Low        | <ul> <li>Moderate-low</li> </ul> |
| LCZ2: Circular Quay<br>The presence of construction<br>equipment and barges | • Low                        | • Moderate   | • Moderate-low                   |
| LCZ3: Sydney Opera House                                                    | <ul> <li>High</li> </ul>     | • Low        | <ul> <li>Moderate</li> </ul>     |
| LCZ4: Kirribilli                                                            | • Low                        | • Negligible | • Negligible                     |

Visual amenity construction impacts are outlined below in Table 28.

| Viewpoint                            | Sensitivity                  | Magnitude                    | Impact                       |  |  |  |
|--------------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|
| High visibility                      |                              |                              |                              |  |  |  |
| VP1: Sydney Opera House<br>Forecourt | • High                       | <ul> <li>Moderate</li> </ul> | • High-moderate              |  |  |  |
| VP2: Sydney Opera House<br>Concourse | • High                       | <ul> <li>Moderate</li> </ul> | • High-moderate              |  |  |  |
| VP3: Cahill Walk Lookout<br>Point    | • Moderate                   | <ul> <li>Moderate</li> </ul> | • Moderate-low               |  |  |  |
| VP4: MCA Cafe                        | <ul> <li>Moderate</li> </ul> | <ul> <li>Moderate</li> </ul> | <ul> <li>Moderate</li> </ul> |  |  |  |
| VP7: Dawes Point                     | • High                       | <ul> <li>Moderate</li> </ul> | <ul> <li>Moderate</li> </ul> |  |  |  |
| Low or obscured visibility           |                              |                              |                              |  |  |  |
| VP5: Harbour Bridge Walk<br>Entry    | • High                       | • Low                        | <ul> <li>Moderate</li> </ul> |  |  |  |
| VP6: Cadman's Cottage                | <ul> <li>Moderate</li> </ul> | • Low                        | • Moderate-low               |  |  |  |
| VP8: Harbour Bridge Pylon            | • High                       | • Low                        | <ul> <li>Moderate</li> </ul> |  |  |  |

### Table 28: temporary visual impacts

The proposal would also affect the visual amenity of:

- Visitors to Sydney Opera House concourse (VP2), Cadman's Cottage (VP6), and MCA Café (VP4).
- Recreational users and pedestrians on Cahill Walk lookout point (VP3) and Harbour Bridge (VP8).

The visual amenity and landscape character impacts would be temporary in nature and would occur at different times of the day (see section 3.3.1). Overall, despite the discernible nature of the works, their small scale and short duration (see section 3.3.1) means any impact would be short-term.

### Light spill and night work

As described in section 3.3.1, night works would be undertaken given the harbour conditions are more suitable for activities such as piling and dredging. This would require additional safety and security lighting. There is potential for temporary light spill impacts affecting nearby residents within the Rocks and hotel guests in Campbells Cove. While this is the case, stationary site lighting and security lights on the barges would be carefully directed and shielded to limit its impact.

### **Transport movements**

The movement of around four vessels between Circular Quay and either Glebe Island or the offshore disposal ground (see section 3.4.1) who have negligible influence on the landscape setting and visual amenity of Sydney Harbour in the context of the many commercial, recreational, tourist and other vessel movements that occur each day.

# 6.4.4 Safeguards and management measures

Table 29 lists the landscape character and visual amenity safeguards and management measures that would be implemented to account for the impacts identified in section 6.4.3.

| Table 29: landscape character and | l visual amenity | safeguards and | management |
|-----------------------------------|------------------|----------------|------------|
| measures                          |                  |                |            |

| Ref. | Impact                                           | Environmental safeguard                                                                                                                                                                                       | Responsibility | Timing       |
|------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 26   | Light spill                                      | Direction of lighting would be controlled to<br>limit light spill from nearby receivers such<br>as residencies in the Rocks and take into<br>consideration any reflective impacts from<br>the water.          | Contractor     | Construction |
| 27   | Landscape<br>character<br>and visual<br>amenity. | The shipping container at the OPT would<br>be stored for the duration of the works and<br>would be screened where possible to reduce<br>visual impacts for pedestrians and ferry<br>users accessing the area. | Contractor     | Construction |

# 6.5 Socioeconomic

This section describes the proposal's predicted social and economic impacts and benefits.

# 6.5.1 Method

The assessment considered the following community, business and industry impacts and benefits:

- Community disruption during construction from noise, traffic, visual amenity, and community values such as the sense of place.
- Ferry service disruption.
- Tourism impacts and effects on social amenity and infrastructure.
- Business and economic disruption, including the aquatic-based companies that use the harbour and ferry passenger services.

Operational impacts have not been considered the would be no change from the current activity at the OPT.

A qualitative construction assessment has been undertaken based on:

- Census data
- Council website data (City of Sydney, 2013, Our Villages: CBD and Harbour)
- Noise and vibration assessment for the proposal (see Section 6.3)
- Landscape character and visual assessment of the proposal (see Section 6.4)

• Traffic, transport and access assessment of the proposal (see Section 6.8).

# 6.5.2 Existing environment

### Overseas passenger terminal

### Demographic and socioeconomic profile

The proposal is situated next to the Rocks which is part of the City of Sydney Local Government Area (LGA). The Rocks include a mix of land uses focussed on officebased employment, retail and tourism. The area is home to a small but diverse population, living in apartment towers, heritage terraces and public housing. The area had a population of approximately 8,500 residents (City of Sydney 2014 data) and 227,000 workers (City of Sydney 2012 data).

The key social and economic characteristics of the people that live in area is summarised in Table 30. The Rocks suburb occupies an area of 0.3km<sup>2</sup> (ABS, 2012).

| Demographic Indicator     | 2016       |       |  |
|---------------------------|------------|-------|--|
| Population                | 774        |       |  |
| Population by age bracket | 0-19       | 58    |  |
|                           | 20-34      | 210   |  |
|                           | 35-49      | 237   |  |
|                           | 50-64      | 141   |  |
|                           | 65+        | 127   |  |
| Method of travel to work  | Car        | 20.2% |  |
|                           | Bus        | 2.6%  |  |
|                           | Train      | 12.4% |  |
|                           | Walked     | 41.3% |  |
|                           | Other      | 23.5% |  |
| Weekly household income   | \$ 3516    |       |  |
| Home ownership/rentals    | Homeowners | 44.8% |  |
|                           | Renters    | 53.9% |  |
|                           | Other      | 1.3%  |  |

#### Table 30: Statistical Data for The Rocks suburb census 2016

The above information demonstrates that the Rocks is an affluent suburb. Residents are mainly renters within high rise apartments. Most residents walk to work. The most common occupation for people living in the Rocks in 2016 was professionals (42% of the employed residents).

### Ferry service users

Approximately 50 million people travel to Circular Quay by ferry every year. This is forecast to increase up to 81 million by 2041 (Transport for NSW).

### **Community values**

Community values are those socioeconomic aspects that people hold important to their quality of life and wellbeing. They include physical assets, such as parks and recreational areas, as well as social factors such as a sense of safety and wellbeing, belonging and community diversity.

Accordingly, there is a likely high level of community value associated with the area's landscape and heritage values and setting within the Rocks; a conservation area. Community values are likely held by a wider demographic than lives in the area, including visitors, workers and tourists. These include:

- Liveability, due to harbour access and access to the commercial centre of Sydney.
- Retained local character defined by the ease of access to facilities, restaurants and bars.
- Local amenity and sense of place provided by: the historic buildings and history of the area; its continued significance use as a transport hub and overseas passenger terminal; the high-levels of public activity; its use for special events such as Vivid; and its setting as part of Sydney Harbour and views towards the Sydney Opera House and Sydney Harbour Bridge.

### Social infrastructure

Social infrastructure refers to the community facilities, services and networks that help individuals, families, groups and communities meet their social needs, maximise their potential for development, and enhance their community wellbeing. It includes such things as: educational facilities; health, emergency and agedcare services; sports, recreational and cultural facilities; community support services; and transport facilities.

The social infrastructure associated with the local area benefits a wider demographic than those people that live locally. It includes:

- Circular Quay, which provides a major transport hub for ferries, light rail, busses and trains.
- The OPT as an arrival and departure point for tourists. It also includes restaurants, function facilities, and public open space.
- Campbells Cove, which provides public open space, and restaurants.
- MCA, which provides a cultural facility for residents and tourists.
- Sydney Opera House, which provides a cultural facility for residents and tourists.

### Key public events

Major public events have been cancelled and impacted during 2020 due to the COVID-19 restrictions. The programme of proposed works is therefore not expected to be impacted by the usual, scheduled large-scale public events in the immediate area. At this stage it is unclear when these activities would resume.

# 6.5.3 **Potential impacts**

#### **Overseas passenger terminal**

There would be a small temporary level of employment needed during construction (approximately 39 workers across the proposal).

The proposed works would not disrupt ferry movements in and out of Circular Quay as the proposal footprint and need for a maritime exclusion zone (see section 6.8) would not impact ferry movements to and from the wharves. Ferry times are also not predicted to be impact. This is further considered within section 6.8.

Cruise ships could continue to berth at the OPT during the construction program, providing they are operating at the time. Construction works would stop during this time and this has been considered in the construction program.

The proposed works would occur adjacent to a busy tourist area. This has the potential to impact nearby businesses. This includes businesses located at the OPT, in Campbells Cove and its environs and along George Street including the MCA. The businesses located within Campbell Cove comprise restaurants, although the site is not yet fully occupied by businesses following a major renovation. Access to these businesses would be maintained off George Street and Hickson Road. Construction activity would therefore not directly affect access to these businesses by foot or car. However, there may be amenity impacts associated with noise from construction works, which would affect these during day works (see section 6.3).

Noise impacts from night-time works would have a temporary adverse impact on residents living near the OPT within the Rocks and hotel guests at Campbells Cove (see section 6.3). While lighting impacts may also have a temporary adverse impact on nearby hotel guests (see section 6.4.3) it is unlikely to have any material impact on community values, including liveability. This is due to the limited duration and scope of the works and that any lights would be controlled to minimise glare.

There would be a temporary, minor loss of amenity for pedestrians and users of the OPT as parts of the site would be closed-off for periods during works. When works are not being undertaken (e.g. cruise days) pedestrian access would be reinstated. There is unlikely to be impacts to public events held within the area, as works would not be carried out during these times.

During the enabling works for the sheet pile wall installation, a crane mounted barge would install sheet piles in front of the Commissioners Steps. This area would be temporarily restricted for commercial vessels accessing the Commissioners Steps during these works. Commercial vessels mainly include water taxis and small ferries. This would have a temporary impact on commercial vessel operators and users not being able to access this area during the enabling works. This would be short term and prior to works Transport for NSW would be notified of restriction to access.

### **Transport movements**

The movement of around four vessels between Circular Quay and either Glebe Island or the offshore disposal ground (see section 3.4.1) who have negligible influence on the area's amenity, and it would have no effect on the area's community values. It would not prevent any commercial, recreational or public transport traffic or vessel movements during the movement of dredged material. Overall, this element of the proposal is not predicted to have any material socioeconomic impact.

### 6.5.4 Safeguards and management measures

Table 31 lists the socioeconomic safeguards and management measures that would be implemented to account for the impacts identified in section 6.5.3.

### Table 31: socioeconomic safeguards and management measures

| Ref. | Impact                             | Environmental safeguard                                                                                                                                                                                                                                                     | Responsibility                      | Timing                            |
|------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|
| 28   | General socio-<br>economic impacts | A <b>Communication Plan</b> would be prepared and implemented as part of the CEMP to help provide timely and accurate information to stakeholders prior to and during construction.                                                                                         | Contractor/Port Authority<br>of NSW | Pre-construction                  |
| 29   | Social impacts                     | Access to neighbouring businesses would be maintained during construction, any temporary constraints to access would be communicated ahead of time.                                                                                                                         | Contractor/Port Authority<br>of NSW | Pre-construction/<br>construction |
| 30   | Socio-economic<br>impacts          | The maritime exclusion zone would be clearly defined as part of the <b>Marine</b><br><b>Works Management Plan</b> (see <b>Safeguard 43</b> in Table 36 below) and<br>communicated to relevant stakeholders to delineate access restrictions for<br>surrounding water users. | Contractor/Port Authority<br>of NSW | Pre-construction/<br>construction |
| 31   | Socio-economic<br>impacts          | The works would be scheduled to maintain public access to Circular Quay and<br>the wharf frontage where feasible and reasonable; especially during peak and<br>event periods.                                                                                               | Contractor                          | Pre-construction/<br>construction |

# 6.6 Non-Aboriginal heritage

This section describes the proposal's predicted non-Aboriginal heritage impacts. Appendix F contains a supporting technical report prepared by AECOM (2020).

# 6.6.1 Method

The assessment included a desk review of local, State, national and world heritage registers to confirm the likely presence of non-Aboriginal heritage values locally. It also included a review of borehole data and a maritime archaeological assessment carried out by Cosmos Archaeology in 2014. This was followed by a dive survey in February 2020 that was used to confirm the non-Aboriginal heritage value and potential by searching for evidence of surface items and relics, intact natural deposits, and sediment disturbance.

The assessment also referred to: Assessing Heritage Significance (NSW Heritage Office, 2001), Statements of Heritage Impact (NSW Heritage Office and DUAP, 2002), and The Burra Charter: The Australian ICOMOS Charter for Places of Cultural Significance (2013).

# 6.6.2 Existing environment

### **European history**

Appendix F details the European settlement history of the area. In summary:

- The first wharf was in operation by 1792 in the vicinity of present day First Fleet Park.
- The Rocks was developed into Government Dockyards and the OPT was occupied by Captain Piper comprising a property, rocky foreshore and possible wharf. Campbells Cove was home to Robert Campbell. It contained stables, warehousing and a wharf.
- By 1845, Campbells Wharf contained a house, stores, warehouse and wharf. Three stores and an office were also located at the northern end of the wharf.
- Circular Quay was constructed between 1854 and 1855.
- Argyle Street was extended out over reclaimed land between 1859 and 1863 moving the foreshore alignment.
- In 1876, a 320-foot wharf and two jetties were built within Campbells Cove along the foreshore. The warehousing was further developed in the mid-1890s with further wharfage improvements.
- By 1900s, the Rocks street layout was redesigned, and terrace housing was built. Large areas of existing buildings were demolished to create the area. Campbells Cove also changed leading to the demolition of the two jetties built in 1876 and the erection of a single central wharf (Wharf No. 17) for commercial shipping.

- Following the Second World War, cruise passenger movements increased dramatically demanding the need for a passenger terminal. Sydney Cove (Circular Quay) was chosen due to its proximity to public transport. The OPT was constructed in 1958. This led to the demolition of wharves and sheds built in the early 1900s and further land reclamation.
- In the 1980s the wharf was reconfigured, and frontage reshaped. Campbells Cove was further redeveloped resulting in the upgrade of the OPT in the lead up to the 2000 Olympics.

### Heritage items

Table 32 lists the recorded items in the local area. They reflect its history as described above along with describing the key wider values represented in the Sydney Opera House and Sydney Harbour Bridge. The location of listed heritage items within and or adjacent to the proposal footprint is shown on Figure 13.

| Item                                                                                           | Value and designation                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| World Heritage                                                                                 |                                                                                                                                                                                                            |
| Sydney Opera House                                                                             | Located 370 m east of the proposal footprint.<br>The Sydney Opera House is listed on the World Heritage List<br>and National Heritage List and has an international and national<br>level of significance. |
| Other Heritage                                                                                 |                                                                                                                                                                                                            |
| Sydney Harbour Bridge                                                                          | Located 250 m west of the proposal footprint.<br>The Harbour Bridge is listed on the National Heritage List and is<br>of National Significance.                                                            |
| The Rocks Conservation Area<br>(Sydney Harbour Foreshore<br>Authority Section 170<br>Register) | Located adjacent to the Proposal footprint.                                                                                                                                                                |
| Railings, Sydney Cove (State listed #01572)                                                    | Located 10 m west of the Proposal footprint of State significance                                                                                                                                          |
| Sydney Cove West<br>Archaeological Precinct<br>(State listed #01860)                           | Located 50 m west of the Proposal footprint of State significance                                                                                                                                          |
| Cadman's Cottage, grounds,<br>trees, space (State listed<br>#00981)                            | Located 70 m west of the Proposal footprint of State significance                                                                                                                                          |
| Sailor's Home (former) (State<br>listed 01576)                                                 | Located 70 m west of the Proposal footprint of State significance                                                                                                                                          |
| Coroner's Court (former) –<br>Shops & offices (State listed<br>#01541)                         | Located 70 m west of the Proposal footprint of State significance                                                                                                                                          |
| Mariners' Church (State listed #01559)                                                         | Located 70 m west of the Proposal footprint of State significance                                                                                                                                          |

Table 32 Summary of listed heritage items within the surrounding area

| Item                                                                                                                          | Value and designation                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| ASN Co Building (State listed #01526)                                                                                         | Located 70 m west of the Proposal footprint of State significance                                                    |
| Campbell's Stores (State listed #01536)                                                                                       | Located 100 m west of the Proposal footprint of State significance                                                   |
| Sydney Cove Passenger<br>Terminalis (listed on Port<br>Authority of NSW Section<br>170 heritage and conservation<br>register) | Located 40 m from the Proposal footprint and are of State significance.                                              |
| Three Bees shipwreck                                                                                                          | Unknown location may have been re-floated or have not been located but unlikely to be within the Proposal footprint. |
| Ann Jameson shipwreck                                                                                                         | Unknown location may have been re-floated or have not been located but unlikely to be within the Proposal footprint. |
| Princess shipwreck                                                                                                            | Unknown location may have been re-floated or have not been located but unlikely to be within the Proposal footprint. |



Source: AECOM 2020, Maritime Archaeological and Indigenous Heritage Assessment and Statement of Heritage Impact

#### Figure 13 Location of nearby Heritage items listed on heritage registers

### Maritime archaeology

Historic research and geophysical and archaeological surveys carried out in 2014 and 2020 confirmed the presence of the remains of the former Wharf No.7 (1901-1980) in Campbells Cove. This is within the north of the proposal footprint (see Table 11 or a historic photo location of Wharf No.7). These include cut sections of piles and deck beams on the harbour bed. The archaeological survey undertaken in 2020 noted material present below the harbour bed it concluded that this may also relate to the construction of the OPT wharf extension and/or from the construction of the mooring dolphin

This wharf was an integral part of maritime commerce and trade functioning in Sydney Harbour. It was leased by international merchant shipping companies before being taken over by the Maritime Services Board. The remains of the former Campbells Cove Wharf are of local significance.



Source: AECOM 2020, Maritime Archaeological and Indigenous Heritage Assessment and Statement of Heritage Impact

# Figure 14: 1960s aerial photograph showing the configuration of the OPT after the expansion works and Wharf No.7 to the north

### Archaeological potential

The potential for other maritime archaeological remains and relics is low due to existing disturbance from dredging of the OPT berth pocket and the previous extension works of the OPT.

# 6.6.3 **Potential impacts**

### Heritage listed items impacts

The proposal footprint is within the Sydney Operate House buffer zone; introduced to protect its world heritage values (see Table 11). There would be no change to existing views once construction activities are complete. Following construction, there would be no change to the setting and views within the Sydney Opera House buffer zone and Campbells Cove.

The proposed works would have a temporary impact on the setting of the heritage listed items (see Table 32) from crane mounted barges using for the dredging and piling works. There may also be temporary impacts when installing the pumped or articulated concrete mattresses (see section 3.2). These would result in a minor short-term impact that would have permanent impact on any heritage values in the area.

### Wharf No. 7 impacts

The proposed dredging works would have an impact on the former Campbells Cove Wharf No.7. The works would remove in situ piles, sections of cut piles and other timber structural remains associated with the former wharf.

The depth of the proposed dredging in the area of the former wharf would also remove material remains and unknown relics that are present below the current harbour bed. The total area that would be impacted would be 18 percent of the Wharf No. 7 site. The remainder of the Wharf site would remain undisturbed. This would include relics associated with the operation of the Wharf with vessels that berthed at the former Wharf.

This is not considered to be a major impact as the remainder of the site would remain unaffected including its key heritage values. A permit would be required from Heritage NSW prior to any construction works commencing.

### Archaeological and other heritage impacts

There is not expected to be any additional impacts from dredging other areas of the berth pocket as no previous historic wharves or structures were located within this area prior to the land reclamation that took place in 1958 Previous dredging would have also removed any maritime archaeology that might have existed.

There are not expected to be any shipwrecks or related materials within the proposal footprint or surrounding area based on historical research.

The scour protection works is also not considered to have an impact as the proposed works would repair and add to the existing armour wall already present.

### 6.6.4 Safeguards and management measures

Table 33 lists the non-Aboriginal heritage safeguards and management measures that would be implemented to account for the impacts identified in section 6.6.3.

### Table 33: non-Aboriginal heritage safeguards and management measures

| Ref. | Impact                     | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Responsibility        | Timing           |
|------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| 32   | Non-Aboriginal<br>heritage | A permit under section 140 of the <i>NSW Heritage Act</i> would be obtained prior to the commencement of dredging and scour protection works.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Port Authority NSW    | Pre-construction |
| 33   | Non-Aboriginal<br>heritage | The remains of the wharf on the harbour bed would be recorded<br>before starting construction to help understand the site<br>formation processes associated with the demolition of the<br>wharf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contractor            | Pre-construction |
| 34   | Non-Aboriginal<br>heritage | An archaeologist would inspect, and record elements associated<br>with the timbers before their removal to better-understand the<br>construction techniques used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contractor            | Construction     |
| 35   | Non-Aboriginal<br>heritage | As part of the early works, and once the timbers on the harbour<br>bed had been removed, a series of maritime archaeological test<br>transects would be used to understand the potential for relics,<br>patterning and dispersal of relics across the site.<br>This information would be held as a record to support an<br>application made under section 140 of the <i>Heritage Act 1997</i> ,<br>to secure permission to excavate or disturb land that would<br>likely "result in the discovery, movement and/or destruction of<br>[a heritage] relic". Dredging work would only be allowed to<br>take place once the Heritage Council of NSW gives its<br>permission under the Act. | Port Authority of NSW | Pre-construction |

| Ref. | Impact                     | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                              | Responsibility                       | Timing       |
|------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|
| 36   | Non-Aboriginal<br>heritage | If it is not possible to carry out the pre-construction<br>investigations under <b>safeguard 35</b> above, then the contractor<br>would work with Port Authority of NSW and a heritage<br>specialist to develop an agreed sampling program of the<br>dredged sediment to ensure a representative sample is collected<br>to record and recover any remaining.                                                         | Port Authority of NSW/<br>contractor | Construction |
| 37   | Non-Aboriginal<br>heritage | A <b>Standard Management Procedure for Unexpected</b><br><b>Heritage Items</b> would be followed as per Appendix B of<br>Appendix F in the event of unexpected heritage items, skeletal<br>remains, archaeological remains or relics are encountered. This<br>would include an adequate stop-and-start work procedure and<br>the need to engage a qualified heritage specialist to advise on<br>the required action. | Contractor                           | Construction |

# 6.7 Aboriginal heritage

This section describes the predicted Aboriginal heritage impacts. Appendix F contains a supporting technical report prepared by AECOM (2020).

# 6.7.1 Method

The assessment included a desk review of published records, data and literature, including the Aboriginal Heritage Information Management System (AHIMS), National Native Title Register (NNTR) and Register of Native Title Claims (RNTC) to confirm the likely presence of values in the local area. This was followed by a dive survey in February 2020 to confirm the potential for archaeology.

The assessment also referred to the Code of Practice for Archaeological Investigations of Aboriginal Objects in NSW (DECCW, 2010), Due Diligence Code of Practice for the Protection of Aboriginal Objects in New South Wales (DECCW, 2010) and the draft code of Practice of Archaeological Investigations in NSW (DECCW, 2010).

# 6.7.2 Existing environment

### **Aboriginal history**

Aboriginal Peoples have occupied the Sydney region for at least 36,000 years. The OPT is located within the traditional lands of the Gadigal People; a member of the Eora nation who referred to Circular Quay as 'Warrane'. Research has also identified that the Darug territory may have also extended to the coastline between Port Jackson and Botany Bay based on observations of early explorers and settlers.

Darug is believed to have been spoken in the area. Available historical records indicate that a wide range of marine and freshwater fauna were exploited by Darugspeaking peoples for food and other resources.

Any Aboriginal sites within submerged water are less likely to have survived as discussed in Table 34, which provides a summary of different Aboriginal site types and likelihood within the proposal footprint.

| Site type              | Description                                                                                  | Preservation<br>potential    | Likelihood                   |
|------------------------|----------------------------------------------------------------------------------------------|------------------------------|------------------------------|
| Open<br>Artefact Sites | Objects susceptible to abrasion and translocation during slow and highly dynamic inundation. | <ul> <li>Moderate</li> </ul> | <ul> <li>Moderate</li> </ul> |
|                        | Artefact scatter sites likely to be<br>dispersed rather than being identified in<br>situ.    |                              |                              |

### Table 34 Preservation potential by site type

| Site type                       | Description                                                                                                                                                | Preservation potential | Likelihood                   |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|
| Culturally<br>modified<br>trees | Unlikely to survive in marine conditions.                                                                                                                  | • Low                  | • Low                        |
| Shell<br>middens                | Only likely to survive rapid, low-energy<br>inundation unless deeply buried in<br>consolidated sediments prior to<br>inundation.                           | • Low to moderate      | <ul> <li>Moderate</li> </ul> |
| Fish traps                      | Only fish traps constructed from stone<br>would survive inundation, more likely to<br>survive relatively intact in low-energy<br>environs, e.g. estuarine. | • Low to moderate      | • Low                        |
| Rock shelters                   | Moderately resistant to inundation, particularly in low energy environs.                                                                                   | • Moderate             | • Moderate                   |
| Rock art sites                  | Engravings are unlikely to survive on<br>soft sandstone where dynamic environs<br>may result in rapid erosion.                                             | • Low                  | •Low                         |

### **Recorded items and artefacts**

A search of the AHIMS database identified no registered Aboriginal sites within the proposal footprint. The closest site is an Open Artefact called Harrington IFS01 (#45-6-3762) located approximately 280 m south west inland of the proposal footprint. The location of recorded sites items within the surrounding area to the proposal footprint is shown on Figure 15.

A search of the NNTR and RNTC confirmed that there are no current Native Title listings or claims within the City of Sydney LGA.



Source: AECOM 2020, Maritime Archaeological and Indigenous Heritage Assessment and Statement of Heritage Impact

### **Figure 15 AHIMS Search results**

### Archaeology

Despite the known Aboriginal history of the local area, there is enough evidence that the proposal footprint has been subject to disturbance from historic ship building activities and land reclamation. This means there is low archaeological potential. This confirmed during the 2020 surveys, which did not identify any features or artefacts.

# 6.7.3 **Potential impacts**

There is a low potential for Aboriginal sites to be within the proposal footprint due to previous activity and dredging. Should unknown archaeology be discovered during works a permit maybe required (see section 6.7.4 below).

### 6.7.4 Safeguards and management measures

Table 35 lists the Aboriginal heritage safeguards and management measures that would be implemented to account for the impacts identified above.

| Ref. | Impact                 | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Responsibility                      | Timing       |
|------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|
| 38   | Aboriginal<br>heritage | A Standard Management Procedure for<br>Unexpected Heritage Items would be<br>followed as per Appendix B of Appendix F<br>in the event of unexpected heritage items,<br>skeletal remains, archaeological remains or<br>relics are encountered. This would include<br>an adequate stop-and-start work procedure<br>and the need to engage a qualified heritage<br>specialist to advise on the required action.                                                                                                         | Contractor                          | Construction |
| 39   | Aboriginal<br>heritage | Should any Aboriginal objects be identified<br>at any stage of the project, an Aboriginal<br>Heritage Impact Permit (AHIP) maybe<br>required under Section 90 of the <i>National</i><br><i>Parks and Wildlife Act 1974</i> . This would be<br>obtained in accordance with the<br>requirements of the Guide to Investigating,<br>Assessing and Reporting on Aboriginal<br>Cultural Heritage in NSW (OEH, 2011) and<br>the Aboriginal Cultural Heritage<br>Consultation Requirements for Proponents<br>(DECCW, 2010a). | Contractor<br>and Port<br>Authority | Construction |

#### Table 35: Aboriginal heritage safeguards and management measures

# 6.8 Traffic, transport and access

This section describes the proposal's predicted maritime and land-based traffic, transport and access impacts.

# 6.8.1 Method

The assessment considered how the work methods, program, expected vehicle movements, and required traffic and navigational management controls (see section 3.4) would temporarily impact:

- Traffic network performance on the key roads in the area.
- All modes of public, private and active transport.
- Public road and private property access.
- Maritime commercial, public and recreational traffic.
- Ferry services and timetables.

Only construction impacts have been considered as the operation of the OPT would remain unchanged.

# 6.8.2 Existing environment

### **Overseas passenger terminal**

### Land transport and parking

The OPT is accessed from Circular Quay West Road. This is a private road owned by Port Authority of NSW that leads off George Street and Hickson Road. Vehicular access to Circular Quay West Road is controlled through a gatehouse located at the entrance of Circular Quay West.

During cruise ship days access is restricted and parking is not available. Vehicular access to Circular Quay West Road during this time is restricted to delivery supplies for the ships and restaurants, service cars, taxis and private buses, other cruise related traffic and Port Authority of NSW staff.

On non-cruise ships berthing days vehicular access and parking is provided and open to the public. There are 120 spaces available that are privately managed through Wilson Parking.

The OPT is pedestrianised around the terminal building and public access is also provided along the quay adjacent to the proposal footprint. This leads to Campbells Cove and Walsh Bay. Events are held in the area throughout the year; including Vivid, Bastille festival, Sydney Harbour 10km race, and Blackmoore's running festival. These events attract large numbers of visitors. However, due to the current global Covid-19 pandemic these events will not be occurring in 2020 and currently their future is yet to be confirmed.

### Maritime transport in Circular Quay

The OPT wharf is used by cruise ships all year round. The busiest period is over the summer months. Campbells Cove is adjacent to the wharf to the north and has three berths; one on each side of a jetty and one on a floating pontoon on the southern shore. The jetty berths are used by visiting superyachts and sailing vessels that offer harbour cruises. The pontoon berth is used by water taxis and Transport for NSW as an overflow berth. The jetty and pontoon berths are managed by Transport for NSW.

There is a mooring dolphin located in Campbells Cove that is used by larger cruise ships when berthed at the OPT. When in use, access to Campbells Cove by other vessels remains open but is partially restricted due to the cruise ship mooring lines.

Harbour City Ferries operates throughout the harbour and the closest wharves are at Circular Quay. The ferries operate from Circular Quay from 5.30am to 00.20am Monday to Friday, and 6.20am to 00.20am Saturday and Sunday. Captain Cook Ferries also operate a service starting from 7.15am to 6.40pm from Circular Quay.

To the south of the site at the location of the enabling works for the sheet pile wall (see Appendix A) is located the Commissioners Steps which are used by commercial vessel access e.g. water taxis and ferries, to pick up and drop off passengers. The access is regulated by Transport for NSW and must be booked prior to use.

A jet boat company (Thunder Jet) operates within the harbour during the day between 11am and 4pm.

### **Transport movements**

Glebe Island is used by dry bulk for cargo ships and for various ad hoc port related activities as an ancillary site by Port Authority of NSW. There are four commonly used berths. Glebe Island Berth 1 and Berth 2 are in Johnstons Bay. They serve the unloading/loading of dry bulk goods and other port-related purposes such as laying-up and decommissioning of shipping vessels. Glebe Island Berth 7 and Berth 8 are in White Bay. They are used for unloading and loading of dry bulk shipping vessels (sugar, cement and gypsum). The compound would likely be located within the area of Berth 2, which is also the general site for the upcoming construction of the Glebe Island Multi-user facility.

# 6.8.3 **Potential impacts**

### **Overseas passenger terminal**

### Land transport

The proposal would result in a minor temporary increase in traffic during construction from workers, deliveries of equipment and concrete trucks. Peak construction traffic would be during the installation of scour protection where around 20 concrete trucks would access the OPT on a typical shift for Option A. If Option B is undertaken, articulated concrete mattresses would be cast at Glebe Island and brought to the OPT site by barge which will reduce construction traffic at the OPT.

The additional traffic movements would have a negligible effect on the existing road network. Importantly, there would be no construction traffic movement while cruise ships are at berth, should this resume during the term of the works.

The area along the OPT quay adjacent to the proposal footprint would be closed to the public, which would temporarily restrict pedestrian movement in this area. This would have only a minor impact on pedestrians walking along the harbour to Campbells Cove when works take place. This would be the inconvenience of using the available alternative routes such as Circular Quay West Road and George Street. These alternatives would mean pedestrian access would be maintained and the additional travel (walking) times would be marginal.

Works would be coordinated during key events, should they resume, to ensure adequate pedestrian access is maintained.

Onsite car parking is not expected to be notably impacted as a maximum of 10 workers would be present onsite during construction. They would only park onsite during the works (e.g. when there was not a cruise ship berthed) otherwise they would park offsite at any number of public parking areas in the vicinity or at Glebe Island.

### Maritime transport in Circular Quay

Construction of the proposal would require a maritime navigation exclusion zone to be set up around the works area. A similar exclusion zone applies around the berthed cruise ships, as such, there is expected to be no disruption to the ferry services or for other vessel activities that take place in Circular Quay.

A Marine Works Management Plan (MWMP) would be developed by the contractor in consultation with the Harbour Master, Transport for NSW (Maritime) and other relevant stakeholders. The stakeholders would define specifics such as exclusion zones, methods of marking the zones, clearance distances, mooring plans, communication protocols, emergency and incident response procedures, contact details of all parties and responsible persons, and transit routes. The MTMP would be approved by the Harbour Master in advance of the works commencing. Harbour Master approval will also be required under Clause 67ZN of the Ports and Maritime Administration Regulation 2012 (see Table 12) prior to any disturbance of the seabed.

There would be no change in access to the jetty berths in Campbells Cove used by visiting superyachts, commercial sailing vessels and water taxis. During works access would be maintained as far as practicable. Transport for NSW (Maritime) would be consulted with regards to access impacts and agreed management measures would be included in a Marine Traffic Management Plan.

During the enabling works for the sheet pile wall installation, a crane mounted barge would install sheet piles in front of the Commissioners Steps. This area would be temporarily restricted for commercial vessels accessing the Commissioners Steps during these works. Prior to works Transport for NSW would be notified of restriction to access during work times.

During the operation of the OPT, cruise ships would continue to berth within the same location. The arrangement of cruise ships berthing would not change and therefore there would be no impact on surrounding ferry wharves within Circular Quay.

#### **Transport movements**

The movement of around four vessels between Circular Quay and either Glebe Island or the offshore disposal ground (see section 3.4.1) who have negligible influence in the context of the many commercial, recreational, tourist and other vessel movements that occur on Sydney Harbour each day. It would have no conflict on regular and timetabled services. All vessel movements through the harbour would need to comply with the standard safety and transport requirements set by the Harbour Master and Port Authority of NSW.

### 6.8.4 Safeguards and management measures

Table 36 lists the traffic, transport and access safeguards and management measures that would be implemented to account for the impacts identified in section 6.8.3.

### Table 36: traffic, transport and access safeguards and management measures

| Ref. | Impact                        | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Responsibility | Timing                        |
|------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|
| 40   | Land transport<br>and parking | A <b>Traffic Control Plan</b> would be prepared and implemented for the OPT in accordance with the Traffic Control at Work Sites manual (Roads and Maritime, 2018) and the Australian Standard 1742.3 (Manual of uniform traffic control devices, 2019). This would involve items such as installing appropriate wayfinding signage for alternative transport options where necessary. The Traffic Control Plan would also include pedestrian access management at the OPT and provision of diversion signs, and safe access around the OPT to avoid construction works. | Contractor     | Pre-construction/construction |
| 41   | Land transport<br>and parking | The <b>Traffic Control Plan</b> would be developed in consultation with and to the satisfaction of Port Authority of NSW.                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contractor     | Pre-construction/construction |
| 42   | Land and water transport      | Equipment and materials would be transported to site via boat and/or barge when possible to reduce land transport and impacts to local road networks.                                                                                                                                                                                                                                                                                                                                                                                                                    | Contractor     | Construction                  |
| 43   | Water transport               | Harbour master approval would be obtained under Clause 67ZN of the Ports and<br>Maritime Administration Regulation 2012 prior to any disturbance of the seabed.                                                                                                                                                                                                                                                                                                                                                                                                          | Contractor     | Pre-construction/construction |
| 44   | Water Transport               | Transport for NSW would be notified prior to enabling works for access restrictions to Commissioners Steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contractor     | Pre-construction              |

| Ref. | Impact                     | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Responsibility | Timing                        |
|------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|
| 45   | Marine works<br>management | A <b>Marine Works Management Plan (MWMP)</b> would be developed by the contractor in consultation with the Harbour Master, Transport for NSW (Maritime) and other relevant stakeholders. The stakeholders would define specifics such as exclusion zones, methods of marking the zones, clearance distances, mooring plans, communication protocols, emergency and incident response procedures, contact details of all parties and responsible persons, and transit routes. The MWMP would be approved by the Harbour Master in advance of the works commencing. Harbour Master approval will also be required under Clause 67ZN of the Ports and Maritime Administration Regulation 2012 prior to any disturbance of the seabed. | Contractor     | Pre-construction/construction |
| 46   | Water transport            | <ul> <li>A Marine Traffic Control Plan would be developed and implemented in consultation with the Harbour Master, Transport for NSW and other relevant stakeholders to accommodate the works, vessel movements and safety requirements. This plan would:</li> <li>Ensure that vessel speeds would comply with the Harbour Master requirements within Circular Quay and Sydney Harbour. Vessels within the second state of the second state of the second state.</li> </ul>                                                                                                                                                                                                                                                        | Contractor     | Pre-construction/construction |
|      |                            | proposal footprint would also be restricted in speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                               |
|      |                            | Sydney Harbour & Botany Bay (Port Authority of NSW, 2015).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                               |
|      |                            | • Include the requirement of the maritime navigational exclusion zone established before starting construction in accordance with the Harbour Master approval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                               |
|      |                            | • Include the required methods of communication with the Harbour Master to manage the additional vessel movements within the Shipping Channels. Shipping schedules would be forwarded and agreed in advance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                               |

# 6.9 Spoil, dredging and waste management

This section describes the spoil, dredging and waste management impacts from carrying out the works.

# 6.9.1 Method

The assessment considered the impacts associated with:

- Sediment spoil from dredging.
- The proposal's ability to respond to waste management and resource conservation plans, policies and guidelines.

The basis of assessment was to consider the hierarchy of avoiding waste generation and primary resource use in favour of reduction, reuse and recycling, consistent with the NSW *Waste Avoidance and Resource Recovery Act 2001*.

The sediment spoil would either be disposed on land (Option 1) or offshore (Option 2, see section 3.3.5). As identified in the sediment testing (see section 6.1.2).

# 6.9.2 Existing environment

Private contractors typically deal with recovered and recycled materials in Sydney. There are also licenced contractors who deal with forms of controlled and restricted wastes that need transporting to licenced facilities.

# 6.9.3 **Potential impacts**

### Sediment generation

Approximately 20,000 m<sup>3</sup> of dredged material would be generated over 10 weeks (see section 3.3.1). As discussed in section 6.1, there is the potential for contaminants to be released into the marine environment during dredging, handling, and transportation and transfer mismanaged; especially when lifting the materials to land Glebe Island (see section 1.1).

There is also the potential for overspill while the materials are in transit either to Glebe Island or the Sydney Offshore Spoil Ground (see section 1.1). A Sediment and Water Quality Management Plan would be used to deal with this risk.

If disposed on land (see section 3.3.5), the dredged sediment would be kept on a barge while a polymer is added to reduce its water content. This would result in bulking the material (e.g. its overall volume would increase). Where possible prior to removal of sediment, the material would be waste classified and if ASS is present based on sampling data and confirmation from NSW EPA that the material meets general solid waste criteria (see Safeguard 48).

The sediment would also be tested to confirm its final waste classification and ASS content. This would ensure the dredged sediment would be disposed of at an appropriately licenced waste facility.

Under either disposal option (see section 1.1), there would be the risk of material over spill from the barges while in transport. Works would therefore be managed under a Sediment and Water Management Plan to reduce impacts (see Section 6.1).

### Other waste generation and management

Other wastes would be limited to small quantities of common materials including small amounts of wood, paper, and metal, surplus building and packaging materials (e.g. pallets, crates, cartons, plastics, wrapping materials). It would also include small amounts of waste chemicals and oils (e.g. oil absorbent materials, oily rags, cartons) and domestic and food waste.

Landside ancillary facilities would be contained within a small compound on the OPT site that would include a small shipping container to store equipment and machinery. No significant landside storage of materials is anticipated at the OPT. During installation of mattresses for both options (see Section 3.3.6), concrete would be trucked to site pre-mixed where it would be pumping into the mattresses.

Materials would generally be barged to site, including fuels, oils and other required liquids which would be stored in bunded containers on the vessels. All waste removed from the site would be transferred by a licenced contractor to a licenced facility. Some materials and fuels would also be stored at the compound on Glebe Island within bunded containers.

### 6.9.4 Safeguards and management measures

Table 37 lists the spoil, dredging and waste management safeguards and management measures that would be implemented to protect the aquatic environment to account for the impacts identified in section 6.9.3.

#### Table 37: spoil, dredging and waste management safeguards and management measures

| Ref. | Impact | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Responsibility | Timing                            |
|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|
| 47   | Waste  | The SWMP would include measures to ensure the dredged material is correctly stored in the barges when they are being transported either to Glebe Island or offshore to limited overspill impacts.                                                                                                                                                                                                                                                                                                                                                                                             | Contractor     | Pre-construction/<br>construction |
| 48   | Waste  | Waste management, littering and general tidiness would be monitored during routine site inspections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contractor     | Construction                      |
| 49   | Waste  | Appropriate measures to avoid and minimise waste associated with the project should be investigated and implemented where possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contractor     | Construction                      |
| 50   | Waste  | Waste would be classified before being disposed offsite to an appropriately licenced facility in accordance with Waste Classification Guidelines: Part 1 Classifying Waste (DECCW, 2014). Where necessary, this would include sampling and analysis. Where possible the material to be dredged will be classified prior to dredging based on sampling data and confirmation from NSW EPA that the dredged material meets general solid waste criteria.<br>A waste classification report would include an unexpected finds protocol requiring further sampling and analysis should this occur. | Contractor     | Construction                      |
| 51   | Waste  | The dredged sediment would be kept on a barge while a polymer is added to reduce its water content if it is being disposed on land.<br>The material transfer between the barge and quayside would be carefully managed to limit spill back into the marine environment. A pre and post hydrographic survey would be carried out to ensure the overall depth has not been impacted. The difference would be confirmed with Port Authority of NSW and if unacceptable additional levelling or dredging would be needed to prevent future operational performance.                               | Contractor     | Construction                      |
#### 6.10 Hazards and risks

This section describes the potential hazards and risks associated with the proposal.

#### 6.10.1 **Method**

The assessment considered hazards and risks relating to the provisions of the NSW Work Health and Safety Act 2011.

#### 6.10.2 **Existing environment**

Since 2011, cruise ships have mainly berthed at the terminal under Azipod and bow thruster power only, rather than with the assistance of tugs. Recent hydrographic and diver surveys identified that scouring is occurring at both the southern and northern end of the OPT berth pocket. There is also evidence of loss of the existing scour protection, deposition of large rocks and slumping of an embankment into the berth pocket at the southern end due to scouring.

The observed scour and accretion can be attributed to:

- Significant increase in vessel size and changes in vessel power and berthing • configurations since the construction of the berth in 1959.
- Use of Azipods and thrusters since 2011.

The identified scour and accretion issues pose potential hazards to vessel operations. This includes the potential for further decreasing the under-keel clearance for incoming cruise ships. There is a need for safe, efficient and reliable berthing to ensure the ongoing operation of the OPT

The OPT is currently managed in accordance with a hazards and safety management plan implemented by Port Authority of NSW.

#### 6.10.3 **Potential impacts**

The following hazards and risks would be associated with the proposal:

- Construction materials, wastes, and other objects have the potential to fall from the vessels and landside works during construction. This has the potential to cause water pollution and risk to human health, including navigational safety risks for other boats in Circular Quay, Sydney Harbour and Glebe Island.
- Physical injury to construction workers and public walking within the area due • to various hazards and risks associated with the construction activities.
- Extreme weather resulting in damage to vessels involved in dredging and piling • works.
- Disturbance, loading and transport of contaminated sediment through Sydney • Harbour to Glebe Island potentially resulting in a pollution risk from an accident or spillage.
- Loss of containment of other polluting materials (e.g. oils and diesels) from • construction vessels.

#### 6.10.4 Safeguards and management measures

Table 38 lists the hazard and risk safeguards and management measures that would be implemented to account for the impacts identified in section 6.10.3. These supplement the other safeguards and management measures described above to mitigate against some of the above hazards.

| Ref. | Impact               | Environmental safeguard                                                                                                                                                                                      | Responsibility | Timing       |
|------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 52   | Hazards<br>and risks | Marine spill kits would be kept within the construction and compound area.                                                                                                                                   | Contractor     | Construction |
| 53   | Hazards<br>and risks | Emergency equipment such as first aid kits<br>and flotation devices would be kept within<br>the construction and compound area.                                                                              | Contractor     | Construction |
| 54   | Hazards<br>and risks | <b>Work Safety Method Statements</b> or similar would be used to manage any health and safety risks associated with the works.                                                                               | Contractor     | Construction |
| 55   | Hazards<br>and risks | A <b>Safety Plan</b> would be put in for extreme<br>weather conditions this would involve<br>measures to safely close-down the site,<br>secure/remove all equipment and machinery<br>and demobilise offsite. | Contractor     | Construction |
| 56   | Hazards<br>and risks | Barge loading activities would be closely monitored.                                                                                                                                                         | Contractor     | Construction |

 Table 38: hazard and risk safeguards and management measures

### 6.11 Odour

This section describes the potential odour impacts associated with the proposal.

#### 6.11.1 Method

A qualitative review of the duration and method of dredging activity and the proximity of sensitive receivers has been carried out to determine potential impacts.

#### 6.11.2 Existing environment

The existing odour environment at the OPT is influenced by the harbour and marine transport activity, as well as commercial kitchens in nearby restaurants and bars.

The prevailing wind direction in the area is north-east (see section 6.1.2). Wind conditions during dredging would affect any generated odour.

There are limited sensitive residential receivers within near the dredging activity (see section 6.3.2); the closest of which is at the Rocks on George Street, about 160 m from the OPT site. Given the location of the OPT in Circular Quay, there would be transient sensitive receivers, such as tourists and locals using the numerous local commercial and recreational facilities.

#### 6.11.3 **Potential impacts**

#### **Overseas passenger terminal**

During dredging, there would be the potential for organic matter and hydrocarbons in the sediment to become odorous on contact with the air (see section 6.1.2 for a summary of sediment chemistry). This has the potential to generate odour impacts near the dredging activity and while the material is being transported. The amount of odour generated would depend on several factors including the content and composition of the dredged materials, the dredging rate and loading times, and the prevailing wind direction and strength.

If dredging takes place under prevailing wind directions, any odour impacts would be most likely experienced by receivers to the south-west of the OPT, including recreational areas within Circular Quay.

Odour maybe generated periodically over the planned 10-week dredging program (see section 3.3.1). Once barges are fully loaded, they would move away from the area of Circular Quay and travel towards Glebe Island or the Sydney Offshore Spoil Ground. As any odour would be associated with the dredged materials, any potential impact would likely end once the material is removed from Circular Quay.

#### **Transport movements**

Odour impacts are also not expected when the dredged materials are being transported either to Glebe Island or offshore. Any perceptible odours from people in the vicinity of the material being transported would last for a very short time. Also, the wetting of the dredged material to prevent the generation of ASS (see section 6.1.3) would help reduce odour emissions.

#### 6.11.4 Safeguards and management measures

Given the low potential for odour impacts, no specific odour safeguards or management measures are required for the proposal. However, the SWMP proposed under section 6.1 would include controls over the generation of acid sulfate soils from the dredged material to ensure the potential for odour impacts are managed.

### 6.12 Other impacts

The proposal is expected to have a negligible to minor impact in relation to:

- Air quality
- Greenhouse gasses
- Climate change adaptation.

The proposed works would generate negligible emissions from machinery. The number of heavy vehicles and plant would not be significant enough to generate a negative impact on air quality or have a significant contribution to local greenhouse gas emissions.

Works to install scour protection would contribute to improving the resilience of the OPT berth and quay wall against the impacts of climate change.

### 6.12.1 Existing environment and potential impacts

This section describes existing environment and potential impacts associated with the other environmental aspects where there is expected to be a negligible to minor impact. These are outlined in Table 39 below.

| Environmental<br>factor | Existing environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Potential impacts                                                                                                                                                                                                                                                                                                          |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air quality             | The nearest Environment, Energy and<br>Science air monitoring station to the<br>proposal site is Cook and Phillip<br>Sydney. This is categorised as part of<br>the Sydney central-east region and has<br>been temporarily set up since early<br>September 2019. A review of the air<br>quality data for month of November<br>2019 <sup>5</sup> indicates the air quality is<br>generally good-to-poor, considering the<br>Air Quality Index (AQI) rating range<br>of 34-149. Poor air quality is measured<br>from 100 to 149 AQI. The poor AQI<br>for November however is not<br>representative of a typical month due to<br>the significant bushfires occurring<br>within New South Wales. | Temporary impacts may occur<br>throughout construction from<br>equipment and construction vehicle<br>emissions.<br>The potential for dust generation<br>from the works is considered<br>negligible as the dredged sediment<br>would be waterlogged and would<br>be kept damp, as required, during<br>transport management. |

#### Table 39: other impacts

<sup>&</sup>lt;sup>5</sup> At time of writing, November 2019 was the most current month for which a full set of data was available.

| Environmental<br>factor      | Existing environment                                                                                                                                                                                                   | Potential impacts                                                                                                                                                                                                                                                      |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Greenhouse gas               | Greenhouse gas emissions remain a<br>point of State and National policy.<br>Emissions within the area of the OPT<br>and the Rocks are dominated by<br>vehicle movements emissions from<br>vessels using Circular Quay. | Construction of the proposal would<br>result in very minor greenhouse gas<br>emissions via consumption of<br>materials and use of required plant<br>and equipment.                                                                                                     |
| Climate change<br>adaptation | The long-term use of the OPT as a cruise ship terminal is expected to continue.                                                                                                                                        | The proposal includes climate<br>change adaptation in its design by<br>including protection from hydraulic<br>impacts on the quay wall from<br>scour protection, which will also<br>improve the resilience of the<br>structure from climate change<br>related impacts. |

#### 6.12.2 Safeguards and management measures

Table 40 lists the safeguards and management measures that would be implemented to account for the impacts identified in section 6.11.1.

 Table 40: other safeguards and management measures

| Ref. | Impact         | Environmental safeguard                                                                                                                                                                | Responsibility | Timing       |
|------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 57   | Air<br>quality | The CEMP would consider and address<br>management measures for air quality during<br>construction. The plan would outline<br>procedures for work during various weather<br>conditions. | Contractor     | Construction |

### 6.13 Cumulative impacts

Cumulative impacts relate to any combined impact resulting from multiple individual sources. These sources can occur in the present or future in comparison to the construction and operation of the proposal.

The consideration of cumulative impacts is required to assess this combined impact in the context of the region.

#### 6.13.1 Study area

The study area included a search of significant development within 500-metres of the proposal footprint.

#### 6.13.2 Past, present and future projects

The following databases were searched to identify any projects that may result in a cumulative impact with the proposal:

- Department of Planning, Industry and Environment major projects register
- Sydney and Regional Planning Panels Development Assessment register
- Infrastructure NSW projects
- City of Sydney development application register
- Key agency development including focussing on Transport for NSW and Sydney Trains.

Most projects involved minor alterations or would not generate impacts that would significantly affect the surrounding area by the time the proposed works are carried out. As such, only the projects outlined in Table 41 were considered to have the potential to have a cumulative impact in combination with the proposal.

#### Table 41: present and future projects

| Project                                                                                                                                                                                                                                                                                                                  | Construction impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Operational impacts                     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| Overseas passenger terminal site                                                                                                                                                                                                                                                                                         | Overseas passenger terminal site                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |  |  |  |
| Sydney Opera House Concert Hall upgradeThe upgrade involves the renovation of the ConcertHall in the Sydney Opera House. This includesimplementing new theatre machinery and stagingsystem.The renewal works are expected to begin in 2020.                                                                              | Construction impacts would be limited to Sydney Opera House staff and<br>patrons only. As the works focus on the interior of the building, it is unlikely<br>that there will be impacts to visitors of the wider Circular Quay. The number of<br>visitors to the area may be reduced during this time as the Concert Hall will be<br>closed.<br>The delivery of construction materials and presence of heavy vehicles near the<br>Sydney Opera House may impact the traffic and accessibility of the area. | No operational impacts are anticipated. |  |  |  |
| Walsh Bay Arts & Culture Precinct<br>Construction on Wharf 4/5 began in 2018 and<br>involved refurbishing the arts facilities, introducing<br>new retail options and redesigning the general<br>facilities. Pier 2/3 works commenced in 2019 and<br>involves constructing new arts facilities and<br>performance venues. | The works will be taking place in the wharf area in Walsh Bay, with most of the construction focused on the interior of the buildings. The number of visitors to the area may be reduced during this time as some of the theatres will be closed. Based on the timeframe, works won't significantly overlap with the proposal.<br>The delivery of construction materials and presence of heavy vehicles near Walsh Bay may impact the traffic and accessibility of the area.                               | No operational impacts are expected.    |  |  |  |
| The precinct is expected to open mid-2020.                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |  |  |  |

| Project                                                                                                                                                                                                                                                                           | Construction impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Operational impacts                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Circular Quay Precinct Renewal<br>NSW Government propose to upgrade Circular Quay<br>ferry wharves.<br>The renewal works are expected to take place in the<br>future and not within the proposal programme                                                                        | Works would be within circular Quay, and construction impacts would include<br>disruption to land and water-based traffic. The delivery of construction<br>materials and presence of heavy vehicles would impact local traffic.<br>There would be visual amenity and socio-economic impacts from noise, dust<br>and closure of parts of the walkway.<br>However, as the construction of the upgrade is not due to commence during the<br>timing of the proposal there would be no cumulative construction impacts | No operational impacts are expected.                                                                                                                   |
| Glebe Island                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |
| Western Harbour Tunnel and Warringah<br>Freeway Upgrade<br>Upgrades to the Warringah Freeway and new tunnel<br>crossing of Sydney Harbour. Works would also<br>include improved performance on the Anzac Bridge<br>Not yet approved. Works are expected to commence<br>late 2020. | The works would generate traffic disruption impacts, marine traffic impacts and noise and air quality impacts on nearby residents.                                                                                                                                                                                                                                                                                                                                                                                | No negative operational<br>impacts are expected but<br>would provide a positive<br>impact for commuter travel<br>time and connection across<br>Sydney. |
| Glebe Island Concrete Batching Plant and<br>Aggregate Handling Facility<br>A new aggregate and concrete handling building<br>facility adjacent to the proposed multi use facility<br>proposal<br>Not yet approved – construction start unknown                                    | The works would generate traffic disruption impacts, noise and air quality impacts on nearby residents.                                                                                                                                                                                                                                                                                                                                                                                                           | The proposal would likely<br>have visual, air quality and<br>noise impacts on nearby<br>residents                                                      |

| Project                                                                                                                                                                                                                                                                                 | Construction impacts                                                                                                                                                                                                                                                                                      | Operational impacts                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multi-User Facility (by Port Authority)<br>A new multi-use facility at Glebe Island for storage<br>of dry construction materials adjacent to berths 1 and<br>2 and the Proposal.                                                                                                        | Construction works would be within Glebe Island adjacent to the nominal<br>Proposal compound. Construction impacts would include disruption to traffic<br>and delays for commuters.<br>Works would also generate dust and noise impacts on residents adjacent to the<br>site and workers on Glebe Island. | Key operational impacts are<br>related to visual effects,<br>noise and air quality.                                                                    |
| Works are expected to commence mid-2020 and be operational in mid-2021.                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |
| WestConnex: Rozelle InterchangeThe third stage of WestConnex will link the M4 atHaberfield to the New M5 Motorway at St Peters.This comprises a new tunnel and interchange atRozelle Bay.Tunnelling commenced in the 1 <sup>st</sup> quarter of 2020and works will continue until 2023. | Works would mainly be within the Rozelle rail yards site. Construction impacts<br>would include disruption to traffic and delays for commuters.<br>Works would also generate dust and noise impacts on residents adjacent to the<br>site and workers in the area.                                         | No negative operational<br>impacts are expected but<br>would provide a positive<br>impact for commuter travel<br>time and connection across<br>Sydney. |
| <b>Sydney Metro West</b><br>The new underground metro will connect Greater<br>Parramatta with the Sydney CBD. The metro will<br>extend under Sydney Harbour, through to new<br>stations in the CBD, including a station in the Bays<br>Precinct near the White Bay Power Station.       | Construction impacts associated with Sydney Metro West are expected to comprise traffic impacts from heavy vehicles, noise and dust effects.                                                                                                                                                              | No operational impacts are<br>expected. Once in operation<br>benefits would be provided<br>in high speed public<br>transport across Sydney.            |
| Works are expected to commence late 2020, largely outside the proposal programme.                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |

### 6.13.3 Potential impacts

Table 42 outlines the possible cumulative impacts. Proposal activities at Glebe Island are being undertaken under an existing 2013 Part 5 approval.

 Table 42: potential cumulative impacts

| Environmental<br>factor  | Construction impacts                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Socioeconomic            | There are unlikely to be any cumulative socio-economic impacts as a result of<br>the proposal and the other projects in the vicinity of the OPT due to the short<br>program length and limited scale of the planned works.                                                                                                                                                    |
| Traffic and<br>transport | There are unlikely to be any significant cumulative traffic and transport<br>impacts as a result of the proposal and the other projects in the vicinity of the<br>OPT, given the nature of the other projects and the minor amount of<br>construction related traffic associated with the proposal due to the short<br>program length and limited scale of the planned works. |
| Air quality              | The Proposal would have negligible impacts on air quality and dust generation<br>and therefore cumulative effects on air quality from other projects would be<br>unlikely.                                                                                                                                                                                                    |
| Noise                    | There are unlikely to be any significant cumulative noise impacts as a result of the proposal and the other projects in the vicinity of the OPT.                                                                                                                                                                                                                              |

#### 6.13.4 Safeguards and management measures

There are unlikely to be any significant cumulative impacts as a result of the proposal. Safeguards and management measures are therefore not considered necessary.

### 7 Environmental management

This Chapter describes how the proposal would be managed to reduce potential environmental impacts throughout detailed design, and construction. A framework for managing the potential impacts is provided. A summary of site-specific environmental safeguards is provided, and the licence and/or approval requirements required prior to construction are also listed.

#### 7.1.1 Environmental management plans

Several safeguards and management measures have been identified in the REF to minimise adverse environmental impacts, including social impacts, which could potentially arise because of the proposal. Should the proposal proceed, these safeguards and management measures would be incorporated into the detailed design and applied during the construction and operation of the proposal.

A construction environmental management plan (CEMP) will be prepared to describe the safeguards and management measures identified. The CEMP will provide a framework for establishing how these measures will be implemented and who would be responsible for their implementation.

The CEMP will be prepared prior to construction of the proposal and must be reviewed and certified by Port Authority of NSW before starting any onsite work. The CEMP will be a working document, subject to ongoing change and updated as necessary to respond to specific requirements.

### 7.2 Summary of safeguards and management measures

Environmental safeguards and management measures outlined in this REF would be incorporated into the detailed design phase of the proposal and during construction and operation of the proposal, should it proceed. These safeguards and management measures will minimise any potential adverse impacts arising from the proposed work on the surrounding environment. The safeguards and management measures are summarised in Table 43. In addition to the measures below the contractor would need to secure:

- Harbour Master approval under Clause 67ZN of the Ports and Maritime Administration Regulation 2012 (see Table 12) prior to any disturbance of the seabed.
- An excavation permit under section 140 of the NSW Heritage Act 1977.
- An environmental protection licence under Part 3.2 of the NSW *Protection of the Environment Operations Act 1997* would be required only for Option 1 (land disposal.

Offshore disposal under Option 2 would take place in Commonwealth Waters. The Australian Government Department of Agriculture, Water, and Environment (DAWE) would need to permit the ocean disposal under the *Environment Protection (Sea Dumping) Act 1981*.

#### Table 43: Summary of site-specific environmental safeguards

| Ref     | Impact  | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Responsibility                          | Timing               |  |
|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|--|
| General | General |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                      |  |
| A       | General | <ul> <li>A Construction Environmental Management Plan (CEMP) would be prepared prior to construction. This would provide the safeguards and measures identified below and address pollution, contamination and disturbance to receivers that may arise during construction.</li> <li>As a minimum the CEMP would address the: <ul> <li>Any requirements associated with statutory approvals</li> <li>Details of how the project will implement the identified safeguards outlined in the REF</li> <li>Issue-specific environmental management plans</li> <li>Roles and responsibilities</li> <li>Communication requirements</li> <li>Induction and training requirements</li> <li>Procedures for monitoring and evaluating environmental performance, and for corrective action</li> <li>Reporting requirements and record-keeping</li> <li>Procedures for emergency and incident management</li> <li>Procedures for audit and review.</li> </ul> </li> <li>The endorsed CEMP will be implemented during the undertaking of the activity.</li> </ul> | Contractor                              | Pre-<br>construction |  |
| В       | General | All businesses, residential properties and other key stakeholders (e.g. schools, local councils) affected by the activity will be notified at least 10 working days prior to commencement of the activity. The contractor would provide the information needed to support any notification and consultation requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Port Authority<br>of NSW/<br>contractor | Pre-<br>construction |  |
| С       | General | All personnel working on site will receive training to ensure awareness of environment protection requirements to be implemented during the project. This will include up-front site induction and regular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contractor                              | Pre-<br>construction |  |

| Ref | Impact                | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Responsibility | Timing                                |
|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|
|     |                       | "toolbox" style briefings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                       |
| 1   | Sediment<br>and water | A <b>Sediment and Water Management Plan</b> (SWMP) would be prepared and implemented as part of the CEMP. The SWMP would outline all reasonably potential risks relating to sediment erosion and water pollution and describe how to address these risks throughout construction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contractor     | Pre-<br>construction/<br>construction |
| 2   | Sediment<br>and water | <ul> <li>The SWMP would include turbidity monitoring requirements that would be implemented before starting the dredging works and maintained throughout. The plan would involve the following steps and activities:</li> <li>Develop and submit a Water Quality Monitoring Plan to Port Authority of NSW at least one month before deploying instrumentation.</li> <li>Establish turbidity monitoring system to capture (baseline) data before starting work and while the work is taking place. As a minimum the system would comprise monitoring equipment, buoys, anchoring system, data management, timing, quality assurance and an equipment failure plan.</li> <li>Install and commission the water quality monitoring instrumentation at least 10 days before starting dredging. Operate the equipment for up to 14 days or as agreed with Port Authority of NSW after the completion of post dredge clearance survey.</li> <li>Fit a water sensor at each monitoring location to record turbidity. The sensors would be installed approximately 1 m below the surface.</li> <li>Deploy twin turbidity sensors at each monitoring location to allow the collection of two independent data sources. The two data sources shall undergo automatic processing noting that: <ul> <li>Any difference in turbidity readings is greater than 20%, then the minimum value shall be used.</li> <li>Calibrate and clean water quality sensors as required, just prior to dredging and no longer than two-week intervals.</li> <li>Ensure the water quality loggers provide continuous logging of data, with anti-fouling guards and sensor wiping apparatus to prevent interference to sensors from marine growth.</li> <li>Carry out continuous water quality monitoring for each location and data shall be fed live onto a</li> </ul></li></ul> | Contractor     | Pre-<br>construction/<br>construction |

| Ref | Impact                | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Responsibility | Timing                                |
|-----|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|
|     |                       | <ul> <li>secure website and processed for real-time viewing by key project personnel and Port Authority of NSW.</li> <li>Ensure the water quality monitoring system provides automatic instantaneous notifications to identify when the water quality thresholds are met or exceeded.</li> <li>Controls for sediment and rock debris.</li> <li>Controls to avoid concrete pour spills.</li> <li>Oil/fuel/chemical storage and spill management.</li> <li>Machinery and engine maintenance schedule to minimise risk of oil/fuel leakage.</li> <li>Response for accidental waste/material overboard (e.g. construction materials fallen into harbour).</li> </ul>                                                                                                                                       |                |                                       |
| 3   | Sediment<br>and water | <ul> <li>Turbidity limits would be in accordance with Table 3.3.3 of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 1 (ANZECC, 2000) and (in the absence of local limits) the relative increase criteria is set out under Turbidity Water Quality Standards Criteria Summaries; A Compilation of State/Federal Criteria (USEPA, 1998) where relative to background concentrations the following would be achieved:</li> <li><i>Seven-day rolling average criterion</i>: no more than a 5 nephelometric turbidity units (NTU) increase</li> <li><i>24-hour rolling average criterion</i>: No more than a 10 NTU increase</li> <li><i>Instantaneous criterion</i>: No more than a 10% increase when background concentrations are above 50 NTU or above.</li> </ul> | Contractor     | Pre-<br>construction/<br>construction |
| 4   | Sediment<br>and water | <ul> <li>Should the monitoring record an exceedance of the instantaneous criterion or detect an abnormal reading at the 'near field' monitor then:</li> <li>Dredging works and any water discharge would stop</li> <li>Work would only recommence once the near-field readings had stabilised/normalised over a 30-minute period and the there was also no exceedance of the instantaneous criterion for the same period.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   | Contractor     | Pre-<br>construction/<br>construction |

| Ref | Impact                | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Responsibility | Timing                                  |
|-----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|
| 5   | Sediment<br>and water | <ul> <li>Should the monitoring record an exceedance of the 24-hour or seven-day rolling average criteria then:</li> <li>Dredging would stop if there were three exceedances of either criteria within a 24-hour period.</li> <li>Work would only recommence once limits had dropped to below the associated criteria relative to the rolling average.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contractor     | Pre-<br>construction/<br>construction   |
| 6   | Sediment<br>and water | A silt boom would be installed around the backhoe dredger bucket when dredging the harbour bed. The boom would only be removed when dredging work is complete or if required for maintenance once the sediment concentrations in the water column inside the silt boom had dropped to below the 24-hour rolling average criterion described in <b>safeguard 3</b> above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contractor     | Construction                            |
| 7   | Sediment<br>and water | A silt boom would also be placed around the vessel when unloading materials onshore if the option is taken to dispose of the material on land via Glebe Island.<br>The material transfer between the barge and quayside would be carefully managed to limit any transfer loss into the marine environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contractor     | Construction                            |
| 8   | Sediment<br>and water | An Acid Sulfate Soil Management Plan (ASSMP) would be prepared in line with the requirements of the<br>Acid Sulphate Soils Management Advisory Committee Guidelines (ANZECC/ARMCANZ 2000) and<br>implemented as part of the CEMP.<br>Sediment would be kept damp to reduce potential oxidisation. This includes during the period when the<br>sediment would be temporarily stored at Glebe Island or transported offsite. Sediment would be monitored<br>during transit. Where required the sediments would be sprayed with sea water and kept moist to prevent<br>drying out.<br>It would also include the need for adequate sampling and testing prior to disposal in line with the wider<br>requirements of <b>safeguard 50</b> below to classify waste before disposal in accordance with Waste Classification<br>Guidelines: Part 1 Classifying Waste (DECCW, 2014). Where possible the material to be dredged will be<br>classified prior to dredging based on sampling data and confirmation from NSW EPA that the dredged<br>material meets general solid waste criteria. | Contractor     | Detailed<br>design/pre-<br>construction |

| Ref | Impact                  | Environmental safeguard                                                                                                                                                                                                                                                                                                                                        | Responsibility | Timing               |
|-----|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|
| 9   | Sediment<br>and water   | Weather forecasts would be frequently checked during construction. Should severe weather be forecasted, works would stop, and all equipment and materials would be removed from the construction area or secured.                                                                                                                                              | Contractor     | Construction         |
| 10  | Water<br>quality        | A <b>Spill Management Plan</b> would be prepared, implemented as part of the CEMP and communicated to all staff working on site.<br>Any spill, whether it occurred in water or on land and subsequently entered the water, must be immediately reported to Sydney Vessel Traffic Service (VTS). Aquatic spill kits are to be kept on site during construction. | Contractor     | Construction         |
| 11  | Water<br>quality        | All equipment and machinery would be maintained in good condition and regularly inspected visually for leaks.                                                                                                                                                                                                                                                  | Contractor     | Construction         |
| 12  | Water<br>quality        | Any fuels or chemicals stored on Glebe Island, at the OPT or on barges, would be stored in a bunded area to prevent any chemical leaks or spills entering the water.                                                                                                                                                                                           | Contractor     | Construction         |
| 13  | Water<br>quality        | Work involving barges and piling should take place during calm conditions and at night where possible to minimise scouring and other impacts.                                                                                                                                                                                                                  | Contractor     | Construction         |
| 14  | Aquatic<br>biodiversity | <ul> <li>A Marine Ecology Management Plan would be prepared as part of the CEMP. This would include, but not limited to, measures relating to the following activities:</li> <li>Aquatic fauna management</li> <li>Biological hygiene (e.g. prevention of noxious species spreading on and off site)</li> </ul>                                                | Contractor     | Pre-<br>construction |
| 15  | Biodiversity            | If a previously unidentified threatened aquatic species is observed in the proposal footprint during construction works would temporarily stop until a suitably qualified expert has advised that works can recommence.                                                                                                                                        | Contractor     | Construction         |

| Impact       | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Responsibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biodiversity | Work would stop if large aquatic fauna is observed nearby.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Biodiversity | Gradual start-up piling to allow undetected aquatic fauna to move away from the area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pest species | Equipment and machinery would be locally sourced and/or procured from areas where the risk of introducing pest species is low. Regular inspection of machinery, materials and equipment would be carried out where needed to ensure the importation of pests or weeds to the area is prevented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Biodiversity | Positioning work barges, drilling and pile driving should occur during calm conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Noise        | <ul> <li>A Construction Noise and Vibration Management Plan would be prepared and implemented as part of the CEMP. This will specify the actual plant to be used and will include updated estimates of the likely levels of noise and the scheduling of activities. The Plan would include:</li> <li>All potential significant noise and vibration generating activities associated with the activity</li> <li>Feasible and reasonable mitigation measures to be implemented</li> <li>A monitoring program to assess performance against relevant noise and vibration criteria.</li> <li>Arrangements for consultation with affected neighbours and sensitive receivers, including notification and complaint handling procedures, and contingency measures to be implemented in the</li> </ul> | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pre-<br>construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | event of non-compliance with noise criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Noise        | <ul> <li>Electric/hydraulic equipment would be used where possible using the smallest equipment as is practical. All plant and equipment used on site would be:</li> <li>Maintained in a proper and efficient condition.</li> <li>Operated in a proper and efficient manner.</li> <li>All vehicles plant and equipment would be turned off when not in use</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Impact         Biodiversity         Biodiversity         Pest species         Biodiversity         Noise         Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Impact         Environmental safeguard           Biodiversity         Work would stop if large aquatic fauna is observed nearby.           Biodiversity         Gradual start-up piling to allow undetected aquatic fauna to move away from the area.           Pest species         Equipment and machinery would be locally sourced and/or procured from areas where the risk of introducing pest species is low. Regular inspection of machinery, materials and equipment would be carried out where needed to ensure the importation of pests or weeds to the area is prevented.           Biodiversity         Positioning work barges, drilling and pile driving should occur during calm conditions.           Noise         A Construction Noise and Vibration Management Plan would be prepared and implemented as part of the CEMP. This will specify the actual plant to be used and will include updated estimates of the likely levels of noise and the scheduling of activities. The Plan would include: | ImpactEnvironmental safeguardResponsibilityBiodiversityWork would stop if large aquatic fauna is observed nearby.ContractorBiodiversityGradual start-up piling to allow undetected aquatic fauna to move away from the area.ContractorPest speciesEquipment and machinery would be locally sourced and/or procured from areas where the risk of introducing pest species is low. Regular inspection of machinery, materials and equipment would be carried out where needed to ensure the importation of pests or weeds to the area is prevented.ContractorBiodiversityPositioning work barges, drilling and pile driving should occur during calm conditions.ContractorNoiseA Construction Noise and Vibration Management Plan would be prepared and implemented as part of the CEMP. This will specify the actual plant to be used and will include updated estimates of the likely levels of noise and the scheduling of activities. The Plan would include:Contractor• All potential significant noise and vibration generating activities associated with the activityFeasible and reasonable mitigation measures to be implemented• Arrangements for consultation with affected neighbours and sensitive receivers, including notification and complaint handling procedures, and contingency measures to be implemented in the event of non-compliance with noise criteria.ContractorNoiseElectric/hydraulic equipment would be used where possible using the smallest equipment as is practical. All plant and equipment would be:<br>• Maintained in a proper and efficient condition.<br>• Operated in a proper and efficient condition.<br>• Operated in a proper and efficient condition.Contractor |

| Ref | Impact                                           | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                      | Responsibility                         | Timing               |
|-----|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|
| 22  | Noise                                            | The offset distance between noisy plant and adjacent sensitive receivers would be maximised. Plant used intermittently would be throttled or shut down. Noise-emitting plant would be directed away from sensitive receivers where possible.<br>Truck movements and haulage routes would be planned to avoid residential streets where possible.                                             | Contractor                             | Construction         |
| 23  | Noise                                            | Non-tonal reversing beepers (or an equivalent mechanism) would be fitted and used on all mobile site-based vehicles, plant and equipment.                                                                                                                                                                                                                                                    | Contractor                             | Construction         |
| 24  | Noise and vibration                              | All works would be scheduled with the aim of avoiding particularly noisy works (installing the sheet piling, stabilising the embankment, and dredging) after 10pm and before 6am, noting that these works will likely have to take place at night due to safety and operational reasons.<br>Piling and particularly noisy works would be restricted and not undertaken between 12pm and 2pm. | Contractor                             | Pre-<br>construction |
| 25  | Noise and vibration                              | Advanced warning of works and potential disruptions to the community would be provided. The notification may consist of a letterbox drop (or equivalent) detailing work activities, time periods over which these will occur, impacts and mitigation measures. This would be in accordance with the provisions in <b>Safeguard B</b> above.                                                  | Contractor/Port<br>Authority of<br>NSW | Pre-<br>construction |
| 26  | Light spill                                      | Direction of lighting would be controlled to limit light spill from nearby receivers such as residencies in the Rocks and take into consideration any reflective impacts from the water.                                                                                                                                                                                                     | Contractor                             | Construction         |
| 27  | Landscape<br>character and<br>visual<br>amenity. | The shipping container at the OPT would be stored for the duration of the works and would be screened where possible to reduce visual impacts for pedestrians and ferry users accessing the area.                                                                                                                                                                                            | Contractor                             | Construction         |

| Ref | Impact                                   | Environmental safeguard                                                                                                                                                                                                                         | Responsibility                         | Timing                                |
|-----|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|
| 28  | General<br>socio-<br>economic<br>impacts | A <b>Communication Plan</b> would be prepared and implemented as part of the CEMP to help provide timely and accurate information to stakeholders prior to and during construction.                                                             | Contractor/Port<br>Authority of<br>NSW | Pre-<br>construction                  |
| 29  | Social<br>impacts                        | Access to neighbouring businesses would be maintained during construction, any temporary constraints to access would be communicated ahead of time.                                                                                             | Contractor/Port<br>Authority of<br>NSW | Pre-<br>construction/<br>construction |
| 30  | Socio-<br>economic<br>impacts            | The maritime exclusion zone would be clearly defined as part of the <b>Marine Works Management Plan</b> (see <b>Safeguard 45</b> below) and communicated to relevant stakeholders to delineate access restrictions for surrounding water users. | Contractor/Port<br>Authority of<br>NSW | Pre-<br>construction/<br>construction |
| 31  | Socio-<br>economic<br>impacts            | The works would be scheduled to maintain public access to Circular Quay and the wharf frontage where feasible and reasonable; especially during peak and event periods.                                                                         | Contractor                             | Pre-<br>construction/<br>construction |
| 32  | Non-<br>Aboriginal<br>heritage           | A permit under section 140 of the NSW Heritage Act would be obtained prior to the commencement of dredging and scour protection works.                                                                                                          | Port Authority<br>NSW                  | Pre-<br>construction                  |
| 33  | Non-<br>Aboriginal<br>heritage           | The remains of the wharf on the harbour bed would be recorded before starting construction to help<br>understand the site formation processes associated with the demolition of the wharf.                                                      | Contractor                             | Pre-<br>construction                  |
| 34  | Non-<br>Aboriginal<br>heritage           | An archaeologist would inspect, and record elements associated with the timbers before their removal to better-understand the construction techniques used.                                                                                     | Contractor                             | Construction                          |

| Ref | Impact                         | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Responsibility                          | Timing               |
|-----|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|
| 35  | Non-<br>Aboriginal<br>heritage | As part of the early works, and once the timbers on the harbour bed had been removed, a series of maritime archaeological test transects would be used to understand the potential for relics, patterning and dispersal of relics across the site.<br>This information would be held as a record to support an application made under section 140 of the <i>Heritage Act 1997</i> , to secure permission to excavate or disturb land that would likely "result in the discovery, movement and/or destruction of [a heritage] relic". Dredging work would only be allowed to take place once the Heritage Council of NSW gives its permission under the Act. | Port Authority<br>of NSW                | Pre-<br>construction |
| 36  | Non-<br>Aboriginal<br>heritage | If it is not possible to carry out the pre-construction investigations under <b>safeguard 35</b> above, then the contractor would work with Port Authority of NSW and a heritage specialist to develop an agreed sampling program of the dredged sediment to ensure a representative sample is collected to record and recover any remaining.                                                                                                                                                                                                                                                                                                               | Port Authority<br>of NSW/<br>contractor | Construction         |
| 37  | Non-<br>Aboriginal<br>heritage | A <b>Standard Management Procedure for Unexpected Heritage Items</b> would be followed in the event of unexpected heritage items, skeletal remains, archaeological remains or relics are encountered. This would include an adequate stop-and-start work procedure and the need to engage a qualified heritage specialist to advise on the required action.                                                                                                                                                                                                                                                                                                 | Contractor                              | Construction         |
| 38  | Aboriginal<br>heritage         | A <b>Standard Management Procedure for Unexpected Heritage Items</b> would be followed the event of unexpected heritage items, skeletal remains, archaeological remains or relics are encountered. This would include an adequate stop-and-start work procedure and the need to engage a qualified heritage specialist to advise on the required action.                                                                                                                                                                                                                                                                                                    | Contractor                              | Construction         |
| 39  | Aboriginal<br>heritage         | Should any Aboriginal objects be identified at any stage of the project, an Aboriginal Heritage Impact Permit (AHIP) maybe required under Section 90 of the <i>National Parks and Wildlife Act 1974</i> . This would be obtained in accordance with the requirements of the Guide to Investigating, Assessing and Reporting on Aboriginal Cultural Heritage in NSW (OEH, 2011) and the Aboriginal Cultural Heritage Consultation Requirements for Proponents (DECCW, 2010a).                                                                                                                                                                                | Contractor and<br>Port Authority        | Construction         |

| Ref | Impact                           | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Responsibility | Timing                                |
|-----|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|
| 40  | Land<br>transport and<br>parking | A <b>Traffic Control Plan</b> would be prepared and implemented for the OPT in accordance with the Traffic Control at Work Sites manual (Roads and Maritime, 2018) and the Australian Standard 1742.3 (Manual of uniform traffic control devices, 2019). This would involve items such as installing appropriate wayfinding signage for alternative transport options where necessary. The Traffic Control Plan would also include pedestrian access management at the OPT and provision of diversion signs, and safe access around the OPT to avoid construction works.                                                                           | Contractor     | Pre-<br>construction/c<br>onstruction |
| 41  | Land<br>transport and<br>parking | The <b>Traffic Control Plan</b> would be developed in consultation with and to the satisfaction of Port Authority of NSW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contractor     | Pre-<br>construction/c<br>onstruction |
| 42  | Land and<br>water<br>transport   | Equipment and materials would be transported to site via boat and/or barge when possible to reduce land transport and impacts to local road networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contractor     | Construction                          |
| 43  | Water<br>transport               | Harbour master approval would be obtained under Clause 67ZN of the Ports and Maritime Administration Regulation 2012 prior to any disturbance of the seabed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contractor     | Pre-<br>construction/c<br>onstruction |
| 44  | Water<br>Transport               | Transport for NSW would be notified prior to enabling works for access restrictions to Commissioners Steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contractor     | Pre-<br>construction                  |
| 45  | Marine<br>works<br>management    | A <b>Marine Works Management Plan</b> (MWMP) would be developed by the contractor in consultation with the Harbour Master, Transport for NSW (Maritime) and other relevant stakeholders. The stakeholders would define specifics such as exclusion zones, methods of marking the zones, clearance distances, mooring plans, communication protocols, emergency and incident response procedures, contact details of all parties and responsible persons, and transit routes. The MWMP would be approved by the Harbour Master in advance of the works commencing. Harbour Master approval will also be required under Clause 67ZN of the Ports and | Contractor     | Pre-<br>construction/c<br>onstruction |

| Ref | Impact             | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Responsibility | Timing                                |
|-----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|
|     |                    | Maritime Administration Regulation 2012 prior to any disturbance of the seabed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                       |
| 46  | Water<br>transport | <ul> <li>A Marine Traffic Control Plan would be developed and implemented in consultation with the Harbour Master, Transport for NSW and other relevant stakeholders to accommodate the works, vessel movements and safety requirements. This plan would:</li> <li>Ensure that vessel speeds would comply with the Harbour Master requirements within Circular Quay and Sydney Harbour. Vessels within the proposal footprint would also be restricted in speed.</li> <li>Respond to the navigational requirements set out in the Port Information for Sydney Harbour &amp; Botany Bay (Port Authority of NSW, 2015).</li> <li>Include the requirement of the maritime navigational exclusion zone established before starting construction in accordance with the Harbour Master approval.</li> <li>Include the required methods of communication with the Harbour Master to manage the additional vessel movements within the Shipping Channels. Shipping schedules would be forwarded and agreed in advance.</li> </ul> | Contractor     | Pre-<br>construction/c<br>onstruction |
| 47  | Waste              | The SWMP would include measures to ensure the dredged material is correctly stored in the barges when they are being transported either to Glebe Island or offshore to limited overspill impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contractor     | Pre-<br>construction/<br>construction |
| 48  | Waste              | Waste management, littering and general tidiness would be monitored during routine site inspections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contractor     | Construction                          |
| 49  | Waste              | Appropriate measures to avoid and minimise waste associated with the project should be investigated and implemented where possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contractor     | Construction                          |

| Ref | Impact            | Environmental safeguard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Responsibility | Timing       |
|-----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 50  | Waste             | Waste would be classified before being disposed offsite to an appropriately licenced facility in accordance<br>with Waste Classification Guidelines: Part 1 Classifying Waste (DECCW, 2014). Where necessary, this<br>would include sampling and analysis. Where possible the material to be dredged will be classified prior to<br>dredging based on sampling data and confirmation from NSW EPA that the dredged material meets general<br>solid waste criteria.<br>A waste classification report would include an unexpected finds protocol requiring further sampling and<br>analysis should this occur. | Contractor     | Construction |
| 51  | Waste             | The dredged sediment would be kept on a barge while a polymer is added to reduce its water content if it is being disposed on land.<br>The material transfer between the barge and quayside would be carefully managed to limit spill back into the marine environment. A pre and post hydrographic survey would be carried out to ensure the overall depth has not been impacted. The difference would be confirmed with Port Authority of NSW and if unacceptable additional levelling or dredging would be needed to prevent future operational performance.                                              | Contractor     | Construction |
| 52  | Hazards and risks | Marine spill kits would be kept within the construction and compound area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contractor     | Construction |
| 53  | Hazards and risks | Emergency equipment such as first aid kits and flotation devices would be kept within the construction and compound area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contractor     | Construction |
| 54  | Hazards and risks | Work Safety Method Statements or similar would be used to manage any health and safety risks associated with the works.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contractor     | Construction |
| 55  | Hazards and risks | A <b>Safety Plan</b> would be put in for extreme weather conditions this would involve measures to safely close-<br>down the site, secure/remove all equipment and machinery and demobilise offsite.                                                                                                                                                                                                                                                                                                                                                                                                         | Contractor     | Construction |

| Ref | Impact            | Environmental safeguard                                                                                                                                                    | Responsibility | Timing       |
|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 56  | Hazards and risks | Barge loading activities would be closely monitored.                                                                                                                       | Contractor     | Construction |
| 57  | Air quality       | The CEMP would consider and address management measures for air quality during construction. The plan would outline procedures for work during various weather conditions. | Contractor     | Construction |

### 8 Justification and conclusion

This Chapter provides the justification for the proposal considering its biophysical, social and economic impacts, the suitability of the site and whether the proposal is in the public interest. The proposal is also considered in the context of the objectives of the EP&A Act, including the principles of ecologically sustainable development as defined in Schedule 2 of the Environmental Planning and Assessment Regulation 2000.

### 8.1 Justification

Initial justification for the proposal was provided through an assessment of the existing wharf, which was identified as needing dredging due to the need for the OPT to operate as efficiently and safely as possible to ensure ongoing operation of the OPT. Recent investigation has identified that scouring is occurring and loss of existing scour protection.

Consideration of alternatives and options was then carried out, with the preferred design of the proposal selected to best achieve the objectives outlined in section 2.3, which include preventing erosion and damage of the embankment wall, maintaining stability, and providing sufficient depth in the berth pocket. This was compared to the option of doing nothing, installing only a sheet pile retaining wall at the southern end of the OPT berth, dredging and options for disposing the dredged materials.

Potential environmental and social impacts resulting from construction of the proposal would be minimised through the safeguards and management measures outlined in Chapter 7.

The following sub-headings consider the proposal's justification in the context of the impacts and benefits of the proposal.

#### 8.1.1 Social factors

The proposal would result in temporary social impacts whilst being built. Notably, this would include temporary disruption to private commercial vessel users at Commissioners Steps and Campbells Cove due to the requirement to temporarily close the wharf during works. Minor disruption to surrounding land uses would also occur. Noise and visual impacts would also be generated. However, all construction related impacts would be appropriately managed prior to and during construction.

#### 8.1.2 Biophysical factors

As discussed in Chapter 6, no significant impacts have been identified. Minor impacts would be managed through the safeguards and management measures outlined in these sections.

#### 8.1.3 Economic factors

The proposed works to the OPT berth would facilitate the continued safe berthing of cruise ships at the OPT, contributing to the local economy.

Design of the dredging and scour protection works has also incorporated measures to decrease the maintenance required for ongoing operations.

### 8.2 Objects of the EP&A Act

#### Table 44: Objects of the EP&A Act

| Object                                                                                                                                                                                                                                                                                                                                      | Comment                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(a)(i) To encourage the proper<br>management, development and conservation<br>of natural and artificial resources, including<br>agricultural land, natural areas, forests,<br>minerals, water, cities, towns and villages<br>for the purpose of promoting the social and<br>economic welfare of the community and a<br>better environment. | Through the assessment in chapter 6, it has been<br>identified that the proposal would not significantly<br>impact on any natural or artificial resources. The<br>proposal facilitates the continued use of the OPT as<br>a cruise ship terminal. |
| 5(a)(ii) To encourage the promotion and co-<br>ordination of the orderly economic use and<br>development of land.                                                                                                                                                                                                                           | The proposal facilitates the continued use of the OPT as a cruise ship terminal.                                                                                                                                                                  |
| 5(a)(iii) To encourage the protection,<br>provision and co-ordination of<br>communication and utility services.                                                                                                                                                                                                                             | There will be no impacts to communication or utility services.                                                                                                                                                                                    |
| 5(a)(iv) To encourage the provision of land for public purposes.                                                                                                                                                                                                                                                                            | The proposal facilitates the continued use of the OPT as a cruise ship terminal.                                                                                                                                                                  |
| 5(a)(v) To encourage the provision and co-<br>ordination of community services and facilities.                                                                                                                                                                                                                                              | There will be no impact to community services and facilities.                                                                                                                                                                                     |
| 5(a)(vi) To encourage the protection of the<br>environment, including the protection and<br>conservation of native animals and plants,<br>including threatened species, populations<br>and ecological communities, and their<br>habitats.                                                                                                   | An assessment of impacts on the aquatic<br>environment was carried out. The assessment<br>concluded that no significant impact to aquatic<br>ecology would be caused by the proposal.                                                             |
| 5(a)(vii) To encourage ecologically sustainable development.                                                                                                                                                                                                                                                                                | Ecologically sustainable development is considered<br>in Sections 8.2.1 to 8.2.4 below.                                                                                                                                                           |
| 5(a)(viii) To encourage the provision and maintenance of affordable housing.                                                                                                                                                                                                                                                                | This object is not relevant to the proposal                                                                                                                                                                                                       |

263976-00-RPT-0005 | Issue 1 | 17 September 2020 | Arup

| Object                                                                                                                                     | Comment                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 5(b) To promote the sharing of the<br>responsibility for environmental planning<br>between different levels of government in<br>the State. | This object is not relevant to the proposal                         |
| 5(c) To provide increased opportunity for<br>public involvement and participation in<br>environmental planning and assessment.             | Community consultation has not been undertaken as part of this REF. |

#### 8.2.1 The precautionary principle

The precautionary principle includes the premise that full scientific certainty should not be used as a reason for postponing a measure to prevent degradation of the environment where there are threats of serious or irreversible environmental damage.

Through the assessment of the potential impacts of the proposal in Chapter 6, it has been demonstrated that threats of serious or irreversible environmental damage do not exist for the proposal.

Notwithstanding, to account for the subjectivity of professional judgement applied in environmental assessment and modelling uncertainty, worst-case assumptions have been incorporated into the assessment, including the following:

- Specialist assessments of noise and vibration, aboriginal and non-aboriginal heritage have been completed.
- The worst-case assumption of all noise generating construction equipment operating at the same time, at its maximum output, at a location closest to the nearest of the sensitive receivers.
- Assessing impacts and including safeguards for impacts which are exceptionally unlikely to happen such as major spills.

#### 8.2.2 Intergenerational equity

To achieve intergenerational equity, the present generation should ensure that the health, diversity and productivity of the environment are maintained or enhanced for the benefit of future generations.

The proposal facilitates the continued use of the OPT as a cruise ship terminal, which generates significant economic benefits for State.

No potential impacts to future generations would be generated by the proposal.

# 8.2.3 Conservation of biological diversity and ecological integrity

Conservation of biological diversity and ecological integrity has been considered through the assessment of aquatic ecology provided in section 6.2.

Providing the safeguard measures are implemented, the proposal would not have a material or significant impact on biological diversity and ecological integrity within the proposal footprint or surrounds.

## 8.2.4 Improved valuation, pricing and incentive mechanisms

This principle includes integrating long-term and short-term economic, environmental, social and fairness considerations into decision-making. This principle requires that environmental resources should be appropriately valued.

Environmental, economic and social issues were considered in the rationale for the proposal and design options. Construction planning for the proposal would also be progressed in the most cost-effective way.

Safeguards and management measures detailed in Chapter 6, including avoiding, reusing, recycling, managing waste during construction and operation, would be implemented.

### 8.3 Conclusion

The proposed dredging works at the OPT is subject to assessment under Part 5 of the EP&A Act. The REF has examined and taken into account to the fullest extent possible all matters affecting or likely to affect the environment by reason of the proposed activity.

This has included consideration (where relevant) of conservation agreements and plans of management under the NPW Act, joint management and biobanking agreements under the BC Act, wilderness areas, critical habitat, impacts on threatened species, populations and ecological communities and their habitats and other protected fauna and native plants. It has also considered potential impacts to matters of national environmental significance listed under the Federal EPBC Act.

Several potential environmental impacts from the proposal have been avoided or reduced during the concept design development and options assessment. The proposal as described in the REF best meets the project objectives but would still result in some minor impacts. Safeguards and management measures as detailed in this REF would ameliorate or minimise these expected impacts. The proposal would also have positive impacts of improving safety for cruise ships berthing at the OPT, improving the resilience of existing assets and socio-economic benefits of facilitating the continuation of cruise ship related tourism within the city. On balance the proposal is considered justified and the following conclusions are made.

#### Significance of impact under NSW legislation

The proposal would be unlikely to cause a significant impact on the environment. Therefore, it is not necessary for an environmental impact statement to be prepared and approval to be sought from the Minister for Planning and Public Spaces under Division 5.1 of the EP&A Act. A Species Impact Statement is not required. The proposal is subject to assessment under Division 5.1 of the EP&A Act. Consent from Council is not required.

### 9 Certification

This review of environmental factors provides a true and fair review of the proposal in relation to its potential effects on the environment. It addresses to the fullest extent possible all matters affecting or likely to affect the environment as a result of the proposal.

Insert name Position title, eg Environmental Officer Company name Date:

### 10 References

Australian Bureau of statistics, <u>http://www.abs.gov.au</u> (accessed 15<sup>th</sup> November 2019)

City of Sydney, 2013, Our Villages – CBD and Harbour, http://www.cityofsydney.nsw.gov.au/learn/about-sydney/our-villages/cbd-andharbour (accessed 15th November 2019)

Engell-Sorensen, K, et al (2000), Evaluation of the effect of noise from offshore pile-driving on marine fish, bioconsultant, John, Ewaldsvej 42-44, DK-8230, Abyhoj, Tech Rep. 1980-1-031rev 2. To SEARS, Slagterivej, 25, DK-4690, Haslev

Creese RG, Glasby TM, West G and Gallen C (2009) Mapping the habitats of NSW estuaries. Industry & Investment NSW Fisheries Final Report Series 113. Port Stephens, NSW

Department of Primary Industries (Fisheries) Policy and Guidelines for Fish Habitat Conservation and Management (2013)

GHD, (2019) Circular Quay Investigation: Sediment Contamination Assessment Report

MetOcean Solutions, (2020) Hydrodynamic and Dredge Plume Modelling

NSW Heritage Office, (2001), Assessing Heritage Significance

NSW Heritage Office and Department of Urban Affairs and Planning (DUAP), (2002), Statements of Heritage Impact

### **Appendix A– Proposal Drawings**



|    |      |      |       |      |    |      |      | Client             | Job T<br>OV |
|----|------|------|-------|------|----|------|------|--------------------|-------------|
|    |      |      |       |      |    |      |      |                    | BE<br>PR    |
|    |      |      |       |      |    |      |      | OF NEW SOUTH WALLS | Scale       |
| Ву | Chkd | Appd | Issue | Date | Ву | Chkd | Appd |                    | Discip      |

| Scale at A1 | AS SHOWN |  |
|-------------|----------|--|
| Discipline  | MARITIME |  |

## DRAWING COLOUR CODED - PRINT ALL COPIES IN COLOUR

### **Appendix B– Consideration of Clause 228(2) Factors and Matters of National Environmental Significance**

#### Clause 228(2) checklist

In addition to the requirements of the *Is an EIS required?* (DUAP 1995/1996) guideline and the *Marinas and Related Facilities EIS Guideline* (DUAP 1996) as detailed in the REF, the following factors, listed in clause 228(2) of the Environmental Planning and Assessment Regulation 2000, have also been considered to assess the likely impacts of the proposal on the natural and built environment.

| Impact                                                                                                                                                                                                                             | Level of impact                                                                                                                                                                                                                                                         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| a. Any environmental impact on a community?                                                                                                                                                                                        |                                                                                                                                                                                                                                                                         |  |  |
| There would be noise impacts to residents<br>during night-time works, which have been<br>considered in section 6.3.4 of this REF.                                                                                                  | Minor impacts with the implementation of<br>the environmental safeguards noted in Table<br>43                                                                                                                                                                           |  |  |
| b. Any transformation of a locality?                                                                                                                                                                                               |                                                                                                                                                                                                                                                                         |  |  |
| Works are within the harbour. The operation of the OPT would remain the same.                                                                                                                                                      | No impact                                                                                                                                                                                                                                                               |  |  |
| c. Any environmental impact on the ecosystems of the locality?                                                                                                                                                                     |                                                                                                                                                                                                                                                                         |  |  |
| The proposal is unlikely to cause significant<br>impact to any threatened aquatic or terrestrial<br>species, populations or ecological communities<br>or their habitats, as discussed in section 6.2.3 of<br>this REF.             | Minor impacts with the implementation of<br>the environmental safeguards noted in Table<br>43.                                                                                                                                                                          |  |  |
| d. Any reduction of the aesthetic, recreational, scientific or other environmental quality or value of a locality?                                                                                                                 |                                                                                                                                                                                                                                                                         |  |  |
| There would be temporary visual impacts<br>during the construction of the works from<br>barges and backhoe dredgers at the OPT and<br>Glebe Island, which have been considered in<br>section 6.4.3 of this REF.                    | Minor impacts with the implementation of<br>the environmental safeguards noted in Table<br>43.                                                                                                                                                                          |  |  |
| e. Any effect on a locality, place or building having aesthetic, anthropological, archaeological, architectural, cultural, historical, scientific or social significance or other special value for present or future generations? |                                                                                                                                                                                                                                                                         |  |  |
| There would be an impact to the remains of<br>buried material associated with Wharf No.7<br>within Campbell's Cove, which have been<br>considered in section 6.6.3 of this REF and<br>Appendix F.                                  | This is not considered to be a major impact<br>as the remainder of the site located in<br>Campbells Cove would remain unaffected<br>including its heritage significance. A permit<br>would be required from Heritage NSW prior<br>to any construction works commencing. |  |  |

| Impact                                                                                                                                                                                                                                                                                                                  | Level of impact                                                                                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| f. Any impact on the habitat of protected fauna (within the meaning of the <i>National Parks and Wildlife Act 1974</i> )?                                                                                                                                                                                               |                                                                                                              |  |  |
| Proposal footprint and compound are not<br>located within or near any protected areas, and<br>no threatened or key habitat is expected to<br>occur locally, as discussed in section 6.2.3.                                                                                                                              | No impact                                                                                                    |  |  |
| g. Any endangering of any species of animal, plant or other form of life, whether living on land, in water or in the air?                                                                                                                                                                                               |                                                                                                              |  |  |
| The proposal is unlikely to cause significant<br>impact to any threatened aquatic or terrestrial<br>species, populations or ecological communities<br>or their habitats, as discussed in section 6.2.3 of<br>this REF.                                                                                                  | Minor impacts with the implementation of<br>the environmental safeguards noted in Table<br>43.               |  |  |
| h. Any long-term effects on the environment?                                                                                                                                                                                                                                                                            |                                                                                                              |  |  |
| Potential impacts are considered temporary during construction works                                                                                                                                                                                                                                                    | Minor short-term impacts with the<br>implementation of the environmental<br>safeguards noted in Table 43.    |  |  |
| i. Any degradation of the quality of the environment?                                                                                                                                                                                                                                                                   |                                                                                                              |  |  |
| The proposed works would reduce erosion<br>impacts due to scour protection. The works are<br>within a highly disturbed environment and<br>whilst there is the potential for sediment plumes<br>during dredging however, impacts are minor<br>and temporary. These have been considered in<br>section 6.1.3 of this REF. | Minor impacts with the implementation of<br>the environmental safeguards noted in Table<br>43.               |  |  |
| j. Any risk to the safety of the environment?                                                                                                                                                                                                                                                                           |                                                                                                              |  |  |
| A Marine Works Management Plan would be<br>put in place in consultation with the Harbour<br>Master to reduce risk of impacts and address<br>safety concerns, as discussed in section 6.8.3 of<br>this REF.                                                                                                              | Potential impacts will be managed with the implementation of the environmental safeguards noted in Table 43. |  |  |
| k. Any reduction in the range of beneficial uses of the environment?                                                                                                                                                                                                                                                    |                                                                                                              |  |  |
| During works pedestrian access to the area at<br>the OPT and vessel use of some local pick-up<br>and drop-off locations would be temporarily<br>affected as discussed in section 6.8.3 of this<br>REF.<br>The proposal facilitates the continued beneficial<br>use of the OPT as a cruise ship terminal.                | Minor impacts with the implementation of<br>the environmental safeguards noted in Table<br>43                |  |  |
| Impact                                                                                                                                                                                                                               | Level of impact                                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| l. Any pollution of the environment?                                                                                                                                                                                                 |                                                                                               |  |  |
| In the event of a pollution accident causing<br>pollution spills from machinery, this would be<br>managed by a spill management plan with spill<br>kits on site. No fuels or chemicals would be<br>stored in the proposal footprint. | Minor impacts with the implementation of<br>the environmental safeguards noted in Table<br>43 |  |  |
| m. Any environmental problems associated with t                                                                                                                                                                                      | the disposal of waste?                                                                        |  |  |
| Waste and dredging material would be removed<br>off site via barge either for disposal at a<br>licenced waste management facility or offshore<br>disposal outside of State Waters                                                    | No impact                                                                                     |  |  |
| n. Any increased demands on resources (natural or otherwise) that are, or are likely to become, in short supply?                                                                                                                     |                                                                                               |  |  |
| Works include use of 10,000 m <sup>2</sup> of concrete for<br>the scour protection mattress. This isn't<br>considered significant in supply stocks.                                                                                  | No impact                                                                                     |  |  |
| o. Any cumulative environmental effect with othe                                                                                                                                                                                     | er existing or likely future activities?                                                      |  |  |
| During construction there are not expected to<br>any material cumulative impacts due to the<br>short program length and limited scale of the<br>planned works.                                                                       | Minor impacts with the implementation of<br>the environmental safeguards noted in Table<br>43 |  |  |
| p. Any impact on coastal processes and coastal hazards, including those under projected climate change conditions?                                                                                                                   |                                                                                               |  |  |
| Works are proposed to protect the OPT from<br>erosion. During construction works would only<br>be carried out during calm conditions to reduce<br>impacts from weather conditions.                                                   | Minor impacts with the implementation of<br>the environmental safeguards noted in Table<br>43 |  |  |

#### Matters of national environmental significance

Under the environmental assessment provisions of the *Environment Protection and Biodiversity Conservation Act 1999*, the following matters of national environmental significance and impacts on Commonwealth land are required to be considered to assist in determining whether the proposal should be referred to the Australian Government Department of the Environment.

| Impact                                                                                                                                                                                                                                                                                                                   | Level of impact                             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|
| a. Any impact on a World Heritage property?                                                                                                                                                                                                                                                                              |                                             |  |  |  |
| There would be a temporary change in setting<br>for the Sydney Opera House. This is not<br>considered to be a significant impact as the<br>presence of construction equipment and vessels<br>in the OPT would be temporary and small scale<br>in the context of the wider landscape.                                     | Minor and temporary                         |  |  |  |
| b. Any impact on a National Heritage place?                                                                                                                                                                                                                                                                              |                                             |  |  |  |
| The Sydney Opera House and Sydney Harbour<br>Bridge are National Heritage assets. There<br>would be a temporary and minor change in<br>setting during construction works at the OPT.<br>This is not considered significant.                                                                                              | Minor and temporary                         |  |  |  |
| c. Any impact on a wetland of international impor                                                                                                                                                                                                                                                                        | rtance?                                     |  |  |  |
| There are no wetlands of international importance within the surrounding area                                                                                                                                                                                                                                            | No impact                                   |  |  |  |
| d. Any impact on a listed threatened species or ec                                                                                                                                                                                                                                                                       | ological communities?                       |  |  |  |
| The proposal is unlikely to cause any impacts to<br>any threatened aquatic or terrestrial species,<br>populations or ecological communities or their<br>habitats                                                                                                                                                         | No impacts                                  |  |  |  |
| e. Any impacts on listed migratory species?                                                                                                                                                                                                                                                                              | e. Any impacts on listed migratory species? |  |  |  |
| Impacts on listed migratory species are highly<br>unlikely due to the location of the works and the<br>nature of the highly modified environments<br>Although highly unlikely, should aquatic<br>megafauna be observed in the vicinity of the<br>works, any piling work would stop until they<br>have left the locality. | No impacts                                  |  |  |  |

| Impact                                                                                     | Level of impact |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------|--|--|--|
| f. Any impact on a Commonwealth marine area?                                               |                 |  |  |  |
| No impacts are considered likely as the works<br>are not within a Commonwealth marine area | No impact       |  |  |  |
| g. Does the proposal involve a nuclear action (including uranium mining)?                  |                 |  |  |  |
| Works are do not involve a nuclear action                                                  | No impact       |  |  |  |
| Additionally, any impact (direct or indirect) on Commonwealth land?                        |                 |  |  |  |
| No works in the vicinity of Commonwealth land                                              | No impact       |  |  |  |

## **Appendix C– Statutory Consultation Checklist**

#### **ISEPP** consultation

| Issue                   | Potential impact                                                                                                                                                                                                                                                                                                    | Yes/no | If 'yes'<br>consult with | ISEPP clause         |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|----------------------|
| Stormwater              | Are the works likely to<br>have a <i>substantial</i> impact<br>on the stormwater<br>management services<br>which are provided by<br>council?                                                                                                                                                                        | No     |                          | ISEPP<br>cl.13(1)(a) |
| Traffic                 | Are the works likely to<br>generate traffic to an<br>extent that will <i>strain</i> the<br>existing road system in a<br>local government area?                                                                                                                                                                      | No     |                          | ISEPP<br>cl.13(1)(b) |
| Sewerage<br>system      | Will the works involve<br>connection to a council<br>owned sewerage system?<br>If so, will this connection<br>have a <i>substantial</i> impact<br>on the capacity of any<br>part of the system?                                                                                                                     | No     |                          | ISEPP<br>cl.13(1)(c) |
| Water usage             | Will the works involve<br>connection to a council<br>owned water supply<br>system? If so, will this<br>require the use of a<br><i>substantial</i> volume of<br>water?                                                                                                                                               | No     |                          | ISEPP<br>cl.13(1)(d) |
| Temporary<br>structures | Will the works involve<br>the installation of a<br>temporary structure on,<br>or the enclosing of, a<br>public place which is<br>under local council<br>management or control?<br>If so, will this cause more<br>than a <i>minor or</i><br><i>inconsequential</i><br>disruption to pedestrian<br>or vehicular flow? | No     |                          | ISEPP<br>cl.13(1)(e) |

#### Council related infrastructure or services

| Issue                            | Potential impact                                                                                                                                                                                                    | Yes/no | If 'yes'<br>consult with | ISEPP clause         |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|----------------------|
| Road &<br>footpath<br>excavation | Will the works involve<br>more than <i>minor or</i><br><i>inconsequential</i><br>excavation of a road or<br>adjacent footpath for<br>which council is the<br>roads authority and<br>responsible for<br>maintenance? | No     |                          | ISEPP<br>cl.13(1)(f) |

#### Local heritage items

| Issue          | Potential impact                                                                                                                                                                                                                                                                                                         | Yes/no | If 'yes' consult with                                                | ISEPP clause |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------|--------------|
| Local heritage | Is there is a local heritage<br>item (that is not also a<br>State heritage item) or a<br>heritage conservation<br>area in the study area for<br>the works? If yes, does a<br>heritage assessment<br>indicate that the potential<br>impacts to the item/area<br>are more than <i>minor or</i><br><i>inconsequential</i> ? | Yes    | See Appendix F<br>Heritage Assessment<br>No consultation<br>required | ISEPP cl.14  |

#### Flood liable land

| Issue                | Potential impact                                                                                                                        | Yes/no | If 'yes' consult with | ISEPP clause    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|-----------------|
| Flood liable<br>land | Are the works located on<br>flood liable land? If so, will<br>the works change flood<br>patterns to more than a<br><i>minor</i> extent? | No     |                       | ISEPP<br>cl. 15 |

#### Public authorities other than councils

| Issue                          | Potential impact                                                                                                                           | Yes/no | If 'yes' consult with | ISEPP clause         |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|----------------------|
| National parks<br>and reserves | Are the works adjacent to a national park or nature reserve, or other area reserved under the <i>National Parks and Wildlife Act 1974?</i> | No     |                       | ISEPP<br>cl.16(2)(a) |

| Issue                          | Potential impact                                                                                                                                                                                      | Yes/no | If 'yes' consult with | ISEPP clause         |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|----------------------|
| Marine parks                   | Are the works adjacent to a declared marine park under the <i>Marine Parks Act</i> 1997?                                                                                                              | No     |                       | ISEPP<br>cl.16(2)(b) |
| Aquatic<br>reserves            | Are the works adjacent to a declared aquatic reserve under the <i>Fisheries Management Act 1994</i> ?                                                                                                 | No     |                       | ISEPP<br>cl.16(2)(c) |
| Sydney<br>Harbour<br>foreshore | Are the works in the<br>Sydney Harbour Foreshore<br>Area as defined by the<br>Sydney Harbour Foreshore<br>Authority Act 1998?                                                                         | No     |                       | ISEPP<br>cl.16(2)(d) |
| Bush fire prone<br>land        | Are the works for the<br>purpose of residential<br>development, an<br>educational establishment,<br>a health services facility, a<br>correctional centre or<br>group home in bush fire<br>prone land? | No     |                       | ISEPP<br>cl.16(2)(f) |

## **Appendix D– Hydrodynamic Modelling**



## Hydrodynamic and Dredge Plume Modelling

## **Overseas Passenger Terminal**

Report prepared for Port Authority NSW

June 2020



# **Document History**

### Versions

| Version | Revision<br>Date | Summary                   | Reviewed by |
|---------|------------------|---------------------------|-------------|
| 0.1     | 22/04/2020       | Initial document created  | Berthot     |
| 0.2     | 4/05/2020        | Draft for internal review | Weppe       |
| 0.3     | 7/05/2020        | Draft for client review   | Berthot     |
| 0.4     | 30/06/2020       | Draft for client review   | Berthot     |

### Distribution

| Version | Date       | Distribution                                   |
|---------|------------|------------------------------------------------|
| 1.0     | 11/08/2020 | Daniel Chakra - Port Authority New South Wales |
|         |            |                                                |
|         |            |                                                |

Document ID:

MetOcean Solutions is a Division of Meteorological Services of New Zealand Ltd, MetraWeather (Australia) Pty Ltd [ACN 126 850 904], MetraWeather (UK) Ltd [No. 04833498] and MetraWeather (Thailand) Ltd [No. 0105558115059] are wholly owned subsidiaries of Meteorological Service of New Zealand Ltd (MetService).

The information contained in this report, including all intellectual property rights in it, is confidential and belongs to Meteorological Service of New Zealand Ltd. It may be used by the persons to which it is provided for the stated purpose for which it is provided and must not be disclosed to any third person without the prior written approval of Meteorological Service of New Zealand Ltd. Meteorological Service of New Zealand Ltd reserves all legal rights and remedies in relation to any infringement of its rights in respect of this report.



## Contents

| 1. | In  | trod  | uction                              | 9   |
|----|-----|-------|-------------------------------------|-----|
|    | 1.1 | Ba    | ckground                            | 9   |
| 2. | Sy  | dne   | y Harbour characterisation10        | )   |
| 3. | Ну  | ydro  | dynamic model1 <sup>·</sup>         | 1   |
|    | 3.1 | Мо    | odel description1 <sup>•</sup>      | 1   |
|    | 3.2 | Мо    | odel Bathymetry12                   | 2   |
|    | 3.3 | Мо    | odel Domain12                       | 2   |
|    | 3.4 | Ve    | rtical discretisation1!             | 5   |
|    | 3.5 | Ve    | rtical mixing/ turbulence closure1! | 5   |
|    | 3.6 | Bo    | undary condition10                  | 5   |
|    | 3.0 | 6.1   | Hydrodynamic forcing10              | 5   |
|    | 3.0 | 6.2   | Atmospheric forcing                 | 5   |
|    | 3.0 | 6.3   | River forcing10                     | 5   |
| 4. | M   | odel  | Validation17                        | 7   |
| 4  | 4.1 | Wa    | ater Elevation                      | 7   |
| 4  | 4.2 | Cu    | rrent Velocities19                  | )   |
| 5. | Ну  | ydro  | dynamic Modelling Results23         | 3   |
| 6. | Dr  | redge | ed Sediment Plume Modelling28       | 3   |
| (  | 5.1 | Pro   | oposed Dredging28                   | 3   |
|    | 6.  | 1.1   | Dredging Scenarios29                | 9   |
|    | 6.  | 1.2   | Sediment Releases                   | )   |
| (  | 5.2 | Sec   | diment Dispersion Modelling33       | 3   |
|    | 6.2 | 2.1   | OpenDrift Model description33       | 3   |
|    | 6.2 | 2.2   | Particle release                    | 5   |
|    | 6.2 | 2.3   | Post-processing                     | 5   |
| (  | 5.3 | Re    | sults                               | 7   |
|    | 6.3 | 3.1   | Suspended Sediment Concentration37  | 7   |
| Hy | dro | dynar | mic and Dredge Plume Modelling      | ര്ത |

|    | 6.3.2  | Sediment deposition  | 49 |
|----|--------|----------------------|----|
|    | 6.3.3  | Tracer Concentration | 54 |
| 7. | Conclu | sions                | 59 |
| 8. | Refere | nces                 | 61 |



# **List of Figures**

| Figure 1.1: | Sydney Harbour – Circular Quay / Overseas Passenger Terminal (OPT)9                                                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.1  | Sydney Harbour – Circular Quay hydrographic survey data (Port Authority of New South Wales, Nov. 2019)                                                                                                |
| Figure 3.2  | Triangular model mesh defined for the Sydney Harbour and Barangaroo site.<br>Left panel shows the whole domain, while the middle and right panels show<br>zooms into the Estuary near the city centre |
| Figure 3.3  | Model Bathymetry for Sydney Harbour and Barangaroo site. Top panel shows<br>the whole model domain, while the bottom panels show a zoom into the<br>Estuary near the City centre                      |
| Figure 3.4  | Map of the model domain showing the number of vertical levels used in the model (left). The cross section represented by the red line is shown on the right panel                                     |
| Figure 4.1  | Aerial image showing Sydney Harbour and the location of the two tidal gauge<br>and the ADCP (PANSW) used to validate the hydrodynamic model17                                                         |
| Figure 4.2  | Comparison of modelled (red) and measured total surface elevation at Silverwater Bridge (top) and HMAS Penguin (bottom) in July 2018                                                                  |
| Figure 4.3  | Measured (blue) and modelled (red) near-surface (top), mid-depth (middle) and near-bottom total current speeds at Balls Head in July 201820                                                           |
| Figure 4.4  | Measured (blue) and modelled (red) near-surface (top), mid-depth (middle) and near-bottom total current direction at Balls Head in July 201821                                                        |
| Figure 4.5  | Measured (blue) and modelled (red) depth-averaged tidal current at Balls<br>Head in July 2018                                                                                                         |
| Figure 4.6  | Near -surface (top) and near -bottom (bottom) water velocities during peak flood flow on the 1 <sup>st</sup> of July 2017 in Sydney harbour24                                                         |
| Figure 4.7  | Near -surface (top) and near -bottom (bottom) water velocities during peak<br>ebb flow on the 1st of July 2017 in Sydney harbour                                                                      |
| Figure 4.8  | Near -surface (top) and near -bottom (bottom) water velocities during peak flood flow on the 1st of July 2017 near Sydney City centre                                                                 |
| Figure 4.9  | Near -surface (top) and near -bottom (bottom) water velocities during peak<br>ebb flow on the 1st of July 2017 near Sydney City centre27                                                              |

- Figure 6.2 Sources of a dredge plume for a Back Hoe Dredger (after Becker J. et al., 2015).
- Figure 6.4 90<sup>th</sup> percentile total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, for the scenario assuming **maximum** dredging rate over a 6 day period (BHD Dredging at location 1 (2 days), location 2 ( 2 days) and location 3 (2 days)- 1 disposal per day). Reference locations where TSS timeseries were extracted are shown as red dots. The TSS were masked below 5 mg/L......40

- Figure 6.7 90<sup>th</sup> percentile total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, for the scenario assuming **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (
  5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Reference locations where TSS timeseries were extracted are shown as red dots. The TSS were masked below 5 mg/L.
- Figure 6.8 95<sup>th</sup> percentile total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, for the scenario assuming **average** dredging



- Figure 6.9 Timeseries of total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, at four reference sites (see red dots in Figure 6.8), for the scenario assuming **maximum** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 ( 5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Scale is capped at 500mg/L. ......45
- Figure 6.10Timeseries of total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, at four reference sites (see red dots in Figure 6.8), for the scenario assuming **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 ( 5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Scale is capped at 500mg/L......46
- Figure 6.11Timeseries of total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, at the three dredging locations (see red dots in Figure 6.1),for the scenario assuming **maximum** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 ( 5.33 days) and location 3 (5.33 days)-.....47
- Figure 6.12Timeseries of total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, at the three dredging locations (see red dots in Figure 6.1), for the scenario assuming **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 ( 5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Scale is capped at 500mg/L. 48



## **List of Tables**

| Table 6.1: BHD Production Estimates (Table 5 GHD 2020)28 |                                                                                                                                                                                                                        |  |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Table 6.2                                                | Mean sediment distribution of Sediment Types considered in Table 6.1. (Type<br>1 = Clayey sand, Type 2 : Loose sand, Type 3: Very Soft Clay, Type 4: Firm Stiff<br>Clay), based on spreadsheet data provided by Coffey |  |  |  |
| Table 6.3                                                | Sediment settling velocities considered for the simulations                                                                                                                                                            |  |  |  |
| Table 6.4                                                | BHD estimates for each sediment class considered32                                                                                                                                                                     |  |  |  |



## **1.Introduction**

### 1.1 Background

Port Authority of New South Wales (PANSW) is currently planning to upgrade the Overseas Passenger Terminal berth at Circular Quay in order to accommodate for larger size cruise ships and better protect the structure against scour and undermining (Figure 1). As part of this project, dredging of the berth pocket will need to be undertaken and an assessment of the associated sediment dispersion during the dredging operation is required to inform a Review of Environmental Factors. PANSW will also require current data to be used in a ship simulator as well as current vector map to assist vessel pilots.





Figure 1.1: Sydney Harbour – Circular Quay / Overseas Passenger Terminal (OPT)



## 2.Sydney Harbour characterisation

The Sydney Harbour is an estuary situated on the East Coast of Australia in New South Wales. It is 30 km long, 3km wide near the entrance and 500 m wide near the Sydney Opera House. The estuary has a complex bathymetry: the mouth of the estuary has a depth of 30m whereas the main channel is around 15m deep with deeper pools up to 40 m. it is governed by semi-diurnal tides and freshwater flow from the Parramatta River (Xiao et al., 2020). During high river flow the Estuary becomes stratified. On the other hand during low/ normal condition is estuary can be classified as well-mixed estuary (Birch and Rochford, 2009). Wind has limited effect on the residual circulation within the Harbour (Das et al., 2020).



# 3.Hydrodynamic model

## 3.1 Model description

The 2D and 3D baroclinic hydrodynamics of the Sydney Harbour were modelled using the open-sourced hydrodynamic model SCHISM<sup>12</sup>. The benefit of using open-source science models is the full transparency of the code and numerical schemes, and the ability for other researchers to replicate and enhance any previous modelling efforts for a given environment.

SCHISM is a prognostic finite-element unstructured-grid model designed to simulate 3D baroclinic, 3D barotropic or 2D barotropic circulation. The barotropic mode equations employ a semi-implicit finite-element Eulerian-Lagrangian algorithm to solve the shallow-water equations, forced by relevant physical processes (atmospheric, oceanic and fluvial forcing). A detailed description of the SCHISM model formulation, governing equations and numerics, can be found in Zhang and Baptista (2008).

The SCHISM model is physically realistic, in that well-understood laws of motion and mass conservation are implemented. Therefore, water mass is generally conserved within the model, although it can be added or removed at open boundaries (e.g. through tidal motion at the ocean boundaries) and water is redistributed by incorporating aspects of the real-world systems (e.g. bathymetric information, forcing by tides and wind). The model transports water and other constituents (e.g. salt, temperature, turbulence) through the use of quadrilateral and triangular volumes (connected 3-D polyhedrons).

The finite-element triangular grid structure used by SCHISM has resolution and scale benefits over other regular or curvilinear based hydrodynamic models. SCHISM is computationally efficient in the way it resolves the shape and complex bathymetry associated with estuaries, and the governing equations are similar to other open-source models such as Delft3D and ROMS. SCHISM has been used extensively within the scientific community<sup>3,4</sup> where it forms the backbone of operational systems used to nowcast and forecast estuarine water levels, storm surges, velocities, water temperature and salinity<sup>5</sup>.

<sup>&</sup>lt;sup>1</sup> http://ccrm.vims.edu/schism/

<sup>&</sup>lt;sup>2</sup> http://www.ccrm.vims.edu/w/index.php/Main\_Page#SCHISM\_WIKI

<sup>&</sup>lt;sup>3</sup> http://www.stccmop.org/knowledge\_transfer/software/selfe/publications

<sup>&</sup>lt;sup>4</sup> http://ccrm.vims.edu/schism/schism\_pubs.html

<sup>&</sup>lt;sup>5</sup> https://tidesandcurrents.noaa.gov/ofs/creofs/creofs\_info.html

### 3.2 Model Bathymetry

Bathymetry was sourced from a combination of sounding data and digitized electronic charts to provide suitable resolution for defining the salient bathymetric features and guiding grid resolution, including: General Bathymetric Charts of the Oceans (GEBCO) global dataset (Weatherall et al. 2015), Electronic Navigational Charts (ENCs), Wilson & Power (2018) Seamless bathymetry and topography datasets for Sydney Harbour and other available bathymetry surveys.

The dataset was also updated with a 1m gridded data set based on the latest Hydrographic surveys (up to November 2019) of Circular Quay obtained from the Port Authority of New South Wales (Figure 3.1).



*Figure 3.1* Sydney Harbour – Circular Quay hydrographic survey data (Port Authority of New South Wales, Nov. 2019)

### 3.3 Model Domain

The model domain covers the whole of Sydney Harbour, Middle Harbour, Lave Cove Rive and Parramatta River, and extend out into the Tasman Sea to the 100 metres depth contour. The model resolution was optimised to ensure replication of the salient hydrodynamic processes. The resolution near the offshore boundary was approximately 600 m, 20 m near the coast and reduced to 2m close the Barangaroo outfall location. The triangular elements of the model domain mesh are shown in Figure 3.2 and associated bathymetries are presented in Figure 3.3.



*Figure 3.2 Triangular model mesh defined for the Sydney Harbour and Barangaroo site. Left panel shows the whole domain, while the middle and right panels show zooms into the Estuary near the city centre.* 





*Figure 3.3* Model Bathymetry for Sydney Harbour and Barangaroo site. Top panel shows the whole model domain, while the bottom panels show a zoom into the Estuary near the City centre.



## 3.4 Vertical discretisation

The vertical discretisation of the water column consisted of a Localised Sigma Coordinate (LSC<sup>2</sup>) system with Shaved Cell, a type of terrain-following layers described in Zhang et al. (2014).

For this study, the model was configured with bottom and surface vertical resolution (Figure 3.4). The vertical grid is constituted of sigma layer terrain-following coordinate with 15 layers in the shallow regions (<20 m) and up to 22 layers near the offshore boundary. A vertical section showing both the sigma layers and the water depths along a transect are presented in Figure 3.4.

The use of this type of vertical grid was dictated by the freshwater influence near the Parramatta river and the denser oceanic water flowing near the bottom of the as described in the literature (See section 2).



*Figure 3.4* Map of the model domain showing the number of vertical levels used in the model (left). The cross section represented by the red line is shown on the right panel.

### 3.5 Vertical mixing/ turbulence closure

Vertical mixing was modelled using a *GLS* model with Kantha and Clayson (1994) stability function with minimum and maximum diffusivities set to  $1 \times 10^{-6}$  and  $1 \text{ m.s}^{-1}$  respectively, following model validation and calibration. These values were adjusted as part of the model validation and calibration process.

The constant surface mixing length was held to the recommended default value of 0.1 (i.e. 10% of the uppermost sigma layer). However, variations of the mixing length were also examined during the validating and calibration processes.



Frictional stress at the seabed was approximated with a quadratic drag law, with the drag coefficient (*CD*) determined using a bottom roughness of 0.001 m. Detailed explanations of the determination of the drag coefficient are given in Zhang and Baptista (2008).

### 3.6 Boundary condition

#### 3.6.1 Hydrodynamic forcing

Tidal elevation conditions for the SCHISM model were derived from data measured at Fort Denison. The water elevation measured at this site was used to force the offshore boundary uniformly.

Tidal velocities were derived from constituents from the (Oregon State University Tidal Inverse Software) Tasmania and Southern Australia Shelf grid. This model has a horizontal resolution of ~1/30° (Egbert and Erofeeva 2002). The tidal velocities were interpolated in 3D assuming a logarithmic profile.

The open-boundary salinity and temperature were prescribed from HYCOM hydrodynamic model at 3-hour interval (Chassignet et al., 2007).

#### 3.6.2 Atmospheric forcing

The atmospheric forcing applied to the regional model domain were extracted from the Climate Forecast System Reanalysis (CFSR) from the National Center for Environmental Prediction (NCEP) (Saha et al. 2010) at the National Oceanic and Atmospheric Administration (NOAA). This included wind speed and direction, barometric pressure , humidity, air temperature and solar radiation.

### 3.6.3 River forcing

Three rivers were included in the model boundaries: The Parramatta river, the Duck River, Lane Cove river and Middle harbour creek. In this study only the Parramatta river was forced with hourly river discharge (Riverside Theatre site) obtained from Manly Hydraulics Laboratory (MHL) and Parramatta Council . The other rivers were forced using the mean annual flow based on available flow data from Birch & Rochford (2010), i.e. 0.3 m<sup>3</sup>.s<sup>-1</sup> for the Duck River, 0.9 m<sup>3</sup>.s<sup>-1</sup> for the Lane Cove River and 0.72 m<sup>3</sup>.s<sup>-1</sup> for Middle Harbour Creek.

A constant salinity of 0 PSU was applied to all rivers. River temperature timeseries adopted at all rivers input boundary were based on available temperature timeseries from the Hawkesbury River near Laughtondale (40 Km north of Sydney), and whilst this estuary is directly north of the Parramatta River Estuary it is anticipated that the temperature variations will be of similar order of magnitude.



## **4.Model Validation**

The hydrodynamic model was validated against water elevation and water velocity (Figure 4.1). Measured water elevation data available near the estuary entrance (HMAS Penguin) and near Parramatta river mouth (Silverwater bridge), were selected in order to provide a spatial variability over the model domain. Water velocity within the water column was available near Balls Head from ADCP data provided by Port Authority of New South Wales.



*Figure 4.1* Aerial image showing Sydney Harbour and the location of the two tidal gauge and the ADCP (PANSW) used to validate the hydrodynamic model.

### 4.1 Water Elevation

Time series of measured water elevations have been processed and the residual elevations are separated from the tidal elevations.

Comparison of the modelled and measured time series of total surface elevations from the two tidal gauges (Silverwater Bridge and HMAS Penguin) are shown in Figure 4.2.

Comparisons show that the model successfully reproduces the propagation of the tidal wave through the estuary, with good agreement between both amplitudes and phases of the principal tidal constituents.



*Figure 4.2* Comparison of modelled (red) and measured total surface elevation at Silverwater Bridge (top) and HMAS Penguin (bottom) in July 2018.



### 4.2 Current Velocities

The direct comparison of the near-surface, mid-depth and near-bottom total current speeds and direction near Balls Head are presented in Figure 4.3 and Figure 4.4, respectively.

The comparisons between measured and modelled depth-average tidal currents Balls Head are shown on Figure 4.5 .

Results shows that the modelled current speed and direction are in good agreement with the measured data. It is noted that the model slightly underestimate the current velocity near the seabed.





Figure 4.3 Measured (blue) and modelled (red) near-surface (top), mid-depth (middle) and near-bottom total current speeds at Balls Head in July 2018.





Figure 4.4 Measured (blue) and modelled (red) near-surface (top), mid-depth (middle) and near-bottom total current direction at Balls Head in July 2018.





Figure 4.5 Measured (blue) and modelled (red) depth-averaged tidal current at Balls Head in July 2018.



# **5.Hydrodynamic Modelling Results**

A snapshot of the near-surface and near-seabed water velocities in July 2017 during peak ebb and peak flood can be seen in Figure 4.6 and Figure 4.7. A zoom near the city centre and Barangaroo site is presented in Figure 4.8 and Figure 4.9. This highlights the stronger velocities occurring near Goat Island and near the Sydney Harbour Bridge.

The difference between surface and bottom velocities is shown in Figure 4.8 and Figure 4.9. It is noted that near-bottom velocities are higher than near-surface velocities during peak flood at some locations.





Figure 4.6 Near -surface (top) and near -bottom (bottom) water velocities during peak flood flow on the 1<sup>st</sup> of July 2017 in Sydney harbour.







#### Hydrodynamic and Dredge Plume Modelling





*Figure 4.8* Near -surface (top) and near -bottom (bottom) water velocities during peak flood flow on the 1st of July 2017 near Sydney City centre..








## **6.Dredged Sediment Plume Modelling**

#### 6.1 Proposed Dredging

GHD has undertaken a preliminary dredging and disposal strategy assessment to inform the plume dispersion numerical modelling (GHD 2020a). Following consideration of the potential impacts and construction costs associated with onshore disposal, PANSW requested that GHD prepare a revised strategy which considers in-harbour relocation of sediments (GHD 2020b).

GHD's report (2020b) provides likely plant and equipment selections, dredging methodologies and order of magnitude estimates of production rates and associated rates for release of fines.

Two dredging equipment options have been proposed: one with a BackHoe Dredger (BHD) and barge and another with a Cutter Suction Dredger (CSD). However, based on input from potential dredging contractors and concerns regarding potential impacts to water quality, the BHD option was retained as the proposed option and is the one modelled in this study. The dredging rate and release of sediments during the dredging operation have been estimated and are provided in Table 6.1. It is noted that silt curtains may be used to mitigate the plume dispersion during the dredging campaign however these are not considered in the modelling.

| Material            | Assumed<br>gross<br>quantities<br>incl OD<br>(m <sup>3</sup> )* | Max-<br>Prod/wk for<br>turbidity<br>input<br>(m <sup>3</sup> /wk)** | Av- Prod/wk<br>including<br>stand-by<br>(m <sup>3</sup> /wk) | Duration,<br>including<br>all<br>dredging<br>delays<br>and<br>standby<br>(wks) | Fines at<br>seabed<br>from<br>bucket<br>(kg/m <sup>3</sup> ) | Fines to<br>water<br>column<br>from<br>bucket<br>(kg/m <sup>3</sup> ) | Fines to<br>water<br>column<br>at<br>seabed<br>during<br>placem<br>ent<br>(kg/m <sup>3</sup> ) | Average Rate<br>for dredging<br>excludes mob<br>and demob.<br>(\$/m <sup>3</sup> ) |
|---------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Clayey<br>SAND      | 9,396                                                           | 25,000                                                              | 9,000                                                        | 0.96                                                                           | 14                                                           | 23                                                                    | 126                                                                                            |                                                                                    |
| Loose<br>SAND       | 3,758                                                           | 27,000                                                              | 9,000                                                        | 0.39                                                                           | 4                                                            | 9                                                                     | 70                                                                                             |                                                                                    |
| Very soft<br>CLAYS  | 5,638                                                           | 20,000                                                              | 7,000                                                        | 0.81                                                                           | 36                                                           | 60                                                                    | 375                                                                                            |                                                                                    |
| Firm-stiff<br>CLAYS | 620                                                             | 25,000                                                              | 7,000                                                        | 0.09                                                                           | 34                                                           | 51                                                                    | 95                                                                                             |                                                                                    |
| AMOUR               | 590                                                             | 5,000                                                               | 1,000                                                        | 0.55                                                                           | n/a                                                          | n/a                                                                   | n/a                                                                                            |                                                                                    |
| Totals              | 20,000                                                          |                                                                     |                                                              | 2.81                                                                           |                                                              |                                                                       |                                                                                                | \$200                                                                              |

Notes (continued on following page):

\* All quantities are inclusive of over-dredging

Table 6.1: BHD Production Estimates (Table 5 GHD 2020)

#### 6.1.1 Dredging Scenarios

The information provided GHD 2020b were used to define dredging scenario to be modelled, in consultation with GHD and ARUP. The following scenarios were considered:

#### **Dredging frequency:**

• Scenario 1: Dredging non-stop at maximum working rate.

This scenario corresponds to the longest gap between cruise vessels (occurs in July) and assesses the longest possible "continuous" plume generating dredging activities. Scenario 1 would be completed in 6 days at the maximum rate. Whilst this may not be a realistic scenario it is considered a "worst case" for plume dispersion modelling.

• Scenario 2: Dredging non-stop at average working rate (no modelled stoppages). The average working rate already include some standby allowance (GHD 2020b).

This scenario will be completed in 2.26 weeks, approximately 16 days.

#### **Dredger position:**

In both scenarios considered, the total dredging time is split into three equal time periods during which the dredger is successively positioned at location 1, then 2 then 3 (see locations in Figure 6.1).

- Scenario 1: BHD Dredging at location 1 (2 days), location 2 ( 2 days) and location 3 (2 days)- 1 disposal per day
- Scenario 2: BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days) -1 disposal every 2.66 days



Figure 6.1: Position for numerical modelling sediment releases: Dredger position= locations 1, 2 and 3, Barge/Pipe Disposal = location 4

#### 6.1.2 Sediment Releases

Coffey's geotechnical and Geophysical investigation report (2019) provides data on the particle size distribution of the sediment to be dredged. The relative proportions of gravel, sand, silt and clay for each of sediment "types" considered in Table 6.1 are summarized in Table 6.2. These were obtained by averaging the distributions of individual sample considered for each Sediment Type considered in Table 6.1: Type 1 = Clayey sand, Type 2 : Loose sand, Type 3: Very Soft Clay, Type 4: Firm Stiff Clay.

For each sediment class, we assumed a representative median size  $d_{50}$  in middle of the size range to determine the associated settling velocities used in the simulations. For clay we used the upper limit of the size range at 2 µm. Settling velocities were computed equations by Van Rijn (1993). The slowest settling velocity was limited to 0.2 mm/s for the clay fraction to account for the expected flocculation of the fine cohesive sediment (Table 6.3).

These sediment distributions of Table 6.2 were used to convert the source terms *per type* (Table 6.1) to source term *per sediment class.* This was undertaken by summing the contributions of each *type* to the sand, silt and clay sediment *classes*. Results are summarized in Table 6.4. Note the gravel class is shown in the table but was not included in the simulation due to its fast settling and low proportion.

Table 6.2Mean sediment distribution of Sediment Types considered in Table 6.1. (Type 1 = Clayey sand, Type 2 :<br/>Loose sand, Type 3: Very Soft Clay, Type 4: Firm Stiff Clay), based on spreadsheet data provided by<br/>Coffey.

|        | Samples considered  | Cobbles<br>( >6cm) | Gravel<br>(>2mm) | Sand<br>(0.06-2.00<br>mm) | Silt (2-<br>60<br>μm) | Clay (<2<br>μm) |
|--------|---------------------|--------------------|------------------|---------------------------|-----------------------|-----------------|
|        |                     |                    |                  |                           |                       |                 |
| Type 1 | VC03,VC07,VC12,VC01 | 0.00               | 1.25             | 67.00                     | 8.25                  | 23.5            |
| Type 2 | VC01                | 0.00               | 0.00             | 72.00                     | 8                     | 20              |
| Туре3  | VC02,VC10           | 0.00               | 0.00             | 39.00                     | 32                    | 29              |
| Type4  | VC08                | 0.00               | 0.00             | 48.00                     | 19                    | 33              |

Table 6.3Sediment settling velocities considered for the simulations.

|                   | Gravel (>2mm) | Sand (0.06-2.00 mm) | Silt (2-60 µm) | Clay (<2 µm) |
|-------------------|---------------|---------------------|----------------|--------------|
| Representative    | 2000          | 130                 | 31             | 2            |
| d50 [microns]     |               |                     |                |              |
| Settling velocity | 1.94E-01      | 9.20E-03            | 6.06E-04       | 2.00E-04     |
| (Van Rijn) [m/s]  |               |                     |                |              |

#### Table 6.4 BHD estimates for each sediment class considered.

|        | Assumed gross<br>quantities incl<br>OD | Max-Prod/wk for<br>turbidity input<br>24/7 | Av- Prod/wk<br>including<br>stand-by | Duration,<br>including<br>all<br>dredging<br>delays and<br>standby | Fines at<br>seabed<br>from<br>bucket | Fines to<br>water<br>column<br>from<br>bucket | Fines to<br>water<br>column at<br>seabed<br>from<br>Disposal |
|--------|----------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
|        | (m3) to remove                         | (m3/wk)                                    | (m3/wk)                              | (wks)                                                              | kg/m3                                | kg/m3                                         | kg/m3                                                        |
| Clay   | 4799.28                                | 25325.00                                   | 8255.00                              | 0.57                                                               | 25.75                                | 41.44                                         | 183.71                                                       |
| Silt   | 2997.77                                | 15372.50                                   | 5032.50                              | 0.39                                                               | 19.46                                | 31.51                                         | 154.05                                                       |
| Sand   | 11497.50                               | 55990.00                                   | 18600.00                             | 1.28                                                               | 42.62                                | 69.77                                         | 326.67                                                       |
| Cobble | 117.45                                 | 312.50                                     | 112.50                               | 0.01                                                               | 0.18                                 | 0.29                                          | 1.58                                                         |

#### 6.2 Sediment Dispersion Modelling

#### 6.2.1 OpenDrift Model description

The dispersion of sediment discharged in the harbour during the dredging operations was simulated using the ocean trajectory modelling framework OpenDrift<sup>6</sup> (Dagestad K.F et al. 2018).OpenDrift is an open-source Python-based framework for Lagrangian particle tracking developed by the Norwegian Meteorological Institute, where it is notably used operationally for emergency response for oil spill and search and rescue events. The framework is highly modular and can be used for any type of drift calculations in the ocean or atmosphere. A number of modules have already been developed, including an oil drift module (see Röhrs et al., 2019), a stochastic search-and-rescue module, a pelagic egg module, a plastic drift module.

The sediment dispersion simulations described in the study were undertaken using a modified version of the generic OceanDrift3D<sup>7</sup> module that allows specification of settling velocities.

The sediment dispersion modelling consists of a trajectory tracking scheme applied to discrete particles in time and space-varying 3D oceanic currents.

$$\frac{dx_p}{dt} = \tilde{u}(x, y, z, t) + u_t$$
$$\frac{dy_p}{dt} = \tilde{v}(x, y, z, t) + v_t$$
$$\frac{dz_p}{dt} = w_t + w_s$$

(6.1 a,b,c)

where (x<sub>p</sub>, y<sub>p</sub>, z<sub>p</sub>) are particle 3D coordinates,  $\tilde{u}_{(x,y,z,t)}$ ,  $\tilde{v}_{(x,y,z,t)}$  are horizontal ocean currents, (u<sub>t</sub>, v<sub>t</sub>, w<sub>t</sub>) are the diffusion components representing turbulent motions, and w<sub>s</sub> is the sediment settling velocity.

<sup>&</sup>lt;sup>6</sup> <u>https://github.com/OpenDrift/opendrift</u>

<sup>&</sup>lt;sup>7</sup> <u>https://github.com/OpenDrift/opendrift/blob/master/opendrift/models/oceandrift3D.py</u>

Hydrodynamic and Dredge Plume Modelling

In the horizontal plane, particles were advected by ocean currents using a 4<sup>th</sup> order Runge-Kutta tracking scheme, and subject to additional displacement by horizontal diffusion.

In the OpenDrift framework, the horizontal diffusion is included by applying an uncertainty to the horizontal current magnitudes. The magnitude of the current uncertainty was estimated using the general diffusion equation (eqn 2.2)

$$\int_{t}^{t+\Delta t} u_{t} dt = \sqrt{6.K_{u,v} \Delta t} \cdot \theta(-1,1)$$
(3.2)

where  $\theta(-1,1)$  is a random number from a uniform distribution between -1 and 1,  $\Delta t$  is the time-step of the model in seconds (900 sec. used here) and K<sub>u,v</sub> is the *horizontal* eddy diffusivity coefficient in m<sup>2</sup>·s<sup>-1</sup>.

In the vertical plane, particles are subject to both vertical settling ( $w_s$ ) and diffusive displacement ( $w_t$ ) due to vertical turbulent motion through the water column. In OpenDrift, the vertical mixing process is parameterised in using a numerical scheme described in Visser (1997) which is similar to equation 6.2 when using a constant vertical diffusion coefficient K<sub>z</sub> (as employed here).

The horizontal and vertical diffusion are included in the dispersion modelling account for the mixing and diffusion caused by sub grid scale turbulent processes, such as eddies, that are not explicitly resolved by the hydrodynamic models.

For dispersion at oceanic scales, (Okubo, 1974; Okubo, 1971) proposed that  $k_{u,v}$  varies approximately as equation 2.3, which is close to the general 4/3 power law often considered for atmospheric (Richardson, L.F, 1962) and oceanic diffusions (Batchelor (1952), Stommel, 1949)) (equation 2.4).

| $k_{u,v} = 0.103. L^{1.15}$      | (3.3) |
|----------------------------------|-------|
| $k_{\mu,\nu} = \alpha . L^{4/3}$ | (3.4) |

where L is the horizontal scale of the mixing phenomena and 
$$\alpha$$
 indicates proportionality.

These equations relate the magnitude of the eddy diffusivity  $k_{u,v}$  to the length scale of the phenomena and this 4/3 power relationship was found to be relevant over a large range of scale (10m to 1000km) (Okubo, 1974; Okubo, 1971). A similar relationship was found by List et al. (1990) in coastal waters.

In the present study, since high resolution flows are available (Section 3), the amount of added diffusion should be limited. A generic horizontal coefficient of 0.02  $m^2/s$  was applied which is consistent with a length scale of order 20-40 m. The spatial scales of the

vertical turbulent motions within the water column are one or several orders of magnitude smaller than horizontal ones. The vertical diffusion coefficient was set to a value of 1 cm<sup>2</sup>/s.

#### 6.2.2 Particle release

BHD dredging consists in removing seabed sediment using a backhoe mounted on a barge (see Figure 6.2). The sources of sediment suspension when using a BHD include:

- Near seabed disturbance when loading the bucket, and
- Across the water column as the bucket is lifted to the barge.

To reproduce these processes, particles were released both in a 2m layer thick above the seabed and randomly across the water column. Particle loading was determined according the source terms magnitudes provided in Table 6.4 for each sediment classes (columns 5 and 6).

The suspended sediment plume expected during the sediment disposal were reproduced by seeding particles randomly across the water column, with mass loading according to Table 6.4 (column 7). The disposal operation was assumed to last 10 minutes and happen every 1 or 2.33 days depending on the scenario considered in deeper waters off the berth pocket (position 4 in Figure 6.1 ).

Individual simulations were undertaken for each sediment class and results were then combined to obtain the total sediment TSS plume and deposition fields. All simulations started on the 1<sup>st</sup> of July (2017) which is the typical winter month during which dredging is expected to occur and completed when all released particles had settled following the end dredging and disposal operations. The total number of particles released per simulation, and per sediment class, averaged around 220,000. This amounts to a total of 660,000 particles when combining the different sediment classes.

The sediment plume modelling was supplemented by a set of passive tracer simulations to assess the dispersal patterns of potential pollutants within the dredged sediment. The passive tracers were released at each dredging site over 2 days or 5.33 days consistent with the maximum and average dredging scenarios. Particles were released randomly across the water column and tracked for an additional 14 days after the end of the sediment release.

#### 6.2.3 Post-processing

The total suspended sediment concentration and cumulative deposition fields were reconstructed from the particle clouds on a 3.2 km by 1.8 km frame centred on the dredging locations with a grid cell resolution of 10 m. Suspended sediment concentration

were computed at three 2m-thick levels in the water column, i.e. surface, mid-depth and nearbed.

TSS and deposition magnitudes were obtained by counting the number of suspended and deposited particles, which each carry a given sediment mass, in each grid cell. The total suspended sediment mass per cell [kg] was then normalized by the cell surface area [m<sup>2</sup>], and vertical depth band [m] to obtain sediment concentration in [kg/m<sup>3</sup>]. These were converted to [mg/L] which is a more common unit in a dredging context. Statistics were derived from the obtained time-varying TSS fields. The report presents the 50<sup>th</sup>, 90<sup>th</sup> and 95<sup>th</sup> percentile TSS at each level in the water column.

The deposition thickness was obtained by normalizing the total deposited mass per cell by the cell surface area. The sediment mass/m2 were then converted to volume using a wet volumic mass of 2400 kg/m<sup>3</sup>. The newly deposited sediment is expected to be less compact that *in-situ* sediment due to compact due to incorporation of water between deposited grains. A bulking coefficient of 1.5 was applied to predicted deposition thicknesses. This means 1m<sup>3</sup> of dredged *in-situ* sediment will create a 1.5 m<sup>3</sup> deposition volume.

For the tracer concentration assessment, gridded timeseries of depth-averaged tracer concentrations were computed over a larger grid 7.3 km by 4.4 km, with a grid cell resolution of 20 m. These were then normalized by the tracer concentration at discharge location (i.e. dredging site).



Fig. 6. Sources of a dredge plume for a Backhoe Dredger(BHD).

*Figure 6.2* Sources of a dredge plume for a Back Hoe Dredger (after Becker J. et al., 2015).

Hydrodynamic and Dredge Plume Modelling

#### 6.3 Results

The section presents the results of the dredging plume simulations considering scenarios outlined in Section 6.1.1.

- **maximum** dredging rate over a 6 day period (BHD Dredging at location 1 (2 days), location 2 ( 2 days) and location 3 (2 days)- 1 disposal per day)
- **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day)

#### 6.3.1 Suspended Sediment Concentration

The 50<sup>th</sup>, 90<sup>th</sup> and 95<sup>th</sup> percentile TSS concentration fields obtained of the **maximum** dredging rate scenario are provided in Figure 6.3 to Figure 6.5. The 50<sup>th</sup>, 90<sup>th</sup> and 95<sup>th</sup> percentile TSS concentration fields obtained of the **average** dredging rate scenario are provided in Figure 6.6 to Figure 6.8. TSS timeseries extracted at four references sites (e.g. see red dots in Figure 6.3) are provided in Figure 6.9 **maximum** dredging rate scenario and in Figure 6.10 for the **average** dredging rate scenario.

The TSS footprints indicate locally elevated TSS levels in the vicinity of the dredging sites, with a local hotspot at the disposal location. The nearbed TSS are generally larger than surface and mid-water levels since they include the contribution of the nearbed source term (due to the bucket on the seabed), as well as sediment released through the water column which eventually reach that bottom layer. The sediment plumes eventually connect with the ambient harbour flows out of the basin and get dispersed in the east-west axis, though with reduced TSS levels.

TSS levels expectedly larger for the shorter scenario with the **maximum** dredging rate. Largest 95<sup>th</sup> percentile TSS are typically of order 500mg/L or more close to the dredging at the surface level. Near the seabed levels in excess of 500mg/L are mostly confined within the dredge pocket except for the maximum dredging rate where the high TSS concentration can extend to Walsh Bay. Timeseries of TSS at four reference sites indicates discrete peaks above ~500+mg/L but these are very short-lived and levels fall back down very rapidly (Figure 6.9, Figure 6.10). Similar TSS levels are reached during the **average** rate scenario but over much more compact areas, in the close vicinity of the dredging location and disposal.

We note that the disposal-related TSS plume is not always evident in the 90<sup>th</sup> and 95<sup>th</sup> percentile TSS maps. This is due to the short disposal discharge, which elevates TSS levels on shorter timescales that the continuous dredging along the quay.

Figure 6.11 and Figure 6.12 shows the timeseries of total suspended sediment concentrations [mg/L] at the three dredging locations (Figure 6.1) and therefore illustrate the persistence of the TSS concentration levels at these locations. Typically, the TSS concentration drop back down to a level less than 50m/L within less than a day for both the **maximum** dredging rate scenario and the **average** dredging rate scenario.



Figure 6.3 50<sup>th</sup> total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, for the scenario assuming maximum dredging rate over a 6 day period (BHD Dredging at location 1 (2 days), location 2 (2 days) and location 3 (2 days)- 1 disposal per day). Reference locations where TSS timeseries were extracted are shown as red dots. The TSS were masked below 5 mg/L.



Figure 6.4 90<sup>th</sup> percentile total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, for the scenario assuming **maximum** dredging rate over a 6 day period (BHD Dredging at location 1 (2 days), location 2 ( 2 days) and location 3 (2 days)- 1 disposal per day). Reference locations where TSS timeseries were extracted are shown as red dots. The TSS were masked below 5 mg/L.



Figure 6.5 95<sup>th</sup> percentile total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, for the scenario assuming **maximum** dredging rate over a 6 day period (BHD Dredging at location 1 (2 days), location 2 ( 2 days) and location 3 (2 days)- 1 disposal per day). Reference locations where TSS timeseries were extracted are shown as red dots. The TSS were masked below 5 mg/L.



Figure 6.6 50<sup>th</sup> total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, for the scenario assuming **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Reference locations where TSS timeseries were extracted are shown as red dots. The TSS were masked below 5 mg/L.



Figure 6.7 90<sup>th</sup> percentile total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, for the scenario assuming **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Reference locations where TSS timeseries were extracted are shown as red dots. The TSS were masked below 5 mg/L.



Figure 6.8 95<sup>th</sup> percentile total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, for the scenario assuming **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Reference locations where TSS timeseries were extracted are shown as red dots. The TSS were masked below 5 mg/L.

#### Hydrodynamic and Dredge Plume Modelling



Figure 6.9 Timeseries of total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, at four reference sites (see red dots in Figure 6.8), for the scenario assuming **maximum** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Scale is capped at 500mg/L.





Figure 6.10 Timeseries of total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, at four reference sites (see red dots in Figure 6.8), for the scenario assuming **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Scale is capped at 500mg/L.

Page 46



Figure 6.11 Timeseries of total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, at the three dredging locations (see red dots in Figure 6.1),for the scenario assuming **maximum** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days)-.



Figure 6.12 Timeseries of total suspended sediment concentrations [mg/L] at surface, mid water and nearbed levels, at the three dredging locations (see red dots in Figure 6.1), for the scenario assuming **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 ( 5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). Scale is capped at 500mg/L.

#### 6.3.2 Sediment deposition

Final cumulative sediment deposition thickness maps obtained for the **maximum** and **average** dredging rate scenario are provided in Figure 6.13 and Figure 6.14, respectively.

Largest deposition thicknesses occur in the vicinity of the dredging and disposal locations with distinct mounds. Local deposition footprints patterns are similar for both scenarios. Beyond Circular Quay, the longer sediment discharge at reduced rate during the **average** rate scenario generally results in the sediment being spread over slightly larger areas. For example, the 1 mm deposition contour for the **average** dredging rate scenario can extend slightly further than for the **maximum** dredging rate (e.g. off Walsh Bay), but it is also more irregular closer to the release sites.

Figure 6.15 and Figure 6.16 present the final cumulative sediment deposition thickness [m] and volume settled in the dredge pocket for the scenario for the **maximum** and **average** dredging rate scenario, respectively. It is assumed that the sediment which deposit directly within the dredged pocket would be removed as the dredging progress through the berth pocket.

It is noted that the model does not consider the effects of prop wash from vessels which will greatly reduce sediment deposition within operational berth areas since material will be resuspended by high velocity prop-wash currents and will settle out in quieter areas of the harbour



Figure 6.13 Final cumulative sediment deposition thickness [m] for the scenario assuming **maximum** dredging rate over a 6 day period (BHD Dredging at location 1 (2 days), location 2 (2 days) and location 3 (2 days)- 1 disposal per day). The deposition thicknesses were masked below 0.1 millimetres. The 10cm and 1 mm contours are shown in black and grey respectively.





Figure 6.14 Final cumulative sediment deposition thickness [m] for the scenario assuming **average** dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). The deposition thicknesses were masked below 0.1 millimetres. The 10cm and 1 mm contours are shown in black and grey respectively.





Figure 6.15 Final cumulative sediment deposition thickness [m] and volume settled in dredge pocket for the scenario assuming maximum dredging rate over a 6 day period (BHD Dredging at location 1 (2 days), location 2 (2 days) and location 3 (2 days)- 1 disposal per day). The deposition thicknesses were masked below 0.1 millimetres. The 10cm and 1 mm contours are shown in black and grey respectively.



Figure 6.16 Final cumulative sediment deposition thickness [m] and volume settled in dredge pocket for the scenario assuming average dredging rate over a 16 day period (BHD Dredging at location 1 (5.33 days), location 2 (5.33 days) and location 3 (5.33 days)- 1 disposal per 2.66 day). The deposition thicknesses were masked below 0.1 millimetres. The 10cm and 1 mm contours are shown in black and grey respectively.

#### 6.3.3 Tracer Concentration

The mean normalized depth-averaged tracer concentration fields are shown in Figure 6.17 and Figure 6.18. The 95<sup>th</sup> percentile levels are shown in Figure 6.19 and Figure 6.20. The results are presented in terms of concentration ratio with the tracer release at the dredging location, that is, for example a concentration ratio of 1e-2 indicates a tracer concentration level at that location 100 times smaller than released during the dredging.

The 95<sup>th</sup> levels presented illustrate the concentration level that are exceeded only 5% of the time with the time periods considered 16-19 days considered (depending on the scenario considered).

The normalized depth-averaged tracer concentration is obtained by a) computing the particle concentration at each cell, and b) normalizing by the particle concentration at the discharge location i.e. here dredging locations. This normalized tracer concentration quantifies the relative dilution of the initial concentration at the discharge location and can provide some guidance on the dispersion of potential passive pollutants bound to the dredged sediment. The analysis has been done for each dredging site release, i.e. site 1, 2 and 3 (Figure 6.1).

Maps indicate that the tracer typically spreads within the Circular Quay around the dredging location and connects with the east-west harbour flows. There are some local concentration hotspots in some of the bays north of Circular Quay, notably in Lavender Bay.

The mean and 95<sup>th</sup> tracer concentration are generally larger and footprint contours more extended for the **average** rate scenario than for the **maximum** rate scenario. This can be attributed to the longer discharge period during the **average** rate scenario which release comparatively more tracer through the simulation and thus allows a relative concentration build-up.

Note the locally elevated tracer concentration levels observed along some coastlines are due to the shallower water depths. This result in larger concentrations relative to nearby deeper waters even though the actual amount of tracer material is comparable.



Figure 6.17 Mean normalized depth-averaged tracer concentration fields for the scenario assuming **maximum** dredging for 2 days at sites 1, 2 and 3 (top to bottom). Tracer concentration at each cell was normalized initial tracer concentration at discharge site (i.e. location of dredging). Note the colour scale is logarithmic. The 0.001, 0.01, and 0.1 normalized concentration contours are shown in grey, white and black respectively.



Figure 6.18 Mean normalized depth-averaged tracer concentration fields for the scenario assuming **average** dredging for 5.33 days at sites 1, 2 and 3 (top to bottom). Tracer concentration at each cell was normalized initial tracer concentration at discharge site (i.e. location of dredging). Note the colour scale is logarithmic. The 0.001, 0.01, and 0.1 normalized concentration contours are shown in grey, white and black respectively.



Figure 6.19 95<sup>th</sup> percentile of normalized depth-averaged tracer concentration fields for the scenario assuming **maximum** dredging for 2 days at sites 1, 2 and 3 (top to bottom). Tracer concentration at each cell was normalized initial tracer concentration at discharge site (i.e. location of dredging). Note the colour scale is logarithmic. The 0.001, 0.01, and 0.1 normalized concentration contours are shown in grey, white and black respectively.



Figure 6.20 95<sup>th</sup> percentile of normalized depth-averaged tracer concentration fields for the scenario assuming **average** dredging for 5.33 days at sites 1, 2 and 3 (top to bottom). Tracer concentration at each cell was normalized initial tracer concentration at discharge site (i.e. location of dredging). Note the colour scale is logarithmic. The 0.001, 0.01, and 0.1 normalized concentration contours are shown in grey, white and black respectively.

## 7.Conclusions

Hydrodynamic and dredge plume modelling has been undertaken to support the proposed dredging of the Overseas Passenger Terminal berth pocket.

MetOcean Solution Sydney Harbour SCHISM hydrodynamic model was used to prepare hydrodynamic current database for the assessment of the dispersion of the dredged sediments. The model bathymetry was updated with the latest hydrographic survey for Circular Quay/Sydney Cove from PANSW. Validation of the model has been undertaken and showed that the model captures well the propagation of the tidal wave within the estuary.

Following review of proposed dredging program and available sediment data, the dredging scenarios to be modelled were selected in consultation with GHD and ARUP and includes dredging with a Backhoe Dredger and disposal in a deeper area off the berth pocket. Two scenarios were selected to be modelled: one with dredging occurring non-stop at a **maximum** working rate and one with dredging non-stop at an **average** working rate (which already include some standby allowance). The dredger position was successively position at three locations throughout the simulations. Modelled sediments fractions were based on the analysis from Coffey (2019) and splits in three sediment classes, i.e. clay, silt and sand.

Modelling was undertaken using the hydrodynamic data from the SCHISM model from a typical winter month and the OpenDrift Lagrangian particle tracking model. Individual simulations were undertaken for each sediment class and results were then combined to obtain the total sediment TSS plume and deposition fields. The sediment plume modelling was supplemented by a set of passive tracer simulations to assess the dispersal patterns of potential pollutants within the dredged sediment.

The 50<sup>th</sup>, 90th and 95th percentile TSS concentration fields were determined for the maximum and average dredging rate scenario. TSS timeseries were also extracted at four references sites.

The TSS footprints indicate locally elevated TSS levels in the vicinity of the dredging sites, with a local hotspot at the disposal location. The TSS levels are generally larger at the seabed than at the surface and mid-water levels. The sediment plumes eventually connect with the ambient harbour flows out of the basin and get dispersed in the east-west axis, though with reduced TSS levels. TSS levels expectedly larger for the shorter scenario with the maximum dredging rate.



It is noted that once the dredging stop, the TSS concentrations at that location drop back to a level less than 50m/L within less than a day.

Final cumulative sediment deposition thickness maps were obtained for the maximum and average dredging rate scenario. Largest deposition thicknesses occur in the vicinity of the dredging and disposal locations with distinct mounds. Beyond Circular Quay, the longer sediment discharge at reduced rate during the average rate scenario generally results in the sediment being spread over slightly larger areas.

The Mean and 95<sup>th</sup> percentile normalized depth-averaged tracer concentration fields were calculated based on the release at each of the three dredger positions. Maps indicate that the tracer typically spreads within the Circular Quay around the dredging location and connects with the east-west harbour flows, some local high concentration patches are observed in some of the bay along north of Circular Quay.

It is noted that silt curtains may be used to mitigate the plume dispersion during the dredging campaign. While these curtains are not considered in the modelling, It is expected they will limit the sediment dispersion into the harbour and will assist in containing the plume and associated sedimentation within Circular Quay/Sydney Cove.



### 8.References

Birch, G., and Rochford, L. (2009). Stormwater metal loading to a well-mixed/stratified estuary (Sydney Estuary, Australia) and management implications. Environ. Monit. Assess. *169*, 531–551.

Caires, S., and Sterl, A. (2005). 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J. Clim. *18*, 1032–1048.

Chassignet, E.P., Hurlburt, H.E., Smedstad, O.M., Halliwell, G.R., Hogan, P.J., Wallcraft, A.J., Baraille, R., and Bleck, R. (2007). The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Mar. Syst. *65*, 60–83.

Coffey 2019 Port Authority of NSW OPT Berth Deepening Investigations Geotechnical and Geophysical Investigations Report

Das, P., Marchesiello, P., and Middleton, J.H. (2000). Numerical modelling of tide-induced residual circulation in Sydney Harbour. p.

GHD 2020a Overseas Passenger Terminal – Berthing Infrastructure Project, Preliminary Dredging and Disposal Strategy, Draft Report Rev b, dated 26th January 2020, prepared by GHD for PANSW

GHD 2020b Overseas Passenger Terminal – Berthing Infrastructure Project, Preliminary Dredging and In-Harbour Relocation Strategy, Draft Report Rev b, dated 25th February 2020, prepared by GHD for PANSW

Kantha, L.H., and Clayson, C.A. (1994). An improved mixed layer model for geophysical applications. J. Geophys. Res. *99*, 25235–25266.

Umlauf, L., and Burchard, H. (2003). A generic length-scale equation for geophysical turbulence models. J. Mar. Res. *61*, 235–265.

Van Rijn, L.C. (1993). Principles of sediment transport in rivers, estuaries and coastal seas (Aqua publications Amsterdam).

Xiao, Z.Y., Wang, X.H., Song, D., Jalón-Rojas, I., and Harrison, D. (2020). Numerical modelling of suspended-sediment transport in a geographically complex microtidal estuary: Sydney Harbour Estuary, NSW. Estuar. Coast. Shelf Sci. *236*, 106605.

Zhang, Y.L., and Baptista, A.M. (2008). A semi-implicit Eulerian-Lagrangian finite element model for cross-scale ocean circulation. Ocean Model. *21*, 71–96.

Zhang, Y., Ateljevich, E., Yu, H.-C., Wu, C., and Yu, J. (2014). A new vertical coordinate system for a 3D unstructured-grid model. Ocean Model. *85*.



### **Appendix E– Noise and Vibration Assessment**

Port Authority of New South Wales Overseas Passenger Terminal

Berthing Infrastructure Project – Dredging and Scour Protection

Noise & Vibration Assessment

263976-00-RPT-0011

Issue 1 | 17 September 2020

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 263976

**Ove Arup & Partners Ltd** 63 St Thomas Street Bristol BS1 6JZ United Kingdom www.arup.com

# ARUP
# **Document Verification**

# ARUP

| Job title      |                | Overseas Passenger Terminal Berthing |                                                               |                        | Job number     |  |  |
|----------------|----------------|--------------------------------------|---------------------------------------------------------------|------------------------|----------------|--|--|
|                |                | Protection                           | re Project – Dredging                                         | 263976                 |                |  |  |
| Document title |                | Noise & Vi                           | bration Assessment                                            |                        | File reference |  |  |
| Document 1     | ref            | 263976-00-                           | RPT-0011                                                      |                        | <u> </u>       |  |  |
| Revision       | Date           | Filename                             | 263976-00-RPT-0011 OPT REF Noise Technical<br>Assessment.docx |                        |                |  |  |
| Draft 1        | 15 April       | Description                          | First draft                                                   |                        |                |  |  |
|                | 2020           |                                      | Prepared by                                                   | Checked by             | Approved by    |  |  |
|                |                | Name                                 | Ida Larrazabal                                                | Glenn Wheatley         | Glenn Wheatley |  |  |
|                |                | Signature                            | Sho                                                           | Stiller                | Stilling       |  |  |
| Draft 2        | 13 Aug<br>2020 | Filename                             | 263976-00-RPT-0011 OPT REF Noise Technical<br>Assessment.docx |                        |                |  |  |
|                |                | Description                          | Draft 2                                                       | 1                      |                |  |  |
|                |                |                                      | Prepared by                                                   | Checked by             | Approved by    |  |  |
|                |                | Name                                 | Ida Larrazabal                                                | Glenn Wheatley         | Glenn Wheatley |  |  |
|                |                | Signature                            | Sho                                                           | Stiller                | Stilling       |  |  |
| Issue 1        | 17 Sep<br>2020 | Filename                             | 263976-00-RPT-00<br>Assessment.docx                           | 11 - Issue 1 Noise 7   | Fechnical      |  |  |
|                |                | Description                          | Issue 1                                                       |                        |                |  |  |
|                |                |                                      | Prepared by                                                   | Checked by             | Approved by    |  |  |
|                |                | Name                                 | Ida Larrazabal                                                | Glenn Wheatley         | Glenn Wheatley |  |  |
|                |                | Signature                            | Sho                                                           | Stiller                | Stution        |  |  |
|                |                | Filename                             |                                                               |                        |                |  |  |
|                |                | Description                          |                                                               |                        |                |  |  |
|                |                |                                      | Prepared by                                                   | Checked by             | Approved by    |  |  |
|                |                | Name                                 |                                                               |                        |                |  |  |
|                |                | Signature                            |                                                               |                        |                |  |  |
|                |                |                                      | Issue Docume                                                  | nt Verification with I | Document 🗸     |  |  |

## Contents

|   |        |                                             | Page |
|---|--------|---------------------------------------------|------|
| 1 | Intro  | luction                                     | 1    |
|   | 1.1    | Reference documents                         | 1    |
| 2 | Existi | ng environment                              | 3    |
|   | 2.1    | Sensitive receivers                         | 3    |
|   | 2.2    | Noise Monitoring Locations                  | 8    |
| 3 | Assess | sment criteria                              | 10   |
|   | 3.1    | Construction noise criteria                 | 10   |
|   | 3.2    | Construction traffic criteria               | 13   |
|   | 3.3    | Construction vibration criteria             | 14   |
| 4 | Const  | ruction site noise assessment               | 19   |
|   | 4.1    | OPT activities                              | 19   |
|   | 4.2    | Glebe Island activities                     | 22   |
|   | 4.3    | Assessment methodology                      | 23   |
|   | 4.4    | Noise prediction results                    | 25   |
| 5 | Const  | ruction traffic assessment                  | 32   |
|   | 5.1    | OPT                                         | 32   |
|   | 5.2    | Glebe Island                                | 32   |
| 6 | Const  | ruction vibration assessment                | 33   |
| 7 | Assess | sment summary                               | 34   |
|   | 7.1    | OPT                                         | 34   |
|   | 7.2    | Glebe Island                                | 37   |
| 8 | Mitig  | ation measures                              | 38   |
|   | 8.1    | Standard Mitigation Measures                | 38   |
|   | 8.2    | Additional Construction Mitigation Measures | 39   |
| 9 | Concl  | usions                                      | 40   |

### Appendices

### Appendix A

Glossary

263976-00-RPT-0011 | Issue 1 | 17 September 2020

WGLOBAL ARUP.COMAUSTRALASIAISYD/PROJECTS/263000/263976-00 OPT EROSION STABILISATION/WORK/INTERNAL/REPORTS/RPT-0011 - NOISE TECHNICAL ASSESSMENT/263976-00-RPT-0011 - ISSUE 1 NOISE TECHNICAL ASSESSMENT.DOCX

# 1 Introduction

This acoustic assessment report summarises the noise and vibration assessment of and the associated impacts from the dredging works and scour-protection installation of the Overseas Passenger Terminal (OPT) along with the Glebe Island (GI) compound site to support the REF submission.

No changes to the everyday operation of the OPT are proposed, nor additional external mechanical plant, therefore no assessment of operational noise emissions is required.

### **1.1 Reference documents**

The assessment has been carried out in accordance to the following policy and guidelines;

- NSW Interim Construction Noise Guideline [1]
- NSW Assessing vibration a technical guideline [2]
- BS 6472-1:2008 Guide to evaluation of human exposure to vibration in buildings. Vibration sources other than blasting [3]
- BS 7385-1:1990 Evaluation and measurement for vibration in buildings. Guide for measurement of vibrations and evaluation of their effects on buildings [4]
- German Standard DIN 4150 Part 3 'Structural vibration in buildings Effects on Structure' (DIN 4150-3) [5]
- NSW Road Noise Policy [6]
- NSW Environmental Criteria for Road Traffic Noise [7]
- SEPP (Infrastructure) 2007 [8]
- AS 2436:2010 Guide to noise and vibration control on construction, demolition and maintenance sites [9]
- BS 5228 1: 2009 Code of practice for noise and vibration control on construction and open sites. Noise [10]
- NSW Construction Noise and Vibration Guideline [11]
- Environmental Planning and Assessment (Covid-19 Development Construction Work Days) Order 2020 [12]

The background noise levels are taken from previous noise assessment reports:

- Overseas Passenger Terminal Wharf Extension: Construction Noise and Vibration Assessment by AECOM, 14 May 2014 [13]
- Interim Exhibition Facility, Glebe Island, White Bay and Wharves 4 and 5, Noise Impact Assessment 610.11854-R1 by SLR Consulting Australia Pty Ltd, 2012 [14]

The traffic volumes are taken from the following reports:

- Overseas Passenger Terminal, Sydney Master Plan Traffic Report, Taylor Thomson Whitting (TTW) NSW Pty Ltd, June 2013 [15]
- White Bay Cruise Terminal Environmental Impact Statement by JBA Urban Planning Consultants Pty Ltd, 2010 [16]

# 2 Existing environment

### 2.1 Sensitive receivers

Sensitive receivers which may be affected by the proposed project were identified for the Circular Quay and Glebe Island works in accordance with the ICNG [1]. Assessment of residential and non-residential receivers presented in this report is isolated to the reasonably most-affected receivers.

### 2.1.1 Circular Quay

Residential receivers located within similar environments and with comparable relationship to surrounding noise sources have been grouped into Noise Catchment Areas (NCAs), also shown in Figure 1 and described in Table 1.

| NCA   | Description           | Noise environment                                                                                                                                                                                        |
|-------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCA 1 | Eastern Circular Quay | Background controlled by road traffic along Cahill<br>Expressway, ambient levels controlled by local road<br>traffic and surrounding local activity from<br>entertainment venues or commercial premises. |
| NCA 2 | Western Circular Quay | Generally controlled by local intermittent road traffic, local activity and natural surrounds                                                                                                            |

Table 1: NCAs and description

Residential receivers with the potential to be impacted by the proposed construction at the Overseas Passenger Terminal in Circular Quay are listed in Table 2. The reasonable most-affected non-residential sensitive receivers are listed in Table 2. All identified receivers are also shown in Figure 1.

| Receiver<br>ID | Address                         | No. of floors | Approximate<br>distance to site [m] |
|----------------|---------------------------------|---------------|-------------------------------------|
| R1             | 1-3 Macquarie Street, Sydney    | 12            | 260                                 |
| R2             | 3-7 Macquarie Street, Sydney    | 12            | 260                                 |
| R3             | 61-69 Macquarie Street, Sydney  | 15            | 270                                 |
| R4             | 8 Hickson Road, Dawes Point     | 6             | 160                                 |
| R5             | 54 Gloucester Street, The Rocks | 2             | 250                                 |
| R6             | 2 Phillip Street, Sydney        | 27            | 320                                 |

Table 2: Residential receivers for OPT works

263976-00-RPT-0011 | Issue 1 | 17 September 2020

<sup>\\</sup>GLOBALARUP.COMAUSTRALASIA\SYDIPROJECTS\263000/263976-00 OPT EROSION STABILISATION\WORKINTERNAL\REPORTS\RPT-0011 - NOISE TECHNICAL ASSESSMENT/263976-00-RPT-0011 - ISSUE 1 NOISE TECHNICAL ASSESSMENT/DOCX

| Receiver<br>ID | Name                                                                                           | Address                                            | No. of<br>floors | Approximat<br>e distance to<br>site [m] |
|----------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------|-----------------------------------------|
| Commerc        | cial                                                                                           |                                                    |                  |                                         |
| C1             | Northern Commercial<br>Premises (Quay Restaurant,<br>The Squire's Landing)                     | Overseas Passenger<br>Terminal, The Rocks          | 3                | <10                                     |
| C2             | Southern Commercial<br>Premises (Cruise Bar, Yuki's<br>at the Quay)                            | Overseas Passenger<br>Terminal, The Rocks          | 3                | <10                                     |
| C3             | Park Hyatt                                                                                     | 7 Hickson Road, The<br>Rocks                       | 5                | 110                                     |
| C4             | Opera Bar                                                                                      | Sydney Opera House,<br>Macquarie Street,<br>Sydney | 1                | 320                                     |
| C5             | Holiday Inn Old Sydney                                                                         | 55 George Street, The<br>Rocks                     | 5                | 130                                     |
| Education      | nal Facilities                                                                                 |                                                    |                  |                                         |
| E1             | APM College of Business and<br>Communication, Torrens<br>University Australia, William<br>Blue | 1-5 Hickson Road,<br>The Rocks                     | 5                | 70                                      |
| E2             | Julian Ashton Art School                                                                       | 117 George Street,<br>The Rocks                    | 3                | 140                                     |
| Passive R      | ecreation Area                                                                                 | •                                                  |                  |                                         |
| PR1            | First Fleet Park                                                                               | George Street, The<br>Rocks                        | 0                | 130                                     |
| PR2            | Hickson Road Reserve                                                                           | Hickson Road, The<br>Rocks                         | 0                | 140                                     |
| PR3            | Foundation Park                                                                                | Gloucester Walk, The<br>Rocks                      | 0                | 200                                     |
| Cultural       |                                                                                                |                                                    |                  |                                         |
| H1             | Australian Steam Building                                                                      | 1-5 Hickson Road,<br>The Rocks                     | 5                | 70                                      |
| H2             | Cadman's Cottage                                                                               | 110 George Street,<br>The Rocks                    | 2                | 70                                      |
| H3             | Museum of Contemporary Art                                                                     | 136-140 George<br>Street, The Rocks                | 6                | 50                                      |
| H4             | The Rocks Discovery Museum                                                                     | Kendall Lane, The<br>Rocks                         | 3                | 130                                     |
| Н5             | Susannah Place                                                                                 | 58/64 Gloucester<br>Street, The Rocks              | 2                | 260                                     |

| Table 3: Reasonabl | y most-affected | non-residential | sensitive | receivers | for | OPT | works |
|--------------------|-----------------|-----------------|-----------|-----------|-----|-----|-------|
|--------------------|-----------------|-----------------|-----------|-----------|-----|-----|-------|

263976-00-RPT-0011 | Issue 1 | 17 September 2020

WGLOBAL ARUP COMAUSTRALASIA/SYDIPROJECTS/263000/263976-00 OPT EROSION STABILISATION/WORK/INTERNAL/REPORTS/RPT-0011 - NOISE TECHNICAL ASSESSMENT/263976-00.RPT-0011 - ISSUE 1 NOISE TECHNICAL ASSESSMENT/DOCX



Figure 1: Noise sensitive receiver locations surrounding the OPT site and NCAs

### 2.1.2 Glebe Island Site

Residential receivers located within similar environments and with comparable relationship to surrounding noise sources have been grouped into Noise Catchment Areas (NCAs), also shown in Figure 2 and described in Table 4.

| NCA   | Description               | Noise environment                                                                                                                                                                |
|-------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCA 1 | Pyrmont                   | Generally controlled by local intermittent road traffic, local activity and natural surrounds                                                                                    |
| NCA 2 | Balmain                   | Generally controlled by local intermittent road traffic, local activity and natural surrounds                                                                                    |
| NCA 3 | White Bay Cruise Terminal | Generally controlled by local intermittent road<br>traffic, local activity, activity from White Bay<br>Cruise Terminal and Sydney Harbour Boat<br>Storage, and natural surrounds |

Table 4: NCAs and description

Residential receivers with the potential to be affected by construction works occurring at the Glebe Island compound site were identified. The identified receivers are representative of the residential areas in Pyrmont and Balmain that are nearest to the site. The approximate distance from the site was determined for each receiver and is presented in Table 5 and Figure 2.

| Receiver ID | Address                     | Approximate distance<br>to Glebe Island site [m] |
|-------------|-----------------------------|--------------------------------------------------|
| R1          | 24 Refinery Drive, Pyrmont  | 230                                              |
| R2          | 1-25 Bowman Street, Pyrmont | 320                                              |
| R3          | 81 Point Street, Pyrmont    | 520                                              |
| R4          | 40 Stephen Street, Balmain  | 490                                              |
| R5          | 1 Buchanan Street, Balmain  | 510                                              |

Table 5: Reasonably most-affected residential receivers for the GI site



Figure 2: Noise sensitive receivers and NCAs surrounding Glebe Island Site

## 2.2 Noise Monitoring Locations

### 2.2.1 Circular Quay

Background noise data for Circular Quay was sourced from the noise monitoring results presented in the Overseas Passenger Terminal Wharf Extension: Construction Noise and Vibration Assessment by AECOM, 14 May [13]. The noise monitoring was undertaken from 23 July 2013 to 1 August 2013 at the first two locations and further logging was conducted at two additional locations from 8 November 2013 to 2 November 2013. There has been no significant development in the Circular Quay since 2013. Therefore, Arup considers it reasonable to assume that ambient noise levels have not altered significantly since 2013 and have used this data to nominate the construction management levels.

| Manitaning Logation                                 | RBL <sup>1</sup> [dB(A)] |         |       |  |
|-----------------------------------------------------|--------------------------|---------|-------|--|
| Monitoring Location                                 | Day                      | Evening | Night |  |
| Holiday Inn, 55 George Street, The Rocks            | 61                       | 60      | 57    |  |
| Quay Grand, 61 Macquarie Street, East Circular Quay | 63                       | 62      | 52    |  |
| Destination NSW Office, Level 2, 88 Cumberland St.  | 61                       | 61      | 57    |  |
| Park Hyatt, 7 Hickson Rd, The Rocks                 | 61 <sup>2</sup>          | 59      | 56    |  |

 Table 6:
 Existing ambient acoustic noise environment for Circular Quay

1 - Day is defined as the period from 7 am to 6 pm Monday to Saturday; or 8 am to 6 pm on Sundays and Public Holidays. Evening is the period from 6 pm to 10 pm. Night is the remaining period.

2 - Denotes results in which all periods were affected by rain or wind noise.

It was noted that three locations, the Holiday Inn, Destination NSW office and the Park Hyatt are near each other and measured daytime, evening and night-time results are within 1 dB or each other. Therefore, measurement results from the Holiday Inn have been used to represent the background noise at all receivers on the western side of Circular Quay. Measurement results from the Quay Grand have been used to represent background noise at receivers east of Circular Quay.

### 2.2.2 Glebe Island

Background noise data for Glebe Island was sourced from the noise monitoring results presented in the Interim Exhibition Facility, Glebe Island, White Bay and Wharves 4 and 5, Noise Impact Assessment 610.11854-R1 prepared by SLR Consulting Australia Pty Ltd [14].

Unattended noise monitoring was conducted by SLR from 17 September 2012 and 25 September 2012. There has been no significant development in the Balmain and Pyrmont areas since 2012. Therefore, Arup considers it reasonable to assume that ambient noise levels have not changed since 2012 and have used this data to nominate the construction management levels.

A summary of the noise monitoring results is presented in Table 7.

| Manitaning Lagation                        | Rating Background Level (RBL) <sup>1</sup> [dB(A)] |         |       |  |
|--------------------------------------------|----------------------------------------------------|---------|-------|--|
| Monitoring Location                        | Day                                                | Evening | Night |  |
| 24-36 Refinery Drive, Pyrmont <sup>2</sup> | 50                                                 | 49      | 47    |  |
| 17 Donnelly Street, Balmain                | 47                                                 | 45      | 40    |  |
| 1 Batty Street, Balmain                    | 51                                                 | 48      | 45    |  |

### Table 7: Existing ambient acoustic noise environment for Glebe Island

1 - Day is defined as the period from 7 am to 6 pm Monday to Saturday; or 8 am to 6 pm on Sundays and Public Holidays. Evening is the period from 6 pm to 10 pm. Night is the remaining period.

2 - This monitoring location is labelled as 22 Refinery Drive, Pyrmont in the SLR 2012 report.

# 3 Assessment criteria

## **3.1 Construction noise criteria**

The ICNG provides recommended noise levels for airborne construction noise at sensitive land uses. The guideline provides construction management noise levels above which all 'feasible and reasonable' work practices should be applied to minimise the construction noise impact. The ICNG works on the principle of a 'screening' criterion – if predicted or measured construction noise exceeds the ICNG levels then the construction activity must implement all 'feasible and reasonable' work practices to reduce noise levels.

The ICNG sets out management levels for noise at sensitive receivers and how they are to be applied. For residential receivers, the rating background level (RBL) is used when determining the management level. The management level for residential receivers is reproduced in Table 8. For other sensitive land uses, the management levels are reproduced in Table 9.

| Time of day                                        | Management level <sup>1</sup><br>L <sub>Aeq (15 min)</sub> | How to apply                                                                                                                                                                                                                 |
|----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recommended<br>standard hours:<br>Monday to Friday | Noise affected<br>RBL + 10dB                               | The noise affected level represents the point<br>above which there may be some community<br>reaction to noise.                                                                                                               |
| 7am to 6pm<br>Saturday 8am to<br>1pm<br>No work on |                                                            | Where the predicted or measured $L_{Aeq (15 min)}$ is<br>greater than the noise affected level, the<br>proponent should apply all feasible and<br>reasonable work practices to meet the noise<br>affected level.             |
| holidays                                           |                                                            | The proponent should also inform all potentially<br>impacted residents of the nature of works to be<br>carried out, the expected noise levels and<br>duration, as well as contact details.                                   |
|                                                    | Highly noise affected<br>75dBA                             | The highly noise affected level represents the<br>point above which there may be strong<br>community reaction to noise.                                                                                                      |
|                                                    |                                                            | Where noise is above this level, the relevant<br>authority (consent, determining or regulatory)<br>may require respite periods by restricting the<br>hours that the very noisy activities can occur,<br>taking into account: |
|                                                    |                                                            | times identified by the community when they are<br>less sensitive to noise (such as before and after<br>school for works near schools, or mid-morning or<br>mid-afternoon for works near residences                          |
|                                                    |                                                            | if the community is prepared to accept a longer<br>period of construction in exchange for restrictions<br>on construction times.                                                                                             |
| Outside<br>recommended<br>standard hours           | Noise affected<br>RBL + 5dB                                | A strong justification would typically be required<br>for works outside the recommended standard<br>hours.                                                                                                                   |

Table 8: Construction noise management levels at residential receivers

<sup>263976-00-</sup>RPT-0011 | Issue 1 | 17 September 2020

NGLOBAL ARUP COMAUSTRALASIAISYDIPROJECTS12830001263976-00 OPT EROSION STABILISATION/WORK/INTERNAL/REPORTS/RPT-0011 - NOISE TECHNICAL ASSESSMENT/263976-00-RPT-0011 - ISSUE 1 NOISE TECHNICAL ASSESSMENT.DOCX

| Time of day | Management level <sup>1</sup><br>L <sub>Aeq (15 min)</sub> | How to apply                                                                                                                                                                          |
|-------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                            | The proponent should apply all feasible and<br>reasonable work practices to meet the noise<br>affected level.                                                                         |
|             |                                                            | Where all feasible and reasonable practices have<br>been applied and noise is more than 5dBA above<br>the noise affected level, the proponent should<br>negotiate with the community. |
|             |                                                            | For guidance on negotiating agreements see section 7.2.2 of the ICNG.                                                                                                                 |

1 - Noise levels apply at the property boundary that is most exposed to construction noise, and at a height of 1.5 m above ground level. If the property boundary is more than 30 m from the residence, the location for measuring or predicting noise levels is at the most noise-affected point within 30 m of the residence. Noise levels may be higher at upper floors of the noise affected residence.

| Land use                 | Where objective applies | Management level <sup>1</sup> |
|--------------------------|-------------------------|-------------------------------|
|                          |                         | LAeq (15 min)                 |
| Passive recreation areas | External noise level    | 60 dB(A)                      |
| Active recreation areas  | External noise level    | 65 dB(A)                      |
| Educational institutions | Internal noise level    | 45 dB(A)                      |
| Museums                  | Internal noise level    | $45 \text{ dB}(\text{A})^2$   |
| Commercial premises      | External noise level    | 70 dB(A)                      |

| 1100                                                                                                                                          | •                | 1 1 4 41        | •       | ··· 1 1              |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|---------|----------------------|
| anie U. Construction                                                                                                                          | noice management | levels at other | noice   | cencitive land licec |
| $\alpha \beta \alpha \gamma $ |                  | ICVCIS OF OTHER | 1107150 | SCHSHLVC IGHU USCS   |

1 – Noise management levels apply when properties are in use.

2 - Based on AS/NZS2107:2016 max design level for Public Buildings - Museums (exhibition space)

### **3.1.1** Sleep disturbance

Where construction works are planned to extend over more than two consecutive nights, the ICNG recommends that an assessment of sleep disturbance impacts should be undertaken.

The ICNG refers to the NSW Environmental Criteria for Road Traffic Noise [7] for assessing the potential impacts, which notes that to limit the level of sleep disturbance the  $L_{AF1,(1 \text{ minute})}$  level (equivalent to the  $L_{Amax}$ ) of a noise event which should not exceed the ambient  $L_{A90}$  noise level by more than 15 dB is not applied to traffic noise.

### **3.1.2 Project construction noise management levels**

### **Overseas Passenger Terminal**

Noise criteria at residential receivers for construction works proposed at the OPT site were derived from noise monitoring data from the AECOM report [13]. The RBL from a monitoring location in close proximity to the residential receivers was used to determine the NML for the Day, Evening and Night-time periods.

| Receiver | NCA | Standard<br>Hours <sup>1</sup> | Out of Hours <sup>2</sup> |         |       | Sleep<br>disturbance |
|----------|-----|--------------------------------|---------------------------|---------|-------|----------------------|
| Ш        |     | Day                            | Day                       | Evening | Night | (RBL + 15 dB)        |
| R1       | 1   | 73                             | 68                        | 67      | 57    | 67                   |
| R2       | 1   | 73                             | 68                        | 67      | 57    | 67                   |
| R3       | 1   | 73                             | 68                        | 67      | 57    | 67                   |
| R4       | 2   | 71                             | 66                        | 65      | 62    | 72                   |
| R5       | 2   | 71                             | 66                        | 65      | 62    | 72                   |
| R6       | 1   | 73                             | 68                        | 67      | 57    | 67                   |

| Table  | 10: | Noise   | Management | Levels   | for re | esidential | receivers | at the | OPT | site |
|--------|-----|---------|------------|----------|--------|------------|-----------|--------|-----|------|
| 1 aoic | 10. | 1 10150 | management | LC V C15 | 101 10 | Jonaomina  | 10001/015 | at the |     | SILC |

1 - Standard hours are Monday to Friday 7 am to 6 pm and Saturday from 8 am to 1 pm.

2 - Out of Hours during the different time periods:

Day are Saturday 7 am to 8 am and 1 pm to 6 pm; Sunday and public holidays 8 am to 6 pm; Evening hours are 6 pm to 10 pm,

Night-time hours are 10 pm to 7am.

| Usage                   | Receiver<br>ID | Name                                                                                           | Time period | NML,          |
|-------------------------|----------------|------------------------------------------------------------------------------------------------|-------------|---------------|
| Commercial premise      | C1             | Northern Commercial<br>Premises (Quay Restaurant,<br>The Squire's Landing)                     | When in use | 70            |
|                         | C2             | Southern Commercial<br>Premises (Cruise Bar, Yuki's<br>at the Quay)                            | When in use | 70            |
|                         | C3             | Park Hyatt                                                                                     | When in use | 70            |
|                         | C4             | Opera Bar                                                                                      | When in use | 70            |
| Educational institution | E1             | APM College of Business and<br>Communication, Torrens<br>University Australia, William<br>Blue | When in use | 45 (Internal) |
|                         | E2             | Julian Ashton Art School                                                                       | When in use | 45 (Internal) |
| Passive                 | PR1            | First Fleet Park                                                                               | When in use | 60            |
| recreation area         | PR2            | Hickson Road Reserve                                                                           | When in use | 60            |
|                         | PR3            | Foundation Park                                                                                | When in use | 60            |
| Museums                 | H1             | Australian Steam Building                                                                      | When in use | 45 (Internal) |
|                         | H2             | Cadman's Cottage                                                                               | When in use | 45 (Internal) |
|                         | H3             | Museum of Contemporary Art                                                                     | When in use | 45 (Internal) |
|                         | H4             | The Rocks Discovery<br>Museum                                                                  | When in use | 45 (Internal) |
|                         | H5             | Susannah Place                                                                                 | When in use | 45 (Internal) |

| Table 11: Non-residential Noise Management Levels at OPT site during working hour |
|-----------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------|

### **Glebe Island**

Construction noise criteria for residential receivers at for the GI site were set based on the noise catchment areas relative to the proposed works. The catchment areas are defined for the GI site in Section 2.1.2. Measured noise data obtained from the SLR 2012 report [14] were used to derive the appropriate noise management level for the project based on the ICNG. The results are summarised in Table 12.

| Dessiner ID | NCA | Standard Hours <sup>1</sup> | Out of Hours <sup>2</sup> |  |
|-------------|-----|-----------------------------|---------------------------|--|
| Keceiver ID | NCA | Day                         | Day                       |  |
| R1          | 1   | 60                          | 55                        |  |
| R2          | 1   | 60                          | 55                        |  |
| R3          | 1   | 60                          | 55                        |  |
| R4          | 3   | 57                          | 52                        |  |
| R5          | 2   | 61                          | 56                        |  |

Table 12: Noise Management Levels for residential receivers at the GI site

1 - Standard hours are Monday to Friday 7am to 6pm and Saturday from 8am to 1pm.

2 - Out of Hours during the Day are Saturday 7am to 8am and 1pm to 6pm, Sunday and public holidays 8am to 6pm

### **3.2** Construction traffic criteria

Increased traffic generated on the surrounding road network due to the construction activities in OPT and Glebe Island is assessed in accordance with the NSW *Road Noise Policy* (RNP) [6]. Table 3 of the RNP which sets out the assessment criteria for types of project, road category and land use, shown in Table 13 below.

 Table 13: Road traffic criteria for traffic generating development - residential receivers

| <b>D</b> 1                                  |                                                                                                                                                        | Assessment criteria – dBL <sub>Aeq</sub>    |                                            |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|--|--|
| Koad<br>category                            | Type of project / land use                                                                                                                             | Day                                         | Night                                      |  |  |
| cutegory                                    |                                                                                                                                                        | (7:00am-10:00pm)                            | (10:00pm-7:00am)                           |  |  |
| Freeway/<br>arterial/sub-<br>arterial roads | Existing residences affected by<br>additional traffic on existing<br>freeways / arterial / sub-arterial<br>roads generated by land use<br>developments | L <sub>Aeq,(15 hour)</sub> 60<br>(external) | L <sub>Aeq,(9 hour)</sub> 55<br>(external) |  |  |

Note: These criteria are for assessment against façade corrected noise levels when measured in front of a building façade.

Regarding the application of the assessment, the RNP states:

In assessing feasible and reasonable mitigation measures, an increase of up to 2 dB represents a minor impact that is considered barely perceptible to the average person.

## **3.3** Construction vibration criteria

Vibration criteria for construction works are established in the following sections.

### 3.3.1 Human comfort

The NSW EPA's *Assessing Vibration – A Technical Guideline* [2] provides vibration criteria for maintaining human comfort within different space uses. The guideline recommends 'preferred' and 'maximum' weighted vibration levels for both continuous vibration sources, such as steady road traffic and continuous construction activity, and for impulsive vibration sources. The weighting curves are obtained from BS 6472-1:2008 [3].

For intermittent sources (e.g. passing heavy vehicles, impact pile driving, intermittent construction), the guideline uses the vibration dose value (VDV) metric to assess human comfort effects of vibration. VDV considers both the magnitude of vibration events and the number of instances of the vibration event. Intermittent events that occur less than 3 times in an assessment period (either day, 7 am to 10 pm, or night, 10 pm to 7 am) are counted as 'impulsive' sources for the purposes of assessment.

As noted in the Guideline, situations exist where vibration above the preferred values can be acceptable, particularly for temporary disturbances, such as a construction or excavation projects. Notwithstanding, the recommended vibration limits for maintaining human comfort in residences and other relevant receiver types are given for continuous/impulsive and intermittent vibration in Table 14 and Table 15 respectively.

|                                                                        |                           | Preferred | Values           | Maximum Values |                  |
|------------------------------------------------------------------------|---------------------------|-----------|------------------|----------------|------------------|
| Location                                                               | Period                    | z-axis    | x- and<br>y-axes | z-axis         | x- and<br>y-axes |
| Continuous Vibration                                                   |                           |           |                  |                |                  |
| Critical areas1                                                        | Day- or Night-time        | 0.005     | 0.0036           | 0.01           | 0.0072           |
| Residences                                                             | Daytime 0700-2200h        | 0.010     | 0.0071           | 0.020          | 0.014            |
|                                                                        | Night-time 2200-<br>0700h | 0.007     | 0.005            | 0.014          | 0.010            |
| Offices, schools,<br>educational institutions<br>and places of worship |                           | 0.020     | 0.014            | 0.040          | 0.028            |
| Impulsive Vibration                                                    |                           |           |                  |                |                  |
| Critical areas1                                                        | Day- or Night-time        | 0.005     | 0.0036           | 0.01           | 0.0072           |
| Residences                                                             | Daytime 0700-2200h        | 0.30      | 0.21             | 0.60           | 0.42             |
|                                                                        | Night-time 2200-<br>0700h | 0.10      | 0.071            | 0.20           | 0.14             |

Table 14: Preferred and maximum weighted root-mean-square (rms) values for continuous and impulsive vibration acceleration (m/s<sup>2</sup>) 1-80 Hz

|                                                                        |                    | Preferred | Values           | Maximum Values |                  |
|------------------------------------------------------------------------|--------------------|-----------|------------------|----------------|------------------|
| Location                                                               | Period             | z-axis    | x- and<br>y-axes | z-axis         | x- and<br>y-axes |
| Offices, schools,<br>educational institutions<br>and places of worship | Day- or Night-time | 0.64      | 0.46             | 1.28           | 0.92             |

1 - Criteria for sensitive areas are only indicative, and have been provided as guidance to acceptable vibration levels for the use of sensitive equipment, eg. camera equipment at Fox Studios.

|                                                                           | Daytime 0700-2             | 200 h | Night-time 2200-0700 h |                  |  |
|---------------------------------------------------------------------------|----------------------------|-------|------------------------|------------------|--|
| Location                                                                  | PreferredMaximumValueValue |       | Preferred Value        | Maximum<br>Value |  |
| Critical areas1                                                           | 0.10                       | 0.20  | 0.10                   | 0.20             |  |
| Residences                                                                | 0.20                       | 0.40  | 0.13                   | 0.26             |  |
| Offices, schools,<br>educational<br>institutions and places<br>of worship | 0.40                       | 0.80  | 0.40                   | 0.80             |  |

Table 15: Acceptable vibration dose values for intermittent vibration (m/s1.75)

1 - Criteria for sensitive areas are only indicative, and there may be a need to assess intermittent vibration against impulsive or continuous criteria.

### **3.3.2 Building damage**

Potential structural or cosmetic damage to buildings as a result of vibration is typically assessed in accordance with British Standard 7385 Part 2-1993 and/or German Standard DIN4150-3. British Standard 7385 Part 1: 1990 defines different levels of structural damage as:

- Cosmetic The formation of hairline cracks on drywall surfaces, or the growth of existing cracks in plaster or drywall surfaces; in addition, the formation of hairline cracks in mortar joints of brick/concrete block construction.
- *Minor The formation of large cracks or loosening of plaster or drywall surfaces, or cracks through bricks/concrete blocks.*
- *Major Damage to structural elements of the building, cracks in supporting columns, loosening of joints, splaying of masonry cracks, etc.*

# Table 1 of BS7385-2 sets limits for the protection against cosmetic damage, however the following guidance on minor and major damage is provided in Section 7.4.2 of the Standard:

7.4.2 Guide values for transient vibration relating to cosmetic damage

*Limits for transient vibration, above which cosmetic damage could occur are given numerically in Table 1 and graphically in Figure 1* [Not reproduced].

In the lower frequency region where strains associated with a given vibration velocity magnitude are higher, the guide values for the building types corresponding to line 2 are reduced. Below a frequency of 4 Hz, where a high

263976-00-RPT-0011 | Issue 1 | 17 September 2020

\\GLOBALARUP.COMAUSTRALASIA\SYD/PROJECTS\263000\263976-00 OPT EROSION STABILISATION\WORK\INTERNAL\REPORTS\RPT-0011 - NOISE TECHNICAL ASSESSMENT\263976-00-RPT-0011 - ISSUE 1 NOISE TECHNICAL ASSESSMENT.DOCX *displacement is associated with a relatively low peak component particle velocity value a maximum displacement of 0.6 mm (zero to peak) should be used.* 

Minor damage is possible at vibration magnitudes which are greater than twice those given in Table 1, and major damage to a building structure may occur at values greater than four times the tabulated values.

Within DIN4150-3, damage is defined as "any permanent effect of vibration that reduces the serviceability of a structure or one of its components" (p.2). The Standard also outlines:

"that for structures as in lines 2 and 3 of Table 1, the serviceability is considered to have been reduced if cracks form in plastered surfaces of walls; existing cracks in the building are enlarged; partitions become detached from loadbearing walls or floors.

These effects are deemed 'minor damage." (DIN4150.3, 1990, p.3)

While the DIN Standard defines the above damage as 'minor', the description aligns with BS7385 cosmetic damage, rather than referring to structural failures.

### **British Standard BS7835-2**

BS 7385-2:1993 is based on peak particle velocity and specifies damage criteria for frequencies within the range 4–250 Hz, and a maximum displacement value below 4 Hz is recommended. Table 16 sets out the BS7385 criteria for cosmetic, minor and major damage. Regarding heritage buildings, British Standard 7385 Part 2 (1993, p.5) notes that "*a building of historical value should not (unless it is structurally unsound) be assumed to be more sensitive*".

|       |                                                                      |                    | Peak component particle velocity, mm/s <sup>1</sup> |                   |                 |  |  |
|-------|----------------------------------------------------------------------|--------------------|-----------------------------------------------------|-------------------|-----------------|--|--|
| Group | Type of structure                                                    | Damage level       | 4 Hz to 15<br>Hz                                    | 15 Hz to 40<br>Hz | 40 Hz and above |  |  |
| 1     | Reinforced or                                                        | Cosmetic           | 50                                                  |                   |                 |  |  |
|       | framed structures<br>Industrial and heavy<br>commercial<br>buildings | Minor <sup>2</sup> | 100                                                 |                   |                 |  |  |
|       |                                                                      | Major <sup>2</sup> | 200                                                 |                   |                 |  |  |
| 2     | Un-reinforced or                                                     | Cosmetic           | 15 to 20                                            | 20 to 50          | 50              |  |  |
|       | light framed                                                         | Minor <sup>2</sup> | 30 to 40                                            | 40 to 100         | 100             |  |  |
|       | Residential or light<br>commercial type<br>buildings                 | Major <sup>2</sup> | 60 to 80                                            | 80 to 200         | 200             |  |  |

Table 16: BS 7385-2 structural damage criteria

1 - Peak Component Particle Velocity is the maximum Peak particle velocity in any one direction (x, y, z) as measured by a tri-axial vibration transducer.

2 - Minor and major damage criteria established based on British Standard 7385 Part 2 (1993) Section 7.4.2

All levels relate to transient vibrations in low-rise buildings. Continuous vibration can give rise to dynamic magnifications that may require levels to be reduced by up to 50%.

### German Standard DIN 4150-3

German Standard DIN 4150 - Part 3 'Structural vibration in buildings - Effects on Structure' (DIN 4150-3) are generally recognised to be conservative. DIN 4150-3 presents the recommended maximum limits over a range of frequencies (Hz), measured in any direction, and at the foundation or in the plane of the uppermost floor of a building or structure. The criteria are presented in Table 17.

|       |                                                                                                                                                                                                           | Vibration velocity, mm/s |                                          |                    |                    |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------|--------------------|--------------------|--|--|
| Group | Type of structure                                                                                                                                                                                         | At founda                | Plane of<br>floor<br>uppermost<br>storey |                    |                    |  |  |
|       |                                                                                                                                                                                                           | 1 Hz to<br>10 Hz         | 10 Hz to<br>50 Hz                        | 50 Hz to<br>100 Hz | All<br>frequencies |  |  |
| 1     | Buildings used for commercial<br>purposes, industrial buildings and<br>buildings of similar design                                                                                                        | 20                       | 20 to 40                                 | 40 to 50           | 40                 |  |  |
| 2     | Dwellings and buildings of similar design and/or use                                                                                                                                                      | 5                        | 5 to 15                                  | 15 to 20           | 15                 |  |  |
| 3     | Structures that because of their<br>particular sensitivity to vibration,<br>do not correspond to those listed<br>in Group 1 or 2 and have intrinsic<br>value (eg buildings under a<br>preservation order) | 3                        | 3 to 8                                   | 8 to 10            | 8                  |  |  |

Table 17: DIN 4150-3 structural damage criteria

### **3.3.3 Buried services**

DIN 4150-2:1999 sets out guideline values for vibration effects on buried pipework and reproduced in Table 18 below.

Table 18: Guideline values for short-term vibration impacts on buried pipework

| Pipe material                                                                              | Guideline values for vibration<br>velocity measured on the pipe, mm/s |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Steel (including welded pipes)                                                             | 100                                                                   |
| Clay, concrete, reinforced concrete, pre-stressed concrete, metal (with or without flange) | 80                                                                    |
| Masonry, plastic                                                                           | 50                                                                    |

Note:

For gas and water supply pipes within 2m of buildings, the levels given above should be applied. Consideration must also be given to pipe junctions with the building structure as potential significant changes in mechanical loads on the pipe must be considered.

In addition, specific limits for vibration affecting high-pressure gas pipelines is provided in the UK National Grid's Specification for Safe Working in the Vicinity of National Grid High Pressure Gas Pipelines and Associated Installations – Requirements for Third Parties (report T/SP/SSW/22, UK National Grid, Rev 10/06, October 2006). This specification states that no piling is allowed within 15 m of a pipeline without an assessment of the vibration levels at the pipeline. The PPV at the pipeline is limited to a maximum level of 75 mm/s, and where PPV is predicted to exceed 50 mm/sec the ground vibration is required to be monitored.

Other services that may be encountered include electrical cables and telecommunication services such as fibre optic cables. While these may sustain vibration velocity levels from between 50 mm/s and 100 mm/s, the connected services such as transformers and switchgear may not. Where encountered, site specific vibration assessment in consultation with the utility provider should be carried out.

### **3.3.4** Heritage structures

Heritage structures which have been identified within 100 m from the OPT project and the distance of these heritage structures from the project site is provided in Table 19.

| Heritage Item                           | Address                                        | Distance to site<br>[m] |
|-----------------------------------------|------------------------------------------------|-------------------------|
| Australian Steam Navigation<br>Building | 1-5 Hickson Road, The Rocks                    | 70                      |
| Cadman's Cottage                        | 110 George Street, The Rocks                   | 70                      |
| Museum of Contemporary Art              | 136-140 George Street, The Rocks               | 50                      |
| Railings, Sydney Cove                   | Circular Quay Concourse, Circular<br>Quay East | <10                     |
| Sailors Home                            | 106-108 George Street, The Rocks               | 50                      |
| Coroner's Court                         | 102-104 George Street, The Rocks               | 60                      |
| Mariners Church                         | 98-100 George Street, The Rocks                | 60                      |
| Old Bushells Factory                    | 86-88 George Street, The Rocks                 | 90                      |
| Ken Duncan Gallery                      | 73 George Street, The Rocks                    | 90                      |
| Samson's Cottage (wall remains)         | 8 Kendall Lane, The Rocks                      | 90                      |
| Unwin's Stores                          | 77-85 George Street, The Rocks                 | 90                      |
| Orient Hotel                            | 87-89 George Street, The Rocks                 | 90                      |

Table 19: Heritage items within 100 metres of the Circular Quay site

Regarding heritage buildings, BS7385-2 notes that 'a building of historical value should not (unless it is structurally unsound) be assumed to be more sensitive'. As all the above sites are considered to be structurally sound, these heritage structures are not considered to be more vibration sensitive than other surrounding structures. Further, based on the proposed construction equipment and the distance of the heritage items from the project site, vibration is not anticipated to be an issue for all heritage structures in the above table as well as the other Heritage items in Circular Quay which fall above the 100m radius.

# 4 Construction site noise assessment

# 4.1 **OPT activities**

Proposed construction equipment and activities to be used for dredging and scour protection have been provided by TLM Project Services and are summarised in Table 20.

Equipment sound power levels have been determined by reference to AS2436 [9], BS 5228-1:2009 [10], and Arup's measurement database. The equipment below has been assumed to operate concurrently and continuously over a full 15-minute period (a typical worst-case assumption).

The locations of equipment have been based the construction works areas in and around the OPT as shown in Figure 3.



Figure 3: Construction work areas in the OPT site

|                                 |           | Operating                  | Sound Power Level, L <sub>w</sub>          |                                  |  |
|---------------------------------|-----------|----------------------------|--------------------------------------------|----------------------------------|--|
| Item / Description              | Quantity  | duration in<br>15min [min] | dBL <sub>Aeq</sub><br>(15min) <sup>1</sup> | dBL <sub>Amax</sub> <sup>2</sup> |  |
| ENABLING WORKS                  |           |                            |                                            |                                  |  |
| AREA 3                          |           |                            |                                            |                                  |  |
| Piling (vibratory)              | 1         | 5                          | 116                                        | 137                              |  |
| Piling (impact sheet)           | 1         | 10                         | 126                                        | 134                              |  |
| Barge Mounted Crane             | 1         | 15                         | 100                                        | 108                              |  |
| Dive Boat                       | 1         | 15                         | 81                                         | 89                               |  |
| Generator                       | 1         | 15                         | 93                                         | 101                              |  |
| Lighting – Day Maker            | 2         | 15                         | 98                                         | 106                              |  |
| Tug Boat                        | 2         | 15                         | 106                                        | 114                              |  |
| SOUTHERN EMBANKMENT S           | TABILIZAT | ION WORKS                  |                                            |                                  |  |
| AREA 3                          |           |                            |                                            |                                  |  |
| Option 1: Land-based Excavator  |           |                            |                                            |                                  |  |
| Long-reach Excavator            | 1         | 15                         | 110                                        | 118                              |  |
| Dive Boat                       | 1         | 15                         | 81                                         | 89                               |  |
| Option 2: Backhoe Dredger       |           |                            |                                            |                                  |  |
| Barge-mounted Backhoe Dredger   | 1         | 15                         | 119                                        | 127                              |  |
| Tug Boat                        | 2         | 15                         | 106                                        | 114                              |  |
| Dive Boat                       | 1         | 15                         | 81                                         | 89                               |  |
| AREA 2                          |           |                            |                                            |                                  |  |
| Diesel Generator                | 1         | 15                         | 93                                         | 101                              |  |
| Lighting – Day Maker            | 2         | 15                         | 98                                         | 106                              |  |
| Truck                           | 1         | 15                         | 103                                        | 111                              |  |
| Concrete Boom Pump              | 1         | 15                         | 109                                        | 117                              |  |
| Concrete Agitator Truck         | 2         | 15                         | 107                                        | 115                              |  |
| DREDGING                        |           |                            |                                            |                                  |  |
| AREA 4A/B/C                     |           |                            |                                            |                                  |  |
| Option 1: Land Based Disposal D | redging   |                            |                                            |                                  |  |
| Barge-mounted Backhoe Dredger   | 1         | 15                         | 119                                        | 127                              |  |
| Tug Boat                        | 2         | 15                         | 106                                        | 114                              |  |
| Barge                           | 4         | 15                         | 100                                        | 108                              |  |
| Dive Boat                       | 1         | 15                         | 81                                         | 89                               |  |
| Option 2: Marine Based Disposal | Dredging  |                            |                                            |                                  |  |
| Barge-mounted Backhoe Dredger   | 1         | 15                         | 119                                        | 127                              |  |
| Tug Boat                        | 2         | 15                         | 106                                        | 114                              |  |

| Table 20: Construction equipment and associated sound power levels at the OPT | site |
|-------------------------------------------------------------------------------|------|
|-------------------------------------------------------------------------------|------|

|                                   |               | Operating                  | Sound Power Level, Lw                      |                                  |  |
|-----------------------------------|---------------|----------------------------|--------------------------------------------|----------------------------------|--|
| Item / Description                | Quantity      | duration in<br>15min [min] | dBL <sub>Aeq</sub><br>(15min) <sup>1</sup> | dBL <sub>Amax</sub> <sup>2</sup> |  |
| Split Barge                       | 2             | 15                         | 100                                        | 108                              |  |
| Dive Boat                         | 1             | 15                         | 81                                         | 89                               |  |
| AREA 5A/B/C                       |               |                            |                                            |                                  |  |
| Lighting – Day Maker              | 2             | 15                         | 98                                         | 106                              |  |
| Generator                         | 1             | 15                         | 93                                         | 101                              |  |
| SCOUR MATTRESS WORKS              |               |                            |                                            |                                  |  |
| Option 1: Articulated Concrete M  | lattress (ACN | <b>(I</b> )                |                                            |                                  |  |
| AREA 4A/B/C                       |               |                            |                                            |                                  |  |
| Barge-mounted Crawler Crane       | 1             | 15                         | 113                                        | 121                              |  |
| Dive Boat                         | 1             | 15                         | 81                                         | 89                               |  |
| Tug Boat                          | 2             | 15                         | 106                                        | 114                              |  |
| Lighting – Day Maker              | 2             | 15                         | 98                                         | 106                              |  |
| Generator                         | 1             | 15                         | 93                                         | 101                              |  |
| Forklift                          | 1             | 15                         | 106                                        | 114                              |  |
| AREA 5A/B/C                       |               |                            |                                            |                                  |  |
| Lighting – Day Maker              | 2             | 15                         | 98                                         | 106                              |  |
| Generator                         | 1             | 15                         | 93                                         | 101                              |  |
| Forklift                          | 1             | 15                         | 106                                        | 114                              |  |
| <b>Option 2: Grouted Mattress</b> |               |                            |                                            |                                  |  |
| AREA 4A/B/C                       |               |                            |                                            |                                  |  |
| Dive Boat                         | 1             | 15                         | 81                                         | 89                               |  |
| AREA 5A/B/C                       |               |                            |                                            |                                  |  |
| Concrete Agitator Delivery Truck  | 2             | 15                         | 107                                        | 115                              |  |
| Lighting – Day Maker              | 2             | 15                         | 98                                         | 106                              |  |
| Concrete Pump                     | 2             | 15                         | 109                                        | 117                              |  |
| Generator                         | 1             | 15                         | 93                                         | 101                              |  |

1 - Sound power level of 1 item of equipment

 $2 - L_{Max}$  is 8 dB above the  $L_{Aeq}$  value, except for impact piling which is 21 dB (exact level is dependent on a number of factors, so a conservative estimate has been utilised based on maximum levels)

### 4.1.1 Hours of work

Due to the location and quantity of passing vessel traffic at the OPT, it is considered that the safest and most productive working hours will be at night-time outside of the ferry curfew periods. Typically, this would be between 9:00 pm and 5:30 am when the berth at OPT will be clear and the passing vessel traffic is low.

However, given the current environment brought about by the COVID-19 situation, the lack of maritime vessel traffic may allow significant works to occur during the day. Nevertheless, the proposed hours of construction for the OPT site is 24/7 to allow appropriate flexibility.

The Environmental Planning and Assessment (COVID-19 Development – Construction Work Days) Order 2020 [12] specifies the conditions construction work days and the construction activities allowed.

The conditions specified for the development are that the development must

- (a) Be the subject of a development consent, and
- (b) Comply with all conditions of the consent other than any condition that restricts the hours of work or operation on a Saturday, Sunday or public holiday, and
- (c) For work or operation on a Saturday, Sunday or public holiday
  - *i.* Comply with the conditions of the consent that restrict the hours of work or operation on any other day as if the conditions applied to work or operation on a Saturday, Sunday or public holiday, and
  - *ii.* Not involve the carrying out of rock breaking, rock hammering, sheet piling, pile driving or similar activities during the hours of work or operation that would not be permitted but for this Order, and
  - *iii.* Take all feasible and reasonable measures to minimise noise.

From the above order, no sheet piling or pile driving will be carried out during Saturdays, Sundays or public holidays.

|                            | Proposed construction hours | Comments                      |
|----------------------------|-----------------------------|-------------------------------|
| Monday to Friday           | 24 hours                    | -                             |
| Sundays or Public Holidays | 24 hours                    | No sheet piling, pile driving |

Table 21:Proposed hours of construction for the OPT site

### 4.2 Glebe Island activities

Proposed construction equipment and activities to be used for transferring of dredged soil for land disposal have been provided by TLM Project Services and are summarised in Table 22.

Equipment sound power levels have been determined by reference to AS2436,

BS5228, and Arup's measurement database. The equipment below has been assumed to operate concurrently and continuously over a full 15-minute period (a typical worst-case assumption).

| Description of works                        | Equipment in operation           | Quantity<br>[15-min] | Operating<br>duration<br>[min] | Sound<br>Power<br>dBLAeq<br>(15min) |
|---------------------------------------------|----------------------------------|----------------------|--------------------------------|-------------------------------------|
| Transfer of dredged                         | Truck (heavy)                    | 2                    | 15                             | 108                                 |
| soil to land for disposal                   | Barge                            | 2                    | 15                             | 100                                 |
|                                             | Tug boat                         | 1                    | 15                             | 106                                 |
|                                             | Long-reach excavator             | 2                    | 15                             | 108                                 |
| Casting of Articulated                      | Crawler crane                    | 1                    | 15                             | 113                                 |
| Concrete Mattresses (ACM)                   | Forklift                         | 1                    | 15                             | 106                                 |
|                                             | Concrete vibrator                | 1                    | 15                             | 113                                 |
|                                             | Concrete pump                    | 1                    | 15                             | 109                                 |
|                                             | Concrete agitator delivery truck | 2                    | 15                             | 107                                 |
| Delivery and load out                       | Crawler crane                    | 1                    | 15                             | 113                                 |
| of Articulated Concrete<br>Mattresses (ACM) | Truck (heavy)                    | 1                    | 15                             | 108                                 |
| ()                                          | Barge                            | 1                    | 15                             | 100                                 |
|                                             | Tug Boat                         | 1                    | 15                             | 108                                 |

Table 22: Construction equipment usage and associated sound power levels at the Glebe Island site  $\left(L_{w}\right)$ 

### 4.2.1 Hours of work

For the works in Glebe Island, the working hours are limited during the day due to the proximity of private residences.

The construction works in the Glebe Island compound site are proposed to occur every day between 7:00 am to 6:00 pm as outlined in Table 23.

Table 23: Proposed hours of construction for the Glebe Island compound site

| Day                                    | Proposed construction hours |
|----------------------------------------|-----------------------------|
| Monday to Friday                       | 7.00 am to 6:00 pm          |
| Saturdays, Sundays and Public Holidays | 7.00 am to 6:00 pm          |

## 4.3 Assessment methodology

### 4.3.1 **OPT**

Noise emissions from construction activities associated with the OPT site have been assessed to criteria outlined in Section 3.1.

Noise emissions have been modelled using SoundPlan 8 in accordance with ISO9613-2 algorithms. The model included:

• Construction noise sources listed in Table 20;

- OPT and surrounding buildings;
- Receivers listed in Table 2 and Table 3; and,
- Ground terrain and absorption.

Noise emissions have been modelled on the following conservative assumptions:

- Equipment, staging and durations are based on information provided by Table 20. A review of predicted emissions should be conducted when final construction details are available as part of the development of a Construction Noise and Vibration Management Plan.
- The equipment Table 20 have been assumed to operate concurrently and continuously over a full 15-minute period for each construction stage.

### 4.3.2 Glebe Island

An assessment has been completed to calculate the noise emissions from construction activities associated with the Glebe Island compound site against the criteria outlined in Section 3.1. The calculation included:

- Construction noise sources listed in Table 22;
- Glebe Island and surrounding buildings;
- Receivers listed in Table 5; and

Noise emissions have been modelled on the following conservative assumptions:

- Equipment, staging and durations are based on information provided by Table 22. A review of predicted emissions should be conducted when final construction details are available as part of the development of a Construction Noise and Vibration Management Plan.
- The equipment Table 22 have been assumed to operate concurrently and continuously over a full 15-minute period for each construction stage.

263976-00-RPT-0011 | Issue 1 | 17 September 2020

#### 4.4 **Noise prediction results**

Construction noise has been assessed in accordance with the NSW Roads and Maritime's Construction noise and vibration guideline [17] (CNVG). Table C.1 of the guideline presents categories of perceived noise level according to the level of exceedance above the RBL for each receiver and additional mitigation measures to be triggered at each category. This is reproduced in Table 24.

The prediction results presented in this section identifies the exceedances of CNVG criteria and form the basis of recommendations for mitigation discussed in Section 8.

| Predicted airborne La receiver       | Aeq(15min) <b>noise</b> | Additional mitigation | Mitigation<br>Levels <sup>2</sup> |             |
|--------------------------------------|-------------------------|-----------------------|-----------------------------------|-------------|
| Perception <sup>3</sup> dB ab<br>RBL |                         | dB above<br>NML       |                                   |             |
| All hours                            |                         |                       |                                   |             |
| 75dBA or greater                     | -                       | -                     | N, V, PC, RO                      | HA          |
| Standard Hours: Mor                  | n – Fri (7am –          | - 6pm), Sat (8a       | am – 1pm), Sun/Pub Hol (Ni        | l)          |
| Noticeable                           | 5 to 10                 | 0                     | -                                 | NML         |
| Clearly Audible                      | 10 to 20                | <10                   | -                                 | NML         |
| Moderately intrusive                 | 20 to 30                | 10 to 20              | N, V                              | NML+10      |
| Highly intrusive>30>20               |                         | >20                   | N, V                              | NML+20      |
| OOHW Period 1: Mo                    | n – Fri (6pm -          | – 10pm), Sat (        | (1pm – 10pm), Sun/Pub Hol         | (8am – 6pm) |
| Noticeable                           | 5 to 10                 | <5                    | -                                 | NML         |
| Clearly Audible                      | 10 to 20                | 5 to 15               | N, R1, DR                         | NML+5       |
| Moderately intrusive                 | 20 to 30                | 15 to 25              | V, N, R1, DR                      | NML+15      |
| Highly intrusive                     | >30                     | >25                   | V, IB, N, R1, DR, PC, SN          | NML+25      |
| OOHW Period 2: Mo                    | n – Fri (10pm           | 1 – 6am), Sat (       | (10pm – 8am), Sun/Pub Hol (       | (6pm – 7am) |
| Noticeable                           | 5 to 10                 | <5                    | Ν                                 | NML         |
| Clearly Audible                      | 10 to 20                | 5 to 15               | V, N, R2, DR                      | NM+5        |
| Moderately intrusive                 | 20 to 30                | 15 to 25              | V, IB, N, PC, SN, R2, DR          | NML+15      |
| Highly intrusive                     | >30                     | >25                   | AA, V, IB, N, PC, SN, R2,<br>DR   | NML+25      |

Table 24: Triggers for Additional Mitigation Measures - Airborne Noise

Notes (refer to detailed descriptions):

| 1 | AA = Alternative Accommodation | R1 = Respite Period 1  |
|---|--------------------------------|------------------------|
|   | V = Verification               | R2 = Respite Period 2  |
|   | IB = Individual briefings      | DR = Duration Respite  |
|   | N = Notification               | PC = Phone calls       |
|   |                                | SN = Specific notifica |
| 2 | NML = Noise Management Level   | HA = Highly Affected   |

- ite
- ations

ed (>75 dBA) applies to residences only

3 Perception = relates to level above RBL

263976-00-RPT-0011 | Issue 1 | 17 September 2020

<sup>\</sup>GLOBALARUP.COMAUSTRALASIAISYDIPROJECTS\263000/263976-00 OPT EROSION STABILISATION\WORKIINTERNALIREPORTS\RPT-0011 - NOISE TECHNICAL ASSESSMENT/263976-00-RPT-0011 - ISSUE 1 NOISE TECHNICAL ASSESSMENT.DOCX

### 4.4.1 **OPT**

Table 25: Predicted construction noise levels for residential receivers at the Circular Quay site, dBL<sub>Aeq(15min)</sub>

|                             |                | Time Period | NML | Construction Stage             |                                            |                    |                        |                              |                                     |                     |
|-----------------------------|----------------|-------------|-----|--------------------------------|--------------------------------------------|--------------------|------------------------|------------------------------|-------------------------------------|---------------------|
| Receiver                    | Hours          |             |     | Enabling<br>Works <sup>1</sup> | Southern Embankment<br>Stabilisation Works |                    | Dredging               |                              | Scour Mattress Works                |                     |
|                             |                |             |     |                                | Land-based<br>Excavator                    | Backhoe<br>Dredger | Land-based<br>Disposal | Marine-<br>based<br>Disposal | Articulated<br>Concrete<br>Mattress | Grouted<br>Mattress |
| R1: 1-3                     | Standard Hours | Day         | 73  | 66                             | 55                                         | 61                 | 62                     | 62                           | 58                                  | 57                  |
| Macquarie Street,<br>Sydney | OOHW           | Day         | 68  | -                              | 55                                         | 61                 | 62                     | 62                           | 58                                  | 57                  |
| 5 5                         |                | Evening     | 67  | 66                             | 55                                         | 61                 | 62                     | 62                           | 58                                  | 57                  |
|                             |                | Night       | 57  | 66                             | 55                                         | 61                 | 62                     | 62                           | 58                                  | 57                  |
| R2: 3-7                     | Standard Hours | Day         | 73  | 66                             | 55                                         | 61                 | 61                     | 61                           | 57                                  | 55                  |
| Macquarie Street,<br>Sydney | ООНЖ           | Day         | 68  | -                              | 55                                         | 61                 | 61                     | 61                           | 57                                  | 55                  |
| 5 5                         |                | Evening     | 67  | 66                             | 55                                         | 61                 | 61                     | 61                           | 57                                  | 55                  |
|                             |                | Night       | 57  | 66                             | 55                                         | 61                 | 61                     | 61                           | 57                                  | 55                  |
| R3: 61-69                   | Standard Hours | Day         | 73  | 66                             | 54                                         | 61                 | 61                     | 61                           | 57                                  | 55                  |
| Macquarie Street,<br>Sydney | OOHW           | Day         | 68  | -                              | 54                                         | 61                 | 61                     | 61                           | 57                                  | 55                  |
| 5 5                         |                | Evening     | 67  | 66                             | 54                                         | 61                 | 61                     | 61                           | 57                                  | 55                  |
|                             |                | Night       | 57  | 66                             | 54                                         | 61                 | 61                     | 61                           | 57                                  | 55                  |
| R4: 8 Hickson               | Standard Hours | Day         | 71  | 50                             | 45                                         | 44                 | 64                     | 64                           | 60                                  | 61                  |
| Road, Dawes<br>Point        | OOHW           | Day         | 66  | -                              | 45                                         | 44                 | 64                     | 64                           | 60                                  | 61                  |
|                             |                | Evening     | 65  | 50                             | 45                                         | 44                 | 64                     | 64                           | 60                                  | 61                  |
|                             |                | Night       | 62  | 50                             | 45                                         | 44                 | 64                     | 64                           | 60                                  | 61                  |

|                             | Hours          | Time Period | NML | Construction Stage             |                                            |                    |                        |                              |                                     |                     |  |
|-----------------------------|----------------|-------------|-----|--------------------------------|--------------------------------------------|--------------------|------------------------|------------------------------|-------------------------------------|---------------------|--|
| Receiver                    |                |             |     | Enabling<br>Works <sup>1</sup> | Southern Embankment<br>Stabilisation Works |                    | Dredging               |                              | Scour Mattress Works                |                     |  |
|                             |                |             |     |                                | Land-based<br>Excavator                    | Backhoe<br>Dredger | Land-based<br>Disposal | Marine-<br>based<br>Disposal | Articulated<br>Concrete<br>Mattress | Grouted<br>Mattress |  |
| R5: 54 Gloucester<br>Street | Standard Hours | Day         | 71  | 59                             | 42                                         | 52                 | 44                     | 44                           | 41                                  | 41                  |  |
|                             | ООНЖ           | Day         | 66  | -                              | 42                                         | 52                 | 44                     | 44                           | 41                                  | 41                  |  |
|                             |                | Evening     | 65  | 59                             | 42                                         | 52                 | 44                     | 44                           | 41                                  | 41                  |  |
|                             |                | Night       | 62  | 59                             | 42                                         | 52                 | 44                     | 44                           | 41                                  | 41                  |  |
| R6: 2 Phillip               | Standard Hours | Day         | 73  | 66                             | 54                                         | 61                 | 60                     | 60                           | 57                                  | 54                  |  |
| Street, Sydney              | OOHW           | Day         | 68  | -                              | 54                                         | 61                 | 60                     | 60                           | 57                                  | 54                  |  |
|                             |                | Evening     | 67  | 66                             | 54                                         | 61                 | 60                     | 60                           | 57                                  | 54                  |  |
|                             |                | Night       | 57  | 66                             | 54                                         | 61                 | 60                     | 60                           | 57                                  | 54                  |  |

1 – It is understood that sheet piling/pile driving works will not occur on Saturdays, Sundays and public holidays. Therefore, no OOHW daytime works was assessed. During weeknights, it is understood that piling works may occur during the evening and night-time periods.

2 - The results are highlighted according to the level of exceedance above the NML according to the CNVG criteria.

| Standard hours:                             | Out of Hours Works (OOHW):                  |  |  |  |
|---------------------------------------------|---------------------------------------------|--|--|--|
| <b>Noticeable</b> $-0$ dB above NML         | Noticeable – <5dB above NML                 |  |  |  |
| Clearly audible – <10 dB above NML          | Clearly audible – 5 to 15dB dB above NML    |  |  |  |
| Moderately intrusive - 10 to 20dB above NML | Moderately intrusive - 15 to 25dB above NML |  |  |  |
| Highly intrusive - >20dB above NML          | Highly intrusive - >25dB above NML          |  |  |  |
|                                             |                                             |  |  |  |

Table 26: Predicted construction noise levels for non-residential receivers at the Circular Quay site, dBL<sub>Aeq(15min)</sub>

|                                                                                     |     | Time Period |                                            |                 |                        |                          |                                     |                     |  |
|-------------------------------------------------------------------------------------|-----|-------------|--------------------------------------------|-----------------|------------------------|--------------------------|-------------------------------------|---------------------|--|
| Receiver                                                                            | NML | Fuckling    | Southern Embankment<br>Stabilisation Works |                 | Dredging               |                          | Scour Mattress Works                |                     |  |
|                                                                                     |     | Works       | Land-based<br>Excavator                    | Backhoe Dredger | Land-based<br>Disposal | Marine-based<br>Disposal | Articulated<br>Concrete<br>Mattress | Grouted<br>Mattress |  |
| C1 – Northern Commercial OPT<br>Premises (Quay Restaurant, The Squire's<br>Landing) | 70  | 63          | 53                                         | 58              | 76                     | 76                       | 74                                  | 78                  |  |
| C2 - Southern Commercial OPT Premises<br>(Cruise Bar, Yuki's at the Quay)           | 70  | 68          | 60                                         | 64              | 77                     | 77                       | 75                                  | 79                  |  |
| C3 – Park Hyatt                                                                     | 70  | 57          | 45                                         | 52              | 64                     | 64                       | 60                                  | 59                  |  |
| C4 – Opera Bar                                                                      | 70  | 60          | 50                                         | 55              | 57                     | 57                       | 53                                  | 52                  |  |
| C5 – Holiday Inn Old Sydney                                                         | 70  | 69          | 61                                         | 64              | 63                     | 63                       | 61                                  | 61                  |  |
| E1 – APM College of Business and Communication                                      | 65  | 69          | 61                                         | 64              | 59                     | 59                       | 57                                  | 58                  |  |
| E2 – Julian Ashton Art School                                                       | 65  | 54          | 45                                         | 47              | 48                     | 48                       | 45                                  | 45                  |  |
| H1 – Australian Steam Building                                                      | 65  | 66          | 57                                         | 61              | 63                     | 63                       | 61                                  | 65                  |  |
| H2 – Cadman's Cottage                                                               | 65  | 73          | 67                                         | 69              | 66                     | 66                       | 63                                  | 64                  |  |
| H3 – Museum of Contemporary Art                                                     | 65  | 81          | 69                                         | 76              | 70                     | 70                       | 67                                  | 67                  |  |
| H4 - The Rocks Discovery Museum                                                     | 65  | 70          | 60                                         | 64              | 62                     | 62                       | 58                                  | 58                  |  |
| H5 – Susannah Place                                                                 | 65  | 46          | 38                                         | 40              | 45                     | 45                       | 41                                  | 39                  |  |
| PR1 – First Fleet Park                                                              | 60  | 73          | 58                                         | 67              | 65                     | 65                       | 61                                  | 58                  |  |
| PR2 – Hickson Road Reserve                                                          | 60  | 44          | 33                                         | 39              | 64                     | 64                       | 60                                  | 59                  |  |
| PR3 – Foundation Park                                                               | 60  | 51          | 41                                         | 45              | 45                     | 45                       | 41                                  | 41                  |  |

|          | NML     Time Period       NML     Enabling       Works     Works | Time Period                      |                 |                        |                          |                                     |                      |  |  |
|----------|------------------------------------------------------------------|----------------------------------|-----------------|------------------------|--------------------------|-------------------------------------|----------------------|--|--|
| Receiver |                                                                  | Southern Emba<br>Stabilisation W |                 | nkment<br>orks         | Dredging                 |                                     | Scour Mattress Works |  |  |
|          |                                                                  | Land-based<br>Excavator          | Backhoe Dredger | Land-based<br>Disposal | Marine-based<br>Disposal | Articulated<br>Concrete<br>Mattress | Grouted<br>Mattress  |  |  |

1 – The results are highlighted according to the level of exceedance above the NML according to the CNVG criteria.

### Standard hours:

Out of Hours Works (OOHW):

Noticeable - <5dB above NML

Noticeable – 0 dB above NML Clearly audible – <10 dB above NML

Clearly audible – 5 to 15dB dB above NML

Moderately intrusive – 10 to 20dB above NML

Highly intrusive - >20dB above NML

Moderately intrusive – 15 to 25dB above NML Highly intrusive - >25dB above NML Table 27: Predicted sleep disturbance noise levels for residential receivers at the Circular Quay site, dBL<sub>Amax</sub>

|                                    |                      | Construction Stage |                                            |                 |                        |                              |                                  |                     |  |
|------------------------------------|----------------------|--------------------|--------------------------------------------|-----------------|------------------------|------------------------------|----------------------------------|---------------------|--|
| Receiver                           | Sleep<br>Disturbance | Enchling           | Southern Embankment Stabilisation<br>Works |                 | Dredging               |                              | Scour Mattress Works             |                     |  |
|                                    | Level (SDL)          | Works              | Land-based<br>Excavator                    | Backhoe Dredger | Land-based<br>Disposal | Marine-<br>based<br>Disposal | Articulated<br>Concrete Mattress | Grouted<br>Mattress |  |
| R1: 1-3 Macquarie Street, Sydney   | 67                   | 87                 | 63                                         | 69              | 70                     | 70                           | 66                               | 65                  |  |
| R2: 3-7 Macquarie Street, Sydney   | 67                   | 87                 | 63                                         | 69              | 69                     | 69                           | 65                               | 63                  |  |
| R3: 61-69 Macquarie Street, Sydney | 67                   | 87                 | 62                                         | 69              | 69                     | 69                           | 65                               | 63                  |  |
| R4: 8 Hickson Road, Dawes Point    | 72                   | 71                 | 53                                         | 52              | 72                     | 72                           | 68                               | 69                  |  |
| R5: 54 Gloucester Street           | 72                   | 80                 | 50                                         | 60              | 52                     | 52                           | 57                               | 49                  |  |
| R6: 2 Phillip Street, Sydney       | 67                   | 87                 | 62                                         | 69              | 69                     | 69                           | 65                               | 62                  |  |

1 - Levels shaded in grey indicate a notional exceedance of SDLs based on the worst-case assumptions noted above

#### **Glebe Island** 4.4.2

| Receiver                        | Hours          | Period | NML | Transfer of dredged spoil to land for disposal | Casting of ACMs | Delivery and load out of ACMs |
|---------------------------------|----------------|--------|-----|------------------------------------------------|-----------------|-------------------------------|
| R1: 24 Refinery Drive, Pyrmont  | Standard Hours | Day    | 60  | 60                                             | 63              | 59                            |
|                                 | Out of Hours   | Day    | 55  | 60                                             | 63              | 59                            |
| R2: 1-25 Bowman Street, Pyrmont | Standard Hours | Day    | 60  | 57                                             | 60              | 56                            |
|                                 | Out of Hours   | Day    | 55  | 57                                             | 60              | 56                            |
| R3: 81 Point Street, Pyrmont    | Standard Hours | Day    | 60  | 53                                             | 56              | 52                            |
|                                 | Out of Hours   | Day    | 55  | 53                                             | 56              | 52                            |
| R4: 40 Stephen St, Balmain      | Standard Hours | Day    | 57  | 53                                             | 56              | 53                            |
|                                 | Out of Hours   | Day    | 52  | 53                                             | 56              | 53                            |
| R5: 1 Buchanan St, Balmain      | Standard Hours | Day    | 61  | 53                                             | 56              | 52                            |
|                                 | Out of Hours   | Day    | 56  | 53                                             | 56              | 52                            |

Table 28: Predicted construction noise levels for residential receivers at the Glebe Island site, dBL<sub>Aeq(15min)</sub>

1 – The results are highlighted according to the level of exceedance above the NML according to the CNVG criteria.

Standard hours: Noticeable - 0 dB above NML

Clearly audible – <10 dB above NML

Highly intrusive - >20dB above NML

Out of Hours Works (OOHW): Noticeable – <5dB above NML Clearly audible – 5 to 15dB dB above NML Moderately intrusive – 10 to 20dB above NML Moderately intrusive – 15 to 25dB above NML Highly intrusive - >25dB above NML

# 5 Construction traffic assessment

A traffic noise assessment has been completed to determine the noise impacts of traffic generated by construction works of the OPT and compound site in Glebe Island.

## 5.1 **OPT**

Background traffic information has been based upon information within the Overseas Passenger Terminal, Sydney – Master Plan Traffic Report, Taylor Thomson Whitting (TTW) NSW Pty Ltd, June 2013 [15]. In the report, only peak hourly volumes were available for the morning (AM), lunchtime (Noon), afternoon and evening (PM) periods. A 10% heavy vehicle percentage has been assumed.

It is understood that the construction works in the OPT site will be a 24/7 operation. Assuming worst-case, the construction traffic generated from works during the night-time period of 10 pm to 7 am has been assessed.

The TTW report does not include traffic volumes along George Street during the night-time period. Further the traffic data is potentially outdated as it was prior to the light rail. Accordingly, a predictive assessment has been carried out based on the construction traffic alone.

A maximum of 25 daily truck movements is anticipated for construction works at OPT. A workforce of 22 has been assumed to arrive within one hour during the night-time.

Road traffic noise levels including both existing and construction generated traffic, have been predicted using the CoRTN algorithm at the nearest residential receiver, R4. The predicted external noise level at R4 is 47dB  $L_{Aeq(9hr)}$  which is below the road traffic noise criteria of 50 dBL<sub>Aeq(9hour)</sub> in Table 13. It is therefore expected that any increase in noise due to the additional construction traffic may be noticeable, however, noise levels are predicted to comply with criteria.

## 5.2 Glebe Island

The Glebe Island compound site is accessed via James Craig Road, and then through the Glebe Island port area via a marked two lane, two-way access road. James Craig Road primarily carries traffic generated by the existing port activities on Glebe Island, the White Bay Cruise Passenger Terminal (WBCT), and adjacent maritime and commercial facilities. The nearest residential receivers are bounded by Lilyfied Road and Victoria Road (A40).

A maximum of 20 daily truck movements is proposed for construction works at Glebe Island. Given the low traffic volumes generated by the construction works, and the existing high traffic volumes on the surrounding road network, nearby residents are not expected to be impacted by construction traffic.

# 6 Construction vibration assessment

Given the large distances between other receivers and the piling works, vibration damage is not considered a significant risk for surrounding receivers. No adverse vibration impact, either in terms of cosmetic damage or human comfort, are expected to occur at receiver buildings due to their distance from the subject works.

The following guidance provides recommended minimum working distances for vibration intensive plant. These are based on international standards and guidance and reproduced in Table 29 below for reference.

|                       |                      | Minimum working distance     |                                                 |  |  |  |
|-----------------------|----------------------|------------------------------|-------------------------------------------------|--|--|--|
| Plant Item            | Rating / Description | Cosmetic damage<br>(BS 7385) | Human response<br>(OH&E Vibration<br>Guideline) |  |  |  |
| Vibratory pile driver | Sheet piles          | 2 m to 20 m                  | 20 m                                            |  |  |  |

Table 29: Recommended minimum working distances for vibration intensive plant

The minimum working distances presented are indicative and will vary depending on the particular item of plant and local geotechnical conditions. They apply to cosmetic damage of typical buildings under typical geotechnical conditions.

Mitigation will need to be considered where sensitive receivers are located closer to the construction work zone than these minimum working distances. It is noted that focus is on mitigating cosmetic damage.

The contractor will be required to manage vibration as well as noise and make use of best practice in the management of vibration using simple and practicable techniques such equipment selection and as avoiding dropping heavy items.

Where vibration intensive works are required within the minimum working distances outlined in Table 29, vibration monitoring at the nearest potential affected building should be considered, where real-time alerts can be generated when measured vibration levels exceed criteria.
# 7 Assessment summary

This section summarises the predicted noise impacts based on the construction noise assessment to the noise sensitive receivers surrounding the OPT and the Glebe Island construction sites.

# **7.1 OPT**

Table 30: Summary of predicted noise impacts to the nearby sensitive receivers surrounding the OPT site

| A                                       | Hours <sup>1,2</sup> | Period  | Predicted impacts <sup>3</sup> |                                       |  |
|-----------------------------------------|----------------------|---------|--------------------------------|---------------------------------------|--|
| Acuvity                                 |                      |         | <b>Residential Receivers</b>   | Non-residential Receivers [if in use] |  |
| ENABLING WORKS                          |                      |         |                                |                                       |  |
| Enabling Works,                         | Standard Hours       | Day     | Below NML                      | Moderately intrusive                  |  |
| Sheet Pile Installation                 | Out of Hours         | Evening | Below NML                      |                                       |  |
|                                         |                      | Night   | Clearly audible                |                                       |  |
|                                         | Sleep Disturbance    | Night   | Above SDL                      |                                       |  |
| SOUTHERN EMBANKMENT STABILIZATION WORKS |                      |         |                                |                                       |  |
| Option 1 – Land-                        | Standard Hours       | Day     | Below NML                      | Clearly audible                       |  |
| based Excavator                         | Out of Hours         | Day     | Below NML                      |                                       |  |
|                                         |                      | Evening | Below NML                      |                                       |  |
|                                         |                      | Night   | Below NML                      |                                       |  |
|                                         | Sleep Disturbance    | Night   | Below SDL                      |                                       |  |
| Option 2 – Backhoe<br>Dredger           | Standard Hours       | Day     | Below NML                      | Moderately intrusive                  |  |
|                                         | Out of Hours         | Day     | Below NML                      |                                       |  |
|                                         |                      | Evening | Below NML                      |                                       |  |
|                                         |                      | Night   | Noticeable                     |                                       |  |

| A _4''4                        | <b>H</b> 1.2      | Derited | Predicted impacts <sup>3</sup> |                                       |
|--------------------------------|-------------------|---------|--------------------------------|---------------------------------------|
| Activity                       | Hours',-          | Period  | Residential Receivers          | Non-residential Receivers [if in use] |
|                                | Sleep Disturbance | Night   | Above SDL                      |                                       |
| DREDGING                       |                   |         |                                |                                       |
| Option 1 – Land-               | Standard Hours    | Day     | Below NML                      | Clearly audible                       |
| based Disposal                 | Out of Hours      | Day     | Below NML                      |                                       |
|                                |                   | Evening | Below NML                      |                                       |
|                                |                   | Night   | Clearly audible                |                                       |
|                                | Sleep Disturbance | Night   | Above SDL                      |                                       |
| Option 2 – Marine-             | Standard Hours    | Day     | Below NML                      | Clearly audible                       |
| based Disposal                 | Out of Hours      | Day     | Below NML                      |                                       |
|                                |                   | Evening | Below NML                      |                                       |
|                                |                   | Night   | Clearly audible                |                                       |
|                                | Sleep Disturbance | Night   | Above SDL                      |                                       |
| SCOUR MATTRESS                 | WORKS             |         |                                |                                       |
| Option 1 – ACM                 | Standard Hours    | Day     | Below NML                      | Clearly audible                       |
|                                | Out of Hours      | Day     | Below NML                      |                                       |
|                                |                   | Evening | Below NML                      |                                       |
|                                |                   | Night   | Noticeable                     |                                       |
|                                | Sleep Disturbance | Night   | Below SDL                      |                                       |
| Option 2 – Grouted<br>Mattress | Standard Hours    | Day     | Below NML                      | Clearly audible                       |
|                                |                   | Day     | Below NML                      |                                       |
|                                | Out of Hours      | Evening | Below NML                      |                                       |
|                                |                   | Night   | Noticeable                     |                                       |

| Activity | Hours <sup>1,2</sup> | Period | Predicted impacts <sup>3</sup> |                                       |
|----------|----------------------|--------|--------------------------------|---------------------------------------|
|          |                      |        | <b>Residential Receivers</b>   | Non-residential Receivers [if in use] |
|          | Sleep Disturbance    | Night  | Below SDL                      |                                       |

1 - Standard hours are Monday to Friday 7am to 6pm and Saturday from 8am to 1pm.

2 - Out of Hours during the different time periods:

Day are Saturday 7am to 8am and 1pm to 6pm; Sunday and public holidays 8am to 6pm;

Evening hours are 6pm to 10pm,

Night-time hours are 10pm to 7am.

3 – The predicted impacts show the worst case impact for the nearest receiver.

4 - The NML exceedance bands according to the CNVG criteria and their corresponding subjective response to impacts

Standard hours:

Noticeable – 0 dB above NML Clearly audible – <10 dB above NML Moderately intrusive – 10 to 20dB above NML Highly intrusive - >20dB above NML Out of Hours Works (OOHW): Noticeable – <5dB above NML Clearly audible – 5 to 15dB dB above NML Moderately intrusive – 15 to 25dB above NML Highly intrusive - >25dB above NML

# 7.2 Glebe Island

| Activity                     | Hours          | Period | Predicted impacts to residential receivers |
|------------------------------|----------------|--------|--------------------------------------------|
| Transfer of dredged soil     | Standard Hours | Day    | Below NML                                  |
|                              | Out of Hours   | Day    | Clearly audible                            |
| Casting of ACM               | Standard Hours | Day    | Below NML                                  |
|                              | Out of Hours   | Day    | Clearly audible                            |
| Delivery and load out of ACM | Standard Hours | Day    | Below NML                                  |
|                              | Out of Hours   | Day    | Clearly audible                            |

Table 31: Summary of predicted noise impacts to the nearby sensitive receivers surrounding the Glebe compound site

1 - Standard hours are Monday to Friday 7am to 6pm and Saturday from 8am to 1pm.

2 - Out of Hours during the different time periods:

Day are Saturday 7am to 8am and 1pm to 6pm; Sunday and public holidays 8am to 6pm;

Evening hours are 6pm to 10pm,

Night-time hours are 10pm to 7am.

3 – The NML exceedance bands according to the CNVG criteria and their corresponding subjective response to impacts

| Standard hours:                             | Out of Hours Works (OOHW):                  |  |
|---------------------------------------------|---------------------------------------------|--|
| Noticeable – 0 dB above NML                 | Noticeable – <5dB above NML                 |  |
| Clearly audible – <10 dB above NML          | Clearly audible – 5 to 15dB dB above NML    |  |
| Moderately intrusive – 10 to 20dB above NML | Moderately intrusive – 15 to 25dB above NML |  |
| Highly intrusive - >20dB above NML          | Highly intrusive - >25dB above NML          |  |

# 8 Mitigation measures

# 8.1 Standard Mitigation Measures

A summary of recommended mitigation measures is presented in Table 32.

Table 32: Recommended noise mitigation and management measures

| Item<br>No. | Item                                                         | Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | Noise and<br>vibration<br>management<br>plan                 | A Construction Noise and Vibration Management Plan shall be<br>prepared prior to the issuing of a Construction Certificate. This will<br>specify the actual plant to be used and will include updated estimates<br>of the likely levels of noise and the scheduling of activities.                                                                                                                                                                    |
| 2           | Equipment selection                                          | Equipment shall be selected to have Sound Power Levels (Lw) to be<br>the same or quieter as the levels used in this assessment.                                                                                                                                                                                                                                                                                                                       |
|             |                                                              | Where possible stationary equipment should be located behind<br>structures such as demountable buildings or stockpiles to maximise<br>shielding to receivers.                                                                                                                                                                                                                                                                                         |
|             |                                                              | Consider using electric / hydraulic equipment where possible.                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                              | Use only the necessary size and power equipment                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                              | All plant and equipment used on site must be:                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                              | • maintained in a proper and efficient condition; and                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                              | • operated in a proper and efficient manner.                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                              | Turn off all vehicles, plant and equipment when not in use.                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                                                              | Ensuring that the Responsible Person checks the conditions of the<br>powered equipment used on site daily to ensure plant is properly<br>maintained and that noise is kept as low as practicable.                                                                                                                                                                                                                                                     |
|             |                                                              | If rental equipment are to be used, the noise levels of plant and<br>equipment items are to be considered in rental decisions.                                                                                                                                                                                                                                                                                                                        |
| 3           | Location of plant                                            | The offset distance between noisy plant and adjacent sensitive<br>receivers is to be maximised. Plant used intermittently to be throttled<br>down or shut down. Noise-emitting plant to be directed away from<br>sensitive receivers. Only have necessary equipment on site.<br>Plan truck movements to avoid residential streets where possible.                                                                                                     |
| 4           | Non-tonal and<br>ambient<br>sensitive<br>reversing<br>alarms | Non-tonal reversing beepers (or an equivalent mechanism) must be<br>fitted and used on all construction vehicles and mobile plant regularly<br>used on site and for any out of hours work. Consider the use of<br>ambient sensitive alarms that adjust output relative to the ambient<br>noise level.                                                                                                                                                 |
| 5           | Hours of work                                                | Where noise intensive equipment is to be used near sensitive<br>receivers, the works should be scheduled for Standard Construction<br>Hours, where possible. If it is not possible to restrict the works to the<br>daytime then they should be completed as early as possible in each<br>work shift. Appropriate respite should also be provided to affected<br>receivers in accordance with the CNVG and/or the project's<br>conditions of approval. |

# 8.2 Additional Construction Mitigation Measures

The CNVG defines how additional mitigation measures are applied to airborne noise impacts. The approach has been provided in Table 24 and the measures triggered from the results of the assessment in Section 4.4 are given below.

| Item<br>No. | Item                     | Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | Notification (N)         | Advanced warning of works and potential disruptions can assist in<br>reducing the impact on the community. The notification may<br>consist of a letterbox drop (or equivalent) detailing work activities,<br>time periods over which these will occur, impacts and mitigation<br>measures. Notification should be a minimum of 5 working days<br>prior to the start of works. The approval conditions for projects<br>may also specify requirements for notification to the community<br>about works that may impact on them.                                                                                                                                                                           |
| 2           | Verification (V)         | As part of routine checks of noise levels or following reasonable<br>complaints. This verification should include measurement of the<br>background noise level and construction noise. Note this is not<br>required for projects less than three weeks unless to assist in<br>managing complaints.                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3           | Respite Offer 2<br>(R2)  | Night-time construction noise in out of hours period 2 $(OOHW 2)^1$ shall be limited to two consecutive nights except for where there is a Duration Respite. For night work these periods of work should be separated by not less than one week and 6 nights per month. Where possible, high noise generating works shall be completed before 11pm.                                                                                                                                                                                                                                                                                                                                                     |
| 4           | Duration Respite<br>(DR) | Respite offers and respite periods 1 and 2 may be<br>counterproductive in reducing the impact on the community for<br>longer duration projects. In this instance and where it can be<br>strongly justified it may be beneficial to increase the work<br>duration, number of evenings or nights worked through Duration<br>Respite so that the project can be completed more quickly. The<br>project team should engage with the community where noise<br>levels are expected to exceed the NML to demonstrate support for<br>Duration Respite. Where there are few receivers above the NML<br>each of these receivers should be visited to discuss the<br>project to gain support for Duration Respite. |

Table 33: Additional mitigation measures from CNVG

1 - OOHW Period 2: Mon – Fri (10pm – 6am), Sat (10pm – 8am), Sun/Pub Hol (6pm – 7am)

# 9 Conclusions

Noise generated from the different construction phases of the OPT capital dredging works and scour-protection works and the Glebe Island compound site have been predicted at surrounding noise sensitive receivers. This has been informed by guidance from the project Construction Consultant.

The noise impacts from the OPT works to residential receivers are predicted to be marginal to minor during the Enabling works and Dredging works, where the use of equipment such as the vibratory and sheet pile drivers and the dredging machine are predicted to generate noise impacts above construction NMLs. Non-residential receivers near OPT are also predicted to have minor to moderate impacts during all the construction stages when they are in use.

For the works in Glebe Island, the impacts to the nearby residential receivers are minor during the Out of hours period.

The likelihood of adverse vibration impacts as a result of proposed construction works is low. It is recommended to have some construction monitoring during vibration works to ensure compliance of the vibration criteria.

The original proposal for the OPT works was to be undertaken during the nighttime period given the marine vessel traffic during the day. While the proposal seeks approval for 24/7 construction hours and has been assessed accordingly, given the current environment in light the COVID-19 situation, it may be practicable to carry out more work during standard hours. Where noise intensive equipment is to be used near sensitive receivers, the works should be scheduled for Standard Construction Hours, where possible. If it is not possible to restrict the works to the daytime, then they should be completed as early as possible in each work shift.

Preliminary recommendations are given for the control of construction noise for the periods where exceedances are predicted of relevant Noise Management Levels. The construction contractor should be required to prepare a detailed Construction Noise and Vibration Management Plan which reviews the modelled construction details and noise and vibration impacts presented in Section 7, along with development of more detailed mitigation and management strategies.

# Appendix A

Glossary

| Term                      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient noise<br>level    | The ambient noise level is the overall noise level measured at a location from multiple noise sources. When assessing noise from a particular development, the ambient noise level is defined as the remaining noise level in the absence of the specific noise source being investigated. For example, if a fan located on a building is being investigated, the ambient noise level is the noise level from all other sources without the fan operating, such as traffic, birds, people talking and other noise from other buildings.                                      |
| Background<br>noise level | The background noise level is the noise level that is generally present at a location at all or most times. Although the background noise may change over the course of a day, over shorter time periods (e.g. 15 minutes) the background noise is almost-constant. Examples of background noise sources include steady traffic (e.g. motorways or arterial roads), constant mechanical or electrical plant and some natural noise sources such as wind, foliage, water and insects.                                                                                         |
|                           | Assessment Background Level (ABL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | A single-number figure used to characterise the background noise levels<br>from a single day of a noise survey. ABL is derived from the measured noise<br>levels for the day, evening or night time period of a single day of background<br>measurements. The ABL is calculated to be the tenth percentile of the<br>background LA90 noise levels – i.e. the measured background noise is above<br>the ABL 90% of the time.                                                                                                                                                  |
|                           | Rating Background Level (RBL / minLA90,1hour)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | A single-number figure used to characterise the background noise levels<br>from a complete noise survey. The RBL for a day, evening or night time<br>period for the overall survey is calculated from the individual Assessment<br>Background Levels (ABL) for each day of the measurement period, and is<br>numerically equal to the median (middle value) of the ABL values for the<br>days in the noise survey.                                                                                                                                                           |
| Decibel (dB)              | The logarithmic scale used to measure sound and vibration levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | Human hearing is not linear and involves hearing over a large range of sound pressures, which would be unwieldy if presented on a linear scale. Use of a logarithmic scale allows all sound levels to be expressed based on how loud they are relative to a reference sound (typically 20 $\mu$ Pa, which is the approximate human threshold of hearing). For sound in other media (e.g. underwater noise) a different reference level (1 $\mu$ Pa) is used instead.                                                                                                         |
|                           | An increase of approximately 10 dB corresponds to a subjective doubling of the loudness of a noise. The minimum increase or decrease in noise level that can be noticed is typically 2 to 3 dB.                                                                                                                                                                                                                                                                                                                                                                              |
| dB weighting<br>curves    | The frequency of a sound affects its perceived loudness and human hearing is<br>less sensitive at low and very high frequencies. When seeking to represent<br>the summation of sound pressure levels across the frequency range of human<br>hearing into a single number, weighting is typically applied. Most<br>commonly, A-weighting, denoted as dB(A), is used for environmental noise<br>assessment. This is often supplemented by the linear or C-weighting curves,<br>where there is the potential for excess low-frequency sound at higher sound<br>pressure levels. |



#### dB(A) dB(A) denotes a single-number sound pressure level that includes a frequency weighting ('A-weighting') to reflect the subjective loudness of the sound level.

The frequency of a sound affects its perceived loudness. Human hearing is less sensitive at low and very high frequencies, and so the A-weighting is used to account for this effect. An A-weighted decibel level is written as dB(A).

Some typical dB(A) levels are shown below. \_

\_

~

- --

|           | Sound Pressure Level<br>dB(A)                                                                                                               | Example                                                                                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 130                                                                                                                                         | Human threshold of pain                                                                                                                                                                                 |
|           | 120                                                                                                                                         | Jet aircraft take-off at 100 m                                                                                                                                                                          |
|           | 110                                                                                                                                         | Chain saw at 1 m                                                                                                                                                                                        |
|           | 100                                                                                                                                         | Inside nightclub                                                                                                                                                                                        |
|           | 90                                                                                                                                          | Heavy trucks at 5 m                                                                                                                                                                                     |
|           | 80                                                                                                                                          | Kerbside of busy street                                                                                                                                                                                 |
|           | 70                                                                                                                                          | Loud stereo in living room                                                                                                                                                                              |
|           | 60                                                                                                                                          | Office or restaurant with people present                                                                                                                                                                |
|           | 50                                                                                                                                          | Domestic fan heater at 1m                                                                                                                                                                               |
|           | 40                                                                                                                                          | Living room (without TV, stereo, etc)                                                                                                                                                                   |
|           | 30                                                                                                                                          | Background noise in a theatre                                                                                                                                                                           |
|           | 20                                                                                                                                          | Remote rural area on still night                                                                                                                                                                        |
|           | 10                                                                                                                                          | Acoustic laboratory test chamber                                                                                                                                                                        |
|           | 0                                                                                                                                           | Threshold of hearing                                                                                                                                                                                    |
| dBrms     | The root mean squared (rms<br>variation and energy conten<br>times the peak value                                                           | s) value takes into account both time history<br>t. The rms value is typically equal to 0.707 $(1/\sqrt{2})$                                                                                            |
| Frequency | Frequency is the number of<br>In musical terms, frequency<br>end of the human hearing fr<br>pitched' and sounds with a h<br>'high pitched'. | cycles per second of a sound or vibration wave.<br>is described as 'pitch'. Sounds towards the lower<br>equency range are perceived as "bass" or 'low-<br>nigher frequency are perceived as 'treble' or |

## Term

**Definition** While single weighted sound pressure levels provide benefits in simplifying the assessment and evaluation of sound levels, further detailed evaluation of the frequency content is often undertaken. While this could be done based on individual frequencies (all ~20,000 Hz), the analysis is often grouped into bands, or 'octave bands'. 1/1 octave or 1/3 octave bands are most commonly utilised in environmental noise assessment, and while referred to by a single Hz based on the nominal centre frequency of the band (e.g. 31.5 Hz), are a summation of all frequencies between a defined lower and upper frequency.

Frequency is the rate of repetition of a sound wave. The subjective equivalent in music is pitch. The unit of frequency is the hertz (Hz), which is identical to cycles per second. A 1000Hz is often denoted as 1 kHz, eg 2 kHz = 2000 Hz. Human hearing ranges approximately from 20 Hz to 20 kHz. For design purposes the octave bands between 63 Hz to 8 kHz are generally used. The most commonly used frequency bands are octave bands, in which the mid frequency of each band is twice that of the band below it. For more detailed analysis, each octave band may be split into three one-third octave bands or in some cases, narrower frequency bands.



| L10(period) | The sound level exceeded for 10% of the measurement period, or alternatively, the sound levels would be lower for 90% of the time.                                                                                                          |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | The L10 is often defined as the 'average maximum' sound levels, as in AS1055-2018 with the advent of statistical sound level meters.                                                                                                        |
| L90(period) | The sound level exceeded for 90% of the measurement period.                                                                                                                                                                                 |
|             | The L90 is often defined as the 'average minimum' or 'background' noise level for a period of measurement. For example, 45 dBLA90,15min indicates that the sound level is higher than 45 dB(A) for 90% of the 15-minute measurement period. |
| Leq(period) | The equivalent ('eq') continuous sound level, used to describe the level of a time-varying sound or vibration measurement.                                                                                                                  |
|             | The Leq is often defined as the 'average' level, and mathematically, is the energy-average level over a measurement period $-$ i.e. the level of a constant sound that contains the same sound energy as the measured sound.                |
| Lmax        | The Lmax is the 'absolute maximum' level of a sound or vibration recorded over the measurement period.                                                                                                                                      |
|             | As the Lmax is often caused by an instantaneous event, it can vary significantly between measurements.                                                                                                                                      |

263976-00-RPT-0011 | Issue 1 | 17 September 2020

| Term                                 | Definition                                                                                                                                                                                                                                                                                            |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peak Particle<br>Velocity (PPV)      | The highest velocity of a particle (such as part of a building structure) as it vibrates. PPV is commonly used as a vibration criteria, and is often interpreted as a PPV based on the Lmax or Lmax,spec index.                                                                                       |
| Sound Power<br>and Sound<br>Pressure | The sound power level (Lw) of a source is a measure of the total acoustic power radiated by a source. The sound pressure level (Lp) varies as a function of the environment and distance from a source.                                                                                               |
|                                      | The sound power level is an intrinsic characteristic of a source (analogous to its mass), which is not affected by the environment within which the source is located.                                                                                                                                |
| Vibration                            | Waves in a solid material are called 'vibration', as opposed to similar waves<br>in air, which are called 'sound' or 'noise'. If vibration levels are high<br>enough, they can be felt; usually vibration levels must be much higher to<br>cause structural damage.                                   |
|                                      | A vibrating structure (e.g. a wall) can cause airborne noise to be radiated,<br>even if the vibration itself is too low to be felt. Structureborne vibration<br>limits are sometimes set to control the noise level in a space.                                                                       |
|                                      | Vibration levels can be described using measurements of displacement, velocity and acceleration. Velocity and acceleration are commonly used for structureborne noise and human comfort. Vibration is described using either metric units (such as mm, mm/s and mm/s2) or else using a decibel scale. |

# Appendix F– Maritime Archaeological and Indigenous Heritage Assessment and Statement of Heritage Impacts



# Capital Dredging and Scour Protection Works at the Overseas Passenger Terminal



Maritime Archaeological and Indigenous Heritage Assessment and Statement of Heritage Impact

# Capital Dredging and Scour Protection Works at the Overseas Passenger Terminal

Maritime Archaeological and Indigenous Heritage Assessment and Statement of Heritage Impact

Client: Port Authority of NSW

ABN: 50 825 884 846

Prepared by

**AECOM Australia Pty Ltd** 

Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 2 8934 0000 F +61 2 8934 0001 www.aecom.com ABN 20 093 846 925

02-Jul-2020

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

# **Quality Information**

DocumentCapital Dredging and Scour Protection Works at the Overseas Passenger<br/>TerminalRef\\ausyd1fp002\groups\!env\team\_iap\archaeology & heritage\proposals &<br/>projects without apic numbers\2018\_05\_22 anmm wharf\60580544 anmm<br/>new wharves rev 2 201800711.docxDate02-Jul-2020Prepared byChris LewczakReviewed byDarran Jordan

#### **Revision History**

| Rev | Revision Date | Details | Authorised                                            |           |  |
|-----|---------------|---------|-------------------------------------------------------|-----------|--|
|     |               |         | Name/Position                                         | Signature |  |
| 1   | 06-Apr-2020   | Draft   | Dr Darran Jordan,<br>Principal Heritage<br>Specialist | D. Jordan |  |
| 2   | 12-Jun-2020   | Rev1    | Chris Lewczak<br>Principal Heritage<br>Specialist     | C deux .  |  |
| 3   | 02-July-2020  | Final   | Chris Lewczak<br>Principal Heritage<br>Specialist     | C deux    |  |

# Table of Contents

| Execut | ive summ                          | nary                                                                      | i  |  |
|--------|-----------------------------------|---------------------------------------------------------------------------|----|--|
| 1.0    | Introdu                           | uction                                                                    | 1  |  |
|        | 1.1                               | Background                                                                | 1  |  |
|        | 1.2                               | Site location                                                             | 1  |  |
|        | 1.3                               | Project justification                                                     | 1  |  |
|        | 1.4                               | Scope of work                                                             | 1  |  |
|        | 1.5                               | Report methodology                                                        | 4  |  |
|        | 1.6                               | Report limitations                                                        | 4  |  |
| 2.0    | Statuto                           | bry legislation                                                           | 5  |  |
|        | 2.1                               | Commonwealth legislation                                                  | 5  |  |
|        | 2.2                               | State legislation                                                         | 5  |  |
|        | 2.3                               | Local legislation                                                         | 9  |  |
|        | 2.4                               | Heritage register searches                                                | 10 |  |
|        | 2.5                               | Summary                                                                   | 14 |  |
| 3.0    | Aborig                            | inal Archaeological Context                                               | 16 |  |
|        | 3.1                               | Landscape Context                                                         | 16 |  |
| 5.0    | Historical context                |                                                                           | 20 |  |
|        | 5.1                               | Early European occupation                                                 | 20 |  |
|        | 5.2                               | Later Developments                                                        | 22 |  |
|        | 5.3                               | Overseas Passenger Terminal and Wharf                                     | 23 |  |
|        | 5.4                               | Campbells Cove                                                            | 29 |  |
| 6.0    | Aboriginal Archaeological Context |                                                                           |    |  |
|        | 6.1                               | AHIMS Search                                                              | 35 |  |
|        | 6.2                               | Native Title                                                              | 37 |  |
|        | 6.3                               | Aboriginal Archaeological Context                                         | 37 |  |
|        | 6.4                               | Submerged Site Preservation                                               | 38 |  |
| 7.0    | Site Inspection                   |                                                                           | 41 |  |
|        | 7.1                               | Weather and Tide Conditions                                               | 41 |  |
|        | 7.2                               | Conduct of Survey                                                         | 41 |  |
|        | 7.3                               | Survey results                                                            | 42 |  |
|        | 7.4                               | Interpretation of Results                                                 | 53 |  |
|        | 7.5                               | Summary of Previous Maritime Archaeological Assessment                    | 53 |  |
|        | 7.6                               | Bathymetric multi-beam survey and side scan sonar data                    | 54 |  |
|        | 7.7                               | Maritime archaeological potential                                         | 56 |  |
| 8.0    | Assessment criteria               |                                                                           |    |  |
|        | 8.2                               | Assessment of significance for archaeological remains associated with the |    |  |
|        |                                   | former Campbells Wharf No. 7 (1901-1980)                                  | 58 |  |
| 9.0    | Impact assessment                 |                                                                           |    |  |
|        | 9.1                               | Proposed works                                                            | 61 |  |
|        | 9.2                               | Aboriginal Heritage Assessment Key Findings                               | 63 |  |
|        | 9.3                               | Heritage impact assessment                                                | 64 |  |
| 10.0   | Statement of heritage impact      |                                                                           |    |  |
|        | 10.1                              | Sydney Opera House World Heritage Listing                                 | 68 |  |
|        | 10.2                              | Maritime archaeological remains assocated with Wharf No.7                 | 69 |  |
|        | 10.3                              | Summary                                                                   | 70 |  |
| 11.0   | Conclu                            | Conclusion and recommendations                                            |    |  |
| 12.0   | References                        |                                                                           |    |  |

# List of Tables

| Table 1 Summary of listed heritage items within and/or adjacent to the Project site | 14 |
|-------------------------------------------------------------------------------------|----|
| Table 2 Review of landscape context of the Project Area                             | 16 |
| Table 3 AHIMS Search Results                                                        | 35 |

| Table 4 Preservation Potential by Site Type (following Nutley 2006)                         | 39 |
|---------------------------------------------------------------------------------------------|----|
| Table 5 Tides for the survey day                                                            | 41 |
| Table 6 Rain and wind conditions for the three days prior and for the day of the inspection | 41 |
| Table 7 Significance assessment criteria                                                    | 57 |
| Table 8 Significance assessment of the former Campbells Cove Wharf No. 7 (1901- 1980)       | 58 |
| Table 9 Due Diligence Process Questions                                                     | 63 |
| Table 10 Assessment of heritage impact of the Project against the significance assessment   | 65 |
| Table 11: World Heritage properties impact assessment                                       | 68 |
| Table 12 Statement of heritage impact for the remains of Wharf No. 7 at Campbells Cove      | 69 |
|                                                                                             |    |

# List of Figures

| Figure 1: Location of the proposed capital dredging works and rock armour protection work<br>Figure 2: Location of nearby Heritage items listed on the NHL. SHR and LEP<br>Figure 3: Tank Stream and Foreshore, c. 1788                                                                                                                                                                                         | 3<br>11<br>19 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Figure 4: 1807 map excerpt of the OPT area and proposed extension. (Source: James Meehan,<br>1807, Plan of the town of Sydney in New South Wales, National Library of<br>Australia, MAP F 106B. Project area in red                                                                                                                                                                                             | 21            |
| Figure 5: Sydney from 1810 to 1820: shewing buildings erected by Governor Macquarie, National Library of Australia, MAP F 309. Project area in red                                                                                                                                                                                                                                                              | 21            |
| Figure 6: Plan of the Rocks showing the resumption of land by the City of Sydney. (Source:<br>Source: City of Sydney, 1901, Plan Showing The "Rocks" Resumption, State<br>Records NSW, Darling Harbour Resumption Maps, 1900-1902)                                                                                                                                                                              | 22            |
| Figure 7: 1933 Aerial Photograph showing the configuration of the OPT and Wharf No.7. Project                                                                                                                                                                                                                                                                                                                   | 24            |
| Figure 8: 1960s aerial photograph showing the configuration of the OPT after the expansion works<br>and Wharf No.7.                                                                                                                                                                                                                                                                                             | 24            |
| Figure 9: 1980 aerial photograph showing what appears to be the demolition of Wharf No.7. Project Area shown in red.                                                                                                                                                                                                                                                                                            | 25            |
| Figure 10: E&A Berth No. 5, Circular Quay, 1919. (Source: Government Printing Office, 1919,<br>Mitchell Library, NSW, 1-25041)                                                                                                                                                                                                                                                                                  | 26            |
| Figure 11: View of northern end of the wharf and OPT in 1961 with P&O Liner Oriana. The last of<br>the previous warehouses can be seen in the foreground. (Source: Wolfgang<br>Sievers, 1961, National Library of Australia, 791186)                                                                                                                                                                            | 26            |
| Figure 12: View of northern end of the wharf and OPT in about 1965. Note the warehouse has<br>been removed and the shed present on Wharf No. 7 in the foreground. (Source:<br>Anon., c. 1965, City of Sydney Archives, SRC4534)                                                                                                                                                                                 | 27            |
| Figure 13: Earlier wharves uncovered during construction of the Overseas Passenger Terminal.<br>(Source: Anon., 1960, City of Sydney Archives, NSCA CRS 48/1201)                                                                                                                                                                                                                                                | 27            |
| Figure 14: Detail of caissons during construction. (Graeme Andrews, 1985, 'Working Harbour'<br>Collection, City of Sydney Archives, 80327)                                                                                                                                                                                                                                                                      | 28            |
| Figure 15: Campbells Cove and Circular Quay, Sydney from Dawes Point ca.1870. (Source: State Library of NSW SPF / 786)                                                                                                                                                                                                                                                                                          | 29            |
| Figure 16: Plan of wharfage improvements in Circular Quay showing the works completed (red), in progress (green) and proposed (yellow). (Source: Government Printing Office, 1893-1894, Plan of Circular Quay Wharfage Improvements)                                                                                                                                                                            | 30            |
| Figure 17: 1909 Royal Commission on Sydney Improvements Plan Showing the Extension of<br>George Street to Dawes Point (Plan No.35). Note: this plan shows the newly<br>constructed Campbells Cove Wharf (7a and 7b). (New South Wales<br>Parliamentary Papers, 1909, Interim Report of the Royal Commission for the<br>Improvement of the City of Sydney and its Suburbs, Vol. 5:383, Plan No. 35,<br>available |               |
| http://www.photosau.com.au/cosmaps/scripts/displayIndex.asp?Index=RC19)<br>Figure 18: 1980 plan of Campbells Cove showing Wharf No. 7, approximately 110 m long and 28 m<br>wide. (Source: The Maritime Services Board of New South Wales 1980                                                                                                                                                                  | 31            |

|                           | Hydrographic Survey at Overseas Terminal Sydney Cove, Cosmos<br>Archaeology, NSW)                                                                  | 32 |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 19: Ph             | otograph taken of Patriach at Campbells Wharf, Sydney Cove, ca.1930s. (Source:                                                                     | 52 |
|                           | Hume Sailing Ship Collection, Sydney Heritage Fleet)                                                                                               | 32 |
| Figure 20: Sy             | dney Cove, Wharf No. 7 area showing the 1901-1980 wharf in 1979. (Source:<br>Graeme Andrews 'Working Harbour' Collection: 80403 GKA in the City of |    |
| <b>-</b> ; <b>0</b> ( (0) | Sydney Image Library)                                                                                                                              | 33 |
| Figure 21: 19             | collection of photographs at National Library of Australia nla.pic-vn4655456)                                                                      | 33 |
| Figure 22: Ph             | otograph of Campbells Cove in 1979. (Source: Graeme Andrews 'Working Harbour'<br>Collection: 80419 GKA in the City of Sydney Image Library)        | 34 |
| Figure 23: AH             | IIMS Search Results                                                                                                                                | 36 |
| Figure 24: Se             | dimentary cross-section showing location and depth of dugong (from Etheridge,                                                                      |    |
| Figure 25: Tra            | 1905)<br>ansects run as part of the maritime archaeology survey at OPT. (Base image Google                                                         | 39 |
|                           | Earth)                                                                                                                                             | 42 |
| Figure 26: Gla            | ass tube standing 800 mm proud of the seabed at 1 m mark west of transect line.<br>(PDS OPT Transect 1 South)                                      | 44 |
| Figure 27: Ho             | brse shoe and sheet of copper sheathing at the 3 m mark on the east side of transect                                                               | лл |
| Figure 28: No             | orthern (degraded) end of 7 m pile. (PDS OPT Transect 1 South)                                                                                     | 44 |
| Figure 29: Pla            | ank crossing transect at 25 m mark. Top half of image indicated by red arrow. (PDS                                                                 |    |
|                           | OPT Transect 1 South)                                                                                                                              | 44 |
| Figure 30: Ce             | eramic coffee cup with no handle at the 26 m mark to the east of the transect. (PDS OPT Transect 1 South)                                          | 44 |
| Figure 31: Mo             | obile timber recorded on the western side of transect near 30 m. (PDS OPT Transect 1                                                               |    |
|                           | South)                                                                                                                                             | 44 |
| Figure 32: EX             | ample of bottles and brick rubble spread between 33 - 30 m. (PDS OP1 Transect 1.5)                                                                 | 45 |
| Figure 55. Ch             | Transect 1 South)                                                                                                                                  | 45 |
| Figure 34: Ex             | ample of seabed along Transect 2. (PDS OPT Transect 2 N 0 to 40 m)                                                                                 | 46 |
| Figure 35: Co             | ncrete block. (PDS OPT Transect N 0 to 40 m)                                                                                                       | 46 |
| Figure 36: Fe             | rrous pipe; 1.2 m long and 0.5 m diameter. (PDS OPT Transect 2 N 0 to 40 m)                                                                        | 46 |
| Figure 37: Tw             | o long neck beer bottles with brick. (PDS OPT Transect N 0 to 40 m)                                                                                | 46 |
| Figure 38: Co             | ncrete block at 45 degree angle. (PDS OPT Transect 2 N 0 to 40 m)                                                                                  | 46 |
| Figure 39: Sq             | uare concrete block (0.4 m). (PDS OPT Transect 2 N 0 to 40 m)                                                                                      | 46 |
| Figure 40: Co             | ncrete rubble. (PDS OPT Transect N 0 to 40 m)                                                                                                      | 47 |
| Figure 41: Pla            | astic shopping bag. (PDS OPT Transect N 0 to 40 m)                                                                                                 | 47 |
| Figure 42: Fla            | at hose, potentially a dredge or fire hose recorded between 5 and 10 m along transect.<br>(PDS OPT Transect 3 South 40 to 0 m)                     | 48 |
| Figure 43: Se             | ction of 8 m length of ferrous pipe with right angled bracket crossing the transect at                                                             | -0 |
|                           | 6.5 m mark. Concrete block can be seen in the background. (PDS OPT                                                                                 |    |
|                           | Transect 3 South $40 - 0$ m)                                                                                                                       | 48 |
| Figure 44: Co             | oll of soft metal material possibly lead or tin recorded 11 m along the transect. (PDS OPT Transect 3 South 40 to 0 m)                             | 48 |
| Figure 45: Tv             | re located 15 m along the transect. (PDS OPT Transect 3 South)                                                                                     | 48 |
| Figure 46: Sh             | ort length of copper strip with fastening holes recorded at 17 m along the transect.                                                               |    |
| i igure i ei ei           | (PDS OPT Transect 3 South 40 to 0 m)                                                                                                               | 49 |
| Figure 47: Pie            | ece of chain link lying loose on the seabed at 19 m along the transect. (PDS OPT                                                                   |    |
|                           | Transect 3 South 40 to 0 m)                                                                                                                        | 49 |
| Figure 48: Pie            | ece of metal sheathing with fastening holes. The metal was slightly concave. (PDS<br>OTP Transect 3 South 0 to 40 m)                               | 49 |
| Figure 49: Bu             | ried timber, potentially a plank, measuring 0.02 m thick with only 0.05 m exposed.                                                                 |    |
| Figure 50: Cr             | Indicated by red arrow. (PDS OTP Transect 3 South 0 to 40 m)                                                                                       | 49 |
| i igule 50. Gli           | South 0 to 40 m)                                                                                                                                   | 49 |
|                           |                                                                                                                                                    |    |

| Figure 51: Timber, likely a waler, running almost parallel with the transect line between 30 and 35 m. (PDS OPT Transect 3 South 40 to 0 m)                                                                                                                                                                                                                                          | 49       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 52: Timber pile running perpendicular to wale timber (just visible underneath the pile) (PDS OPT Transect 3 South 0 to 40 m)                                                                                                                                                                                                                                                  | 50       |
| Figure 53: Example of seabed on Transect 4. (Professional Diving Services, OPT Transect 4 NE to 40 m)                                                                                                                                                                                                                                                                                | ) 51     |
| Figure 54: Pile stump: 0.45 diameter and standing 0.5 m proud of the seabed. Very heavily erode (PDS OPT Transect 4 NE 0 to 40 m)                                                                                                                                                                                                                                                    | d.<br>51 |
| Figure 55: Tree branch resting loose on seabed. Outline marked in blue. (PDS Transect OPT 4 N 0 to 40 m)                                                                                                                                                                                                                                                                             | E 51     |
| Figure 56: Ferrous pipe resting loose on seabed. (PDS OPT Transect 4 NE 0 to 40 m)<br>Figure 57: Concrete rubble (PDS OPT Transect 4 NE 0 to 40 m)                                                                                                                                                                                                                                   | 51<br>51 |
| Figure 58: Grill from a shopping trolley, indicated with red arrow. (PDS OPT Transect 4 NE 0 to 40 m)                                                                                                                                                                                                                                                                                | 51       |
| Figure 59: Example of the sandy seabed, lightly silted with a covering of shell grit and scattered strands of kelp. (Professional Diving Services: OTP Transect 5 West 0 to 20 m                                                                                                                                                                                                     | ) 52     |
| Figure 60: Potential concrete block at a 45 degree angle at the 11 m south of the transect line.<br>(Professional Diving Services: OTP Transect 5 West 0 to 20 m)                                                                                                                                                                                                                    | 52       |
| Figure 61: Potential pile stump, heavily degraded, south of the transect line at the 13 m mark.<br>(Professional Diving Services: OTP Transect 5 West 0 to 20 m (Professional                                                                                                                                                                                                        |          |
| Diving Services: OTP Transect 5 West 0 to 20 m)                                                                                                                                                                                                                                                                                                                                      | 53       |
| Figure 62: Pile recorded crossing the transect line at the 15 m mark running in a SE to NW direction. (Professional Diving Services: OTP Transect 5 West 0 to 20 m)                                                                                                                                                                                                                  | 53       |
| Figure 63: Multibeam survey of the Project area undertaken by Port Authority of NSW in March<br>2018. Image on the left is the original image, image on the right has been<br>marked up by the maritime archaeologist (Source: Port Authority of NSW). The<br>information is provided courtesy of Port Authority of NSW. Copyright is owned<br>by Port Authority of NSW. South Wales | is<br>55 |
| Figure 64: Proposed extent of dredging showing proposed depths to be dredged. Note: Dredging                                                                                                                                                                                                                                                                                         | 55       |
| would only occur within the outlined "Provisional Berth" area                                                                                                                                                                                                                                                                                                                        | 62       |

Port Authority of New South Wales (NSW) proposes to undertake capital dredging and scourprotection works at the Overseas Passenger Terminal (OPT) on the western side of Circular Quay in Sydney Harbour. A compound location to facilitate the works is proposed at Berth 2 on Glebe Island. The proposal dredging location and compound site at Glebe Island.

The project driver is to deepen the OPT berth pocket to increase the underkeel clearance to allow cruise ships to safely berth. Scour protection would be installed along the whole length of the quay wall to prevent undermining from hydraulic instability. Currently, there is a risk of incoming cruise ships having less than 0.5 metres (m) underkeel clearance, which is a clear safety concern.

The proposal's key features are:

- Installing a sheet pile retaining wall of about 65 m long at the southern end of the OPT berth pocket.
- Dredging approximately 20,000 m<sup>3</sup> of sediment to deepen the berth pocket.
- Installing scour protection of about 12,000 m<sup>2</sup> in the form of pumped concrete mattress or articulated concrete mattresses.

AECOM has been commissioned by Port Authority of NSW to undertake a maritime archaeological assessment that includes a Statement of Heritage Impact (SoHI), and a Indigenous heritage Due Diligence Assessment for any known or potential impacts to cultural heritage remains that may be present within the Project area. This includes known and potential impacts to Indigenous and non-Indigenous heritage and archaeological sites.

Cosmos Archaeology Pty Ltd (Cosmos Archaeology) were engaged separately by Port Authority of NSW to undertake an underwater survey of the Project area, the results of which were to be used in this AECOM report. The results of the underwater survey are used in the Section 7.0 of this report, and the whole report added as an appendix to this report.

This assessment has identified the proposed capital dredging works and scour protection works at the OPT are likely to have an impact on historical archaeological remains present at the northern end of the berth pocket, and potential impacts to Aboriginal objects within a former estuarine environment that has since become submerged.

The Aboriginal due Diligence report has assessed the impact from dredging works to be rated as Moderate, however, it has also been assessed as a low to moderate potential to impact any intact Aboriginal sites.

Impacts have also been indented to occur to remains associated with the former Wharf No. 7 built in Campbells Cove in 1901 and removed from the site in 1980. The wharf was constructed after the resumption of wharves in Sydney Harbour in 1900 and is believed to have been built under the new standard for wharf construction.

Opportunities to relocate the proposed works are not possible as the OPT is required to function as the overseas passenger terminal for curse ships entering Sydney Harbour. Impact to the former Wharf No. 7 cannot be avoided, and the impacts need to be mitigated.

Proposed mitigation measures include undertaking a controlled maritime archaeological program that would include recording, testing and the sieving of any dredge deposit remains that are present within the location of the former wharf. As the project has been assessed as impacting on potential archaeological (relic) remains associated with the former Wharf No. 7, the following recommendations can be made.

#### **Aboriginal Heritage Recommendations**

In light of the above key findings and Due Diligence Process Questions presented in Table 4, this Aboriginal Heritage Due Diligence Assessment provides the following management recommendations

1. This assessment has determined that Aboriginal objects may be encountered during the proposed works. Investigations of Aboriginal cultural heritage undertaken in accordance with

the requirements of the *Code of Practice for Archaeological Investigation of Aboriginal Objects in NSW* (DECCW, 2010b) however, are impractical within submerged contexts. Therefore, a robust unexpected finds procedure for Aboriginal heritage should be developed prior to commencement of works. The procedure should be developed to run concurrently with historic investigations (refer below) and include protocols for identifying and managing Aboriginal cultural heritage.

- 2. Should any Aboriginal objects be identified at any stage of the project, Port Authority of New South Wales may be required to apply for an Aboriginal Heritage Impact Permit (AHIP) under Section 90 of the National Parks and Wildlife Act 1974 (NPW Act 1974). Generally, applications for AHIPs must be supported by an Aboriginal Cultural Heritage Assessment Report (ACHAR) compiled in accordance with Section 3 of the *Guide to Investigating, Assessing and Reporting on Aboriginal Cultural Heritage in NSW* (OEH, 2011). A process of Aboriginal community consultation should be carried out accordance with OEH's Aboriginal Cultural Heritage Consultation Requirements for Proponents (DECCW, 2010a) must also be demonstrated.
- 3. In the event that human skeletal material (remains), are identified at any point during the Project, the procedure outlined in Appendix B should followed.
- 4. In the event that Aboriginal objects, including possible human skeletal material (remains), are identified at any point during the Project, the procedure outlined in Appendix B should followed.

#### **Maritime Archaeological Recommendations**

- 5. A Section 140 permit application should be submitted to Heritage NSW, Department of Premier and Cabinet, prior to the commencement of works. The application must include a maritime archaeological research design and methodology must be prepared that details the methodology for how the maritime archaeologist works would be conducted in conjunction with the proposed works. The document should include
  - Principal heritage specialists working on the project;
  - Details regarding the stages of works to be conducted on site, include methodology for each site;
  - How the works would be undertaken;
  - Recording methods for each stage of works, ;
  - Method for collecting and location for the storage of relics collected from the site which the artefact analysis is under taken; and,
  - Reporting at the conclusion of the project.

# 1.0 Introduction

# 1.1 Background

Port Authority of New South Wales (NSW) proposes to undertake capital dredging and scourprotection works at the Overseas Passenger Terminal (OPT) on the western side of Circular Quay in Sydney Harbour. A compound location to facilitate the works is proposed at Berth 2 on Glebe Island. The proposal dredging location and compound site at Glebe Island is presented on Figure 1, and proposed dredging area is presented on Figure 2.

The project driver is to deepen the OPT berth pocket to increase the underkeel clearance to allow cruise ships to safely berth. Scour protection would be installed along the whole length of the quay wall to prevent undermining from hydraulic instability. Currently, there is a risk of incoming cruise ships having less than 0.5 metres (m) underkeel clearance, which is a clear safety concern.

The proposal's key features are:

- Installing a sheet pile retaining wall of about 65 m long at the southern end of the OPT berth pocket.
- Dredging approximately 20,000 m<sup>3</sup> of sediment to deepen the berth pocket.
- Installing scour protection of about 12,000 m<sup>2</sup> in the form of pumped concrete mattress or articulated concrete mattresses.

AECOM has been commissioned by Port Authority of NSW to undertake a maritime archaeological assessment that includes a Statement of Heritage Impact (SoHI) for any known or potential impacts to cultural heritage remains that may be present within the Project area. This includes known and potential impacts to Indigenous and non-Indigenous heritage and archaeological sites.

Cosmos Archaeology Pty Ltd (Cosmos Archaeology) were engaged separately by Port Authority of NSW to undertake an underwater survey of the Project area, the results of which were to be used in this AECOM report. The results of the underwater survey are used in the Section 7.0 of this report, and the whole report added as an appendix to this report.

AECOM has also been commissioned to prepare a separate Indigenous heritage Due Diligence Assessment. This assessment has been prepared by Luke Wolfe, Senior Heritage Specialist at AECOM, and the results of this assessment have been included and added as an appendix to this report.

# 1.2 Site location

The OPT is situated on the western side of Sydney Cove (Circular Quay). The investigation for this project is confined to the seabed in front of the wharf at the OPT (Figure 1).

This report includes a general history of the reclamation and seawall development in Darling Harbour and Cockle Bay (to the south of the Project area) to further understand the development phases of wharves within the Project area.

# 1.3 **Project justification**

The capital dredging works are required to maintain a safe depth of water below the current keel of vessels berthed at the OPT. Scour protection would be installed along the whole length of the quay wall to prevent undermining from hydraulic instability. Currently, there is a risk of incoming cruise ships having less than 0.5 m underkeel clearance, which is a clear safety concern.

# 1.4 Scope of work

The objectives of this investigation are to:

 Review geotechnical data, including borehole investigations and geophysical survey data of the Project area;

- Prepare an Aboriginal heritage due diligence report to assess the potential for submerged cultural • landscapes within the Project area;
- Undertake a maritime archaeological assessment, incorporating site inspection data collected by Cosmos Archaeology, to assess the potential for maritime archaeological remains to be present within the Project area; and
- Prepare a SoHI, which includes statements of significance for any known or potential maritime • archaeological remains, assessing the impact of the proposed works on the archaeological potential in the Project area.

02-Jul-2020



Figure 1: Location of the proposed capital dredging works and rock armour protection work

# 1.5 Report methodology

This heritage assessment has been undertaken in accordance with the NSW Heritage Division guidelines Assessing Heritage Significance (NSW Heritage Office, 2001) and Statements of Heritage Impact (NSW Heritage Office & Department of Urban Affairs & Planning, 2002) and includes:

- desktop searches of relevant heritage registers;
- review of Project drawings and concept design reports;
- review of the following key documents:
  - Cosmos Archaeology 2014 maritime archaeological assessment,
  - heritage register listings for the Project area,
  - relevant historic shipwreck databases,
  - review of borehole data and Port Authority of NSW Hydrographic Survey data,
- assessment of the Project against the heritage significance of all known and potential maritime archaeological remains within the Project area. The assessment has been undertaken in light of the conservation processes and principles found in *The Burra Charter: The Australian ICOMOS Charter for Places of Cultural Significance* (2013). *The Burra Charter* is considered to be the preeminent guidance document for the management of change for places of heritage significance within Australia.

## 1.5.1 Report authorship and acknowledgements

The maritime archaeological component of this report has been prepared by Chris Lewczak (Principal Heritage Specialist and Maritime Archaeologist). Luke Wolfe (Senior Heritage Specialist) has prepared the Aboriginal heritage due diligence assessment. Dr Darran Jordan (Principal Heritage Specialist) provided a technical review of the content.

Section 7.0 has been prepared using the assessment data provided by Cosmos Archaeology. The entirety of the Cosmos Archaeology site inspection report has been included in Appendix A.

## 1.6 Report limitations

The purpose of this report is to identify and assess historic/maritime heritage and archaeological potential which might be impacted by the Project. Predictions have been made within this report about the probability of archaeological materials occurring within the site, based on landform indications and environmental contexts. However, it is possible that materials may occur in areas without landform indications and in any context. This report is based on the design for the Project made available at the time of assessment; it is noted that details of the Project may change or be refined.

A summary of the statutory requirements regarding historical heritage is provided in Section 2.0. The summary is provided based on the experience of the authors with the heritage system in Australia and does not purport to be legal advice. It should be noted that legislation, regulations and guidelines change over time and users of the report should satisfy themselves that the statutory requirements have not changed since the report was written.

# 2.0 Statutory legislation

# 2.1 Commonwealth legislation

## 2.1.1 Environmental Protection and Biodiversity Conservation Act 1999

The *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) defines the 'environment' as both natural and cultural environments and therefore includes Aboriginal and non-Aboriginal historic cultural heritage items. Under the EPBC Act, protected heritage items are listed on World Heritage List (WHL); the National Heritage List (NHL) (items of significance to the nation) or the Commonwealth Heritage List (CHL) (items belonging to the Commonwealth or its agencies). These two lists replaced the Register of the National Estate (RNE). The RNE has been suspended and is no longer a statutory list; however, it remains as an archive.

If proposed works are situated within the designated area or buffer zone of an item or place listed on the WHL, a referral must be made under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) if proposed action has, will have, or is likely to have a significant impact on the world heritage values of a declared World Heritage property.

The NHL is a register of natural and cultural places with outstanding heritage significance to the Australian nation. Each entry to the NHL is assessed by the Australian Heritage Council as having exceptional heritage value and is protected under the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999*. The Act requires that approval is obtained from the Australian Government Minister for the Environment Protection, Heritage and the Arts before any action takes place that has, will have, or is likely to have, a significant impact on the national heritage values of a listed place.

Under Part 9 of the EPBC Act, any action that is likely to have a significant impact on a matter of National Environmental Significance (known as a controlled action under the EPBC Act), may only progress with approval of the Commonwealth Minister for the Department of the Environment and Energy (DoEE). An action is defined as a project, development, undertaking, activity (or series of activities), or alteration. An action would also require approval if:

- it is undertaken on Commonwealth land and would have or is likely to have a significant impact on the environment on Commonwealth land; and
- it is undertaken by the Commonwealth and would have or is likely to have a significant impact.

# 2.2 State legislation

## 2.2.1 Environmental Planning and Assessment Act 1979

The *Environmental Planning and Assessment Act 1979* (EP&A Act), administered by the NSW Department of Planning and Environment (DP&E), requires that consideration be given to environmental impacts as part of the land use planning process in NSW. In NSW, environmental impacts include impacts to Aboriginal and non-Aboriginal (i.e., European) cultural heritage.

## 2.2.2 National Parks and Wildlife Act 1974

The *National Parks and Wildlife Act 1974* (NPW Act), administered by OEH, is the primary legislation for the protection of Aboriginal cultural heritage in NSW. The NPW Act gives the Director General responsibility for the proper care, preservation and protection of 'Aboriginal objects' and 'Aboriginal places', defined under the Act as follows:

- an *Aboriginal object* is any deposit, object or material evidence (that is not a handicraft made for sale) relating to Aboriginal habitation of NSW, before or during the occupation of that area by persons of non-Aboriginal extraction (and includes Aboriginal remains); and
- an Aboriginal place is a place declared so by the Minister administering the NPW Act because the place is or was of special significance to Aboriginal culture. It may or may not contain Aboriginal objects.

Part 6 of the NPW Act provides specific protection for Aboriginal objects and places by making it an offence to harm them and includes a 'strict liability offence' for such harm. A 'strict liability offence' does not require someone to know that it is an Aboriginal object or place they are causing harm to in order to be prosecuted. Defences against the 'strict liability offence' in the NPW Act include the carrying out of certain 'Low Impact Activities', prescribed in Clause 80B of the *National Parks and Wildlife Amendment Regulation 2010* (NPW Regulation), and the demonstration of due diligence.

An Aboriginal Heritage Impact Permit (AHIP) issued under Section 90 of the NPW Act is required if impacts to Aboriginal objects and/or places cannot be avoided. An AHIP is a defence to a prosecution for harming Aboriginal objects and places if the harm was authorised by the AHIP and the conditions of that AHIP were not contravened. Applications for an AHIP must be accompanied by assessment reports compiled in accordance with the *Guide to Investigating, Assessing and Reporting on Aboriginal Cultural Heritage in NSW* (OEH, 2011) and the *Code of Practice for Archaeological Investigation of Aboriginal Objects in NSW* (DECCW, 2010b). Applications must also provide evidence of consultation with the Aboriginal communities. Consultation is required under Part 8A of the NPW Regulation and is to be conducted in accordance with the *Aboriginal Cultural Heritage Consultation Requirements for Proponents* (DECCW, 2010a). AHIPs may be issued in relation to a specified Aboriginal object, Aboriginal place, land, activity or person or specified types or classes of Aboriginal objects. Section 89A of the NPW Act requires notification of the location of Aboriginal sites within a reasonable time, with penalties for non-notification. Section 89A is binding in all instances.

## 2.2.3 Sydney Regional Environmental Plan (SREP) – Sydney Harbour Catchment (2005)

NSW Regional Environmental Plans (REPs) are plans drafted by the Department of Planning and apply to a nominated "region," covering broad issues such as urban growth, commercial centres, extractive industries, recreational needs, rural lands, heritage and conservation. They provide the framework for detailed local planning by councils. The local council of the area in which development is proposed to be carried out is usually the consent authority for that development for the purposes of the Sydney Regional Environmental Plan (SREP), unless the Department of Planning selects to substitute the Minister or Director General of Planning as the consent authority in respect to particular forms of development.

The stated objectives of the *SREP* – *Sydney Harbour Catchment (2005)* with regards to foreshores and waterways areas are as follows (Section 53);

- a. to conserve the environmental heritage of the land to which this Part applies, and
- b. to conserve the heritage significance of existing significant fabric, relics, settings and views associated with the heritage significance of heritage items, and
- c. to ensure that archaeological sites and places of Aboriginal heritage significance are conserved, and
- d. to allow for the protection of places which have the potential to have heritage significance but are not identified as heritage items.

**Note:** Attention is drawn to the provisions of the Heritage Act 1977 and the National Parks and Wildlife Act 1974 under which an approval or permit under either or both of those Acts may be required for certain activities, whether or not development consent is required by this clause.

Part 5 of the *SREP* – *Sydney Harbour Catchment (2005)* contains provisions for the protection and conservation of cultural heritage sites, items and values – both Aboriginal and non-Aboriginal.

Under the SREP, a "heritage item" is defined as:

- a. a building, work, archaeological site or place:
  - *i.* that is specified in an inventory of heritage items prepared for the purposes of this plan, being an inventory that is available at the head office of the Department, and

- *ii.* that is situated on a site described in Schedule 4 and identified on the Heritage Map, or
- b. a place:
  - *i.* that is specified in an inventory of heritage items prepared for the purposes of this plan, being an inventory that is available at the head office of the Department, and
  - ii. that is described in the inventory as a place of Aboriginal heritage significance.

Clause 55 of the SREP provides protection for heritage items. Under this clause, the following development may be carried out only with development consent:

- a. demolishing or moving a heritage item,
- b. altering a heritage item by making structural or non-structural changes to its exterior, including changes to its detail, fabric, finish or appearance,
- c. altering a heritage item by making structural changes to its interior,
- d. disturbing or damaging a place of Aboriginal heritage significance or an Aboriginal object,
- e. erecting a building on, or subdividing, land on which a heritage item is located.

(2) Development consent is not required by this clause if:

- a. in the opinion of the consent authority:
  - *i.* the proposed development is of a minor nature or consists of maintenance of the heritage item, and
  - *ii.* the proposed development would not adversely affect the significance of the heritage item, and
  - iii. the proponent has notified the consent authority in writing of the proposed development and the consent authority has advised the applicant in writing before any work is carried out that it is satisfied that the proposed development will comply with this subclause and that development consent is not otherwise required by this plan.

(4) Before granting development consent as required by this clause, the consent authority must assess the extent to which the carrying out of the proposed development would affect the heritage significance of the heritage item concerned.

(5) The assessment must include consideration of a heritage impact statement that addresses at least the following issues (but is not to be limited to assessment of those issues, if the heritage significance concerned involves other issues):

- a. the heritage significance of the item as part of the environmental heritage of the land to which this Part applies, and
- b. the impact that the proposed development will have on the heritage significance of the item and its setting, including any landscape or horticultural features, and
- c. the measures proposed to conserve the heritage significance of the item and its setting, and

- d. whether any archaeological site or potential archaeological site would be adversely affected by the proposed development, and
- e. the extent to which the carrying out of the proposed development would affect the form of any historic subdivision.

(6) The consent authority may also decline to grant development consent until it has considered a conservation management plan, if it considers the development proposed should be assessed with regard to such a plan.

Clause 59 – Development in Vicinity of Heritage Items:

- 1. Before granting development consent to development in the vicinity of a heritage item, the consent authority must assess the impact of the proposed development on the heritage significance of the heritage item.
- 2. This clause extends to development:
  - a. that may have an impact on the setting of a heritage item, for example, by affecting a significant view to or from the item or by overshadowing, or
  - b. that may undermine or otherwise cause physical damage to a heritage item, or
  - c. that will otherwise have any adverse impact on the heritage significance of a heritage item.
- 3. The consent authority may refuse to grant development consent unless it has considered a heritage impact statement that will help it assess the impact of the proposed development on the heritage significance, visual curtilage and setting of the heritage item.
- 4. The heritage impact statement should include details of the size, shape and scale of, setbacks for, and the materials to be used in, any proposed buildings or works and details of any modification that would reduce the impact of the proposed development on the heritage significance of the heritage item.

## 2.2.4 Heritage Act 1977

The NSW *Heritage Act 1977* (as amended) was enacted to conserve the environmental heritage of NSW. Under Section 32, places, buildings, works, relics, movable objects or precincts of heritage significance are protected by means of either Interim Heritage Orders (IHO) or by listing on the NSW State Heritage Register (SHR). Items that are assessed as having State heritage significance can be listed on the SHR by the Minister on the recommendation of the NSW Heritage Council.

Proposals to alter, damage, move or destroy places, buildings, works, relics, movable objects or precincts protected by an IHO or listed on the SHR require an approval under Section 60. The 'relics provision' requires that no archaeological relics be disturbed or destroyed without prior consent from the Heritage Council of NSW. Therefore, no ground disturbance works may proceed in areas identified as having archaeological potential without first obtaining an excavation permit pursuant to Section 60 of the *Heritage Act 1977* or an archaeological exemption.

For the purposes of this Act, the State of NSW includes the seabed and the water column up to 3 nautical miles (nm) from the coast. The NSW *Heritage Act 1977* therefore, within 3 nm of the NSW coast, can protect shipwrecks. Shipwrecks currently under the jurisdiction of the NSW *Heritage Act* are identified in the Historic Shipwrecks Register, maintained by the NSW Heritage Council.

Part 3C of the Act contains provisions for the protection of shipwrecks over 75 years old. This section is included in the Act to provide a link to and consistency with the (Commonwealth) *Historic Shipwrecks Act 1976.* In NSW the 'relics' provision takes precedence over Part 3C when it comes to determining the legal and protected status of a wreck and associated artefacts.

Under Section 170 of the *Heritage Act 1977*, NSW Government agencies are required to maintain a register of heritage assets. The register places obligations on the agencies, but not on non-government proponents, beyond their responsibility to assess the impact on surrounding heritage items.

Archaeological features and deposits are afforded statutory protection by the 'relics provision'. Section 4(1) of the *Heritage Act 1977* (as amended 2009) defines 'relic' as follows:

any deposit, artefact, object or material evidence that:

- a. relates to the settlement of the area that comprises NSW, not being Aboriginal settlement, and
- b. is of State or local heritage significance.

## 2.3 Local legislation

#### 2.3.1 Sydney Local Environmental Plan 2012

The Project area is located within the City of Sydney Local Government Area (LGA).

Part 5, Section 5.10 of the Sydney Local Environmental Plan (LEP) 2012 deals with heritage conservation within the area covered by this LEP. All heritage items listed on the LEP are included in Schedule 5. The Sydney LEP states:

- (1) The objectives of this clause are as follows:
  - a. to conserve the environmental heritage of the City of Sydney,
  - b. to conserve the heritage significance of heritage items and heritage conservation areas, including associated fabric, settings and views,
  - c. to conserve archaeological sites,
  - d. to conserve Aboriginal objects and Aboriginal places of heritage significance.

(2) Development consent is required for any of the following:

- a. demolishing or moving any of the following or altering the exterior of any of the following (including, in the case of a building, making changes to its detail, fabric, finish or appearance):
  - i. a heritage item,
  - ii. an Aboriginal object,
  - iii. a building, work, relic or tree within a heritage conservation area,
- b. altering a heritage item that is a building by making structural changes to its interior or by making changes to anything inside the item that is specified in Schedule 5 in relation to the item,
- c. disturbing or excavating an archaeological site while knowing, or having reasonable cause to suspect, that the disturbance or excavation will or is likely to result in a relic being discovered, exposed, moved, damaged or destroyed,
- d. disturbing or excavating an Aboriginal place of heritage significance,
- e. erecting a building on land:
  - i. on which a heritage item is located or that is within a heritage conservation area, or
  - ii. on which an Aboriginal object is located or that is within an Aboriginal place of heritage significance,
- f. subdividing land:

02-Jul-2020

- i. on which a heritage item is located or that is within a heritage conservation area, or
- ii. on which an Aboriginal object is located or that is within an Aboriginal place of heritage significance.

## 2.4 Heritage register searches

In NSW the types of statutory listings for non-indigenous cultural heritage sites, objects and places are:

- WHL
- NHL;
- NSW SHR;
- REP;
- LEP; and
- Section 170 Heritage and Conservation Register.

Heritage register searches were undertaken 24 March 2020 for the Project area with the following results.

## 2.4.1 World Heritage List

The proposed works are situated within the buffer zone associated with Sydney Opera House. The impact of the works against the *Significant Impact Guidelines 1.1* (Department of the Environment, 2013:17) have been assessed in the Section 9 of this report.

#### 2.4.2 National Heritage List

There are no items listed on the NHL or CHL within the Project area.

The Sydney Harbour Bridge is listed on the NHL and the closest point from the Harbour Bridge listing to the Project area is 130m to the northwest. As the works would be contained to below the water level, there is not expected to be any direct or indirect impact to this heritage listing.

The Sydney Opera House is listed on the NHL and is located 370 m to the east of the Project area. As the works would be contained to below the water level, there is not expected to be any direct or indirect impact to this heritage listing.

## 2.4.3 NSW State Heritage Register

There are several items listed on the SHR located adjacent to the Project area. These include:

- Railings, Sydney Cove (item number 01572), located 10 m west of the Project area.
- Sydney Cove West Archaeological Precinct (item Number 01860), located 50 m west of the Project area.
- Cadman's Cottage, grounds, trees, space (item number 00981), located approximately 70 m to the west of the Project area.
- Sailor's Home (former) (item number 01576), located approximately 70 m to the west of the Project area.
- Coroner's Court (former) Shops & offices (item number 01541), located approximately 70 m to the west of the Project area.
- Mariners' Church (item number 01559), located approximately 70 m to the west of the Project area.
- ASN Co Building (item number 01526), located approximately 70 m to the west of the Project area.
- Campbell's Stores (item number 01536), located approximately 100 m to the west of the Project area.



Figure 2: Location of nearby Heritage items listed on the NHL. SHR and LEP

#### 2.4.4 NSW Historic Shipwreck Register

The NSW Historic Shipwreck Register is a database maintained by the NSW Heritage Division and contains upwards of 1,800 wrecks.<sup>1</sup> This database has been built up around historical accounts of the loss of vessels, mainly through the systematic examination of newspapers from the 1790s to the present day. The database has been augmented by other sources such as archival information from the Australian Hydrographic Office.

The database has been searched to locate any known or potential shipwrecks that have occurred in Sydney Cove. There are 112 registered vessels that are listed as wrecked in "Sydney Harbour" that have not been located. This description includes vessels that were reported lost within "Sydney Harbour Heads", or general locations such as "just outside Circular Quay" whereby the location may be further afield than the location described.

Refining the search to closer to the Project area, there was one shipwreck, *Sovereign of the Seas*, identified to have been lost at Campbell's wharf in 1861. The vessel was again refloated and it is considered unlikely that any evidence of the vessel will remain. Other vessels that had incidents in the vicinity of the Project area include *Three Bees*, *Ann Jameson* and *Princess*. These were either refloated, as was the case with the latter two, or have not been located but are unlikely to be within the Project area.

#### 2.4.5 Sydney Local Environmental Plan 2012

Identified items of cultural heritage significance within the Project area are listed on Schedule 5 of the *Sydney Local Environmental Plan 2012.* Each item listed on Schedule 5 is subject to protection under the planning and development controls of the LEP.

There are no listings on the Sydney LEP that are located within 100 m of the Project area.

#### 2.4.6 Sydney Regional Environmental Plan (Sydney Harbour Catchment 2005)

The Project site is located within the Foreshores and Waterways Area of Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005. Clause 15 of the SREP includes planning principles for heritage conservation relating to development within the Foreshores and Waterways Area. Part 5 of the SREP outlines the Heritage provisions that are afforded to heritage sites listed on Schedule 4 of the SREP.

Clause 53 outlines and the objectives of the SREP in relation to heritage are to:

- a) to conserve the environmental heritage of the land to which this Part applies, and
- b) to conserve the heritage significance of existing significant fabric, relics, settings and views associated with the heritage significance of heritage items, and
- c) to ensure that archaeological sites and places of Aboriginal heritage significance are conserved, and
- d) to allow for the protection of places which have the potential to have heritage significance but are not identified as heritage items.

Clause 52(2) sets out the specific objectives in the SREP that are specific to the WHL of the Sydney Opera House These are to

- to establish a buffer zone around the Sydney Opera House so as to give added protection to its World Heritage Value; and
- to recognise that views and vistas between the Sydney Opera House and other public places within that zone contribute to its World Heritage Value.

<sup>&</sup>lt;sup>1</sup> **NSW Heritage Office, 2007** 'Maritime Heritage Online', NSW, available http://www.environment.nsw.gov.au/maritimeheritage/index.htm

Division 3A, Clause 58B provides for the protection of the world heritage value of the Sydney Opera House. The following

- matters are to be taken into consideration in relation to development within the Sydney Opera House buffer zone:
- - the objectives set out in clause 53 (2);
- the need for development to preserve views and vistas between the Sydney Opera House and other public places within that zone;
- - the need for development to preserve the world heritage value of the Sydney Opera House;
- - the need for development to avoid any diminution of the visual prominence of the Sydney Opera House when viewed from other public places within that zone.

Minor works that are undertaken within the Sydney Opera House buffer zone are exempt requiring approval are set out in Clause 58C. Specifically exemptions from Division 3A that are relevant this project are:

- 1) This Division does not apply to or in respect of building work that merely involves
  - a) the renovation, repair, rebuilding or demolition of a building, or
  - b) internal alterations to a building, or
  - c) external alterations to a building that are carried out below ground level.

As the proposed works are al located underwater, these would be considered works that were carried out below ground level. As such, the Project would be considered to be 'Minor Works' as defined under Division 3, Clause 58C of the SREP. Therefore, no assessment would be required under the provisions of this SREP.

## 2.4.7 NSW Section 170 Heritage and Conservation Register

All NSW State Government Agencies are required to keep an up to date record to assist in total asset management by providing information on their assets which have identified heritage significance. The Register has been prepared in accordance with the NSW Heritage Office guidelines and corresponds with information in the State Heritage Inventory (SHI), as managed by the NSW Heritage Office. Relevant listed Section 170 items include:

- Sydney Cove Passenger Terminal listed on Port Authority of NSW's Section 170 Heritage and Conservation Register.
- Sydney Cover Passenger Terminal Extendible Gangways listed on Port Authority of NSW's Section 170 Heritage and Conservation Register.

# 2.5 Summary

The table below outlines the known and potential heritage and archaeological items that are located within or immediately adjacent to the Project area.

| Heritage list                 | Items within<br>the Project<br>Area  | Level of significance  | Items adjacent<br>to the Project<br>Area                          | Level of<br>significa<br>nce | Distance to<br>Project Area<br>(metres) |
|-------------------------------|--------------------------------------|------------------------|-------------------------------------------------------------------|------------------------------|-----------------------------------------|
| World Heritage<br>List        | Sydney Opera<br>House Buffer<br>Zone | World<br>Heritage List | Sydney Opera<br>House                                             | World<br>Heritage<br>List    | 370                                     |
| National<br>Heritage List     | Nil                                  | n/a                    | Sydney Opera<br>House                                             | National                     | 370                                     |
|                               |                                      |                        | Sydney Harbour<br>Bridge                                          | National                     | 130                                     |
| Commonwealth<br>Heritage List | Nil                                  | n/a                    | Nil                                                               | n/a                          | n/a                                     |
|                               | age Nil                              | n/a                    | Railings,<br>Sydney Cove<br>(#01572)                              | State                        | 10                                      |
|                               |                                      |                        | Sydney Cove<br>West<br>Archaeological<br>Precinct<br>(#01860)     | State                        | 50                                      |
|                               |                                      |                        | Cadman's<br>Cottage,<br>grounds, trees,<br>space (#00981)         | State                        | 70                                      |
| State Heritage<br>Register    |                                      |                        | Sailor's Home<br>(former) (item<br>number 01576)                  | State                        | 70                                      |
|                               |                                      |                        | Coroner's Court<br>(former) - Shops<br>& offices<br>(#01541)      | State                        | 70                                      |
|                               |                                      |                        | Mariners'<br>Church<br>(#01559)                                   | State                        | 70                                      |
|                               |                                      |                        | ASN Co<br>Building<br>(#01526)                                    | State                        | 70                                      |
|                               |                                      |                        | Campbell's<br>Stores (#01536)                                     | State                        | 100                                     |
| Port Authority of<br>NSW S170 | Nil                                  | n/a                    | Sydney Cove<br>Passenger<br>Terminalis                            | State                        | 40                                      |
|                               |                                      |                        | Sydney Cover<br>Passenger<br>Terminal -<br>Extendible<br>Gangways | State                        | 40                                      |

Table 1 Summary of listed heritage items within and/or adjacent to the Project site
| Heritage list          | Items within<br>the Project<br>Area | Level of significance | Items adjacent<br>to the Project<br>Area | Level of<br>significa<br>nce | Distance to<br>Project Area<br>(metres) |
|------------------------|-------------------------------------|-----------------------|------------------------------------------|------------------------------|-----------------------------------------|
| Sydney LEP<br>2012     | Nil                                 | n/a                   | Nil                                      | n/a                          | n/a                                     |
| NSW Historic           | Sovereign of the                    | Protected -           | Three Bees                               | Protected                    | Unknown                                 |
| Shipwrecks<br>Register | Seas                                | re-floated            | Ann Jameson                              | Protected                    | Unknown                                 |
|                        |                                     |                       | Princess                                 | Protected                    | Unknown                                 |

# 3.0 Aboriginal Archaeological Context

## 3.1 Landscape Context

Consideration of the landscape context of the Project area is predicated on the now well-established proposition that the nature and distribution of Aboriginal archaeological materials are closely connected to the environments in which they occur. Environmental variables such as topography, geology, hydrology and the composition of local floral and faunal communities will have played an important role in influencing how Aboriginal people moved within and utilised their respective Country. Amongst other things, these variables will have affected the availability of suitable campsites, drinking water, economic<sup>2</sup> plant and animal resources, and raw materials for the production of stone and organic implements. At the same time, an assessment of historical and contemporary land use activities, as well as geomorphic processes such as soil erosion and aggradation, is critical to understanding the formation and integrity of archaeological deposits.

For the current Project, consideration of the paleo-landscape and environs of the Sydney foreshore area is pertinent to determining the potential for submerged, formally-terrestrial Aboriginal sites. The terms 'submerged' and 'formally-terrestrial' site in this context refer to those Aboriginal sites that may have been inundated around 15,000 to 18,000 B.P.<sup>3</sup> during the last major phase of maximum glaciation and marine transgression (Nutley, 2006). It is now widely accepted that fluctuations of sealevel associated with glacial - interglacial phases would have resulted in a maximum sea-level variation of approximately 120 m. Additionally, relatively short phases would have occurred in which sea levels were at or above the present level (Lewis et al., 2013). While the body of submerged archaeological research in Australia remains at present, relatively scarce, several studies suggest the potential for survival of such sites associated with these phases of environmental change (C. Dortch, 2002; C. E. Dortch & Morse, 1984; Westley et al., 2011; Yanko-Hombach, Valentina Mudie & Gilbert, 2011). The potential for these sites however, remains largely hypothetical, complicated by the need of both specialised equipment and personnel to investigate underwater environments. Physical evidence (i.e., artefacts, intact middens etc) has yet to been identified in Australia, so archaeological investigations must, for the time being, rely on secondary evidence including bathymetrical, geotechnical and environmental data to identify the presence of Potential Archaeological Deposits (PADs) in submerged environs. It follows however, that a degree of interpretation is required to determine the prehistorical environs of the Project area prior to inundation. A summary of key observations and predictions regarding the landscape context of the Project area are presented in Table 2.

#### Table 2 Review of landscape context of the Project Area

| Environment<br>al Variable | Key Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topography                 | The terrestrial morphology of Sydney Harbour (also 'Port Jackson'), prior to<br>inundation, is described as a series of deep and steep-sided river valleys<br>controlled by the underlying geological structures of the Sydney Basin. Initially<br>formed during the Permian-Triassic geologic period as an uplifted coastal plain,<br>watercourses later eroded pathways into the Hawkesbury Sandstone bedrock.<br>Throughout the Last Glacial Maximum (approximately 24,000 to 18,000 years<br>B.P.), sea levels in the Australasian region were around 100 to 130 m below the<br>current level. Between 19,000 to 18,000 years B.P., a climate reversal resulted in<br>deglaciation and a subsequent rapid rise in global sea levels. By about 10,000<br>years B.P., sea levels in south-eastern Australia had risen and it was around this<br>time that Port Jackson embayment was flooded, drowning the ancient valley<br>systems underlying the current Middle Harbour, Parramatta River and Lane Cove<br>River environs. Marine sediments and delta sands were subsequently pushed |

<sup>&</sup>lt;sup>2</sup> i.e., edible and/or otherwise useful (e.g., medicine, clothing)

<sup>&</sup>lt;sup>3</sup> B.P. stands for Before Present. As the present is in a constant state of flux, it was defined in relation to B.P. as being 1950 A.D. (the choice of year generally being attributed to that being when practical radiocarbon dating was developed). A.D. stands for Anno Domini which is Latin for "in the year of the Lord", referring to the Gregorian calendar which has a zero point estimated to be the year that Jesus Christ was born. The alternative term for A.D. is C.E. or Common Era.

| Environment<br>al Variable | Key Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | landwards, infilling Port Jackson whilst additional sedimentation occurred in the middle and upper portions of these valleys with the deposition of estuarine muds and tidal sands. Between about 7,900 to 7,700 years B.P., the sea level along south-eastern Australia reached its present level. During this phase, former overhangs and cliff lines that had previously formed within the Hawkesbury Sandstone bedrock were inundated and infilled with sediments as described above.                                                                                                                                                                                                                                                                                                                                                                                  |
| Hydrology                  | Prior to colonisation, the Tank Stream would have been the primary freshwater source for Aboriginal peoples occupying the Port Jackson area. Although now heavily modified, the Tank Stream was one of the principle influencing factors which guided Governor Arthur Phillip's decision to use Sydney Cove instead of other bays in Port Jackson for the colony in 1788 (Figure 2). A minor tributary of the Tank Stream, named in 1788 as Hospital Creek, followed a course across George Street before discharging to the Tank Stream near the area now occupied by Circular Quay. At this time, the Tank Stream itself was described as a narrow 'ferny gully' which flowed north through a small valley from the elevated ground located in the area now bounded by Market, Park, Elizabeth and Pitt Streets and discharged into Sydney Cove (Owen & Macphail, 2018). |
|                            | To accommodate the needs of the establishing colony, settlers cleared vegetation<br>around the Tank Stream to facilitate greater access for stock grazing and to<br>satisfy other urban requirements. Within two years the watercourse had become<br>polluted with urban runoff, sewerage and stock-related impacts. Construction of<br>new residential dwellings were consequently banned and tanks were built near<br>Bridge Street to capture what little useable water remained, giving rise to the<br>name. While a 15 m wide 'green belt' was declared in 1804, by 1826 the Tank<br>Stream had ceased to be used as a water supply.                                                                                                                                                                                                                                  |
| Geology and<br>Soils       | Reference to the Sydney 1:100,000 Geological Sheet (1983) indicates that the Project area is underlain by Quaternary-aged stream alluvium / estuarine sediments, which in turn lie on Triassic-aged Hawkesbury Sandstone bedrock, described as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | <ul> <li>Stream alluvium and estuarine sediments: silty to peaty quartz sand silt and clay with common shell layers;</li> <li>Sandstone: medium to coarse grained with very minor shale and laminite lenses.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | As described above, around the Last Glacial Maximum, the Tank Stream channel extended northwards before draining into Sydney Cove. Reference to recent geotechnical investigations undertaken by (Coffey Pty Ltd, 2019) indicate that soils comprising clayey sands, sandy clays and clays form the deeper subsurface profile within the Project area. Where such sediments were interpreted as being intact (i.e., not impacted by previous dredging operations), these sandier soils are suggestive of marine and tidal delta sediments, while deeper clays exhibiting medium to high plasticity indicate estuarine conditions.                                                                                                                                                                                                                                          |
| Flora and<br>Fauna         | Vegetation records of the vicinity of the Project area may be interpreted from a variety of sources, including both historical ethnographic literature and pictorial representations, as well as palynological <sup>4</sup> data. For instance, on 22 January 1788, sailor James Nagle observed vegetation <i>"comprising all bushes but a small distance at the head of the cove was level and large trees but scattering and no underwood worth mentioning</i> ". Palynological analysis undertaken by McPhail and Owen (2018) for a site located approximately 150 m from the Project area, indicate the pre-1788 vegetation community in the area was dominated by                                                                                                                                                                                                     |

<sup>4</sup> Being the study of plant pollen, spores and certain microscopic plankton organisms.

| Environment<br>al Variable | Key Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Rainbow Fern and Casuarina, associated with a relatively diverse sclerophyll shrub flora. Rarer evidence of tree ferns and fern species common to wet gully environs were also identified, though species suggestive of mangrove conditions at 1788 were absent. While these observations provide a relative indication for pre-1788 conditions, a greater deal of interpretation is required to estimate conditions during post-Last Glacial Maximum (LGM) conditions when sea levels were lower. To date, no palynological studies have been undertaken on sediments in the Project area. However, it is feasible to surmise that mangrove or similarly-deltaic conditions may have existed based on observed estuarine soils encountered at depth within the Project area.                                                                                                                                                                                                                                                                                                                                                                            |
|                            | As with vegetation, determining with any certainty the pre-European faunal<br>landscape of the Project area and environs is difficult to determine from post-LGM<br>conditions. However, consideration of pre-European vegetation regimes and local<br>archaeo-faunal assemblages suggests that a range of marine and terrestrial<br>faunal resources would have been present in the area. Locally occurring marine<br>resources, for example, are likely to have consisted of a wide range of fish and<br>shellfish, Crustacea such as crabs and crayfish, and other marine mammals<br>including turtles and dugongs (Etheridge, 1905). Attenbrow (V. Attenbrow, 2010)<br>notes that the results of the excavation of Aboriginal midden sites throughout<br>Sydney have found that shellfish harvesting generally occurred in all parts of the<br>estuary but with most fishing conducted in the lower parts of the estuary. A<br>diverse array of terrestrial mammals (for example, kangaroos, wallabies,<br>possums, birds, reptiles and amphibians), would have also been available in<br>woodland areas surrounding and including the Project area. |
| Historical<br>Disturbance  | A Descriptions of historical disturbances is outlined in Section 5.0 below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



Figure 3: Tank Stream and Foreshore, c. 1788

This historical background has been put together based on the previous AECOM and Cosmos Archaeology assessments that were both undertaken in 2014. Additional research has been undertaken to supplement this history.

## 5.1 Early European occupation

The First Fleet disembarked at the eastern end of what is today Argyle Street on 26 January 1788. The original shore line ran roughly along the current alignment of Circular Quay West Road and the western edge of the foreshore promenade. The relatively flat land along the shoreline was taken up by Government infrastructure and George Street (originally High Street) was formed to service the hospital, gaol, Government Dockyards and Commissariat Stores (Sydney Harbour Foreshore Authority, 2010). Robert Campbell was the first merchant to establish a private wharf, in Campbells Cove, but he was soon to be followed by many more. Housing for the convicts, emancipists, free-settlers and sailors was pushed up onto the sandstone outcrops that rose to the west. Houses, hotels and shops were constructed on land granted and leased from the Government, however, unofficial occupation was the most common form of tenure.

The administration of the Colony quickly moved towards providing the necessary maritime and social infrastructure. The first wharf was in operation by 1792, in the vicinity of present day First Fleet Park. On the western side of George Street was a Hospital and store (Figure 4). To the north Government dockyards were in operation from 1797 and facilities included workshops, storehouse, boat sheds, sawyers sheds, saw pits, a watch house and a room for the clerk (NSW Heritage Division, 2014). In 1816 the coxswain's barracks, now known as Cadman's Cottage was completed at the northern end of the yards (Figure 5 no.26). Between 1818 and 1822 improvements to the dockyard led to the construction of four repairing docks (Figure 5, no.29). The northern-most of these is thought to be located under the eastern end of Argyle Street and Barney and Bligh Reserve, located in the space between Argyle Street and Cadman's Cottage (NSW Heritage Division, 2014). From the 1830s the dockyards began to contract to the south. A map of the area, purported to show Sydney between 1810 and 1820, although not completed until the 1860s, indicates that the vicinity of the present day OPT was occupied by Captain Piper, whose property contained a building near the George Street frontage with a rocky foreshore and possible wharf. Moving north were Campbell's house, stables and wharf (Figure 5).

Construction of Circular Quay between 1854 and 1855 saw the Macquarie era docks in-filled and the land reclaimed. Between 1859 and 1863 Argyle Street was extended out over the reclaimed land. The extension of Argyle Street cut the Colonial Storekeepers building off from the dockyards and these were demolished, with new stores being built to the south of Argyle Street (NSW Heritage Division, 2014). The original foreshore remained evident in front of Cadman's Cottage until 1870-75, when the area was filled and raised. A plan by Henry Percy Dove, completed sometime between 1870 and 1890, indicates the extent of the land in front of Cadman's Cottage and the Sailor's Home.



Figure 4: 1807 map excerpt of the OPT area and proposed extension. (Source: James Meehan, 1807, Plan of the town of Sydney in New South Wales, National Library of Australia, MAP F 106B. Project area in red

Figure 5: Sydney from 1810 to 1820: shewing buildings erected by Governor Macquarie, National Library of Australia, MAP F 309. Project area in red

## 5.2 Later Developments

Following a purported outbreak of bubonic plague in 1900, large areas of The Rocks were resumed by the Government (Figure 6). Large areas were demolished and a process of redesign was undertaken that saw the realignment of some streets and the construction of terrace housing and flats in some areas. Redevelopment was slow and it was not until just before the First World War and into the 1920s that progress was made. The construction of the Sydney Harbour Bridge caused further demolitions and divided The Rocks from Millers Point. Similarly, the construction of the Cahill Expressway in the 1950s cut The Rocks off from the centre of Sydney and gave rise to further demolition.



Figure 6: Plan of the Rocks showing the resumption of land by the City of Sydney. (Source: Source: City of Sydney, 1901, Plan Showing The "Rocks" Resumption, State Records NSW, Darling Harbour Resumption Maps, 1900-1902)

In tandem with the development of the Opera House site, the Sydney Cove Redevelopment Authority was established in 1968. The purpose of the Authority was to redevelop and manage The Rocks. What little land remained in private ownership was bought and today the only property not owned by the Authority is St Patricks Church (Sydney Harbour Foreshore Authority, 2010).

In 1971 the Authority released its plan for the area, which involved high-rise development across The Rocks. The only historic buildings to be spared were Cadman's Cottage, St Patricks Church, Science House, Argyle Bond Store, the Australian Steam Navigation Company and Campbell's Storehouse. The facades of some other buildings were slated to be retained. The public were horrified at the proposed redevelopment, but their concerns were not addressed by the Government. Instead, local residents asked the building unions to impose a ban on construction, known as a 'green ban'. The green bans effectively halted the redevelopment. In the intermediary, the Authority began to refurbish some of the buildings and began to form a shopping precinct along George Street, which started to attract locals and tourists alike (Sydney Harbour Foreshore Authority, 2010).

The introduction of the *NSW Heritage Act in 1977* provided a statutory means of protecting the heritage significance of The Rocks. From the late 1980s the Authority was known as the Sydney Cove Authority, changing its name again in 1999, when it became the Sydney Harbour Foreshore Authority (SHFA). In the same year planning power for The Rocks was vested in the NSW Minister for Planning.

### 5.3 Overseas Passenger Terminal and Wharf

Following the Second World War, passenger movements increased from 20,000-30,000 per year to 160,000 in 1962. The increase in arrivals and departures was a result of increased immigration, tourism and short cruises. Ships were increasing in size and there were increasing needs for customs clearance and visitor facilities. The Maritime Services Board had created stop-gap measures at Pyrmont in the early 1950s, followed by Woolloomooloo from 1956. During this time the Board was investigating more permanent measures.

Sydney Cove was selected for a passenger terminal "due to its proximity to public transport; its situation in a bustling commercial centre surrounded by stately buildings and with a rich local history" (Sydney Ports Corporation, 2014). The Board was spurred into action by P&O Orient's announcement that they were to construct two super liners for the Australian route – Oriana and Canberra.

Construction of the OPT began in 1958 with the demolition of wharves and sheds (Figure 7, Figure 8 & Figure 9) on the site that had been constructed between 1900 and 1903 for use by the shipping firm Norddeutscher Lloyd (Weber Lehmann & Co.) (Conybeare Morrison International, 2005). Figure 11 shows the sheds as they existed prior to demolition, the caption for which indicates the sheds may also have been used by the E&A (England and Australia Company) and was known as Berth No. 5. The sheds were constructed on the wharf and it would appear from later images (Figure 12), that the northern-most of these sheds was retained during the construction of the OPT, but was demolished by approximately 1965 (Figure 12). The area was converted from wharf to reclaimed land in 1969 (Sydney Harbour Foreshore Authority, 2012). During the preparation works for the OPT, evidence of this earlier wharfage was uncovered and photographed (Figure 13).

The wharf for the OPT was built from 14 reinforced concrete caissons (Figure 14), which created a 720 foot long seawall (220 m). Following the construction of the seawall, the space behind was backfilled to reclaim the area. Each of the caissons was 50 feet long and surmounted by reinforced concrete seven feet high. At the northern end, steel sheet piling was used to join the new seawall to the old adjacent wharf.



Figure 7: 1933 Aerial Photograph showing the configuration of the OPT and Wharf No.7. Project Area shown in red.



Figure 8: 1960s aerial photograph showing the configuration of the OPT after the expansion works and Wharf No.7.



Figure 9: 1980 aerial photograph showing what appears to be the demolition of Wharf No.7. Project Area shown in red.



Figure 10: E&A Berth No. 5, Circular Quay, 1919. (Source: Government Printing Office, 1919, Mitchell Library, NSW, 1-25041)



Figure 11: View of northern end of the wharf and OPT in 1961 with P&O Liner Oriana. The last of the previous warehouses can be seen in the foreground. (Source: Wolfgang Sievers, 1961, National Library of Australia, 791186)



Figure 12: View of northern end of the wharf and OPT in about 1965. Note the warehouse has been removed and the shed present on Wharf No. 7 in the foreground. (Source: Anon., c. 1965, City of Sydney Archives, SRC4534)



Figure 13: Earlier wharves uncovered during construction of the Overseas Passenger Terminal. (Source: Anon., 1960, City of Sydney Archives, NSCA CRS 48/1201)



Figure 14: Detail of caissons during construction. (Graeme Andrews, 1985, 'Working Harbour' Collection, City of Sydney Archives, 80327)

The original Terminal building allowed a 40 foot (12 m) apron to the Cove and was 625 by 111 feet (190.5 by 34 m). The ground floor was dedicated to cargo, while the first floor contained customs and passenger facilities (Sydney Ports Corporation, 2014).

The Terminal was officially opened on 20 December 1960 by the Honourable J.B. Renshaw, MLA Deputy Premier, Treasurer and Minister for Lands. Ten days later the Oriana arrived on her maiden voyage. The Section 170 Register listing states:

"Over the next two decades the terminal was the arrival point of many newcomers to Australia and as such played an important role in the history of Australia of which the contribution of migrants to Australian life is a large part."

(Sydney Ports Corporation, 2014)

The advent of cheaper air travel in the 1980s, however, saw a decline in passenger numbers. By 1983 it was suggested that nearly a third of the terminal was no longer required. Between 1985 and 1987 Lawrence Nield and Partners worked on a redevelopment for the Terminal, which included the insertion of restaurants and cafes and the construction of the tower structure in the north eastern corner of the OPT. The Nield and Partners redevelopment was recognised by the Royal Australian Institute of Architects with a merit award in the Public and Commercial Buildings category for 1988 (Conybeare Morrison International, 2005). Lawrence Nield described his approach to the building thus:

"When precast panels were stripped away, that the great portals and the floating butterfly roof could become essential elements in the architectural language of the terminal. From these were developed 'figures' such as the glass butterfly roof, porte cocheres which became easily part of family of forms with the main butterfly roof. The use, reuse and adaptation of the portals made a major supporting figure. Similarly a tower was appropriate at the northern end of the building, both as an urban pivot and a reference to nearby towers at the Australian Steam Navigation building and the Mining Museum. This urban figure developed dialogue with the new lift tower at the southern end of the building.

(Conybeare Morrison International, 2005)

On completion in 1960, the northern termination of the wharf was L-shaped and contained the remnant earlier warehouse until around 1965 (see Figure 11). Following the removal of the warehouse, the space was used as a car park. The configuration of the wharf remained unchanged until the mid-1980s. In association with the construction of Nield and Partners northern tower, the wharf was reconfigured to reflect the shape of the tower and to provide a mooring point. During the revitalisation of Campbells Cove, the wharf frontage was reshaped into its current configuration. As part of this, the finger wharf that had been in existence in Campbells Cove since the 1890s, was diminished to its current stature.

Further redevelopment of the OPT was undertaken in the lead up to the 2000 Olympics in order to provide enhanced public access. This included the insertion of three new restaurants, new lifts, improved foreshore access, public viewing decks on the top two levels and the restoration of Arthur Murch's mural (Conybeare Morrison International, 2005). There were no modifications to the wharf as part of this upgrade.

## 5.4 Campbells Cove

Campbells Cove was initially granted to millwright John Baughan in 1794. Baughan died in 1797 and the property was sold to Robert Campbell. Campbell came to Sydney in 1798 as a representative of Campbell, Clark and Company, to finalise affairs surrounding the loss of the speculative cargo ship Sydney Cove, which had been lost in Bass Strait in 1796.

Campbell purchased the property during this trip. Campbell returned to India, where he had been based, before settling in Sydney in 1800 (Conybeare Morrison International, 2005). Following his return to Sydney, he began constructing warehousing and a wharf in what is now known as Campbells Cove. He had a minor setback due to his support of Governor Bligh, but was restored to his property and position following the arrival of Governor Macquarie (Conybeare Morrison International, 2005).

Over the next several decades Campbell and his sons continued to develop the warehousing and wharfage facilities. The family operated business struck financial difficulties in the mid-1830s, narrowly holding on to the property. In 1841 Campbell applied to the Colonial Secretary to enlarge the wharf so ships could unload at low tide. The application was granted. A large rock which was too large to be removed was incorporated into the wharf as a foundation. In 1843 the property was mortgaged to The Australian Trust Company for £10,000. It is unknown if this was a sign of further financial difficulties or the mobilisation of capital to further improve the facilities. Campbell died in 1845, leaving his property divided between six heirs.

By 1845 Campbell's Wharf contained a house, stores, warehouse and wharf, and at the northern end there were three stores plus an office and store. There was also a cottage for the overseer and an empty timber woolshed. In 1858 there were another five warehouses of stone and slate roofs and soon afterwards the construction of additional warehouse bays commenced with a total of 11 bays by 1861. The warehousing was leased to a range of tenants (Figure 15) (Conybeare Morrison International, 2005).



Figure 15: Campbells Cove and Circular Quay, Sydney from Dawes Point ca.1870. (Source: State Library of NSW SPF / 786)

There appears to have been a disagreement between Campbell's heirs and the later holders of the mortgage, as the matter was taken to the Supreme Court in 1877, where they were successful. At that time negotiations were already underway with the Australasian Steam Navigation Company (ASN Company), who were looking for new wharfage, having outgrown their Sussex Street premises. The

sale had been completed by 1876 and the ASN Company then applied to the Minister of Lands for permission to erect piled jetties in the harbour.

Approval was granted on 1 May 1876. The works included a 320 foot wharf built along the foreshore and two jetties, one of 250 feet and the other of 350 feet in length (see Figure 18). Turpentine was used for the timbers subject to the water, with ironbark and other hardwoods for braces, beams and planking (Conybeare Morrison International, 2005).

In 1878 the sandstone warehousing, formerly known as Campbell's Bonded Stores, became The Metcalfe Bond and Free Stores. Between 1882 and 1887 the third storey was added. In 1879 the southern part of the wharf was leased to the Peninsular and Oriental Steam Navigation Company. From 1880 sections of the land were sold off around the periphery, particularly that facing George Street. Despite this, the ASN Company found themselves in financial difficulty. The Company amalgamated with the Queensland Steam Navigation Company in 1886 to become the Australasian United Steam Ship Company. The Company offered the Colonial Government the wharf for £300,000. The Government made a counteroffer of £275,000 in 1887, which was accepted. Formal conveyance occurred on 28 October 1887 (Conybeare Morrison International, 2005). In the mid-1890s the Government undertook wharfage improvements, as shown in Figure 16.



Figure 16: Plan of wharfage improvements in Circular Quay showing the works completed (red), in progress (green) and proposed (yellow). (Source: Government Printing Office, 1893-1894, Plan of Circular Quay Wharfage Improvements)

The Government renounced the Peninsular and Oriental Steam Navigation Company's lease, giving it instead to Blackwall and Company. In 1901 the Sydney Harbour Trust took over management of the site and contracted Norddeutscher Lloyd to build a 1,000 by 40 foot wharf along the western side of Sydney Cove (where the current OPT wharf is located), which was located on the site of the future OPT (Conybeare Morrison International, 2005). The works also included the removal of the two 1876

jetties and the erection of a single, central wharf (Figure 17). The new wharf was known as Wharf No. 7 and was predominately used for commercial shipping. There was a decline in international commerce from the 1930s onwards, with commercial use of the area ceasing with the construction of the OPT in 1960 (Conybeare Morrison International, 2005). Around this time the wharf was taken over by the Maritime Services Board and used to station various work vessels that operated in Sydney Harbour (Figure 18 to Figure 22).



Figure 17: 1909 Royal Commission on Sydney Improvements Plan Showing the Extension of George Street to Dawes Point (Plan No.35). Note: this plan shows the newly constructed Campbells Cove Wharf (7a and 7b). (New South Wales Parliamentary Papers, 1909, Interim Report of the Royal Commission for the Improvement of the City of Sydney and its Suburbs, Vol. 5:383, Plan No. 35, available http://www.photosau.com.au/cosmaps/scripts/displayIndex.asp?Index=RC19)



Figure 18: 1980 plan of Campbells Cove showing Wharf No. 7, approximately 110 m long and 28 m wide. (Source: The Maritime Services Board of New South Wales 1980 Hydrographic Survey at Overseas Terminal Sydney Cove, Cosmos Archaeology, NSW)



Figure 19: Photograph taken of Patriarch at Campbells Wharf, Sydney Cove, ca.1930s. (Source: Cyril Hume, c. 1930, PATRIARCH at Campbells Wharf Sydney Cove, Cyril Hume Sailing Ship Collection, Sydney Heritage Fleet)



MODERN BUKBUKS AMART SUMA Conclustion of the 19th conduct. ALTO JUNE '79. 6

Figure 20: Sydney Cove, Wharf No. 7 area showing the 1901-1980 wharf in 1979. (Source: Graeme Andrews 'Working Harbour' Collection: 80403 GKA in the City of Sydney Image Library)



Figure 21: 1935 photograph of Campbells Cove showing Wharf No. 7. (Source: E.W. Searle collection of photographs at National Library of Australia nla.pic-vn4655456)



Figure 22: Photograph of Campbells Cove in 1979. (Source: Graeme Andrews 'Working Harbour' Collection: 80419 GKA in the City of Sydney Image Library)

# 6.0 Aboriginal Archaeological Context

## 6.1 AHIMS Search

The AHIMS database, administered by the NSW Department of Premier and Cabinet, contains records of all Aboriginal objects in accordance with Section 89A of the NPW Act. It also contains information about Aboriginal places, which have been declared by the Minister to have special significance with respect to Aboriginal culture. Previously recorded Aboriginal objects and declared Aboriginal places are known as 'Aboriginal sites'.

A search of the AHIMS database on 4 March 2020 for an approximate 2 x 2 kilometre (km) area centred on the Project area (AHIMS search area) returned 27 site entries (Figure 23). Of these, four sites were listed as 'destroyed' and a further two listed as 'Not a Site' (being registrations which on further investigation have proven not to be of Aboriginal origin). Of the remaining 21 sites, open artefact sites and areas of Potential Archaeological Deposit (PAD) were equally the most common, both representing 42.5% (n=9) respectively, for the total AHIMS search area. Other, comparatively poorly represented types include one Ancestral Burial/Aboriginal Ceremony and Dreaming site, one rock art site and one midden containing shell material. No registered Aboriginal sites are located within the Project area, though it is noted that AHIMS sites are typically only located on terrestrial environs. The closest registered site however, is 'Harrington IFS01' (AHIMS #45-6-3762), located approximately 280 m south west of the Project area. The prevalence of open artefact sites attests to the practical nature of Aboriginal occupation within the AHIMS search area. It is noted that a number of these sites (n=4) are located on the northern foreshore area of Sydney, near Balls Head. Areas of PAD, meanwhile, suggest the limited intrusive investigations of Aboriginal heritage within the Central Business District (CBD) area of Sydney, likely owing to access limitations. Summary details of the sites, the location of which is shown on Figure 23 (in addition to other sites in the search area), are provided in Table 3.

| Site type          | AHIMS feature(s)                                               | n  | %     |
|--------------------|----------------------------------------------------------------|----|-------|
| Midden             | Artefact/s, Shell material                                     | 1  | 5%    |
| Art                | Art (Pigment or Engraved)                                      | 1  | 5%    |
| Burial             | Ancestral Burial; Aboriginal Ceremony and Dreaming; Artefact/s | 1  | 5%    |
| Open Artefact Site | Artefact/s                                                     | 9  | 42.5% |
| PAD                | Potential Archaeological Deposit                               | 9  | 42.5% |
| Total              | -                                                              | 21 | 100%  |

#### Table 3 AHIMS Search Results



Figure 23: AHIMS Search Results

#### 6.2 Native Title

A search of the National Native Title Register (NNTR) and Register of Native Title Claims (RNTC) administered by the National Native Title Tribunal (NNTT) was undertaken for the City of Sydney Council LGA, inclusive of land within and surrounding the Assignment Area. No current Native Title listings or claims were identified within the City of Sydney LGA.

## 6.3 Aboriginal Archaeological Context

Available archaeological data indicate that Aboriginal people have occupied the Sydney region<sup>5</sup> for at least 36,000 years (Jo McDonald CHM 2005b). Late Pleistocene/early Holocene occupation of the Greater Sydney region is evidenced by radiometric dates from both coastal and hinterland sites (Val Attenbrow, 2010) (Table 3.1). The Project area is located within the traditional lands of the Cadigal Aboriginal people, a member of the Eora language group (Horton, 1994), who referred to Sydney Cove as 'Warrane' (Sydney Harbour Foreshore Authority, 2014). There has been debate regarding the use of the name Eora as a separate language group, with its use only introduced in later sources and not contained in the earliest ethnographic recordings. This suggests that the Eora area was either part of the Kuring-Gai area or the Darug area (Val Attenbrow, 2010) based on the available linguistic evidence (Ross, 1988). Some studies have argued that the Darug territory extended to the coastline between Port Jackson and Botany Bay, based on the ethnographic observations of explorers and settlers (J. Kohen, 1985, 1988; J. Kohen & Lampert, 1987). Darug is believed to have been spoken from the Hawkesbury River in the north, to Appin in the south, and from the coast west across the Cumberland Plain into the Blue Mountains. Early sources (Collins, 1798; Dawes, 1790; Hunter, 1793; Tench, 1793) and more recent linguistic research (Troy, 1994) indicate that two distinct dialects of Darug were spoken at the time of European contact, a coastal dialect, spoken on the Sydney peninsula and the country to the north of Port Jackson, and a hinterland dialect, spoken on the Cumberland Plain from Appin in the south to the Hawkesbury River in the north (Val Attenbrow, 2010). This linguistic division is thought to correspond to a broader economic division between 'coastal' and 'hinterland' Darug-speaking peoples, with the accounts of several early observers (V. Attenbrow, 2010; Bradley, 1792; Collins, 1798, 1802; Tench, 1793) suggestive of a 'coastal', marine-oriented subsistence economy and contrasting 'inland' economy focused on the exploitation of land mammals, plant foods and freshwater faunal resources. Some idea of population size for the coastal Darug at contact is provided by (Val Attenbrow, 2010), who suggests that the area around Port Jackson likely supported a minimum population density of 0.75 persons per square kilometre (i.e.1 person/1.3 square kilometre). Attenbrow's estimate is based on Governor Phillip's own estimate of the Aboriginal population of this area, made in 1788. Phillip, reporting to Lord Sydney on 15 May 1788, estimated a total population of not "less than one thousand five hundred" ((Val Attenbrow, 2010)). Attenbrow (2010:17), citing Hunter (1793 [1968]: 62), notes that "population densities for the hinterland (west of Parramatta) were initially assessed by the colonists as being less than those along the coast" but urges interpretive caution given the deleterious effects of the 1789 smallpox epidemic, which "had killed many people living to the west of Rose Hill before Phillip's 1791 expedition crossed the Cumberland Plain to the Hawkesbury-Nepean River". More recently, (James Kohen, 1995) has estimated a minimum overall density of around 0.5 persons per square kilometre for the hinterland zone. Individual band sizes notwithstanding, much larger groups of Aboriginal people, numbering in the hundreds, are known to have come together for events such as corroborees, ritual combats and feasts (V. Attenbrow, 2010; J. Kohen et al., 1999).

Available historical records indicate that a wide range of marine and freshwater fauna were exploited by Darug-speaking peoples for food and other resources (See (Val Attenbrow, 2010). Along the coast, an emphasis on the exploitation of marine resources, principally fish and shellfish, is attested in the writings of several early observers (e.g., (V. Attenbrow, 2010; Bradley, 1792; Collins, 1798, 1802; Tench, 1793)). Compared with their faunal counterparts, the plant food resources of coastal Darugspeaking peoples are poorly represented in the writings of early colonial observers. Nonetheless, available descriptions do suggest that plants formed a regular part of the diets of groups in the area (V. Attenbrow, 2010). Along the coast, a "vegetable catalogue" consisting of "a few berries, the yam

<sup>&</sup>lt;sup>5</sup> Following Attenbrow (2012a), the land bounded by the coast on the east, by the Hawkesbury-Nepean River on the north and west, and by a line running east-west through Picton and Stanwell Park in the south.

and fern root, the flowers of the different Banksia, and at times some honey" is reported by Collins (Collins, 1798)(1798 [1975:462-63]). A wide range of hunting and gathering 'gear' was employed by Darug speaking peoples, with distinctive repertoires for men and women (McDonald, 2008: 24). Men's gear included several different forms of spears (variously barbed), spear throwers, clubs, 'swords', boomerangs, shields and hafted stone hatchets. Women's toolkits, in contrast, included fishing hooks, lines and sinkers, digging sticks and various containers (shell and wood). Net bags made from plaited wood fibre appear to have been used by both men and women (Val Attenbrow, 2010). Bark canoes were also widely used (Val Attenbrow, 2010)).

#### 6.4 Submerged Site Preservation

As stated by Nutley (2006:1), the survival of Aboriginal sites within submerged contexts is a factor of the interplay between the environment and the composition of the physical evidence itself. Likewise, the characteristics of the submerged landform itself (width, depth and slope and the interplay of coastal and riverine hydrology and sediment transportation) are critical to site survival. For the current Project area, consideration of estuarine and coastal systems with backwater environs, mud flats, swamp, mangrove and marshland environments are capable of retaining cultural materials in ever-increasing layers of sedimentation. Nutley (2006) suggests that stone artefacts, quarry sites, and, in some areas, stone fish traps may be preserved in such inundated environments since they are relatively durable cultural material items.

Open artefact sites (comprising flaked or ground lithic objects) for example, that either settle into, or are inundated by anaerobic environments, are likely to avoid the abrasive, chemical and biological attack otherwise endured during gradual inundation, though not all site types provide such clear evidence. Rockshelters, for example, are landscape features that are quite likely to remain in situ, though the mere presence of the latter in underwater environs, as Nutley suggests, cannot provide a reliable indication of actual habitation by Aboriginal peoples, and further investigation is required to determine the presence or absence of archaeological deposit.

In the Greater Sydney context, this is best demonstrated by the Aboriginal resource and gathering site registered as AHIMS #45-6-0751, identified during the construction of the Alexandra Canal in the 1890s. Located in Alexandria approximately 7 km south of the current Project area, both Aboriginal edge ground stone hatchets and dugong (*Dugong dugon*) skeletal remains were identified, the latter showing indications of butchering. The investigation documented a 5 m deep sedimentary sequence comprising alternating layers of estuarine sands, shelly sands and peat containing terrestrial plant remains including in situ roots and stumps, suggesting that the site alternated between sub-aerial exposure and submergence throughout the Holocene (Figure 24). Conventional radiocarbon (C14) dating from a sample of the dugong bones produced an age of  $5,520 \pm 70$  years B.P. The investigation concluded that the discovery of the terrestrial plant remains at the depth of 4.5 m below the high-water level represented a clear demonstration of climactic and environmental change during this time and evidence of past Aboriginal peoples' activity in the area.

## SHEA'S CREEK CANAL . SYDNEY . N.S.W

CROSS-SECTION shewing where bones of Dugong were discovered



#### Figure 24: Sedimentary cross-section showing location and depth of dugong (from Etheridge, 1905)

The Alexandria site provides an indicative example of terrestrial submergence in low-energy environments, sufficient to preserve site evidence in situ. In a high dynamically-active coastal or riverine environment however, there is a strong likelihood that even robust items will eventually succumb to those forces. As Nutley (2006) suggests, in such an environment, even stone tools may become waterworn to the point where they are no longer recognisable as such.

As demonstrated above, environmental factors and artefactual composition interact to determine archaeological site survival and highlights the need for a multidisciplinary approach to investigations. In the context of the current Project however, a review of the environmental factors outlined in Section 5 is pertinent to developing a predictive model of site survival in former estuarine and tidal delta environs. Using the AHIMS search results data provided in Section 6.1 as a basis, Table 3 below provides a summary of common site types that would be anticipated in the Project environs, with the preservation potential rated against the interpreted pre-inundation environs.

| Site type                     | Description                                                                                                                                                                                                                                            | Preservation<br>Potential | Likelihood          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|
| Open Artefact<br>Sites        | Objects susceptible to abrasion and translocation<br>during slow and highly dynamic inundation but likely<br>to survive rapid, low-energy inundation. Artefact<br>scatter sites likely to be dispersed rather than being<br>identified in situ.        | Moderate                  | Moderate to<br>High |
| Culturally-<br>modified trees | Unlikely to survive in marine conditions.                                                                                                                                                                                                              | Low                       | Low                 |
| Shell middens:                | Only likely to survive rapid, low-energy inundation<br>unless deeply buried in consolidated sediments or<br>peat prior to inundation. Likely to be found in a<br>dispersed condition and may be difficult to<br>differentiate from natural shell beds. | Low to<br>Moderate        | Moderate            |
| Fish traps                    | Only fish traps constructed from stone would survive inundation, more likely to survive relatively intact in low-energy environs, e.g. estuarine.                                                                                                      | Low to<br>Moderate        | Low                 |

| Table 4 Preservatio | n Potential by | Site Type | (following | Nutley 2006) |
|---------------------|----------------|-----------|------------|--------------|
|---------------------|----------------|-----------|------------|--------------|

| Site type      | Description                                                                                                                                                                                                                                                                        | Preservation<br>Potential | Likelihood |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|
| Rockshelters   | Moderately resistant to inundation, particularly in low-<br>energy environs. Cultural deposit within the shelter<br>would survive only in instances of deep stratigraphy or<br>protection by fallen boulders in front of shelter.                                                  | Moderate                  | Moderate   |
| Rock art sites | Engravings are unlikely to survive on soft sandstone<br>where dynamic environs may result in rapid erosion.<br>Sandstone that absorbs red ochre may retain that<br>stain but may equally be susceptible to absorbing<br>additional masking colouration from waterborne<br>minerals | Low                       | Low        |

# 7.0 Site Inspection

Cosmos Archaeology undertook a site inspection for this current project on 29 January, 2020. The inspection was undertaken by a commercial dive team from Professional Diving Services under the direction of a Maritime Archaeologist from Cosmos Archaeology.

## 7.1 Weather and Tide Conditions

Diving in Sydney Harbour near Circular Quay is not heavily affected by changes in tide however, previous rainfall carrying silt from land can severely dampen visibility. Fortunately, minimal rainfall had occurred three days prior to the inspection and none had fallen on the diving day. The weather conditions that were taken into consideration in the approach to undertaking the inspection are outlined in Table 5 and Table 6.

| Table 5  | Tides | for the  | survev | dav <sup>6</sup> |
|----------|-------|----------|--------|------------------|
| 1 4010 6 | 11400 | 101 1110 | 041109 | ~~,              |

| 29- Jan-2020 | Time           | 0538 | 1159 | 1827 |
|--------------|----------------|------|------|------|
|              | Height (m LAT) | 0.6  | 1.7  | 0.45 |

Table 6 Rain and wind conditions for the three days prior and for the day of the inspection<sup>7</sup>

| Date        | Rain (mm) | Wind 09:00 (km/h) | Wind 15:00 (km/h) |
|-------------|-----------|-------------------|-------------------|
| 26-Jan-2020 | 0.2       | 7 E               | 6 ENE             |
| 27-Jan-2020 | 0.0       | 54 S              | 17 ESE            |
| 28-Jan-2020 | 0.0       | 44 S              | 6 W               |
| 29-Jan-2020 | 0.0       | 17 S              | 17 SSE            |

## 7.2 Conduct of Survey

The survey was conducted by a commercial diver/maritime archaeologist under the direction of the maritime archaeologist. The inspection originally consisted of four transects in the area to the north of the OPT and two circular searches to the east of the terminal wharf. However, VTS restrictions, imposed on the day due to operational reasons, did not allow the completion of either of the originally proposed and approved circular searches or the 40 m eastern transect.

The surveys were conducted using Surface Supplied Breathing Apparatus (SSBA), with helmet mounted video and video lights. The diver also carried a hand-held Sony RX100-IV camera with video lights for taking still images. The diver was in communication with the boat and this allowed the maritime archaeologist to instruct the diver and receive observations of the seabed and any finds in real time. The diver carried a 100 m transect line marked at 5 m increments and a 1.3 m fibreglass probe marked in 0.1 m increments.

For Transect 1 South, the boat was moored to the southern side of the mooring dolphin. A shot line was dropped next to the dolphin as an attachment point for the transect line. The diver ran the transect line out 40 m to the south. Following the line back towards the north, the diver took video footage of one side of the transect and then on the way back filmed the other side, thereby getting good coverage either side of the transect line. Once back at the starting point, the diver wound in the transect line, stopping to probe either side of the line at every 5 m marker.

<sup>&</sup>lt;sup>6</sup> Bureau of Meteorology, Australian Government, 2020, Sydney tide table predictions,

http://www.bom.gov.au/ntc/IDO59001/IDO59001\_2020\_NSW\_TP007.pdf, accessed 29 January 2020.

<sup>&</sup>lt;sup>7</sup> Bureau of Meteorology, Australian Government, 2020, 'Latest weather observations for Sydney Harbour', available http://www.bom.gov.au/climate/dwo/202001/pdf/IDCJDW2124.202001.pdf, accessed 29 January 2020.

For Transect 2 North, Transect 3 South and Transect 5 West, a shot line was dropped at 33.856389° 151.210556° and the diver ran the transect line out on the cardinal points to 40 m, 40 m and 20 m respectively. As VTS had restricted diving to the east of the central position it was decided to run a 20 m transect to the North-east (Figure 25).



Figure 25: Transects run as part of the maritime archaeology survey at OPT. (Base image Google Earth)

#### 7.2.1 Survey bias and accuracy

The following factors had an influence on the bias and accuracy of the survey.

#### Water visibility

The water visibility ranged from 0.2 m to 2 m which decreased as sediment was disturbed. On certain occasions during the inspection dive, the visibility dropped to 0 m due to current and direction of the dive. The water clarity had an effect on the width of the inspection corridor, which was on average, 2 m wide on either side of the baseline.

#### Sea bed visibility

For the majority of the survey area, the sea bed consisted of sand and silt with a covering of a shell grit and stands of kelp which reduced ground visibility dramatically. It is possible that smaller artefacts may have been overlooked.

#### **Concretion and growth**

The heavy covering of growth on many of the objects located during the survey, impeded the interpretation of the object. In particular, it was difficult to determine if there was copper sheathing on some of the recorded timber piles.

#### 7.3 Survey results

The seabed throughout the Project area was generally sandy with a light covering of silt and shell grit. Varying densities of kelp were spread throughout the Project area. Visibility ranged mostly between 0.2 m through to 2 m throughout the diving surveys, although this was reduced depending upon the

Time start (min): 0927

Depth: 7.2 - 11.1 m

Total time (min): 14 Seabed visibility: Good

| ranging between 7 m and 13 m.      |              |                  |                |
|------------------------------------|--------------|------------------|----------------|
| Transect 1 S                       |              |                  |                |
| Date: 29 January, 2020             | Method: SSBA |                  | Tide: Flooding |
| Distance and direction: 40 m south |              | Diver: Callum Ha | rvev           |

Time end (min): 0941

Water visibility: 0.5 – 2 m

current and the direction of the dive. The depths of all the dives were under 15 m, with the surveys ranging between 7 m and 13 m.

The diver set the transect line, running 40 m to the south from the southern side of the dolphin. The depth on the southern side of the dolphin was 7.2 m while the depth at the southern end was 11.1 m. The seabed was sandy with scattered stands of kelp, lightly covered in silt with a heavy shell grit towards the southern end which became lighter as the diver moved north.

To the west of the transect at the 1 m mark a glass tube was recorded. The tube stood proud of the seabed 0.8 m with a diameter of 0.1 m. The tube was easily removed from the seabed and was hollow (Figure 26). It's function is currently unknown.

At the 3 m mark on the eastern side of the transect, a horse shoe and a small section of copper sheathing were recorded lying adjacent to each other (Figure 27). There was one visible fastening hole in the sheathing. From the 5 m mark, a 7 m length of pile lay in a south-east to north-west direction. The pile was 0.4 m diameter. The northern end appeared broken and heavily degraded (Figure 28). The pile was heavily encrusted with growth so any presence of metal sheathing was unable to be recorded.

A glass milk bottle was recorded just after the 15 m mark and a concrete block was lying crossing the centre of the transect at the 20 m mark. This block was embedded in the seabed at a 45° angle and measured 0.7 m x 0.3 m and was 0.15 m thick. A 2 m long by 0.25 m wide plank lay across the transect in an east-west direction at the 25 m mark (Figure 29). Approximately one metre away a ceramic coffee cup was located, missing the handle (Figure 30).

On the western side of the transect a mobile piece of timber was recorded running parallel with the transect near the 30 m mark. The timber measured 0.4 m long, 0.05 m wide and 0.03 m high (Figure 31). On the eastern side of the transect between 30 m and 35 m there was brick rubble and bottles (Figure 32). On the western side there were two bricks and another bottle.

At the 40 m mark on the eastern side of the transect there was a concrete block measuring 0.3 x 0.4 m and 0.1 m thick. Immediately adjacent to the block were two links of a large chain heavily encrusted with growth (Figure 33).

No refusal was met when probing along the majority of the transect line. At the 25 m mark on the western side of the transect there was refusal at 0.9 m, while on the eastern side there was refusal between 0.4 to 0.8 m. There were no consistent depths of refusal around these points, so it is likely the obstructions were small rocks or concrete rubble. At 40 m, the probe hit refusal at 0.8 m but probing in the immediate area around this mark did not meet any further resistance.



Figure 26: Glass tube standing 800 mm proud of the seabed at 1 m mark west of transect line. (PDS OPT Transect 1 South)



Figure 28: Northern (degraded) end of 7 m pile. (PDS OPT Transect 1 South)



Figure 27: Horse shoe and sheet of copper sheathing at the 3 m mark on the east side of transect line. (PDS OPT Transect 1 South)



Figure 29: Plank crossing transect at 25 m mark. Top half of image indicated by red arrow. (PDS OPT Transect 1 South)



Figure 30: Ceramic coffee cup with no handle at the 26 m mark to the east of the transect. (PDS OPT Transect 1 South)



Figure 31: Mobile timber recorded on the western side of transect near 30 m. (PDS OPT Transect 1 South)



Figure 32: Example of bottles and brick rubble spread between 33 - 30 m. (PDS OPT Transect 1 S)



Figure 33: Chain link adjacent to concrete block to the east of the transect at 39 m. (PDS OPT Transect 1 South)

| Transect 2 N                       |                             |  |                         |  |  |  |
|------------------------------------|-----------------------------|--|-------------------------|--|--|--|
| Date: 29 January, 2020             | Method: SSBA                |  | Tide: Flooding          |  |  |  |
| Distance and direction: 40 m north | Diver: Callum Ha            |  | rvey                    |  |  |  |
| Time start (min): 1110             | Time end (min): 1125        |  | Total time (min): 15    |  |  |  |
| <b>Depth:</b> 8.3 – 9.9 m          | Water visibility: 0.2 – 1 m |  | Seabed visibility: Good |  |  |  |

The diver set the transect line, running 40 m to the north. The seabed had a gentle slope from 8.3 m down to a depth of 9.9 m at the northern end. The seabed was sandy, lightly covered in silt and shell grit, with scattered stands of kelp, apart from the area between 15 m and 30 m, which became very silty, reducing visibility in this area (Figure 34).

A concrete block was recorded on the eastern side of the transect at the 3 m mark (Figure 35). This block was rectangular, measured  $0.3 \times 0.4$  mm and 0.1 mm thick and was resting at an approximate  $45^{\circ}$  angle into the seabed. Immediately adjacent to this block was a 1.2 m long ferrous pipe with a 0.5 m diameter running in a north-east to south-west direction (Figure 36).

Immediately past the 5 m mark on the eastern side of the transect were two bottles, one broken at the neck. These appeared to be long neck beer bottles. A brick was partially buried at the base of a bottle (Figure 37). Another object, possibly a piece of concrete, was recorded at 13 m and measured 0.6 m long x 0.1 m wide and 0.1 high.

An apparent concrete object was located at the 13 m mark. This was a thin piece of concrete measuring 0.6 long x 0.1 m wide and 0.1 m deep (Figure 38). A piece of what appeared to be concrete rubble was recorded on the western side of the transect at 18 m (Figure 40). At 23 m, a square concrete block was resting on the seabed. Measuring 0.4 m square, it was 0.25 m thick (Figure 39).

The only other material recorded was a bottle and a modern plastic bag (Figure 41).

No refusal was met when probing along the transect line, except for an area to the east of the line at the 5 m mark. The probe hit refusal at 1 m but probing in the immediate area around this mark did not meet any further resistance. In another area at the 20 m mark, there was refusal between 0.3 and 0.5 m beneath the seabed. There did not appear to be any pattern to the depth of refusal.



Figure 34: Example of seabed along Transect 2. (PDS OPT Transect 2 N 0 to 40 m)



Figure 36: Ferrous pipe; 1.2 m long and 0.5 m diameter. (PDS OPT Transect 2 N 0 to 40 m)



Figure 38: Concrete block at 45 degree angle. (PDS OPT Transect 2 N 0 to 40 m)



Figure 35: Concrete block. (PDS OPT Transect N 0 to 40 m)  $\,$ 



Figure 37: Two long neck beer bottles with brick. (PDS OPT Transect N 0 to 40 m)



Figure 39: Square concrete block (0.4 m). (PDS OPT Transect 2 N 0 to 40 m)



Figure 40: Concrete rubble. (PDS OPT Transect N 0 to 40 m)



Figure 41: Plastic shopping bag. (PDS OPT Transect N 0 to 40 m)

| Transect 3 S                       |                               |  |                         |
|------------------------------------|-------------------------------|--|-------------------------|
| Date: 29 January, 2020             | Method: SSBA                  |  | Tide: slack to ebbing   |
| Distance and direction: 40 m south | Diver: Callum Ha              |  | rvey                    |
| Time start (min): 1147             | Time end (min): 1214          |  | Total time (min): 27    |
| <b>Depth:</b> 8.2 – 13.5 m         | Water visibility: 0.5 – 1.5 m |  | Seabed visibility: Good |

The diver set the transect line, running 40 m to the south. The depth at the southern end was 13.5 m. The seabed was sandy, lightly covered in silt and shell grit, with scattered stands of kelp. The seabed had a clay like texture between the 20 m and 30 m marks.

There was a length of flat hose, similar to a dredge or fire hose lying just underneath a light silt layer, on the eastern side of the transect between 5 m and 10 m (Figure 42). A concrete block was recorded running across the transect line at 6 m in an almost east to west alignment. The block was 2 m long and 0.3 m high. Immediately adjacent to the block, was a long ferrous pipe. The pipe was on the same alignment as the block, was 8 m long and had a diameter of 0.1 m. On the western side of the transect, the pipe had a right angled ferrous bracket made of flat bar attached to the southern side (Figure 43). On the eastern side of the transect, there were two ferrous spikes attached to the northern side of the pipe. Approximately, 2 m from the eastern end the pipe was bent as if something had tried to lift it or caught and dragged it. The pipe was bent in a V-shape for an approximately 2 m section before disappearing into the seabed.

At 12 m along the transect line, to the west, a coil of lead or tin was buried in the sea bed. The material was coiled like a rope but the material acted more like a soft metal such as lead, as when bent it stayed in the bent position. The coil was heavily covered in sediment (Figure 44). Just past the coil, there was a small collection of bottles, many broken and on the western side of the transect at 15 m a modern tyre was recorded. The tyre was embedded in the seabed at a 45° angle (Figure 45).

At 16 m there was a thin strip of copper. The strip measured 0.2 m long and 0.015 m wide. There were holes at regular intervals along the strip, potentially for fastenings (Figure 46). Continuing along the transect, there was more brick rubble and broken bottles. At 19 m along the transect there was a small piece of chain link (Figure 47). At 21 m along the transect a small piece of copper sheathing was recorded. Measuring 0.1 x 0.3 m, the metal was slightly concave and fastening holes were present. No fastenings were found with the sheathing piece (Figure 48 and Figure 47). Close to the piece of sheathing, a section of what appeared to be planking was buried in the sediment. The plank was 0.02 m thick and only a 0.05 m section was exposed (Figure 49).

A green glass bottle was recorded at 26 m along the transect. The bottle had a curved body and was 0.02 m tall. The body was lightly embedded in the silt (Figure 50).

On the eastern side of the transect, between the 30 m and 35 m mark, a 4 m long piece of timber ran almost parallel with the transect line, measuring 0.25 m wide and 0.15 m thick. This is potentially a timber wale (Figure 51). A fastening hole of 3 mm diameter was recorded at the northern end. No other fastening holes or fastenings were observed along the length of timber. The southern end was squared off. Sitting on top of this timber was nother rounded timber running in a perpendicular direction (west to east). The western end was heavily degraded with a blackened appearance and the eastern end was degraded and heavily encrusted with growth. The timber was 0.3 m diameter and 2.5 m long (Figure 52).

At the 40 m mark there was brick rubble, bottles and a concrete block, resting on its edge measuring  $0.6 \times 0.7$  and 0.05 m thick. There was also one bone fragment, large enough to be an animal bone such as cow or sheep.

The original probe was lost in the visibility and was replaced with a 2 m fibreglass pole marked at 0.1 m increments. No refusal was met when probing along the transect line, except for a 10 m area either side of the transect line at the 10 m mark. The probe hit refusal at 1 m but probing in the immediate area around this mark did not meet any further resistance.



Figure 42: Flat hose, potentially a dredge or fire hose recorded between 5 and 10 m along transect. (PDS OPT Transect 3 South 40 to 0 m)



Figure 43: Section of 8 m length of ferrous pipe with right angled bracket crossing the transect at 6.5 m mark. Concrete block can be seen in the background. (PDS OPT Transect 3 South 40 – 0 m)



Figure 44: Coil of soft metal material possibly lead or tin recorded 11 m along the transect. (PDS OPT Transect 3 South 40 to 0 m)



Figure 45: Tyre located 15 m along the transect. (PDS OPT Transect 3 South)



Figure 46: Short length of copper strip with fastening holes recorded at 17 m along the transect. (PDS OPT Transect 3 South 40 to 0 m)



Figure 48: Piece of metal sheathing with fastening holes. The metal was slightly concave. (PDS OTP Transect 3 South 0 to 40 m)



Figure 47: Piece of chain link lying loose on the seabed at 19 m along the transect. (PDS OPT Transect 3 South 40 to 0 m)



Figure 49: Buried timber, potentially a plank, measuring 0.02 m thick with only 0.05 m exposed. Indicated by red arrow. (PDS OTP Transect 3 South 0 to 40 m)



Figure 50: Green glass bottle with curved body at 26 m along transect. (PDS OPT Transect 3 South 0 to 40 m)



Figure 51: Timber, likely a waler, running almost parallel with the transect line between 30 and 35 m. (PDS OPT Transect 3 South 40 to 0 m)



Figure 52: Timber pile running perpendicular to wale timber (just visible underneath the pile) (PDS OPT Transect 3 South 0 to 40 m)

| Transect 4 NE                           |                                |                      |                         |  |  |  |
|-----------------------------------------|--------------------------------|----------------------|-------------------------|--|--|--|
| Date: 29 January, 2020                  | Method: SSBA                   |                      | Tide: Ebbing            |  |  |  |
| Distance and direction: 20 m north east |                                | Diver: Callum Harvey |                         |  |  |  |
| Time start (min): 1240                  | Time end (min): 1253           |                      | Total time (min): 13    |  |  |  |
| <b>Depth:</b> 8.2 – 11.3 m              | Water visibility: 0.5 to 1.5 m |                      | Seabed visibility: Good |  |  |  |

The diver set the transect line, running 20 m to the north west. The seabed was sandy, lightly covered in silt and shell grit, with scattered stands of kelp (Figure 53).

A pile stump was recorded along the transect line at the 2 m mark. The centre was heavily degraded making the top of the stump semi-circular. The pile stood 0.5 m proud of the seabed and measured 0.4 m in diameter. The pile was too degraded and heavily encrusted with growth obscuring any evidence of copper sheathing (Figure 54).

A timber branch was recorded loose on top of the seabed adjacent to this pile 1.5 m long x 50 mm diameter (Figure 55). Just past the 5 m mark on the transect a ferrous pipe, 1 m long x 80 mm in diameter. The pipe was hollow and appeared broken at both ends (Figure 56).

There was scattered concrete rubble along the rest of the transect (Figure 57) and the remnants of a shopping trolley were located on the western side of the transect just before the 15 m mark (Figure 58).

No refusal was met when probing along the transect line, except for one area to the west of the line at the 20 m mark. The probe hit refusal at 0.6 m but probing in the immediate area around this mark did not meet any further resistance.


Figure 53: Example of seabed on Transect 4. (Professional Diving Services, OPT Transect 4 NE 0 to 40 m)



Figure 55: Tree branch resting loose on seabed. Outline marked in blue. (PDS Transect OPT 4 NE 0 to 40 m)



Figure 54: Pile stump: 0.45 diameter and standing 0.5 m proud of the seabed. Very heavily eroded. (PDS OPT Transect 4 NE 0 to 40 m)



Figure 56: Ferrous pipe resting loose on seabed. (PDS OPT Transect 4 NE 0 to 40 m)



Figure 57: Concrete rubble (PDS OPT Transect 4 NE 0 to 40 m)



Figure 58: Grill from a shopping trolley, indicated with red arrow. (PDS OPT Transect 4 NE 0 to 40 m)

| Transect 5 W                      |                      |           |                         |
|-----------------------------------|----------------------|-----------|-------------------------|
| Date: 29 January, 2020            | Method: SSBA         |           | Tide: Ebbing            |
| Distance and direction: 20 m west | Diver: Callum Harvey |           | rvey                    |
| Time start (min): 1258            | Time end (min): 1310 |           | Total time (min): 12    |
| <b>Depth:</b> 8.2 – 11.9 m        | Water visibility:    | 0.5 – 2 m | Seabed visibility: Good |

The diver set the transect line, running 20 m to the west, heading into Campbells Cove. The depth at the western end was 11.9 m. The seabed was sandy, lightly covered in silt and shell grit, with scattered stands of kelp (Figure 59).

A small scattering of concrete rubble was present near the beginning of the transect line. At the 5 m mark, a 2 m length of concrete was recorded. This concrete was a rounded triangular shape and rose 0.1 m above the seabed. It appeared relatively new with only a small amount of growth, possibly a piece of kerbing. A square potentially concrete block was located at the 11 m mark. Resting at a 45° angle, the block rose out of the seabed 0.1 m and measured 1 m x 0.3 m (Figure 60).

At the 13 m mark, a rounded object protruded 0.4 m from the seabed. Measuring 0.5 m x 0.3 m, the object appears narrow for a pile but was solidly embedded in the seabed and may have been heavily degraded (Figure 61). There was no obvious evidence of sheathing. Another potential concrete block  $(0.4 \times 0.4 \times 0.3 \text{ m})$  was recorded at the 15 m mark and immediately adjacent to this block, a pile was recorded running in an approximate south-east to north-west direction (Figure 62). The pile measured 6 m long and was 0.4 m diameter. The south-east end was heavily degraded, while the north-west end appeared cut. It was heavily covered in growth obscuring any presence of copper sheathing.

No refusal was met when probing along the transect line, except for one area to the north of the line at 10 m. The probe hit refusal at 1 m but probing in the immediate area around this mark did not meet any further resistance.



Figure 59: Example of the sandy seabed, lightly silted with a covering of shell grit and scattered strands of kelp. (Professional Diving Services: OTP Transect 5 West 0 to 20 m)



Figure 60: Potential concrete block at a 45 degree angle at the 11 m south of the transect line. (Professional Diving Services: OTP Transect 5 West 0 to 20 m)



Figure 61: Potential pile stump, heavily degraded, south of the transect line at the 13 m mark. (Professional Diving Services: OTP Transect 5 West 0 to 20 m (Professional Diving Services: OTP Transect 5 West 0 to 20 m)



Figure 62: Pile recorded crossing the transect line at the 15 m mark running in a SE to NW direction. (Professional Diving Services: OTP Transect 5 West 0 to 20 m)

#### 7.4 Interpretation of Results

This maritime archaeological survey conducted to the east of the OPT mooring dolphin located near Campbells Cove recorded items very similar in nature and variety to the maritime survey conducted in 2014 . The archaeological remains present on the seabed included in situ pile stumps, cut sections of piles lying on the seafloor and other structural timbers, including possible timber walers. The amount of growth on these timbers prohibited the identification of any remnant copper sheathing, however, two loose pieces of sheathing were recorded lying loose on the seabed. The long ferrous pipe in Transect 3 South likely carried water or other services along a structure and was attached lengthways with the angled bracket. These items are likely remains of the former Wharf No. 7 (1901-1980) in Campbells Cove. Wharf No. 7 was a longer and wider structure than the previous structure (built in 1876) in the Cove, and the location of the mooring dolphin is located at the western end of the 1901 wharf, beyond the eastern end of the previously constructed 1876 wharf.

No relics were recorded on the seabed in the survey area. Other material such as bricks, a modern tyre, concrete rubble and bottle scatters were recorded. Some of this modern material is likely to have been from the building of the OPT wharf extension.

Diver probing during the survey did not record any evidence of timbers lying underneath the seabed. Where refusal was felt underneath the seabed, it was unpredictable and random indicating rock or concrete scatter rather than lengths of timber or wharf remains.

#### 7.5 Summary of Previous Maritime Archaeological Assessment

Cosmos Archaeology previously had undertaken a maritime archaeological survey and assessment for the proposed extension of the OPT wharf and installation of a new mooring dolphin to the north of the OPT in 2014. The diving survey was conducted over one day and identified a number of copper sheathed piles, hawser ropes, whalers and various other remains in the location of the then proposed dolphin. These remains were interpreted as the remains associated with the western end of Wharf 7 (1901 – 1980). The archaeological potential assessed in 2014 concluded that remains of the former wharf have progressively been covered over with sediment. Structural material likely to be present on the seabed would consist of remains associated with the construction, repair and maintenance of the wharf. This would include pile remains and other sub-structure wharf remains such as timber whalers, corbels and deck beams.

The assessment also identified a moderate potential for relics to be present within the footprint of the former Wharf No. 7. The location for the mooring was to impact on remains associated with the former

wharf within the footprint of the former wharf. As such, no assessment of archaeological potential that may exist within the berth pockets associated with the former wharf was made.

#### 7.6 Bathymetric multi-beam survey and side scan sonar data

The results of a multi-beam and side scan sonar survey of the Project area was provided by Port Authority of NSW. The survey area was along the entirety of the OPT wharf, including the area up to and surrounding the mooring dolphin to the north, and the area immediately to the south of the Wharf (Figure 63).

The multi-beam and side scan sonar survey results have been reviewed by the maritime archaeologist for this report. Along the whole of the western edge of the OPT wharf area, including the area immediately beyond the southern end, the existing rock armour can be seen along the existing seawall, but also scattered out further into the existing berth pocket. A higher density of the existing rock armour can be seen at the northern end of the OPT, along the newer section of wharf constructed in 2014 (Figure 63).

At the northern end of the surveyed area, immediately around the location of the existing mooring dolphin, the remains of the 1901-1980 Wharf No. 7 can be seen. The yellow and orange extent of the wharf in the multi-beam survey depicts the height of the remains above the seabed. These results line up with the remains of the former wharf recorded by Cosmos Archaeology during the 2014 and 2020 survey of this area. The remains on the seabed appear to be very well defined within the footprint of the former wharf. The side scan sonar survey does not clearly show these remains, however, the results do show potential piles and/or other remains of the former wharf scattered further out in the berth pocket and into Sydney Cove (Figure 63).

The review of the multi-beam and side scan sonar data for the remainder of the Project area, including those areas along the OPT berth pocket where the maritime archaeological team was not able to undertake a survey, did not reveal the presence of any anomalies on the seabed that could be associated with any potential cultural heritage item.



Figure 63: Multibeam survey of the Project area undertaken by Port Authority of NSW in March 2018. Image on the left is the original image, image on the right has been marked up by the maritime archaeologist (Source: Port Authority of NSW). This information is provided courtesy of Port Authority of NSW. Copyright is owned by Port Authority of New South Wales

#### 7.7 Maritime archaeological potential

Based on the historical research and the review of the multi-beam and side scan sonar data, as well as the results of the maritime archaeological surveys in 2014 and 2020, predictions about the maritime archaeological potential of the Project area can be made.

The maritime archaeological surveys in 2014 and 2020, and the geophysical survey results show the remains of the former Wharf No. 7 (1901-1980) present in Campbells Cove. The archaeological remains on the seabed include both *in situ* and cut sections of piles on the seabed, other structural remains including deck beams, and other metal fastening. The 2014 survey identified the presence of piles with copper sheathing attached, and the 2020 survey identified copper sheathing present on the seabed. Copper sheathing was a protective measure installed to wharf piles in the 20th century from marine borer attack. This was an expensive process, however, the sheathing of the piles meant the piles were protected and would require less maintenance.

The location of the proposed works are at the end of the former Wharf No. 7, a longer and wider wharf than the earlier 1876 wharf. As this is the case, the remains that have been identified on the seabed are likely to only be associated with the former Wharf No. 7 and are not likely to be associated with the earlier wharf in Campbells Cove.

Divers in both the 2014 and 2020 survey undertook probing to identify the presence and depth of materials that may be present below the seabed. During both surveys, divers identified that material was present below the seabed. During the 2014 survey it was noted that these were likely timbers present within the footprint of the former wharf. The 2020 maritime survey also noted material present below the seabed, but noted that this may also relate to building material associated with the construction of the OPT wharf extension and/or from the construction of the mooring dolphin. The potential for maritime archaeological remains associated with the former Wharf No. 7 (1901-1980) is considered to be *high*.

No relics were recorded on the seabed during both maritime archaeological surveys. Other material, such as a brick and tyre (modern), concrete rubble and bottle scatters were recorded. The potential for archaeological deposits associated with the shipping and transportation in front of the current wharf is affected by site formation processes that have occurred during and after the lifespan of the wharf. Typically, archaeological deposits associated with vessels berthed at a wharf are located immediately between the wharf and the vessel or on the opposite side of the vessel toward the middle of the cove. The limit of these deposits is based on the width of the vessels berthed at the wharf. Relics associated with the working life of the wharf also have the potential to be deposited immediately below the footprint of the former wharf, particularly from material that has fallen between deck planking. This material would relate directly to the working life of the wharf. The archaeological potential within this area is considered to be *moderate*.

The OPT berth pocket area has previously been dredged. The extant remains of the existing rock armour were along the western side of the surveyed area, including the area immediately to the south of the OPT wharf. The review of the multi-beam and side scan sonar survey did not reveal any anomalies on the seabed that may relate to possible cultural heritage remains within the OPT berth pocket area. The historical archaeological potential within this area is considered to be *low*.

## 8.0 Assessment criteria

#### 8.1.1 Significance assessment criteria

In order to understand how a development would impact on heritage or archaeological items, it is essential to understand why an item is significant. An assessment of significance is undertaken to explain why a particular item is important and to enable the appropriate site management and curtilage to be determined. The process of assessing heritage significance is outlined in the guideline *Assessing Heritage Significance* (NSW Heritage Office, 2001) which is part of the *NSW Heritage Manual* (Heritage Branch, Department of Planning). The *Assessing Heritage Significance* guidelines establish seven evaluation criteria which reflect four categories of significance and whether a place is rare or representative.

A heritage item can be identified as being significant at a local level (i.e. to the people living in the vicinity of the site), at a State level (i.e. to all people living within NSW) or be significant to the country as a whole and be of National or Commonwealth significance. In accordance with the guideline *Assessing Heritage Significance*, an item would be considered to be of State significance if it meets two or more criteria at a State level, or of local heritage significance if it meets one or more of the criteria outlined in Table 7. The Heritage Council require the summation of the significance assessment into a succinct paragraph, known as a Statement of Significance. The Statement of Significance is the foundation for future management and impact assessment.

| Criterion                                                                                                                                                                                                                                                                                                                            | Inclusions/exclusions                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Criterion (a)</i> – an item is important in the course, or pattern, of NSW's cultural or natural history (or the cultural or natural history of the local area).                                                                                                                                                                  | The site must show evidence of significant<br>human activity or maintains or shows the<br>continuity of historical process or activity. An<br>item is excluded if it has been so altered that<br>it can no longer provide evidence of<br>association.                                   |
| <b>Criterion (b)</b> – an item has strong or special association with the life or works of a person, or group of persons, of importance in NSW's cultural or natural history (or the cultural or natural history of the local to area).                                                                                              | The site must show evidence of significant<br>human occupation. An item is excluded if it<br>has been so altered that it can no longer<br>provide evidence of association.                                                                                                              |
| <b>Criterion (c)</b> – an item is important in demonstrating aesthetic characteristics and/or a high degree of creative or technical achievement in NSW (or the local area).                                                                                                                                                         | An item can be excluded on the grounds that<br>it has lost its design or technical integrity or<br>its landmark qualities have been more than<br>temporarily degraded.                                                                                                                  |
| <b>Criterion (d)</b> – an item has strong or special association with a particular community or cultural group in NSW (or the local area) for social, cultural or spiritual reasons.                                                                                                                                                 | This criterion does not cover importance for reasons of amenity or retention in preference to proposed alternative.                                                                                                                                                                     |
| <b>Criterion (e)</b> – an item has potential to yield<br>information that will contribute to an<br>understanding of NSW's cultural or natural<br>history (or the cultural or natural history of<br>the local area). Significance under this<br>criterion must have the potential to yield new<br>or further substantial information. | Under the guideline, an item can be<br>excluded if the information would be<br>irrelevant or only contains information<br>available in other sources.                                                                                                                                   |
| <b>Criterion (f)</b> – an item possesses<br>uncommon, rare or endangered aspects of<br>NSW's cultural or natural history (or the<br>cultural or natural history of the local area).                                                                                                                                                  | An item is excluded if it is not rare or if it is<br>numerous, but under threat. The item must<br>demonstrate a process, custom or other<br>human activity that is in danger of being lost,<br>is the only example of its type or<br>demonstrates designs or techniques of<br>interest. |

#### Table 7 Significance assessment criteria

| Criterion                                                                                                                         | Inclusions/exclusions                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <b>Criterion (g)</b> – an item is important in demonstrating the principal characteristics of a class of NSW's (or local area's): | An item is excluded under this criterion if it is<br>a poor example or has lost the range of<br>characteristics of a type. |
| <ul> <li>cultural or natural places cultural; or<br/>natural environments.</li> </ul>                                             |                                                                                                                            |

# 8.2 Assessment of significance for archaeological remains associated with the former Campbells Wharf No. 7 (1901-1980)

Below is the significance assessment for the archaeological remains, including the structure and potential maritime archaeological deposits, associated with the former Campbells Wharf No. 7 (Table 8). This significance assessment is based on the assessment previously prepared by Cosmos Archaeology (Cosmos Archaeology Pty Ltd, 2014).

Table 8 Significance assessment of the former Campbells Cove Wharf No. 7 (1901-1980)

| Criterion                                                                                                                                                                                                                                                       | Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Criterion (a)</i> – an item is<br>important in the course, or<br>pattern, of NSW's cultural<br>or natural history (or the<br>cultural or natural history of<br>the local area).                                                                              | Campbells Cove has served as part of the Sydney Harbour<br>shipping and trade hub for Sydney from 1810 when the first<br>private wharf was constructed by Robert Campbell. Campbells<br>Cove became part of the evolution of the wharves along the<br>western side of Sydney Cove with the later developments<br>made by the Australasian Steam and Navigation Company<br>and Australasian United Steam Ship Company up until the turn<br>of the century. Integrated as part of the larger wharfage<br>schemes associated with both earlier shipping companies, the<br>wharf at Campbells Cove would have been a well-known<br>fixture of the commerce and trade in and out of Sydney.<br>After the resumption of the wharves in Sydney Harbour, the<br>wharf in Campbells Cove was demolished and replaced with a<br>newer timber wharf. The wharf was 360 feet (110 m) long and<br>91 feet (28.5 m) wide and known as Wharf No. 7. The wharf<br>was leased to shipping companies such as Gibbs, Bright &<br>Co., China Navigation Company and Oceanic Company, who<br>leased individual berths and store space on the wharf. The<br>wharf was later used as part of the Maritime Services Board<br>where it appears to have been used as a berth for smaller<br>working vessels and no longer used as a warehouse. The<br>remains of the former Campbells Cove Wharf (ca.1901-1980)<br>is considered to be of <b>local significance</b> under this criterion. |
| <b>Criterion (b)</b> – an item has<br>strong or special<br>association with the life or<br>works of a person, or group<br>of persons, of importance<br>in NSW's cultural or natural<br>history (or the cultural or<br>natural history of the local<br>to area). | The 1901-1980 wharf was constructed by the shipping firm<br>Norddeutscher Lloyd as part of the wharf upgrade works that<br>stretched along the western side of Sydney Cove after the<br>resumption of wharves in 1901. Berths and warehouse space<br>were leased to individual companies until sometime after the<br>1960s when they were later used by the Maritime Services<br>Board. As the ownership, and leases of the berths and<br>warehouse, changed constantly overtime, the wharf is not<br>considered to have had, or still have, a strong special<br>association with the life or works of person or a group of<br>people important to NSW. The archaeological remains of the<br>wharf are <b>not considered</b> to meet the requirements of this<br>criterion on a State or local level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Criterion (c)</b> – an item is<br>important in demonstrating<br>aesthetic characteristics<br>and/or a high degree of                                                                                                                                         | Archaeological remains associated with the ca.1901-1980<br>wharf are visible on the former site and there is a high<br>potential for further maritime archaeological remains to be<br>present below the seabed. These remains are likely to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Criterion                                                                                                                                                                                                                                                                                                                                              | Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| creative or technical<br>achievement in NSW (or<br>the local area).                                                                                                                                                                                                                                                                                    | associated with the structural remains of the wharf and are not<br>unique to the former Wharf No. 7 at Campbells Cove. As such,<br>the archaeological remains of the former wharf are not<br>considered to demonstrate aesthetic characteristics or show a<br>creative or technical achievement, and as such, the former<br>wharf is <i>not considered to meet the requirements</i> of this<br>criterion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <i>Criterion (d)</i> – an item has<br>strong or special<br>association with a particular<br>community or cultural<br>group in NSW (or the local<br>area) for social, cultural or<br>spiritual reasons.                                                                                                                                                 | The ca.1901-1980 wharf was part of the wharfage system<br>present in Sydney Cove and was part of the larger wharf<br>system in operation in Sydney Harbour. While the wharf at<br>Campbells Cove was an integral part of the goods<br>transportation and waterside warehousing needs from the turn<br>of the century onwards, there were no single particular<br>community or cultural groups who were associated with the<br>wharf. As such the wharf built at Campbells<br>Cove is <i>not considered to meet the requirements</i> of this<br>criterion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Criterion (e)</b> – an item has<br>potential to yield<br>information that will<br>contribute to an<br>understanding of NSW's<br>cultural or natural history<br>(or the cultural or natural<br>history of the local area).<br>Significance under this<br>criterion must have the<br>potential to yield new or<br>further substantial<br>information. | There are known and potential archaeological remains of the former Wharf No. 7 (1901-1980) expected to exist on site. The historical information relating to the construction of the wharf is limited, with only primary sources, mostly photographs and maps, which reveal the construction of the wharf. Archaeological information that has been recorded on the site has already shown that the piles associated with the former wharf were sheathed to protect the submerged timbers from marine borer attack. Physical evidence that has survived in the archaeological record has the potential to provide additional information relating to the construction techniques and materials that were used. Information relating to repair works to the wharf, such as from the driving in of repair "sister" piles or the addition of extra bracing or fastenings, can also be determined from the remains in the archaeological record on wharf site. Artefacts discarded, accidentally or deliberately, from the wharf and vessels moored alongside can contribute towards knowledge of the variety of traffic and goods that passed between Sydney and the rest of the world during the 20th century. It can also contribute to our understanding of the working operation of the wharf. The archaeological site associated with the former wharf built at Campbells Cove has the potential to contribute to a greater understanding of wharf construction, repair and upgrading that has not been documented in the archaeological record previously. As such, the archaeological site associated with both former ca. 1901-1980 wharf built at Campbells Cove is considered to be of <i>local significance</i> under this criterion. |
| Criterion (f) – an item<br>possesses uncommon, rare<br>or endangered aspects of<br>NSW's cultural or natural<br>history (or the cultural or<br>natural history of the local<br>area).                                                                                                                                                                  | The early 20th century wharves constructed in Sydney<br>Harbour are associated with the post resumption development<br>of the harbour. There are wharves still standing in Sydney<br>Harbour that relate to the development works directly<br>associated with this redevelopment phase. Many of these<br>wharves are still in use today, such as Woolloomooloo, Walsh<br>Bay and Jones Bay wharves. While not all of these wharves<br>still exist, there are surviving examples today that can be<br>considered to be common. The former 1901 wharf constructed<br>at Campbells Cove is likely to have been one of the earlier<br>wharves that were constructed as part of the post wharf<br>resumption works in Sydney Harbour. The archaeological site<br>has the potential to reveal early design plans that were to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Criterion                                                                                                                                                                                                            | Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                      | become standard for all wharf construction built after the resumption of the wharves. This has the potential to include remains associated with pile type and construction, timbers and other materials used and fastenings. Compared to later constructed wharves that were built as part of the same redevelopment works, such as at Walsh Bay (1911), could show the changes to wharf design after the Campbells Cove was constructed. The maritime archaeological remains of the former ca. 1901-1980s Campbells Cove wharf are considered to be of <i>local significance</i> under this criterion. |
| Criterion (g) – an item is<br>important in demonstrating<br>the principal characteristics<br>of a class of NSW's (or<br>local area's):<br>• cultural or natural<br>places cultural; or<br>• natural<br>environments. | The site of the former wharf at Campbells Cove is represented<br>by the maritime archaeological remains that are present on<br>and below the seabed and are not considered to be intact or<br>complete. As such, the site is not considered to retain the<br>principal characteristics of its type or design. Campbells Cove<br>is <b>not considered to meet the standards</b> of this criterion.                                                                                                                                                                                                       |

#### 8.2.1 Statement of significance

Campbells Cove has been associated with maritime transport in Sydney Harbour since 1810. Robert Campbell built the first private wharf in Campbells Cove in 1810 in association with other wharves being built in Sydney Cove. By the 1880s, the early wharves on the western side of Sydney Cove were bought and operated by the Australasian Navigation Company, including the wharves in Campbells Cove. The original wharves were removed and new ones built, including two new wharves in Campbells Cove. The wharves continued to operate until the resumption of wharves in 1900 by the Sydney Harbour Trust. Both of these wharves were removed and a new 110 m long by 28 m wide wharf was constructed in its place. Known as Wharf No. 7, the wharf continued operating until 1980 when the wharf was removed and replaced with a smaller finger wharf that is still present in the cove today.

Wharf No. 7 (1901-1980) was an integral part of maritime commerce and trade functioning in Sydney Harbour. Known as Wharf No. 7, the wharf was leased by international merchant shipping companies before being taken over by the Maritime Services Board.

The archaeological resource present on the seabed is considered a common resource as it relates to the early 20th century redevelopment of Sydney Harbour. The wharf was likely one of the earlier wharves constructed as part of this new development works, and the archaeological remains have the potential to further our understanding about the initial type and construction of these wharves and the evolution of the design with wharves constructed as part of the same earlier 20th century development after the initial wharves were constructed in Sydney Harbour.

## 9.0 Impact assessment

#### 9.1 Proposed works

#### 9.1.1 Overview

The proposed works at the OPT are to dredge the existing berth pocket to increase the underkeel clearance to allow cruise ships to safely berth. The depth of required capital dredging works varies across the berth pocket, with majority of the area requiring deepening less than 1.5 m. The northern portion of the existing berth pocket, in the vicinity of the mooring dolphin, would require to be deepened by up to 6 m (Figure 64).

Scour protection would be installed along the whole length of the quay wall to prevent undermining from hydraulic instability.

The proposal's key features are:

- Installing a sheet pile retaining wall of about 65 m long at the southern end of the OPT berth pocket.
- Dredging approximately 20,000 m<sup>3</sup> of sediment to deepen the berth pocket.

Installing scour protection of about 12,000  $\mbox{m}^2$  in the form of pumped concrete mattress or articulated concrete mattresses.

Capital Dredging and Scour Protection Works at the Overseas Passenger Terminal – Maritime Archaeological and Indigenous Heritage Assessment and Statement of Heritage Impact



Figure 64: Proposed extent of dredging showing proposed depths to be dredged. Note: Dredging would only occur within the outlined "Provisional Berth" area

### 9.2 Aboriginal Heritage Assessment Key Findings

The key findings of this assessment are as follows:

- No registered Aboriginal sites are present within the Project Area; and
- Submerged environs within the Project Area were generally assessed is being of low to moderate archaeological sensitivity, with various factors influencing the survival of the various site types.

Table 4 provides a summary of the key questions asked as part of the *Due Diligence Code of Practice for the Protection of Aboriginal Objects in New South Wales* (DECCW, 2010:10). Should the answer to Question 4 be 'yes', further investigation and impact assessment would be required.

**Table 9 Due Diligence Process Questions** 

| 1  | Will the activity disturb the ground surface or any culturally modified trees?                                                                                                                                                                                                                                                                                                                                          | Proceed to Question 2                    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|    | Yes. The proposed activity will require the removal of soil and sediment from a submerged context. No culturally modified trees will be impacted.                                                                                                                                                                                                                                                                       |                                          |
| 2a | Are there any relevant confirmed site records or other associated landscape feature information on AHIMS?                                                                                                                                                                                                                                                                                                               | Proceed to Question<br>2b                |
|    | Yes. The AHIMS database holds a record of known Aboriginal sites<br>near the Project area, with a search of the AHIMS database identifying<br>that the nearest site approximately 280 m away. Reference to<br>available geotechnical data suggests that assessment former<br>terrestrial soils, suggestive of tidal delta and estuarine environs, are<br>likely within the Project area, albeit in a submerged context. |                                          |
| 2b | Are there any other sources of information of which a person is already aware?                                                                                                                                                                                                                                                                                                                                          | Proceed to Question 2c                   |
|    | Yes. AECOM has reviewed all available literature and relevant sources of information pertaining to the known Aboriginal resource of the Project area.                                                                                                                                                                                                                                                                   |                                          |
| 2c | Are there any landscape features that are likely to indicate presence of Aboriginal objects?                                                                                                                                                                                                                                                                                                                            | Proceed to Question 3                    |
|    | Yes. Geotechnical data suggests that sediment associated with tidal delta and estuarine environs are likely present within the Project area.                                                                                                                                                                                                                                                                            |                                          |
| 3  | <b>Can harm to Aboriginal objects listed on AHIMS or identified by other sources of information and/or can the carrying out of the activity at the relevant landscape features be avoided?</b>                                                                                                                                                                                                                          | Proceed to Question<br>4                 |
|    | Impacts from dredging within the Project area is rated as Moderate.<br>This assessed impact reflects that dredging would be relatively<br>localised, even though any evidence surviving would be considered to<br>be of high heritage significance due to its rarity and ability to reveal<br>more about submerged sites and Aboriginal occupation in the Sydney<br>area during the terminal Pleistocene.               |                                          |
| 4  | Does a desktop assessment and visual inspection confirm that there are Aboriginal objects or that they are likely?                                                                                                                                                                                                                                                                                                      | Proposed activity can proceed subject to |
|    | This Aboriginal Heritage Due Diligence Assessment has identified a low to moderate potential for intact Aboriginal sites.                                                                                                                                                                                                                                                                                               | recommendations provided below.          |

#### 9.3 Heritage impact assessment

#### 9.3.1 Summary of impacts

The Project includes undertaking capital dredging works within the existing berth pocket to increase the depth underkeel of vessels. The additional capital dredging would require deepening the existing berth pocket by approximately 1.5 m to 6 m, with the proposed works to dredge up to 6 m below the current seabed depth. These dredging works would impact on the remains of the former Campbells Cove Wharf No. 7 (1901-1980) identified to be within the Project area. These impacts would remove up to an approximate 20 m section of the remains, that include in situ piles, sections of cut piles and other timber structural remains associated with the former wharf that are present within its original footprint. The depth of the proposed dredging in the area of the former wharf would also remove material remains that are present below the current seabed. There is the potential for maritime archaeological relics associated with the use of the wharf to also be present within the footprint of the former wharf. The dredging would likely also remove these remains. The maritime archaeological site on the seabed has been assessed as being up to 3,135 m<sup>2</sup>. The total area of the wharf that is likely to be impacted from these works is expected to be approximately 570 m<sup>2</sup>, or 18% of the site.

The extent of the dredging in the vicinity of the former wharf may also impact on relics present on and under the seabed associated with vessels that berthed at Wharf No. 7. These relics would be located in the area between the vessel and the wharf, and, on the opposite side of the vessel toward the middle of the cove. There is not expected to be any provenance to the relics that may be present within the seabed as stratigraphic deposits are not expected to be present. Artefact movement and sorting within the seabed deposits is also likely to have occurred due to natural influences, including wave motion and currents across the site. Movement and disturbance of the seabed can affect the location and positioning of relics, both horizontally and vertically within the seabed deposit. This is likely to occur until relics penetrate further through the soft silt deposits and reach firmer silt and or clay-based deposits. The action of dredging would remove relics that are present at this level if the dredging was to occur to this depth.

There is not expected to be any additional impacts from dredging within the other areas of the berth pocket. No previous historic wharves or other structures were located within this area prior to the reclamation and construction of the OPT. There are not expected to be any shipwrecks or shipwreck related material within the area of the OPT. Historic dredging practices within the existing berth pocket are also likely to have removed any maritime archaeological potential that may have existed.

The installation of rock armour along the guay wall is not expected to have an impact. The proposed works would repair and add to the existing armour wall already present.

As there would be expected impacts to potential archaeological deposits from this Project, a permit would be required from Heritage NSW, DPC, prior to any construction works commencing. The permit may also require a Research Design and Methodology Document to be prepared that outlines how archaeological work and the recording of these remains would be undertaken before, during and after the proposed works are completed.

#### Impacts to significance 9.3.2

02-Jul-2020

Table 10 assesses the impact of the proposed works against each of the heritage criteria from the significance assessment undertaken in Section 8.2 of this report.

#### Table 10 Assessment of heritage impact of the Project against the significance assessment

| Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Historical significance: Campbells Cove has served as part of<br>the Sydney Harbour shipping and trade hub for Sydney from 1810<br>when the first private wharf was constructed by Robert Campbell.<br>Campbells Cove became part of the evolution of the wharves along<br>the western side of Sydney Cove with the later developments made<br>by the Australasian Steam and Navigation Company and Australasian<br>United Steam Ship Company up until the turn of the century.<br>Integrated as part of the larger wharfage schemes associated with<br>both earlier shipping companies, the wharf at Campbells Cove would<br>have been a well-known fixture of the commerce and trade in and out<br>of Sydney. | The proposed capital dredging works and rock armour upgrade at the OPT are<br>not expected to have an impact to the heritage significance associated with the<br>former Wharf No. 7 at Campbells Cove. The proposed dredging would remove<br>approximately 18% of the archaeological site on and under the seabed. The<br>remainder of the extant site, approximately 82% of the site would remain<br>undisturbed. This would include relics associated with the operation of the wharf,<br>as well as relics that may be associated with vessels berthed at the former wharf. |
| After the resumption of the wharves in Sydney Harbour, the wharf in<br>Campbells Cove was demolished and replaced with a newer timber<br>wharf. The wharf was 360 feet (110 m) long and 91 feet (28.5 m) wide<br>and known as Wharf No. 7. The wharf was leased to shipping<br>companies such as Gibbs, Bright & Co., China Navigation Company<br>and Oceanic Company, who leased individual berths and store space<br>on the wharf. The wharf was later used as part of the Maritime<br>Services Board where it appears to have been used as a berth for<br>smaller working vessels and no longer used as a warehouse.                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>e) Research significance.</b><br>There are known and potential archaeological remains of the former<br>Wharf No. 7 (1901-1980) expected to exist on site. The historical<br>information relating to the construction of the wharf is limited, with                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The Project would have an impact to the known and potential maritime<br>archaeological resource present on and below the seabed, however, it would not<br>result in the total loss of the archaeological resource, both in terms of its rarity or<br>significance.                                                                                                                                                                                                                                                                                                             |
| only primary sources, mostly photographs and maps, which reveal the construction of the wharf. Archaeological information that has been recorded on the site has already shown that the piles associated with the former wharf were sheathed to protect the submerged timbers from marine borer attack. Physical evidence that has survived in the                                                                                                                                                                                                                                                                                                                                                                 | The Project would include the removal of approximately 18% of archaeological remains of the former Wharf No. 7. This impact is considered to be a major impact, however, the remainder of the site located in Campbells Cove would remain unaffected.                                                                                                                                                                                                                                                                                                                          |
| archaeological record has the potential to provide additional<br>information relating to construction techniques and materials that<br>were used. Information relating to repair works to the wharf, such as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The impact to the archaeological remains could be mitigated by a maritime archaeological program that allowed for research relating to the construction and operation of the former wharf to be assessed. This would be done through a                                                                                                                                                                                                                                                                                                                                         |

| Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| from the driving in of repair "sister" piles or the addition of extra<br>bracing or fastenings, can also be determined from the remains in the<br>archaeological record on the wharf site.<br>Artefacts discarded, accidentally or deliberately, from the wharf and<br>vessels moored alongside can contribute towards knowledge of the<br>variety of traffic and goods that passed between Sydney and the rest<br>of the world during the 20th century. It can also contribute to our<br>understanding of the working operation of the wharf.<br>The archaeological site associated with the former wharf built at<br>Campbells Cove has the potential to contribute to a greater<br>understanding of wharf construction, repair and upgrading that has<br>not been documented in the archaeological record previously. | <ul> <li>combination of a recording of the <i>in situ</i> remains, an archaeological monitoring and test excavation program to understand the site formation, artefact patterning and distribution across the site. Sieving of the dredge spoil would allow for any relics across the impact area to be recovered from the site. Through this program a better understanding could be made of the working operation of the wharf and a better understanding the remaining archaeological site.</li> <li>Repair of the existing scour protection would not have an impact to the heritage significance associated with this heritage criterion. The proposal; includes the installation of additional scour protection works along the western side of the OPT. There are no maritime archaeological areas of potential identified within this area.</li> </ul> |
| <b>f) Rarity significance.</b> The early 20th century wharves constructed in<br>Sydney Harbour are associated with the post resumption<br>development of the harbour. There are wharves still standing in<br>Sydney Harbour that relate to the development works directly<br>associated with this redevelopment phase. Many of these wharves<br>are still in use today, such as Woolloomooloo, Walsh Bay and Jones<br>Bay wharves. While not wharves from the post resumption era still<br>exist, there are surviving examples today that can be considered to<br>be common. The former 1901 wharf constructed at Campbells Cove<br>is likely to have been one of the earlier wharves that was constructed                                                                                                               | The Project would include the removal of a portion of the archaeological site<br>associated with former Wharf No. 7. The dredging works would remove those<br>remains currently visible on the seabed and below. This total impact is expected<br>to be less than 20% of the total archaeological site on the seabed and<br>concentrated only to the seaward end of the wharf. The remainder of the site<br>would remain <i>in situ</i> .<br>The impact could be mitigated by undertaking a maritime archaeological program<br>across the area of the site that would be impacted. This would include <i>in situ</i><br>recording of the structure on the seabed to better understand the post demolition                                                                                                                                                      |
| as part of the post wharf resumption works in Sydney Harbour. The archaeological site has the potential to reveal early design plans that were to become standard for all wharf construction built after the resumption of the wharves. This has the potential to include remains associated with pile type and construction, fastenings, timbers and other materials. Compared to later constructed wharves that were built as part of the same redevelopment works, such as at Walsh Bay (1911), the site could show the changes to wharf design after the Campbells Cove was constructed.                                                                                                                                                                                                                             | site formation processes. Archaeological monitoring of the seabed surface<br>remains would be used to assist with answering wharf construction techniques<br>used for post resumption wharves in Sydney Harbour. Archaeological test<br>excavations in a number of locations across the seabed would be carried out to<br>understand artefact density, distribution and patterning that may exist within the<br>seabed deposit. At the conclusion of the testing, dredged material removed from<br>specific locations around the former wharf site would be undertaken to record the<br>remainder of the maritime archaeological remains that may be present.                                                                                                                                                                                                  |

| Criterion | Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Archaeological monitoring of the surface timbers that have been removed would contribute to our understanding of the construction techniques, a series of test excavations would reveal any artefact patterning or distribution across the site and sieving the dredged material removed from this section of the site, in association with the archaeological test excavation, would reveal relics that relate to the use of the wharf, including relics associated with berthed vessels.<br>Project works associated with the installation of the scour protection along the western side of the OPT would not be placed over the remains of the former Wharf No.7. As such, these works would not have an impact to this heritage criterion. |

## 10.0 Statement of heritage impact

The objective of a Statement of Heritage Impact is to evaluate and explain how the proposed development, rehabilitation or land use change would affect the heritage value of the site and/or place. A Statement of Heritage Impact should also address how the heritage value of the site/place can be conserved or maintained, or preferably enhanced by the Project.

### 10.1 Sydney Opera House World Heritage Listing

A heritage impact assessment is required to be undertaken for works within the buffer zone associated with the Sydney Opera House on the WHL, as protected under the EPBC Act 1999. The guidelines for undertaking this assessment are outlined in the *Significant Impact Guidelines 1.1* prepared by the Commonwealth Government (Department of the Environment, 2013:17). The assessment determines if the proposed works (the action) is likely to have a significant impact on cultural heritage values of a World Heritage property. This assessment is detailed in Table 11 below.

| Impact.<br>Is there a real chance or possibility<br>that the action will                                                                                                                         | Discussion                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Permanently remove, destroy,<br>damage or substantially alter the<br>fabric of a World Heritage property                                                                                         | <b>NO</b><br>The proposed capital dredging and scour protection works<br>would be undertaken within the buffer zone associated<br>with the Sydney Opera House listing, but will not have a<br>direct impact to the Sydney Opera House itself                                                                                                                                         |
| Extend, renovate, refurbish or<br>substantially alter a World Heritage<br>property in a manner which is<br>inconsistent with relevant values                                                     | <b>NO</b><br>The proposed works would take place within the buffer<br>zone associated with the Sydney Opera House listing, but<br>would not directly impact on the Sydney Opera House. All<br>works would be contained underwater and would not be<br>visible from the Opera House itself.                                                                                           |
| Permanently remove, destroy,<br>damage or substantially disturb<br>archaeological deposits or artefacts<br>in a World Heritage property                                                          | <b>NO</b><br>The proposed works would take place within the buffer<br>zone associated with the Sydney Opera House listing, but<br>would not directly impact on the Sydney Opera House.<br>This assessment has identified maritime archaeological<br>relics and potential for relics to be present on and under<br>the seabed that are not associated with the Sydney Opera<br>House. |
| Involve activities in a World Heritage<br>property with substantial and/or<br>long-term impacts on its values                                                                                    | <b>NO</b><br>The proposed works would take place within the buffer<br>zone associated with the Sydney Opera House listing, but<br>would not directly impact on the Sydney Opera House. All<br>works would be contained underwater and would not be<br>visible from the Opera House itself.                                                                                           |
| Involve construction of buildings or<br>other structures within, adjacent to,<br>or within important sight lines of, a<br>World Heritage property which are<br>inconsistent with relevant values | <b>NO</b><br>The proposed works would take place within the buffer<br>zone associated with the Sydney Opera House listing, but<br>would not directly impact on the Sydney Opera House. All<br>works would be contained underwater and would not be<br>visible from the Opera House itself.                                                                                           |

Table 11: World Heritage properties impact assessment

Based on the assessment made in Table 11, the proposed capital dredging works and scour protection would not have any direct or indirect impacts to the Sydney Opera House, relics, views or vistas to and from the World Heritage Listed property. As such, no referral under the EPBC Act is required for this project.

### 10.2 Maritime archaeological remains assocated with Wharf No.7

This statement of heritage impact has been prepared in accordance with the *NSW Heritage Office & Department of Urban Affairs and Planning NSW Heritage Manual* (1996) and *NSW Heritage Office Statements of Heritage Impact* (NSW Heritage Office & Department of Urban Affairs & Planning, 2002). The guidelines pose a series of questions as prompts to aid in the consideration of impacts based on the type of Project. The Project involves a major addition adjacent to an area of known and potential maritime archaeological remains. The guideline suggests the following questions be used to direct discussion in relation to the Project.

These questions are addressed, based on the impacts to the heritage significance of the maritime archaeological site at Wharf No. 7 at Campbells Cove, as outlined in Section 9.2.

| Development                                                                                                           | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How is the impact of the<br>new development on the<br>heritage significance of the<br>item or area to be<br>minimised | The proposed rock armour works would not have an impact to the<br>heritage significance or any archaeological potential present within<br>the Project area. The works would be undertaken within the area<br>already containing scour protection and would not be added to any<br>areas where potential historical archaeological remains have been<br>assessed to be present.                                                               |
|                                                                                                                       | The capital dredging works would increase the depth of the berth pocket at the northern end by up to 6 m, removing the known archaeological remains associated with the former Wharf No. 7 (1901-1980). This impact would remove up to 18% of the archaeological site from the seabed. Physical impacts would be minimised by containing the dredge area to within the Project area only, leaving the remainder of the site <i>in situ</i> . |
|                                                                                                                       | The archaeological site located outside of the Project area would retain the site's current heritage significance, including research potential, as over 80% of the site would be retained.                                                                                                                                                                                                                                                  |
|                                                                                                                       | Timber remains associated with the former wharf are defined as<br>'works' under the <i>Heritage Act 1977</i> , however, there is potential for<br>relics associated with the operation of the wharf, including from<br>vessels berthed there, to be present within and adjacent to the wharf<br>remains. As such, a permit would be required prior to the<br>commencement of any project works.                                              |
|                                                                                                                       | The impact would also be minimised by undertaking maritime<br>archaeological investigation for the area that would be impacted.<br>The maritime archaeological investigation would work towards<br>answering questions related to the heritage significance associated<br>with the former wharf, including construction techniques used in the<br>early post resumption of wharves in Sydney Harbour.                                        |
| Why is the new<br>development required to be<br>adjacent to a heritage item?                                          | The OPT is the only capable wharf in Sydney Harbour that can berth<br>the larger sized overseas cruise passenger ships. The project is<br>required to deepen the berth pocket at the OPT to provide safe<br>clearance underkeel of cruise ships.                                                                                                                                                                                             |

Table 12 Statement of heritage impact for the remains of Wharf No. 7 at Campbells Cove

| Development                                                                                                                                                                         | Discussion                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Development                                                                                                                                                                         | Discussion                                                                                                                                                                                                                                                                                                                                                                                                               |
| Is the development sited on<br>any known, or potentially<br>significant archaeological<br>deposits? If so, have<br>alternative sites been<br>considered? Why were they<br>rejected? | Archaeological remains associated with the former Wharf No. 7 (1901-1980) have been identified on the seabed within Campbells Cove. Approximately 18% of the archaeological site is located with the Project area. Alternate locations for these works were not investigated as the OPT is the international cruise ship terminal wharf and the dredging works are required to maintain a safe depth of water underkeel. |
| Is the new development<br>sympathetic to the heritage<br>item? In what way (e.g.<br>form, siting, proportions,<br>design)                                                           | Rock armour works would not be visible as the scour protection<br>would be placed along the western side of the OPT. As it would be<br>hidden under water, there is not expected to have any direct or<br>indirect impacts to any heritage items within the Project area.<br>The capital dredging works cannot be modified as the size of                                                                                |
|                                                                                                                                                                                     | vessels using the OPT require safe underkeel clearance within the<br>whole of the berth pocket. The impact to the archaeological remains<br>associated with the former Wharf No. 7 are limited to those that are<br>present within the Project area only, and the remainder of the site<br>would be left <i>in situ</i> .                                                                                                |

### 10.3 Summary

The capital dredging works would require various depths of dredging below the current seabed within the existing berth pocket. At the northern end, adjacent to the mooring dolphin, the proposed works would dredge up to 6 m below the current seabed depth. Archaeological remains of the former Wharf No. 7 are present in this area, and the proposed dredging would directly impact on those remains that are within the project area.

This dredging would remove approximately 18% of the archaeological site associated with the former Wharf No. 7. The archaeological site within the project area include both *in situ* and cut sections of piles, timber substructure remains that include whalers. Relics associates with the use of the wharf, and relics deposited from berthed vessels are also predicted to be within the Project area, and the dredging works will impact on these.

The impact to the heritage significance and archaeological remains of the former Wharf No. 7 can be mitigated by undertaking a program of maritime archaeological work before and during construction works on the site. These include

- Recording the remains of the wharf on the seabed prior to impact works, which would help understand the site formation processes associated with the demolition of the wharf.
- During the removal of timbers on the seabed, an archaeologist would inspect and record elements associated with the timbers to better understand the construction techniques used.
- Once the timbers on the seabed had been removed from the Project area, a series of maritime archaeological test trenches should be excavated to understand the potential for relics, patterning and dispersal of relics across the site.
- At the conclusion of the archaeological works, and during dredging works, the spoil bright up from the dredge within the area of the former wharf would be sieved by archaeologists to collect any remaining relics that may be present.

This archaeological program of works would help better understand the technical building techniques used in the post resumption and construction of wharves in Sydney Harbour in 1900. Archaeological test excavation and sieving of material would help understand the potential for relics to be present, but also allows for an assessment of whether artefact patterning is occurring and what the dispersal of relics is across the site. The results of this work would provide an insight in understanding the

As the proposed works have been assessed as having a direct impact to an archaeologist site assessed as potentially containing relics, a Section 140 permit would be required prior to the Project commencing.

The rock armour scour protection works would be located along the western side of the OPT berth pocket, and would repair the existing scour protection already installed. The works would be contained to areas already impacted by the existing scour protection. This work is not expected to have any impact to the heritage significance or historical archaeological potential that has been identified in this report.

The proposed capital dredging works and scour protection works at the OPT are likely to have an impact on archaeological remains present at the northern end of the berth pocket, in the area adjacent to the mooring dolphin. The additional depth of dredging required to provide a safe depth underkeel of vessels berthed at the OPT is up to 6m. The archaeological site relates for the former Wharf No. 7 built in Campbell Cove in 1901 and removed from the site in 1980. The wharf was constructed after the resumption of wharves in Sydney Harbor in 1900 and is believed to have been built under the new standard for wharf construction.

Opportunities to relocate the proposed works are not possible as the OPT is required to function as the overseas passenger terminal for curse ships entering Sydney Harbour. Impact to the former Wharf No. 7 cannot be avoided, and the impacts need to be mitigated.

Proposed mitigation measures include undertaking a controlled maritime archaeological program that would include recording, testing and the sieving of any dredge deposit remains that are present within the location of the former wharf. As the project has been assessed as impacting on potential archaeological (relic) remains associated with the former Wharf No. 7, the following recommendations can be made.

#### **Aboriginal Heritage Recommendations**

In light of the above key findings and Due Diligence Process Questions presented in Table 4, this Aboriginal Heritage Due Diligence Assessment provides the following management recommendations

- 1. This assessment has determined that Aboriginal objects may be encountered during the proposed works. Investigations of Aboriginal cultural heritage undertaken in accordance with the requirements of the *Code of Practice for Archaeological Investigation of Aboriginal Objects in NSW* (DECCW, 2010b) however, are impractical within submerged contexts. Therefore, a robust unexpected finds procedure for Aboriginal heritage should be developed prior to commencement of works. The procedure should be developed to run concurrently with historic investigations (refer below) and include protocols for identifying and managing Aboriginal cultural heritage.
- 2. Should any Aboriginal objects be identified at any stage of the project, Port Authority of New South Wales may be required to apply for an Aboriginal Heritage Impact Permit (AHIP) under Section 90 of the National Parks and Wildlife Act 1974 (NPW Act 1974). Generally, applications for AHIPs must be supported by an Aboriginal Cultural Heritage Assessment Report (ACHAR) compiled in accordance with Section 3 of the *Guide to Investigating, Assessing and Reporting on Aboriginal Cultural Heritage in NSW* (OEH, 2011). A process of Aboriginal community consultation should be carried out accordance with OEH's Aboriginal Cultural Heritage Consultation Requirements for Proponents (DECCW, 2010a) must also be demonstrated.
- 3. In the event that human skeletal material (remains), are identified at any point during the Project, the procedure outlined in Appendix B should followed.
- 4. In the event that Aboriginal objects, including possible human skeletal material (remains), are identified at any point during the Project, the procedure outlined in Appendix B should followed.

#### **Maritime Archaeological Recommendations**

- 5. A Section 140 permit application should be submitted to Heritage NSW, Department of Premier and Cabinet, prior to the commencement of works. The application must include a maritime archaeological research design and methodology must be prepared that details the methodology for how the maritime archaeologist works would be conducted in conjunction with the proposed works. The document should include
  - Principal heritage specialists working on the project;

- Details regarding the stages of works to be conducted on site, include methodology for each site;
- How the works would be undertaken;
- Recording methods for each stage of works, ;
- Method for collecting and location for the storage of relics collected from the site which the artefact analysis is under taken; and,
- Reporting at the conclusion of the project.

### 12.0 References

- Attenbrow, V. (2010). Aboriginal Fishing on Port Jackson, and the Introduction of Shell Fish-Hooks to Coastal New South Wales, Australia. In P. Hutching, D. Lunney, & D. Hochuli (Eds.), *The Natural History of Sydney* (pp. 16–34). Royal Zoological Society of New South Wales.
- Attenbrow, Val. (2010). Sydney's Aboriginal Past: Investigating the Archaeological and Historical Records. University of New South Wales Press.
- Attenbrow, Val. (2012). Archaeological Evidence of Aboriginal Life in Sydney. Dictionary of Sydney. http://dictionaryofsydney.org/entry/archaeological\_evidence\_of\_aboriginal\_life\_in\_sydney
- Bradley, W. (1792). A Voyage to New South Wales. The Journal of Lieutenant William Bradley RN of HMS Sirius 1786-1792. Unpublished manuscript [Republished 1961 by The Trustees of the Public Library of NSW in assoc. with Ure Smith].
- Coffey Pty Ltd. (2019). Port Authority of NSW OPT Berth Deepening Investigations. Geotechnical and Geophysical Investigations Report.
- Collins, D. (1798). An Account of the English Colony in New South Wales. Vol. 1. (B. H. Fletcher (ed.)). T. Cadell Jun. & W. Davies [Republished 1975 by AH & AW Reed in assoc. with the Royal Australian Historical Society, Sydney].
- Collins, D. (1802). An Account of the English Colony in New South Wales. Vol. 2. (J. Collier (ed.)). T. Cadell Jun.
   & W. Davies [Reproduced 1971 by the Libraries Board of South Australia. Australiana Facsimile Editions No. 76] Sydney].
- Conybeare Morrison International. (2005). Sydney Cove Passenger Terminal Extendible Gangways Heritage Impact Statement (Issue November 2005). Prepared for Sydney Ports Authority.
- Cosmos Archaeology Pty Ltd. (2014). Overseas Passenger Terminal Wharf Extension, Sydney Cove Maritime Archaeological Survey and Circular Quay. Report Prepared for Sydney Ports (Issue June).
- Dawes, W. (1790). Vocabularly of the Language of N.S. Wales, in the Neighbourhood of Sydney, Native and English. Unpublished manuscript [Original in the Library of the School of Oriental & African Studies, London. Marsden Collection Ms 41645 (b). Microfilm in the ML of the SLNSW].
- Department of the Environment. (2013). *Matters of National Environmental Significance, Significant Impact Guidelines 1.1*. Australian Government.
- Dortch, C. (2002). Preliminary underwater survey for rock engravings and other sea floor sites in the Dampier Archipelago, Pilbara region, Western Australia. *Australian Archaeology*, *54*.
- Dortch, C. E., & Morse, K. (1984). Prehistoric stone artefacts on some offshore islands in Western Australia\*. *Australian Archaeology, May*, 31–47.
- Etheridge, R. (1905). The further discovery of Dugong bones on the coast of New South Wales. *Records of the Australian Museum*, *6*(1), 17–19. https://doi.org/10.3853/j.0067-1975.6.1905.983
- Horton, D. R. (1994). *The encyclopaedia of Aboriginal Australia: Aboriginal and Torres Strait Islander history society and culture* (D.R. Horton (ed.)). Aboriginal Studies Press: Australian Institute of Aboriginal and Torres Strait Islander Studies. https://doi.org/994/.0049915
- Hunter, J. (1793). An Historical Journal of the Transactions at Port Jackson and Norfolk Island, ...Including the Journals of Governors Phillip and King, and of Lieut. Ball; and the Voyages from the First Sailing of the Sirius in 1787 to the Return of that Ship's Company to. J.Stockdale [Republished 1968 Australiana Facsimile Editions No.148, Libraries Board of South Australia, Adelaide].

Kohen, J. (1985). Aborigines in the West: Prehistory to Present. Western Sydney Project.

- Kohen, J. (1988). The Dharug of the Western Cumberland Plain: Ethnography and Demography. In B. Meehan & R. Jones (Eds.), Archaeology with Ethnography: An Australian Perspective (pp. 238–250). Department of Prehistory, Research School of Pacific Studies, Australian National University.
- Kohen, J., Knight, A., & Smith, K. V. (1999). Uninvited Guests: An Aboriginal Perspective on Government House and Parramatta Park. National Trust of Australia.
- Kohen, J., & Lampert, R. (1987). Hunters and Fishers in the Sydney Region. In D. J. Mulvaney & J. P. White (Eds.), *Australians to 1788* (1st ed., pp. 343–365). Fairfax, Syme & Weldon Associates.

Kohen, James. (1995). Aboriginal Environmental Impacts. UNSW Press.

- Lewis, S. E., Craig, B., Sloss, R., Murray-Wallace, Colin V Woodroffe, C. D., & Smithers, S. G. (2013). Postglacial sea-level changes around the Australian margin: a review. *Quaternary Science Reviews*, 74, 115– 138.
- NSW Heritage Division. (2014). Sydney Cove West Archaeological Precinct. http://www.environment.nsw.gov.au/heritageapp/ViewHeritageItemDetails.aspx?id=5054387
- NSW Heritage Office. (2001). Assessing Heritage Significance. http://www.heritage.nsw.gov.au/docs/assessingheritagesignificance.pdf
- NSW Heritage Office & Department of Urban Affairs & Planning. (2002). Statements of Heritage Impact (Issue 2). Heritage Office & Department of Urban Affairs & Planning. https://www.environment.nsw.gov.au/Heritage/publications/index.htm#S-U
- NSW Heritage Office, & NSW Department of Urban Affairs and Planning. (1996). *NSW Heritage Manual*. Heritage Office & Department of Urban Affairs & Planning. http://www.heritage.nsw.gov.au/03\_index.htm#M-O
- Nutley, D. (2006). The Last Global Warming? Archaeological Survival in Australian Waters. *Flinders University Maritime Archaeology Monographs Series*, *10*.
- Ross, A. (1988). Tribal and Linguistic Boundaries in Sydney at the Time of First British Settlement: A Reassessment of the Evidence. In G. Aplin (Ed.), *A Difficult Infant: Sydney Before Macquarie* (pp. 42–53). University of New South Wales Press.
- Sydney Harbour Foreshore Authority. (2010). *The Rocks Heritage Management Plan: Strategies and Action* (Issue April). http://www.shfa.nsw.gov.au/content/library/documents/484E489C-F8E0-D933-8A58A3D803847A20.pdf
- Sydney Harbour Foreshore Authority. (2012). *Campbell's Cove: Initial Archaeological Assessment*. Sydney Harbour Foreshore Authority.
- Sydney Harbour Foreshore Authority. (2014). *The Rocks Conservation Area*. http://www.environment.nsw.gov.au/heritageapp/ViewHeritageItemDetails.aspx?id=4500458
- Sydney Ports Corporation. (2014). Sydney Cove Passenger Terminal. http://www.environment.nsw.gov.au/heritageapp/ViewHeritageItemDetails.aspx?id=4560023
- Tench, W. (1793). A Complete Account of the Settlement at Port Jackson. In T. Flannery (Ed.), *1788*. The Text Publishing Company.
- Troy, J. (1994). The Sydney Language. J.Troy.
- Westley, K., Trevor, B., Plets, R., & Rory, Q. (2011). Investigating Submerged Archaeological Landscapes: a research strategy illustrated with case studies from Ireland and Newfoundland, Canada. In *Submerged Prehistory* (pp. 129–134).

Yanko-Hombach, Valentina Mudie, P., & Gilbert, A. S. (2011). Was the Black Sea Catastrophically Flooded during the Holocene? – geological evidence and archaeological impacts. In *Submerged Prehistory* (pp. 245–261).

Appendix A – Cosmos Report

Sydney 46 Gale Road Maroubra, NSW, 2035

Northern 2 Queen St NSW Murwillumbah, NSW P.O. Box 42 Condong, 2484 General Inquiries +61 2 9568 5800 www.cosmosarch.com



A.B.N. 83 082 211 498

# **Berthing Infrastructure Project Overseas Passenger Terminal**



## **Maritime Archaeological Survey**

# DRAFT

Circular Quay NSW

February 2020

## Berthing Infrastructure Project – Overseas Passenger Terminal Maritime Archaeological Survey Draft

Prepared for: Ports Authority of NSW

*By:* Jane Mitchell

February 2020

Cosmos Archaeology Job Number 20/01

**Cover image:** Anon, 1860. Panorama of Circular Quay and Campbell's Cove from Dawes Point Battery, ca. 1860s, Dixson Library, State Library of New South Wales, available at http://digital.sl.nsw.gov.au/delivery/DeliveryManagerServlet?embedded=true&toolbar=fals e&dps\_pid=IE8795447&\_ga=2.37822311.573868018.1580606235-1962520728.1528873966

## TABLE OF CONTENTS

| 1 | DIVE INSPECTION                                                                                                                                             | . 2 |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|   | <ul> <li>1.1 DATES AND PERSONNEL</li> <li>1.2 WEATHER AND TIDE CONDITIONS</li> <li>1.3 CONDUCT OF SURVEY</li> <li>1.3.1 Survey bias and accuracy</li> </ul> | 223 |  |
| 2 | SURVEY RESULTS                                                                                                                                              | . 5 |  |
| 3 | INTERPRETATION OF RESULTS                                                                                                                                   | 25  |  |
| A | ANNEX A – VIDEO LOG                                                                                                                                         |     |  |



## **1 DIVE INSPECTION**

## 1.1 Dates and Personnel

The archaeological dive inspection was carried out on 29<sup>th</sup> January, 2020. The inspection was undertaken by a commercial dive team from Professional Diving Services under the direction of a Maritime Archaeologist from Cosmos Archaeology. The team was made up of the following people:

| Jane Mitchell      | Maritime Archaeologist       | Cosmos Archaeology Pty Ltd   |
|--------------------|------------------------------|------------------------------|
| Mal Venturoni      | Supervisor                   | Professional Diving Services |
| Felix Venturoni    | Supervisor/Diver             | Professional Diving Services |
| Kent Clifton-Bligh | Supervisor/Diver             | Professional Diving Services |
| Callum Harvey      | Diver/Maritime Archaeologist | Professional Diving Services |

## 1.2 Weather and Tide Conditions

Diving in Sydney Harbour near Circular Quay is not heavily affected by changes in tide however, previous rainfall carrying silt from land can severely dampen visibility. Fortunately minimal rainfall had occurred three days prior to the inspection and none had fallen on the diving day. The weather conditions that were taken into consideration in the approach to undertaking the inspection are outlined in Table 1 and Table 2.

#### Table 1: Tides for the survey day. <sup>1</sup>

| 20- Ian-2020 | Time           | 0538 | 1159 | 1827 |
|--------------|----------------|------|------|------|
| 29-Jan-2020  | Height (m LAT) | 0.6  | 1.7  | 0.45 |

## Table 2: Rain and wind conditions for the three days prior and for the day of the inspection.<sup>2</sup>

| Date        | Rain (mm) | Wind 09:00 (km/h) | Wind 15:00 (km/h) |
|-------------|-----------|-------------------|-------------------|
| 26-Jan-2020 | 0.2       | 7 E               | 6 ENE             |
| 27-Jan-2020 | 0.0       | 54 S              | 17 ESE            |
| 28-Jan-2020 | 0.0       | 44 S              | 6 W               |
| 29-Jan-2020 | 0.0       | 17 S              | 17 SSE            |

<sup>1</sup> Bureau of Meteorology, Australian Government, 2020, Sydney tide table predictions, http://www.bom.gov.au/ntc/IDO59001/IDO59001\_2020\_NSW\_TP007.pdf, accessed 29 January.

<sup>&</sup>lt;sup>2</sup> Bureau of Meteorology, Australian Government, 2020, 'Latest weather observations for Sydney Harbour', available <u>http://www.bom.gov.au/climate/dwo/202001/pdf/IDCJDW2124.202001.pdf</u>, accessed 29 January, 2020

## 1.3 Conduct of Survey

The survey was conducted by a commercial diver/maritime archaeologist under the direction of the maritime archaeologist. The inspection originally consisted of four transects in the area to the north of the overseas passenger terminal and two circular searches to the east of the terminal wharf. However, VTS restrictions, imposed on the day due to operational reasons, did not allow the completion of either of the originally proposed and approved circular searches or the 40 m eastern transect.

The surveys were conducted using Surface Supplied Breathing Apparatus (SSBA), with helmet mounted video and video lights. The diver also carried a hand-held Sony RX100-IV camera with video lights for taking still images. The diver was in communication with the boat and this allowed the maritime archaeologist to instruct the diver and receive observations of the seabed and any finds in real time. The diver carried a 100 m transect line marked at 5 m increments and a 1.3 m fibreglass probe marked in 0.1 m increments.

For Transect 1 South, the boat was moored to the southern side of the mooring dolphin. A shot line was dropped next to the dolphin as an attachment point for the transect line. The diver ran the transect line out 40 m to the south. Following the line back towards north, the diver took video footage of one side of the transect and then on the way back filmed the other side, thereby getting good coverage either side of the transect line. Once back at the starting point, the diver wound in the transect line stopping to probe either side of the line at every 5 m marker.

For Transect 2 North, Transect 3 South and Transect 5 West, a shot line was dropped at 33.856389°, 151.210556° and the diver ran the transect line out on the cardinal points to 40 m, 40 m and 20 m respectively. As VTS had restricted diving to the east of the central position it was decided to run a 20 m transect to the North-east (Figure 1).



*Figure 1: Transects run as part of the maritime archaeology survey at OPT.* (Base image Google *Earth*).

#### 1.3.1 Survey bias and accuracy

The following factors had an influence on the bias and accuracy of the survey:

#### Water visibility

The water visibility ranged from 0.2 m to 2 m which decreased as sediment was disturbed. On certain occasions during the inspection dive, the visibility dropped to 0 m due to current and direction of the dive. The water clarity had an effect on the width of the inspection corridor, which was on average, 2 m wide on either side of the baseline.

#### Sea bed visibility

For the majority of the survey area, the sea bed consisted of sand and silt with a covering of a shell grit and stands of kelp which reduced ground visibility dramatically. It is possible that smaller artefacts may have been overlooked.

#### **Concretion and growth**

The heavy covering of growth on many of the objects located during the survey, impeded the interpretation of the object. In particular, it was difficult to determine if there was copper sheathing on some of the recorded timber piles.



## 2 SURVEY RESULTS

The seabed throughout the study area was generally sandy with a light covering of silt and shell grit. Varying densities of kelp was spread throughout the study area. Visibility ranged mostly between 0.2 m through to 2 m throughout the diving surveys, although this was reduced depending upon the current and the direction of the dive. The depths of all the dives was under 15 m, with the surveys ranging between 7 m and 13 m.

| Transect 1 S                       |                             |                      |                         |
|------------------------------------|-----------------------------|----------------------|-------------------------|
| Date: 29 January, 2020             | Method: SSBA                |                      | Tide: Flooding          |
| Distance and direction: 40 m south |                             | Diver: Callum Harvey |                         |
| Time start (min): 0927             | Time end (min): 0941        |                      | Total time (min): 14    |
| <b>Depth:</b> 7.2 - 11.1 m         | Water visibility: 0.5 – 2 m |                      | Seabed visibility: Good |

The diver set the transect line, running 40 m to the south from the southern side of the dolphin. The depth on the southern side of the dolphin was 7.2 m while the depth at the southern end was 11.1 m. The seabed was sandy with scattered stands of kelp, lightly covered in silt with a heavy shell grit towards the southern end which became lighter as the diver moved north.

To the west of the transect at the 1 m mark a glass tube was recorded. The tube stood proud of the seabed 0.8 m with a diameter of 0.1 m. The tube was easily removed from the seabed and was hollow (Figure 2). It's function is currently unknown.

At the 3 m mark on the eastern side of the transect, a horse shoe and a small section of copper sheathing were recorded lying adjacent to each other (Figure 3). There was one visible fastening hole in the sheathing. From the 5 m mark, a 7 m length of pile lay in a SE to NW direction. The pile was 0.4 m diameter. The northern end appeared broken and heavily degraded (Figure 4). The pile was heavily encrusted with growth so any presence of metal sheathing was unable to be recorded.

A glass milk bottle was recorded just after the 15 m mark and a concrete block was lying crossing the centre of the transect at the 20 m mark. This block was embedded in the seabed at a 45° angle and measured 0.7 m x 0.3 m and was 0.15 m thick. A 2 m, 0.25 m wide plank lay across the transect in an east-west direction at the 25 m mark (Figure 5). Approximately one metre away a ceramic coffee cup was located, missing the handle (Figure 6).

On the western side of the transect a mobile piece of timber was recorded running parallel with the transect near the 30 m mark. The timber measured 0.4 m long, 0.05 m wide and 0.03 m high (Figure 7). On the eastern side of the transect between 30 m and 35 m there was brick rubble and bottles (Figure 8). On the western side there were two bricks and another bottle.

At the 40 m mark on the eastern side of the transect a concrete block measuring 0.3 x 0.4 m and 0.1 m thick. Immediately adjacent to the block were two links of a large chain heavily encrusted with growth (Figure 9).

No refusal was met when probing along the majority of the transect line. At the 25 m mark on the western side of the transect there was refusal at 0.9 m, while on the eastern side there was refusal between 0.4 to 0.8 m. There were no consistent depths of refusal around these points, so it is likely the obstruction was small rocks or concrete rubble. At 40 m, the probe hit refusal at 0.8 m but probing in the immediate area around this mark did not meet any further resistance.



For a digital representation of the transect see Figure 10.



Figure 2: Glass tube standing 800 mm proud of the seabed at 1 m mark west of transect line. (PDS OPT Transect 1 South.)



Figure 4: Northern (degraded) end of 7 m pile. (PDS OPT Transect 1 South).



Figure 3: Horse shoe and sheet of copper sheathing at the 3 m mark on the east side of transect line. (PDS OPT Transect 1 South).



*Figure 5: Plank crossing transect at 25 m mark.* Top half of image indicated by red arrow. (PDS OPT Transect 1 South).



Figure 6: Ceramic coffee cup with no handle at the 26 m mark to the east of the transect. (PDS OPT Transect 1 South).



Figure 7: Mobile timber recorded on the western side of transect near 30 m. (PDS OPT Transect 1 South).



Figure 8: Example of bottles and brick rubble spread between 33 - 30 m. (PDS OPT Transect 1 S).



Figure 9: Chain link adjacent to concrete block to the east of the transect at 39 m. (PDS OPT Transect 1 South).




| Transect 2 N                       |                             |                      |                         |
|------------------------------------|-----------------------------|----------------------|-------------------------|
| Date: 29 January, 2020             | Method: SSB/                | 4                    | Tide: Flooding          |
| Distance and direction: 40 m north |                             | Diver: Callum Harvey |                         |
| Time start (min): 1110             | Time end (min): 1125        |                      | Total time (min): 15    |
| <b>Depth:</b> 8.3 – 9.9 m          | Water visibility: 0.2 – 1 m |                      | Seabed visibility: Good |

The diver set the transect line, running 40 m to the north. The seabed had a gentle slope from 8.3 m down to a depth of 9.9 m at the northern end. The seabed was sandy, lightly covered in silt and shell grit, with scattered stands of kelp, apart from the area between 15 m and 30 m, which became very silty, reducing visibility in this area (Figure 11).

A concrete block was recorded on the eastern side of the transect at the 3 m mark (Figure 12). This block was rectangular, measured  $0.3 \times 0.4$  mm and 0.1 mm thick and was resting at an approximate 45° angle into the seabed. Immediately adjacent to this block was a 1.2 m long ferrous pipe with a 0.5 m diameter running in a NE to SW direction (Figure 13).

Immediately passed the 5 m mark on the eastern side of the transect were two bottles, one broken at the neck. These appeared to be long neck beer bottles. A brick was partially buried at the base of a bottle (Figure 14). Another object, possible a piece of concrete, was recorded at 13 m and measured 0.6 m long x 0.1 m wide and 0.1 high.

An apparent concrete object was located at the 13 m mark. This was a thin piece of concrete measuring 0.6 long x 0.1 m wide and 0.1 m deep (Figure 15). A piece of what appeared to be concrete rubble was recorded on the western side of the transect at 18 m (Figure 17). At 23 m, a square concrete block was resting on the seabed. Measuring 0.4 m square, it was 0.25 m thick (Figure 15).

The only other material recorded was a bottle and a modern plastic bag (Figure 18).

No refusal was met when probing along the transect line, except for an area to the east of the line at the 5 m mark. The probe hit refusal at 1 m but probing in the immediate area around this mark did not meet any further resistance. In another area at the 20 m mark, there was refusal between 0.3 and 0.5 m beneath the seabed. There did not appear to be any pattern to the depth of refusal.

For a digital representation of the transect see Figure 19.





Figure 11: Example of seabed along Transect 2. (PDS OPT Transect 2 N 0 to 40 m).



Figure 13: Ferrous pipe; 1.2 m long and 0.5 m diameter. (PDS OPT Transect 2 N 0 to 40 m).



Figure 15: Concrete block at 45 degree angle. (PDS OPT Transect 2 N 0 to 40 m).



*Figure 12: Concrete block.* (PDS OPT *Transect N 0 to 40 m).* 



*Figure 14: Two long neck beer bottles with brick.* (PDS OPT Transect N 0 to 40 m).



Figure 16: Square concrete block (0.4 m). (PDS OPT Transect 2 N 0 to 40 m).



*Figure 17: Concrete rubble.* (PDS OPT *Transect N 0 to 40 m).* 



*Figure 18: Plastic shopping bag.* (PDS OPT *Transect N 0 to 40 m*).







| Transect 3 S                                           |                               |   |                         |
|--------------------------------------------------------|-------------------------------|---|-------------------------|
| Date: 29 January, 2020                                 | Method: SSB/                  | 4 | Tide: slack to ebbing   |
| Distance and direction: 40 m southDiver: Callum Harvey |                               |   | Harvey                  |
| Time start (min): 1147                                 | Time end (min): 1214          |   | Total time (min): 27    |
| <b>Depth:</b> 8.2 – 13.5 m                             | Water visibility: 0.5 – 1.5 m |   | Seabed visibility: Good |

The diver set the transect line, running 40 m to the south. The depth at the southern end was 13.5 m. The seabed was sandy, lightly covered in silt and shell grit, with scattered stands of kelp. The seabed had a clay like texture between the 20 m and 30 m marks.

There was a length of flat hose, similar to a dredge or fire hose lying just underneath a light silt layer, on the eastern side of the transect between 5 m and 10 m (Figure 20). A concrete block was recorded running across the transect line at 6 m in an almost east to west alignment. The block was 2 m long and 0.3 m high. Immediately adjacent to the block, was a long ferrous pipe. The pipe was on the same alignment as the block, was 8 m long and had a diameter of 0.1 m. On the western side of the transect, the pipe had a right angled ferrous bracket made of flat bar attached to the southern side (Figure 21). On the eastern side of the transect, there were two ferrous spikes attached to the northern side of the pipe. Approximately, 2 m from the eastern end the pipe was bent as if something had tried to lift it or caught and dragged it. The pipe was bent in a V-shape for an approximately two metre section before disappearing into the seabed.

Twelve metres along the transect line, to the west a coil of lead or tin was buried in the sea bed. The material was coiled like a rope but the material acted more like a soft metal such as lead, as when bent it stayed in the bent position. The coil was heavily covered in sediment Figure 22 ). Just past the coil, there was a small collection of bottles, many broken and on the western side of the transect at 15 m a modern tyre was recorded. The tyre was embedded in the seabed at a 45° angle (Figure 23).

At 16m there was a thin strip of copper. The strip measured 0.20 long and 0.015 m wide. There were holes at regular intervals along the strip, potentially for fastenings (Figure 24). Continuing along the transect, there was more brick rubble and broken bottles. At 19 m along the transect there was a small piece of chain link (Figure 25). At 21 m along the transect a small piece of copper sheathing was recorded. Measuring 0.1 x 0.3 m, the metal was slightly concave and fastening holes were present. No fastenings were found with the sheathing piece (*Figure 26* and Figure 25). Close to the piece of sheathing, a section of what appeared to be planking was buried in the sediment. The plank was 0.02 m thick and only a 0.05 m section was exposed (*Figure 27*).

A green glass bottle was recorded at 26 m along the transect. The bottle had a curved body and was 0.02 m tall. The body was lightly embedded in the silt (Figure 28).

On the eastern side of the transect, between the 30 m and 35 m mark a 4 m timber ran almost parallel with the transect line, measuring 0.25 m wide and 0.15 m thick. This is potentially a timber wale (Figure 29). A fastening hole 3 mm diameter was recorded at the northern end. No other fastening holes or fastenings were observed along the length of timber. The southern end was squared off. Sitting on top of this timber was another rounded timber running in a perpendicular direction (west to east). The western end was heavily degraded with a blackened appearance and the eastern end was degraded and heavily encrusted with growth. The timber was 0.30 m diameter and 2.5 m long (Figure 30).

At the 40 m mark there was brick rubble, bottles and a concrete block, resting on its edge measuring 0.6 x 0.7 and 0.05 m thick. There was also one bone fragment, large enough to

be an animal bone such as cow or sheep.

The original probe was lost in the visibility and was replaced with a 2 m fibreglass pole marked at 0.1 m increments. No refusal was met when probing along the transect line, except for a ten metre area either side of the transect line of the line at 10 m. The probe hit refusal at 1 m but probing in the immediate area around this mark did not meet any further resistance.

For a digital representation of the transect see Figure 31.



Figure 20: Flat hose, potentially a dredge or fire hose recorded between 5 and 10 m along transect. (PDS OPT Transect 3 South 40 to 0 m).



Figure 21: Section of 8 m length of ferrous pipe with right angled bracket crossing the transect at 6.5 m mark. Concrete block can be seen in the background. (PDS OPT Transect 3 South 40 - 0 m).



Figure 22: Coil of soft metal material possibly lead or tin recorded 11 m along the transect. (PDS OPT Transect 3 South 40 to 0 m).



Figure 23: Tyre located 15 m along the transect. (PDS OPT Transect 3 South).



Figure 24: Short length of copper strip with fastening holes recorded at 17 m along the transect. (PDS OPT Transect 3 South 40 to 0 m).



Figure 25: Piece of chain link lying loose on the seabed at 19 m along the transect. (PDS OPT Transect 3 South 40 to 0 m).



Figure 26: Piece of metal sheathing with fastening holes. The metal was slightly concave. (PDS OTP Transect 3 South 0 to 40 m).



Figure 27: Buried timber, potentially a plank, measuring 0.02 m thick with only 0.05 m exposed. Indicated by red arrow. (PDS OTP Transect 3 South 0 to 40 m).



Figure 28: Green glass bottle with curved body at 26 m along transect. (PDS OPT Transect 3 South 0 to 40 m).



Figure 29: Timber, likely a waler, running almost parallel with the transect line between 30 and 35 m. (PDS OPT Transect 3 South 40 to 0 m).



Figure 30: Timber pile running perpendicular to wale timber (just visible underneath the pile) [PDS OPT Transect 3 South 0 to 40 m).







| Transect 4 NE                           |                                |                      |                         |
|-----------------------------------------|--------------------------------|----------------------|-------------------------|
| Date: 29 January, 2020                  | Method: SSB/                   | 4                    | Tide: Ebbing            |
| Distance and direction: 20 m north east |                                | Diver: Callum Harvey |                         |
| Time start (min): 1240                  | Time end (min): 1253           |                      | Total time (min): 13    |
| <b>Depth:</b> 8.2 – 11.3 m              | Water visibility: 0.5 to 1.5 m |                      | Seabed visibility: Good |

The diver set the transect line, running 20 m to the north west. The seabed was sandy, lightly covered in silt and shell grit, with scattered stands of kelp (Figure 32).

A pile stump was recorded along the transect line at the 2 m mark. The centre was heavily degraded making the top of the stump semi-circular. The pile stood 0.5 m proud of the seabed and measured 0.4 m in diameter. The pile was too degraded and heavily encrusted with growth obscuring any evidence of copper sheathing (Figure 33).

A timber branch was recorded loose on top of the seabed adjacent to this pile 1.5 m long x 50 mm diameter (Figure 34). Just past the 5 m mark on the transect a ferrous pipe, 1 m long x 80 mm in diameter. The pipe was hollow and appeared broken at both ends (Figure 35).

There was scattered concrete rubble along the rest of the transect (Figure 36) and the remnants of a shopping trolley were located on the western side of the transect just before the 15 m mark (Figure 37).

No refusal was met when probing along the transect line, except for one area to the west of the line at the 20 m mark. The probe hit refusal at 0.6 m but probing in the immediate area around this mark did not meet any further resistance.

For a digital representation of the transect see Figure 38.





**Figure 32: Example of seabed on Transect 4.** (Professional Diving Services, OPT Transect 4 NE 0 to 40 m).



*Figure 34: Tree branch resting loose on seabed.* Outline marked in blue. (PDS Transect OPT 4 NE 0 to 40 m).



Figure 33: Pile stump: 0.45 diameter and standing 0.5 m proud of the seabed. Very heavily eroded. (PDS OPT Transect 4 NE 0 to 40 m).



*Figure 35: Ferrous pipe resting loose on seabed.* (PDS OPT Transect 4 NE 0 to 40 m).



*Figure 36: Concrete rubble* (PDS OPT *Transect 4 NE 0 to 40 m).* 



Figure 37: Grill from a shopping trolley, indicated with red arrow. (PDS OPT Transect 4 NE 0 to 40 m).





| Transect 5 W                                          |                             |   |                         |
|-------------------------------------------------------|-----------------------------|---|-------------------------|
| Date: 29 January, 2020                                | Method: SSB/                | 4 | Tide: Ebbing            |
| Distance and direction: 20 m westDiver: Callum Harvey |                             |   | Harvey                  |
| Time start (min): 1258                                | Time end (min): 1310        |   | Total time (min): 12    |
| <b>Depth:</b> 8.2 – 11.9 m                            | Water visibility: 0.5 – 2 m |   | Seabed visibility: Good |

The diver set the transect line, running 20 m to the west, heading into Campbell's Cove. The depth at the western end was 11.9 m. The seabed was sandy, lightly covered in silt and shell grit, with scattered stands of kelp (Figure 39).

A small scattering of concrete rubble was present near the beginning of the transect line. At the 5 m mark, a 2 m length of concrete was recorded. This concrete was a rounded triangular shape and rose 0.1 m above the seabed. It appeared relatively new with only a small amount of growth, possible a piece of kerbing. A square potentially concrete block was located at the 11 m mark. Resting at a 45° angle, the block rose out of the seabed 0.1 m and measured 1 m x 0.3 m (Figure 40).

At the 13 m mark, a rounded object protruded 0.4 m from the seabed. Measuring 0.5 m x 0.3 m, the object appears narrow for a pile but was solidly embedded in the seabed and may have been heavily degraded (Figure 41). There was no obvious evidence of sheathing.

Another potential concrete block  $(0.4 \times 0.4 \times 0.3 \text{ m})$  was recorded at the 15 m mark and immediately adjacent to this block, a pile was recorded running in an approximate SE to NW direction (Figure 42). The pile measured 6 m long and was 0.4 m diameter. The SE end was heavily degraded, while the NW end appeared cut. It was heavily covered in growth obscuring any presence of copper sheathing.

No refusal was met when probing along the transect line, except for one area to the north of the line at 10 m. The probe hit refusal at 1 m but probing in the immediate area around this mark did not meet any further resistance.

For a digital representation of the transect see Figure 43.

For an overview of all five transects see Figure 44.





Figure 39: Example of the sandy seabed, lightly silted with a covering of shell grit and scattered strands of kelp. (Professional Diving Services: OTP Transect 5 West 0 to 20 m)



Figure 41: Potential pile stump, heavily degraded, south of the transect line at the 13 m mark. (Professional Diving Services: OTP Transect 5 West 0 to 20 m (Professional Diving Services: OTP Transect 5 West 0 to 20 m)



Figure 40: Potential concrete block at a 45 degree angle at the 11 m south of the transect line. (Professional Diving Services: OTP Transect 5 West 0 to 20 m)



Figure 42: Pile recorded crossing the transect line at the 15 m mark running in a SE to NW direction. (Professional Diving Services: OTP Transect 5 West 0 to 20 m)









Figure 44: Digital overview of all transects. (Base image Google Earth).



## **3 INTERPRETATION OF RESULTS**

This maritime archaeological survey conducted to the east of the OPT mooring dolphin located near Campbell's Cove recorded items very similar in nature and variety to the maritime survey conducted in 2014.<sup>3</sup> (See Figure 45 for the areas covered by the 2014 and 2020 surveys). The archaeological remains present on the seabed included *in situ* pile stumps, cut sections of piles lying on the seafloor and other structural timbers, including possible timber walers. The amount of growth on these timbers prohibited the identification of any remnant copper sheathing, however, two loose pieces of sheathing were recorded lying loose on the seabed. The long ferrous pipe in transect 3 South likely carried water or other services along a structure and was attached lengthways with the angled bracket. These items are likely remains of the former Wharf No. 7 (1901-1980) in Campbell's Cove. Wharf No.7 was a longer and wider structure than the previous structure (built in 1876) in the Cove, and the location of the Dolphin is located at the western end of the 1901 wharf, beyond the eastern of the previous constructed 1876 wharf.

No relics were recorded on the seabed in the survey area. Other material such as bricks, a modern tyre, concrete rubble and bottle scatters were recorded. Some of this modern material is likely from the building of the OPT wharf extension.

Diver probing during the survey did not record any evidence of timbers lying underneath the seabed. Where refusal was felt underneath the seabed, it was unpredictable and random indicating rock or concrete scatter rather than lengths of timber or wharf remains.

<sup>3</sup> **Cosmos Archaeology Pty Ltd, 2014**, Overseas Passenger Terminal Wharf Extension, Sydney Cove. Maritime Archaeological Survey and Statement of Heritage Impact. Report prepared for Sydney Ports.



Figure 45: 2014 survey area (green) and 2020 survey area (red). (Base image: Google Earth.)



# ANNEX A – VIDEO LOG

| Video File                      | Description                                             | File size |
|---------------------------------|---------------------------------------------------------|-----------|
| OPT Transect 1 S 0 to 40 m.mp4  | Transect from southern side of<br>dolphin 40 m to south | 354.2 MB  |
| OPT Transect 2 N 0 to 40 m.mp4  | Transect from centre point 40 m to north                | 274.5 MB  |
| OPT Transect 3 S 40 to 0 m.mp4  | Transect from southern point to<br>centre point 40 m    | 331.8 MB  |
| OPT Transect 3 S 0 to 40 m.mp4  | Transect from centre point to<br>southern point 40 m    | 267.5 MB  |
| OPT Transect 4 NE 0 to 20 m.mp4 | Transect from centre point 20 m to north east           | 258.8 MB  |
| OPT Transect 5 W 0 to 20 m.mp4  | Transect from centre point 20 m to west                 | 255.4 MB  |



### Appendix B – Skeletal Remains: Stop Work Procedures

This section outlines the procedure that should be followed in the case that potential human remains are discovered during the life of the Proposed Activity. The procedure takes into account the following documents:

- Manual for the Identification of Aboriginal Remains (NSW Department of Environment & Conservation 2006);
- Skeletal Remains Guidelines for the management of human skeletal remains under the Heritage Act 1977 (NSW Heritage Office 1998); and
- The Aboriginal Cultural Heritage Standards and Guidelines Kit (NSW NPWS 1997).

In the event that potential human skeletal remains are identified within the Proposed Activity area at any point during the Proposed Activity, the following standard procedure should be followed.

- 1. All work in the vicinity of the remains should cease immediately;
- 2. The location should be cordoned off construction work can continue outside of this area as long as there is no risk of interference to the remains or the assessment of the remains;
- 3. Where uncertainty over the origin (i.e., human or non-human) of the remains exists, a physical or forensic anthropologist should be commissioned to inspect the exposed remains in situ and make a determination of origin, ancestry (Aboriginal or non-Aboriginal) and antiquity (precontact, historic or modern):
  - a. If the remains are identified as modern and human, the area will become a crime scene under the jurisdiction of the NSW Police;
  - b. If the remains are identified as pre-contact or historic Aboriginal, the site should be secured and the relevant DPC office notified; and
  - c. If the remains are identified as historic (non-Aboriginal), the site should be secured and the Heritage NSW (DPIE) notified.

# **Appendix G– Sediment Contamination Assessment Report**





# **Port Authority of New South Wales**

Overseas Passenger Terminal, Circular Quay Sediment Contamination Assessment Report

August 2020

# **Executive summary**

Port Authority of New South Wales (PANSW) is developing a plan to address sedimentation and rock outcrop issues at the sea bed in the vicinity of the Overseas Passenger Terminal (OPT) at Circular Quay. It is anticipated this plan will include dredging works to deepen the berth pocket resulting in the removal of an estimated 22,185 m<sup>3</sup> of sediment.

Dredging will involve the removal and disturbance of likely contaminated sediments within the berth of the OPT. This report provides the results of the contamination assessment of the sediments within the proposed dredging area.

The primary objectives of this investigation were to assess the results of the investigation with reference to relevant guidelines for the purpose of onshore and offshore disposal, including consideration of the potential for acid sulphate soils (ASS), in order to provide recommendations to PANSW for potential disposal options.

This summary should be read in conjunction with the statement of limitations outlined in Section 1.4 of this report.

#### Background

The site is the berth area off the OPT operated by PANSW is used to dock large commercial cruise liners. The area is also within the route of ferry traffic docking at Circular Quay. The site has been used as a commercial shipping port since the 1880s, with the OTP operating as a cruise terminal since 1960.

Limited historical information pertaining the contamination status of the site was available. GHDs review of previous investigations at the site noted the previous identification of mercury and polycyclic aromatic hydrocarbons (PAHs) above the ANZECC (2000) guideline levels and the presence of potential acid sulphate soils (PASS).

#### Sampling Approach

Sampling was conducted in October and November 2019 using vibrocoring methods. Fourteen sample locations within the dredging footprint of the OPT were targeted. Sampling locations were selected on a grid basis to obtain a representative assessment of the contamination within the sediments.

Samples were analysed under the NSW EPA (2014 Waste Classification Guidelines and the National Assessment Guidelines for Dredging (2009) – the NAGD (2009).

#### **Key Findings**

Two distinct groupings of units of marine/estuarine sediments were identified in the dredging footprint. Upper units (one or two units) consisting of a dark grey to dark brown clay to sand unit were present in the majority of cores (with the exception of VC04, VC09, VC10) with organic odour and shell fragments. Units below this were more variable with yellow-grey, pale grey, yellow-brown and ranged in grain size from sand to clay. No units showed any visual or olfactory evidence of gross contamination. Furthermore, PID readings from all sediments were at or below 1.2 ppm.

Under the waste classification guidelines, identified exceedances of the General Solid Waste CT1 criteria were for lead, mercury and benzo(a)pyrene (B(a)P) across the dredging footprint and at varying depths. A single exceedance of the Restricted Solid Waste CT2 criterion was identified for B(a)P. Analytical results for all other COPCs were below the guideline criteria

Following TCLP, all analytes were below the TCLP1 criteria for general solid waste. These results are considered to be representative of the larger dataset on which TCLP was not undertaken. For those analytes for which TCLP was performed, concentrations were also below the SCC1 (with TCLP) criteria for all samples.

Under the NAGD (2009) the following was identified:

- Exceedances of the screening levels (SQG<sub>low</sub>) were identified for copper, lead, mercury, silver and zinc and exceedances of the NAGD (2009) SQG-high values for zinc and lead. The 95% UCLs for the exceeding metals also exceeded the SQG<sub>low</sub> for copper, lead, mercury and silver and the SQG<sub>high</sub> for zinc.
- The concentration of TPH in the fraction C<sub>10</sub>-C<sub>36</sub> (normalised to 1% TOC) were below the SQG<sub>low</sub> of 550 mg/kg with the exception of VC12\_0.0-0.5, and all samples were below concentrations of volatile TRH in the fraction C<sub>6</sub>-C<sub>10</sub> and BTEXN were reported below the laboratory limit of reporting (LOR) in all samples selected for analysis.
- PAHs were detected in samples VC02\_0.0-0.5, VC07\_0.0-0.5 and VC12\_0.0-0.5 with exceedances of the SQG<sub>Iow</sub> for a number of individual PAH d in these samples. The 95 % UCL is exceeded for Acenaphthylene, Benz(a)anthracene, Dibenz(a,h)anthracene, Fluorene and Phenanthrene.
- Concentrations of TBT (normalised to TOC) were above the LOR in three of eight samples submitted for analysis. The detected concentrations normalised to TOC were 19.4 μg Sn/kg, 20.3 μg Sn/kg and 1 μg Sn/kg, two of which (VC07\_0.0-.5 and VC12\_0.0-0.5) were above the NAGD (2009) SQG low of 9 μg Sn/kg.
- Total organic carbon ranged from 0.05 to 2.82 %.
- Total PCBs were detected, and exceeded the SQG<sub>low</sub> in VC07\_0.0-0.5 and VC12\_0.0-0.5. The total PCBs is entirely comprised of Arochlor 1254 in both samples. The 95% UCL also exceeds the SQG<sub>low</sub> with a value of 0.0566 mg/kg.
- Cyanide, herbicides, chlorinated hydrocarbons, explosives, nitroaromatics, nitrosoamines and phthalates were below the limit of reporting in all samples.

Due to 95% UCL exceedances of SQG<sub>low</sub> the NAGD (2009) requires a Phase III analysis including elutriate analysis, which measures the release of contaminants from sediments into seas water. A sea water blank and three samples with exceedances of the SQG<sub>low</sub> were analysed for PAH, PCB, copper, mercury and silver. No detects for any analytes were identified in the elutriate samples or the seawater blank.

Copper and silver were also assessed by the 1M HCl extractable metals method, this gives a closer estimate of the bioavailable fraction of the metals than the whole sediment analysis. Silver was not detected by the method in any of the three samples tested. Copper was below the SQG<sub>low</sub> in all three samples.

Scattered occurrences of TBT were in the sediments, thought it appears the majority of the sediments only contain low levels of TBT, which is demonstrated by the fact that six of the eight tested samples reported TBT concentration at or below the laboratory PQL of 1  $\mu$ g Sn/kg. While elutriate or bioavailability testing for TBT could not be completed for the two samples containing higher TBT concentrations due to limited amount of sediment samples available, elutriate testing of these two samples for other chemicals (including metals) showed no detections of COPC in the elutriate analysis or sea water blanks.

In regard to potential acid sulphate soils the results indicate the presence of PASS and potential acid generating capacity of the sediments.

Some dioxin compounds were present in all eight samples reporting WHO TEQ<sub>(0.5 LOR)</sub> and I-TEQ (0.5 LOR) averages of 19 and 34 respectively. Whilst Australian guidelines for dioxins are not currently available, these levels are within the range of background concentrations reported for Australian sediments (Muller et al., 2004)

Under the NSW EPA (2014) dioxin contaminated waste is subject to the Chemical Control Order in Relation to Dioxin-Contaminated Waste Materials (1986) (The Dioxin Waste CCO). This document defines dioxin contaminated waste as waste materials containing more than one part in 100 million (by weight; equivalent to 0.01 ppm, or 10  $\mu$ g/kg) of dioxin. 2,3,7,8-TCDD was detected in two of the five samples analysed at a highest concentration of 6.5 ng/kg, therefore below the concentration regulated by The Dioxin Waste CCO and are not considered classified as dioxin contaminated waste.

### **Conclusions and recommendations**

Overall, the findings of the investigation indicate the presence of contaminated sediments within the proposed dredging area. With reference to the objectives of this investigation, the following conclusions are made:

- Suitability for on-shore disposal: The chemical analysis of the material under NSW EPA (2014) and the Dioxin Waste CCO (1986) indicates the sediments would be suitable for disposal as GSW and should be disposed of to a facility with the appropriate license to receive material based on this classification.
- Suitability for off-shore disposal: Based on the finding of this investigation, the dredge sediment may be suitable for offshore disposal. It is recommended that PANSW seek information regarding the background contaminant levels at the preferred disposal site, particularly with reference to TBT and dioxin, to establish if offshore disposal would be appropriate, and to inform on the most suitable disposal location.
- Consideration of potential for Acid Sulphate Soils: Based on the results of the analysis for PASS it is indicated that PASS conditions are present within the dredge footprint. The ASSMP will be prepared to identify, manage and treat the PASS encountered during dredging to minimise the production of acid leachate. The dredging strategy should be designed to limit the timeframe for potential for oxidisation of the sediments. If offshore disposal were chosen the potential for ASS generation would reduce greatly due to sediments being transferred to the disposal area immediately after dredging, limiting time for oxidation. If onshore disposal was chosen, an ongoing monitoring of the excavated sediments is recommended to assess the liming requirements. To assist in outlining the procedures for PASS monitoring during excavation, GHD recommended by National Acid Sulphate Soil Management Plan (ASSMP) is prepared, as recommended by National Acid Sulfate Soil Guidance Guidelines for the dredging of acid sulfate soil sediments and associated dredge spoil management (Water Quality Australia, 2018).

This report is subject to, and must be read in conjunction with, the limitations set out in section 1.4 and the assumptions and qualifications contained throughout the Report.

# **Table of contents**

| 1. | Introc | luction                               | 1   |  |
|----|--------|---------------------------------------|-----|--|
|    | 1.1    | Background                            | 1   |  |
|    | 1.2    | Objectives                            | 1   |  |
|    | 1.3    | Scope                                 | 1   |  |
|    | 1.4    | Limitations                           | 1   |  |
| 2. | Site s | etting                                | 3   |  |
|    | 2.1    | Geology and acid sulphate soils       | 3   |  |
| 3. | Existi | ng information                        | 4   |  |
|    | 3.1    | Previous sediment investigations      | 4   |  |
| 4. | Basis  | for assessment                        | 7   |  |
|    | 4.1    | Offshore disposal                     | 7   |  |
|    | 4.2    | Onshore disposal                      | 7   |  |
|    | 4.3    | Acid sulphate soils                   | 7   |  |
| 5. | Meth   | odology                               | 8   |  |
|    | 5.1    | Sediment sampling event               | 8   |  |
|    | 5.2    | Sample analysis                       | 9   |  |
|    | 5.3    | Data evaluation                       | .12 |  |
| 6. | Resu   | lts                                   | .14 |  |
|    | 6.1    | Subsurface conditions                 | .14 |  |
|    | 6.2    | Waste classification results          | .14 |  |
|    | 6.3    | NAGD results                          | .17 |  |
|    | 6.4    | Acid sulphate soils                   | .20 |  |
|    | 6.5    | Dioxins                               | .21 |  |
|    | 6.6    | Quality assurance and quality control | .22 |  |
| 7. | Discu  | ission and conclusions                | .24 |  |
|    | 7.1    | Waste classification                  | .24 |  |
|    | 7.2    | Analysis under NAGD (2009)            | .25 |  |
|    | 7.3    | Acid sulphate soils                   | .26 |  |
| 8. | Reco   | mmendations                           | .27 |  |
| 9. | Refer  | ences                                 | .28 |  |
|    |        |                                       |     |  |

# **Table index**

| Table 1 Site identification details | 3  |
|-------------------------------------|----|
| Table 2 Summary of cores            | 8  |
| Table 3 Summary of analysed samples | 10 |

| Table 4 Summary of viborocores and samples analysed for PSD                     | 14 |
|---------------------------------------------------------------------------------|----|
| Table 5 Summary of information required by the NSW EPA for Waste Classification | 15 |
| Table 6 Summary of exceedances of the CT1 and CT2 criteria                      | 16 |
| Table 7 Summary of analytes exceeding nominated criteria                        | 17 |
| Table 8 Summary of Dioxin results                                               | 21 |
| Table 9 Summary of quality control parameters                                   | 22 |

# **Appendices**

Appendix A - Figures

Appendix B - Borehole Logs

Appendix C - Analytical results

Appendix D - Pro UCL outputs

Appendix E - Laboratory certificates

Appendix F - Calibration certificates

# **List of Acronyms**

| Abbreviation   | Description                                                                                                                                    |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| AASS           | Actual Acid Sulphate Soils                                                                                                                     |
| ANC            | Acid Neutralising Capacity                                                                                                                     |
| ANZECC/ARMCANZ | Australian and New Zealand Environment and Conservation<br>Council/Agriculture and Resource Management Council of Australia<br>and New Zealand |
| ASS            | Acid Sulphate Soils                                                                                                                            |
| ASSMAC         | Acid Sulfate Soils Management Advisory Committee                                                                                               |
| AVS-SEM        | Acid Volatile Sulfide/Simultaneously Extracted Metals                                                                                          |
| BTEXN          | Benzene, Toluene, Ethylbenzene, Xylene and Naphthalene                                                                                         |
| CD             | Chart Datum                                                                                                                                    |
| COC            | Chain of Custody                                                                                                                               |
| COPC           | Contaminant of Potential Concern                                                                                                               |
| CRS            | Chromium Reducible Sulphur                                                                                                                     |
| CSP            | Continuous Seismic Profiling                                                                                                                   |
| DECC           | Department of Environment Climate Change                                                                                                       |
| DEMP           | Dredging Environmental Management Plan                                                                                                         |
| GSW            | General Solid Waste                                                                                                                            |
| ISQG           | Interim Sediment Quality Guidelines                                                                                                            |
| JSEA           | Job Safety and Environmental Analysis                                                                                                          |
| LOR            | Limit of Reporting                                                                                                                             |
| NAGD           | National Assessment Guidelines for Dredging (2009)                                                                                             |
| NATA           | National Association of Testing Authorities                                                                                                    |
| NEPC           | National Environment Protection Council                                                                                                        |
| NODGDM         | National Ocean Disposal Guidelines for Dredged Material (EA 2002)                                                                              |
| NSW EPA        | New South Wales Environmental Protection Authority                                                                                             |
| OCDD           | octachlorodibenzo-p-dioxin                                                                                                                     |
| OCP            | Organochlorine Pesticides                                                                                                                      |
| OPT            | Overseas Passenger Terminal                                                                                                                    |
| PAH            | Polycyclic Aromatic Hydrocarbons                                                                                                               |
| PANSW          | Port Authority of NSW                                                                                                                          |
| PASS           | Potential Acid Sulphate Soils                                                                                                                  |
| PCB            | Polychlorinated Biphenol                                                                                                                       |
| PID            | Photo-ionization Detector                                                                                                                      |
| PQL            | Practical Quantification Limits                                                                                                                |
| PSD            | Particle Size Distribution                                                                                                                     |
| RAP            | Remedial Action Plan                                                                                                                           |
| RSW            | Restricted Solid Waste                                                                                                                         |
| SOP            | Standard Operating Procedure                                                                                                                   |
| ТВТ            | Tributyltin                                                                                                                                    |

| Abbreviation | Description                             |
|--------------|-----------------------------------------|
| TCLP         | Toxic Characteristic Leaching Procedure |
| TEQ          | Toxic Equivalent Quantity               |
| TOC          | Total Organic Carbon                    |
| TRH          | Total Recoverable Hydrocarbons          |
| UCL          | Upper Confidence Limit                  |

# 1. Introduction

## 1.1 Background

Port Authority of New South Wales (PANSW) is developing a plan to address sedimentation and rock outcrop issues at the sea bed in the vicinity of the Overseas Passenger Terminal (OPT) at Circular Quay.

It is anticipated this plan will include dredging works to deepen the berth pocket resulting in the removal of an estimated 22,185 m<sup>3</sup> of sediment. PANSW is considering onshore and offshore disposal options which will be assessed based on the outcomes of geotechnical and geochemistry investigations.

PANSW has engaged GHD to assess the contamination status of the sediments in the overseas passenger berth, within the dredging footprint. It is understood that PANSW currently considers onshore disposal as the preferred option due to the limited design timeframe, however, offshore disposal is also being considered should the project timeframe allow.

## 1.2 **Objectives**

The objective of this report is to document the following regarding the contamination status of the sediments in the berth off the OPT at Circular Quay:

- The analysis results of the sediment samples collected by GHD in October and November 2019.
- The results of the analysis in relation to the NSW EPA (2014) *Waste Classification Guidelines* ("the waste classification guidelines").
- The results of the analysis in relation the National Assessment Guidelines for Dredging (2009) ("the NAGD").
- The potential presence of Acid Sulphate Soils (ASS)
- Recommendations for PANSW regarding further action required in regards to the contamination for both onshore and offshore disposal options.

## 1.3 Scope

To achieve the stated objectives GHD undertook the following scope of works:

- Prepared a Job Safety and Environmental Analysis (JSEA) for site works
- Undertook sub-sampling of sediments from vibrocore cores
- Submitted sediment samples to the National Association of Testing Authorities (NATA) accredited laboratory for analysis of the contaminants of potential concern as outlined in Section 5.2.
- Prepared this report in accordance with the NSW EPA (2014) and the NAGD (2009).

## **1.4 Limitations**

This report: has been prepared by GHD for Port Authority of New South Wales and may only be used and relied on by Port Authority of New South Wales for the purpose agreed between GHD and the Port Authority of New South Wales as set out in section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than Port Authority of New South Wales arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Port Authority of New South Wales and others who provided information to GHD (including Government authorities)], which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

### **Table 1 Site identification details**

| Feature          | Details                                          |
|------------------|--------------------------------------------------|
| Address          | 10 – 48 Circular Quay West,<br>Sydney, NSW, 2000 |
| Lot/DP           | 1/DP876516 (OPT building)                        |
| Site coordinates | 33.8580°S 151.2101°E                             |
| Site operator    | Ports Authority of New South Wales (PANSW)       |

The site is the berth area off the OPT operated by PANSW is used to dock large commercial cruise liners. The area is also within the route of ferry traffic docking at Circular Quay.

The site has been used as a commercial shipping port since the 1880s, with the OTP operating as a cruise terminal since 1960.

The area is tidally influenced and the seabed is at approximately -10.7 m chart datum (CD) with some variation from -16 m CD to 0 m CD across the site, as shown in the bathymetric survey provided to GHD by PANSW. Chart datum is -0.95 m AHD. The elevated sea bed is at northwest and south-west of the site.

### 2.1 Geology and acid sulphate soils

The Sydney 1:100,000 Geological Sheet (Herbert, 1983) shows the bedrock as Hawkesbury Sandstone overlain by alluvial and estuarine sediments and anthropogenically derived fill.

The units which comprise the geology are described as follows:

- Hawkesbury Sandstone medium to course grained sandstone with minor shale and laminite.
- Alluvial and estuarine sediments Quaternary age sediments ranging from clay to sand with shell layers.
- Anthropogenically derived fill dredged sediments, demolition waste, and industrial and household waste.

Top of rock was interpreted by Coffey (2019) at -39 m CD to -5 m CD with the shallowest rock outcropping in the north-east of the site and the change in elevation approximately corresponding to the changes in sediment thickness.

Continuous seismic profiling (CSP) by Coffey (2019) shows that sediment ranges from 0 to 30 m. With the thinnest sediment at the north-west of the site and along the western wall of the berth, closest to the OTP.

The sediments in the area are mapped as a high probability occurrence for ASS (Land & Water Conservation, 1997). Sediments containing ASS will require classification and / or treatment in accordance with NSW Environment Protection Authority (EPA)'s Waste Classification Guidelines -Part 4: Acid Sulfate Soils (2014), should they be proposed for onshore disposal.

# 3. Existing information

The following reports on previous works at the site were provided to GHD by PANSW:

- Douglas Partners (2014) Report on Sediment Quality Assessment Overseas Passenger Terminal – Wharf Extension, Mooring Dolphin and Caisson Protection (Circular Quay)
- Arup (2019) OPT Berth Infrastructure Desktop Study Existing Geotechnical Data (Arup Memorandum)
- Coffey (2019) OPT Berth Deepening Investigations Geotechnical and Geophysical Investigations Report (draft)

Of these reports, two (summarised below) are relevant to the site contamination. Arup (2019) and Coffey (2019) provide information on geotechnical conditions only and were reviewed for background information.

## 3.1 **Previous sediment investigations**

### 3.1.1 Douglas Partners (2014) Sediment Quality Assessment

- *Location* Overseas Passenger Terminal Circular Quay
- Scope /To determine the likely contaminants, potential acid sulphate soils (PASS) andobjectivespreliminary in situ waste classification of material for land-based disposal. To<br/>provide advice on the options of either re-using the dredged spoil as filling on<br/>other parts of the site or disposal of the spoil off-site.
- Sampling Sampling consisted vibro coring or Petite Ponar bottom sampling dredge of 6 sediment samples to a maximum of 0.2m depth. Samples were taken from locations approximately evenly spaced around the wharf extension, Mooring Dolphin and Caisson Protection.

Visual assessment and chemical testing was conducted on 5 sediment samples. Visual assessment consisted of inspection of samples for signs of concern (e.g. staining, odours, hydrocarbon sheen and asbestos cement etc.). Chemical testing included analysis for metals, Polycyclic Aromatic Hydrocarbons (PAH), Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene and Xylenes (BTEX), Organochlorine Pesticides (OCP), Organophosphorus Pesticides (OPP), total phenols, Polychlorinated Biphenyls (PCB), asbestos, Tributyltin (TBT) and potential acid sulphate soil (PASS).

#### **Relevant findings**

The following findings were made regarding sediment contamination:

- Sediments contained PASS but there was a significant quantity of shells which could partially neutralise acids formed from the exposure of soils to air and oxidation.
- The disposal of the dredged spoil off site to a landfill could have a soil classification of General Solid Waste (TCLP1) (according to the DECCW Waste Classification Guidelines 2009) provided a confirmation that no liming is required as a result of ex-situ PASS testing.

- Levels of mercury and PAH in some samples exceeded the high trigger values of the ANZECC (2000) Interim Sediment Quality Guidelines (ISQG). Indicated potential risk to the marine environment and the need for further investigations to determine bioavailability.
- No asbestos was present in samples.

### **Conclusions and recommendations**

Based on the findings of the works completed by Douglas Partners (2014), the following conclusions were made:

- The two main options for disposal of the dredged spoil were re-use as reclamation fill on site, behind retaining walls or disposal to landfill.
- If used as reclamation fill then the high levels of contaminants, such as mercury and PAH, would not have a significant impact on the marine environment. Although if the PASS spoil is placed above the water table and can oxidise it should be tested ex-situ for actual acid sulphate soils (Quantification Limits)
- If the spoil is disposed off-site to a landfill the solid and liquid phases need to be separated. The solid phase should be tested for ASS and the need for liming prior to landfilling as General Solid Waste (non-putrescible). The liquid phase should be tested for pH and suspended solids prior to disposal into the harbour.

# 3.1.2 GHD Geotechnics (2006) Preliminary Geotechnical and Geochemical investigation as summarised in Arup Memorandum (2019)

Location Campbells Cove - Circular Quay Scope / To determine the geochemistry of the proposed dredged sediment and likely objectives foundation materials for vessel anchorages. Sampling Sampling consisted of 10 vibrocoring from the seabed to 3.5m depth until refusal within the Campbells Cove area. Physical properties testing and chemical testing was conducted on 6 soil samples. Physical properties testing consisted of soil classification tests by particle size distribution, Atterberg limits and moisture content. Chemical testing included acid sulphate soil assessment and geochemical analysis. Acid sulphate soil assessment involved PASS indicator tests and Peroxide Oxidised Combined Acidity and Sulphate (POCAS) testing. Geochemical analysis determined levels of metals, TPH/BTEX, PAH, OCP, and toxicity characteristic leaching procedure (TCLP).

### **Relevant findings**

The following findings were made regarding sediment contamination:

 Total Potential Acidity (TPA) of 660 Mol H+/tonne of the sediment exceeding the trigger level of 62 Mol H+/tonne set by the Acid Sulphate Soils Advisory Committee (ASSMAC, 1998).

#### **Conclusions and recommendations**

Confirmation of PASS nature of the sediment by the ASSMAC guidelines.

Classification of the material as inert waste due to Practical Quantification Limits (PQL) being consistent with the Waste Guidelines PQL requirements.
# 4. Basis for assessment

Relevant assessment criteria for onshore and offshore disposal are presented in the following sections, with the specific criteria presented in the tables in Appendix C.

## 4.1 Offshore disposal

The assessment criteria for dredged sediment for potential offshore disposal were sourced from:

- National Assessment Guidelines for Dredging (NAGD 2009).
- ANZECC/ ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality (as recommended in the NAGD ( (Commonwealth of Australia, 2009)).
- ANZAST (2018) Australia and New Zealand Guidelines for Fresh and Mine Water Quality -Toxicant default guideline values for sediment quality (ANZAST, 2018)

### 4.2 Onshore disposal

For waste classification purposes to support potential onshore disposal, the results were reviewed with reference to:

- NSW EPA (2014) Waste Classification Guidelines
- Chemical Control Order in Relation to Dioxin-Contaminated Waste Materials (1986) (The Dioxin Waste CCO).
- Chemical Control Order in Relation to TBT-Contaminated Waste Materials (1988) (The TBT Waste CCO)

## 4.3 Acid sulphate soils

The assessment for acid sulphate soils was based on the following:

- QLD (2014) Acid Sulfate Soils Technical Manual Soil management Guidelines V4.0 based on greater than 1,000 tonnes of fine texture soils to be disturbed. Which is based on the guidelines of the Acid Sulphate Soils Management Advisory Committee (ASSMAC 1998).
- Dear, S-E., Ahern, C. R., O'Brien, L. E., Dobos, S. K., McElnea, A. E., Moore, N. G. & Watling, K. M., 2014. Queensland Acid Sulfate Soil Technical Manual (QASSTM): Soil Management Guidelines. Brisbane: Department of Science, Information Technology, Innovation and the Arts, Queensland Government (Dear et al 2014).
- National Acid Sulfate Soil Guidance Guidelines for the dredging of acid sulfate soil sediments and associated dredge spoil management (Water Quality Australia, 2018).

It is generally accepted that the 1998 ASSMAC Guidelines, whilst still useful as a reference document, have been superseded in terms of up to date scientific research and management practices and therefore the QASSTM takes precedence. The National Acid Sulfate Soil Guidance is adopted as a reference for potential management measures during the dredging process.

# 5. Methodology

### 5.1 Sediment sampling event

Sample locations consisted of 14 vibrocore locations VC01-VC14, these locations are shown on Figure 1, Appendix A and summarised in Table 2.

### **Table 2 Summary of cores**

| Borehole | Date       | Penetration<br>Achieved | Sample<br>recovery | % recovery       |
|----------|------------|-------------------------|--------------------|------------------|
| VC01     | 30/10/2019 | 1.58                    | 1.10               | 70               |
| VC02     | 31/10/2019 | 2.45                    | 1.60               | 65               |
| VC03     | 30/10/2019 | 1.32                    | 1.10               | 83               |
| VC04     | 31/10/2019 | 1.10                    | 1.00               | 91               |
| VC05     | 30/10/2019 | 0.90                    | 0.90               | 100              |
| VC06     | 31/10/2019 | 1.00                    | 1.00               | 100              |
| VC07     | 30/10/2019 | 1.55                    | 1.20               | 77               |
| VC08     | 31/10/2019 | 2.45                    | 1.60               | 65               |
| VC09     | 30/10/2019 | 0.95                    | 1.00               | 105 <sup>1</sup> |
| VC10     | 31/10/2019 | 1.30                    | 0.80               | 62               |
| VC11     | 30/10/2019 | 3.00                    | 1.20               | 40               |
| VC12     | 31/10/2019 | 1.36                    | 1.20               | 88               |
| VC13     | 31/10/2019 | 1.60                    | 1.10               | 69               |
| VC14     | 31/10/2019 | 2.43                    | 1.40               | 49               |

Notes:

<sup>1</sup> Recovery of more than 100 % is due to swelling of sediment upon retrieval.

Drilling was conducted from a 13 m dedicated workboat, fitted with a Hiab crane and winch.

The vibrocore comprises a tripod frame with the vibrocore tube attached in the centre. Drilling was advanced using 3 m long, 80 mm diameter aluminium vibrocore tubes with a plastic liner and a detachable core catcher on the base. The crane was used to lower the vibrocore frame to the seabed, at which point it was advanced into the sediment with a motor. Once refusal or target depth was achieved, the vibrocore was raised back to the boat and the liner with contained sediment removed to allow subsampling.

Core recovery was continuous with variable recoveries as described in Table 2. Reduced sample recovery can often be attributed to the stiffness of sediment preventing the core catcher from closing immediately, leading to loss of sediment from the base of the core.

Additional opportunistic sampling was conducted by GHD during Coffey's geotechnical assessment (Coffey, 2019) at locations BH05, BH06 and BH07 as marked on Figure 1, Appendix A on 7 November 2019.

All samples were collected with a new pair of nitrile gloves directly from the vibrocore liner. Sub sampling comprised:

- One subsample over a 0.1 m interval at 0.5 m increments along the entirety of the core e.g. 0.0 m to 0.1 m; 0.5 to 0.6 m for acid sulphate soil.
- One subsample over a 0.1 m or 0.2 m interval at as many increments along the entirety of the core as were possible with the available sediment volume e.g. 0.0-0.1, 0.0-0.2, 0.3-0.4.
- A bulk homogenised samples representing a 0.5 m interval at 0.5 m increments along the entirety of the core, e.g. 0 m to 0.5 m; 0.5 m to 1.0 m, as per the NAGD (2009).

Samples were collected in 250 ml glass sample jars and filled to the brim and sealed with Teflon lined caps to lower the potential for loss of volatile contaminants. Samples for acid sulphate soil analysis and sealed in designated zip lock bags, providing approximately 100 g of sediment. Samples for particle size distribution analysis sediment was collected and sealed in designated zip lock bags providing approximately 500 g of sediment. Samples were stored on ice immediately after being sampled.

Samples collected in bags for acid sulphate soil analysis were measured in the field with photionization detector (PID), fitted with a 10.6eV lamp and calibrated with isobutylene gas at a concentration of 100 ppm, as per GHD's standard operating procedure (SOP). The instruments calibration certificate is provided in Appendix F. PID readings are presented on the borehole logs in Appendix B.

Quality control samples were taken to represent 10% of the samples collected. These were labelled FD01 – FD10.

Rinsate samples were taken from the trowel used for sediment sampling, for confirmation of correct decontamination protocol. One rinsate sample was taken for each day of sediment sampling (three in total).

For each day of sampling a trip spike and trip blank was also analysed (three in total).

The test reports, chains of custody (COC), and sample receipts are provided in Appendix E.

The samples number of samples selected for analysis and the analytes are summarised in Section 5.2.

### 5.2 Sample analysis

Sampling frequency was derived based on 22,185 m<sup>3</sup> of material to be dredged on the assumption that the total amount dredged will not exceed this, should this volume be increased, further sampling may be required.

The NSW EPA (2014) *Waste Classification Guidelines* do not describe a minimum number of samples required for the classification of waste. As such, GHD referred to Table A of the NSW EPA (1995) *Sampling Design Guidelines* and the recommended sample density for stockpiled material as described in the VIC EPA (2009) *Industrial Waste Resource Guidelines*. These guidelines advise that when utilising the 95% UCL for contaminants a sampling frequency of 1:250 should be used, i.e. one sample for every 250 m<sup>3</sup> of waste material.

Table 6 of the NAGD (2009) outlines a sampling frequency based on the volume of material to be dredged, based on the volume estimate provided by PANSW, eight sampling locations were required in order to accurately assess the contamination at the site.

The following analytes were selected and are based on the limited prior contamination information at the site, information in the NAGD (2009), common contaminants in urban marine environments in Australia and Table 1 and Table 2 of the NSW EPA (2014).

- Particle size distribution (PSD)
- Metals
- Benzene, toluene, ethylbenzene, xylenes, naphthalene (BTEXN)
- Total recoverable hydrocarbons (TRH)
- Polycyclic aromatic hydrocarbons (PAHs)
- Organochlorine pesticides and organophosphate pesticides (OCP and OPP)
- Polychlorinated biphenyls (PCBs)
- Dioxins
- Tributyltin (TBT)
- Total organic carbon (TOC)
- Fluoride
- Cyanide
- Semi volatile organic compounds (SVOC) including halogenated hydrocarbons, chlorinated hydrocarbons, explosives, Promanide, nitroaromatics, nitrosoamines, MAHs, phalates.

| Disposal<br>option | Guideline            | Initial Screen (# samples)                                                                                                                                                                                                                                                                                                                                                                                 | Secondary<br>round (#<br>samples)                | Tier 2 analyses<br>(# samples)                                                                 |
|--------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------|
| Onshore            | NSW<br>EPA<br>(2014) | <ul> <li>Total Cyanide (17)</li> <li>Weak Acid<br/>Dissolved Cyanide<br/>(8)</li> <li>Fluoride (12)</li> <li>TOC (14)</li> <li>Metals <ul> <li>arsenic (17)</li> <li>aluminium (9)</li> <li>beryllium (8)</li> <li>cadmium (17)</li> <li>chromium (17)</li> <li>cobalt (9)</li> <li>copper (17)</li> <li>iron (9)</li> <li>lead (17)</li> <li>molybdenum (8)</li> <li>manganese (9)</li> </ul> </li> </ul> | Lead (65)<br>Mercury (15)<br>PAH (65)<br>PCB (5) | <ul> <li>TCLP</li> <li>Lead (18)</li> <li>Mercury (16)</li> <li>Benzo(a)pyrene (19)</li> </ul> |

#### Table 3 Summary of analysed samples

| Disposal<br>option | Guideline      | Initial Screen (# samples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Secondary<br>round (#<br>samples) | Tier 2 analyses<br>(# samples)                                                                                                           |
|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                | <ul> <li>mercury (17)</li> <li>nickel (17)</li> <li>selenium (17)</li> <li>silver (17)</li> <li>vanadium (9)</li> <li>zinc (9)</li> <li>PCBs (17)</li> <li>PAH (17)</li> <li>OC/OP (17)</li> <li>Halogenated<br/>hydrocarbons (4)</li> <li>MAHs (4, 12<br/>Styrene)</li> </ul>                                                                                                                                                                                                                                                                  |                                   |                                                                                                                                          |
| Offshore           | NAGD<br>(2009) | <ul> <li>PSD (8)</li> <li>TRH/BTEXN (8)</li> <li>Metals (8)         <ul> <li>aluminium (8),</li> <li>antimony(8)</li> <li>arsenic (8),</li> <li>cadmium (8)</li> <li>chromium (8)</li> <li>chromium (8)</li> <li>cobalt (8)</li> <li>cobalt (8)</li> <li>iron (8)</li> <li>lead (8)</li> <li>manganese (8),</li> <li>nickel (8),</li> <li>selenium (8),</li> <li>silver (8)</li> <li>vanadium (8)</li> <li>zinc (8)</li> <li>PAH (8)</li> <li>Phenols (8)</li> <li>VOC (5)</li> <li>tributyltin (8)</li> <li>dioxins (8)</li> </ul> </li> </ul> |                                   | Elutriate copper (4)<br>• silver (4)<br>• PAHs (4)<br>• PCBs (3)<br>Simultaneously<br>extractable metals<br>• copper (3)<br>• silver (3) |

| Disposal<br>option  | Guideline                 | Initial Screen (# samples)                                                                                                                                                                                                                               | Secondary<br>round (#<br>samples)                    | Tier 2 analyses<br>(# samples) |
|---------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|
|                     |                           | <ul> <li>TOC (8)</li> <li>Cyanide (8)</li> <li>PCB (8)</li> <li>OCP/OPP (8)</li> <li>Chlorinated hydrocarbons (5)</li> <li>Explosives (5)</li> <li>Promanide (5)</li> <li>Nitroaromatics (5)</li> <li>Nitrosoamines (5)</li> <li>Phalates (5)</li> </ul> |                                                      |                                |
| Onshore<br>offshore | Acid<br>sulphate<br>soils | Acid sulphate soil field<br>screen (43)                                                                                                                                                                                                                  | 22 samples<br>Chromium<br>reducible<br>sulphur suite |                                |

Tiered analyses were undertaken including an initial screening round of analysis of selected samples, followed by a second round of analyses for waste classification purposes., This approach allowed the analyses to be targeted for the contaminants of most concern, disregarding those analytes which were not detected as part of the initial screen.

Two duplicate samples were submitted to the primary laboratory for analyses and one to the secondary laboratory. One duplicate analyses was performed on a homogenised sample under the NAGD (2009) methodology, which meets the 10 % requirement. Duplicate sampling frequency is not specified under the NSW EPA (2014) guidelines, however one inter-laboratory and one intra-laboratory duplicate were analysed to verify the precision of the analyses.

## 5.3 Data evaluation

## 5.3.1 Data normalisation

Most natural and anthropogenic substances, including metals and organic contaminants, show a higher affinity to fine grained particulate matter than coarse fraction sediments, with organic matter and clay minerals generally exhibiting the strongest adsorption capacity for contaminants (OSPAR, 2001)<sup>1</sup>.

The objective of using normalisation techniques is to reduce the variability between samples arising from differences in sediment properties, such as grain size distribution. However, it is noted that the correlation between contaminant and co-factor concentrations may be weak or absent in some areas (OSPAR, 2009).

<sup>&</sup>lt;sup>1</sup> OSPAR (2009) Update of JAMP guidelines for monitoring contaminants in sediment: Technical annex on normalisation of contaminant concentrations in sediment.

For organic contaminants, values are normalised to 1% organic carbon, as recommended in (ANZAST (2018). If the sediment organic carbon content is higher than 0.2%, ANZAST (2018) recommends that the guideline values should be adjusted owing to the presence of additional carbon binding sites which act to reduce the contaminants bioavailability. For the purpose of this data, the following points are made:

- Where TOC was less than 0.2%, normalisation was not required and the actual reported concentration of organic contaminants has been used.
- Where TOC was greater than 0.2%, normalisation of the total PAH concentration was undertaken and the normalised concentration was used in statistical calculations. Calculations used in normalising the data were as follows:
  - Where TOC is greater than 0.2% but less than 10%, the concentration was divided by the TOC.
  - Where the TOC is greater than 10%, the concentration was divided by 10.

### 5.3.2 Calculation of 95% upper confidence limit

In accordance with the requirements of the NAGD (2009) and the NSW EPA (2014) *Waste Classification Guidelines*, the upper 95 per cent confidence limit (95% UCL) is used to determine compliance with the screening levels. Outputs from ProUCL for calculation of the 95% UCL are presented in Appendix D.

## 6.1 Subsurface conditions

Logs of all cores taken are presented in Appendix B and PSD for selected samples is presented Table C1, Appendix C.

Composition of the cores vary from one to four units of marine and estuarine sediments ranging from clay to sand. Upper units were predominantly dark grey to dark brown in colour with organic odour and shell fragments. No olfactory or visual indicators of gross contamination were observed. These units were present in all cores (with the exception of VC04, VC09, VC10) and range from 0.1 m to 1.2 m in thickness, with one or two units present.

Units below this were more variable with yellow-grey, pale grey, yellow-brown and ranged in grain size from sand to clay. The lower units showed no visual or olfactory evidence of gross contamination.

| Borehole | Date       | Sample recovery | Number of units | PSD conducted |
|----------|------------|-----------------|-----------------|---------------|
| VC01     | 30/10/2019 | 1.10            | 2               | 0.5-1.0 m     |
| VC02     | 31/10/2019 | 1.60            | 3               | 0.0-0.5 m     |
| VC03     | 30/10/2019 | 1.10            | 3               | 0.0-0.5 m     |
| VC04     | 31/10/2019 | 1.00            | 2               | 0.5-1.0 m     |
| VC05     | 30/10/2019 | 0.90            | 2               | -             |
| VC06     | 31/10/2019 | 1.00            | 2               | -             |
| VC07     | 30/10/2019 | 1.20            | 2               | 0.0-0.5 m     |
| VC08     | 31/10/2019 | 1.60            | 3               | 1.0-1.5 m     |
| VC09     | 30/10/2019 | 1.00            | 1               | -             |
| VC10     | 31/10/2019 | 0.80            | 2               | 0-0.5 m       |
| VC11     | 30/10/2019 | 1.20            | 1               | -             |
| VC12     | 31/10/2019 | 1.20            | 4               | 0.0-0.5 m     |
| VC13     | 31/10/2019 | 1.10            | 2               | -             |
| VC14     | 31/10/2019 | 1.40            | 3               | -             |

### Table 4 Summary of viborocores and samples analysed for PSD

### 6.2 Waste classification results

The information in Table 5 is required by the NSW EPA when conducting a waste classification.

# Table 5 Summary of information required by the NSW EPA for WasteClassification

| Details                                                                                                                                 | Information                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The full name, address, Australian Company                                                                                              | GHD Pty Ltd                                                                                                                                                                                       |
| Number (ACN) or Australian Business<br>Number (ABN) of the organisation and<br>person(s) providing the waste classification             | Level 15, 133 Castlereagh Street, Sydney,<br>NSW 2000                                                                                                                                             |
|                                                                                                                                         | ACN: 008 488 373 / ABN: 39 008 488 373                                                                                                                                                            |
| Location of the site where the waste was                                                                                                | Berth off Overseas passenger terminal.                                                                                                                                                            |
| generated including the site address                                                                                                    | Circular Quay, Sydney NSW 2000                                                                                                                                                                    |
| History of the material and the processes and activities that have taken place to produce the waste                                     | The site is the berth area off the OPT<br>operated by PANSW is used to dock large<br>commercial cruise liners. The area is also<br>within the route of ferry traffic docking at<br>Circular Quay. |
|                                                                                                                                         | The site has been used as a commercial shipping port since the 1880s, with the OTP operating as a cruise terminal since 1960.                                                                     |
|                                                                                                                                         | Due to the nature of the material as marine<br>sediment it is possible the sediment has<br>been transported to the location from<br>anywhere within the Sydney harbour area.                      |
| Potential contaminating activities that may<br>have occurred at the site where the waste<br>was generated                               | The likely contaminating activity at the site<br>are relating to shipping such as fuel<br>spillages and shedding of anti-fouling paints<br>from the hulls of vessels.                             |
| Description of the waste, including<br>photographs, visible signs of contamination,<br>such as discolouration, staining, odours, etc.   | Refer to section 6.1 and Appendix B of this report.                                                                                                                                               |
| Quantity of the waste (estimated)                                                                                                       | 22, 185 m <sup>3</sup>                                                                                                                                                                            |
| Sampling method including pattern, depth,<br>locations, sampling devices, procedures, and<br>photos of the sample locations and samples | Refer to section 5 of this report                                                                                                                                                                 |
| Contaminants tested                                                                                                                     | Refer to section 5.2 of this report                                                                                                                                                               |
| Laboratory documentation – chain-of-<br>custody, sample receipt, laboratory report                                                      | Laboratory analytical certificates and chain-<br>of-custody documentation from GHD's<br>sampling event in October and November<br>2019 is provided in Appendix E                                  |

| Details                                                                              | Information                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All results regardless of whether they are not<br>used in the classification process | All laboratory analytical certificates<br>generated from GHD's sampling event in<br>October and November 2019 is provided in<br>Appendix E.<br>GHD is not aware of any other results which<br>are relevant to this classification. |
|                                                                                      | are relevant to this classification.                                                                                                                                                                                               |

### 6.2.1 Primary analyses

Twenty-two samples were initially analysed under the waste classification suite outlined in section 5.2, with the sample numbers and analytes in Table 3.

In the initial screening, sample exceedances of the General Solid Waste CT1 criteria were identified for lead, mercury and benzo(a)pyrene (B(a)P). A single exceedance of the Restricted Solid Waste CT2 criterion was identified for B(a)P.

Analytical results for all other COPCs were below the guideline criteria

Based on these exceedances the remaining waste classification samples were analysed for lead and B(a)P, to meet the required frequency. A selection of samples were also submitted for mercury analysis.

Exceedances of the CT1 and CT2 criteria are summarised in Table 6 and the results present in full in Table C3, Appendix C. All laboratory certificates are presented in Appendix E.

| Analyte        | Criterion | Number of samples exceeding criterion | Criterion<br>value | Maximum<br>concentration<br>(mg/kg) | 95% UCL |
|----------------|-----------|---------------------------------------|--------------------|-------------------------------------|---------|
| Lead           | CT1       | 11 of 90                              | 100                | 318                                 | 63.53   |
| Mercury        | CT1       | 1 of 40                               | 4                  | 4.25                                | 1.057   |
| Benzo(a)pyrene | CT1       | 10 of 90                              | 0.8                | 4.0                                 | 0.546   |
|                | CT2       | 1 of 90                               | 3.2                |                                     |         |

Table 6 Summary of exceedances of the CT1 and CT2 criteria

For analytes with exceedances, the 95 % UCL was calculated using all samples that had been analysed for the COPCs (including those also analysed under the NAGD (2009) guidelines). For those analytes with exceedances of the NSW EPA (2014) CT1 and CT2 criteria, the 95% UCL did not exceeded the guideline. Outputs from ProUCL for calculation of the 95 % UCL are presented in Appendix D.

It should be noted that the NSW EPA (2014) guidelines do not include criteria for dioxins or tributyltin. The NSW EPA has advised that the current policy with respect to the disposal of organotin waste is that for waste to be compared to the ANZAST (2018) Default Guideline for Sediment Quality – High Value for classification. All measured tributyltin concentrations (TBT as Sn) were below the guideline value of 70  $\mu$ g/kg. Further discussion of dioxin and tributyltin are included in section 6.5 and section 7.1 of this report.

### 6.2.2 Toxicity characteristics leaching procedure

Due to exceedances of the CT1 Criteria for lead, B(a)P and mercury additional analyses were undertaken using the toxicity characteristics leaching procedure (TCLP, the results of which are presented in Table C4, Appendix C.

Following TCLP extraction and analyses, all analytes were reported below the TCLP1 criteria for general solid waste. These results are considered to be representative of the larger dataset on which TCLP was not undertaken and are consistent with historical waste classification data reported as part of previous investigations within the area. For those analytes for which TCLP was performed, concentrations were also below the SCC1 (with TCLP) criteria for all samples.

## 6.3 NAGD results

### 6.3.1 Whole sediment

Eight homogenised samples were analysed for the COPCs. A number of exceedances of the NAGD (2009) and ANZECC (2000) ISQG were identified, and are summarised in Table 7 and shown on Figure 2, Appendix A.

Hereafter the following definitions apply:

- The term SQG<sub>low</sub> is used to refer to both the NAGD (2009) screening value, ANZECC (2000) ISQG low and the ANZAST (2018) DGV.
- The term SQG<sub>high</sub> refers to the NAGD (2009) SQG-high values, the ANZECC (2000) ISQG

   high and the ANZAST (2018) DGV High as the relevant assessment criteria set out in the NAGD (2009).

The results of the inorganics analysis are presented in Table C5, Appendix C and the organics analysis in Table C6, Appendix C.

| Analyte | SQG Low | SQG<br><sub>HIGH</sub> | Detects | Min.<br>(mg/kg) | Max.<br>(mg/kg) | 95%<br>UCL       | Guideline<br>exceedanc<br>es (a)        |
|---------|---------|------------------------|---------|-----------------|-----------------|------------------|-----------------------------------------|
| Metals  |         |                        |         |                 |                 |                  |                                         |
| Copper  | 65      | 270                    | 3 of 8  | <1.0            | 189             | 95.95            | SQG <sub>low</sub> 2<br>of 8            |
| Lead    | 50      | 220                    | 8 of 8  | <5              | 318             | 318 <sup>1</sup> | SQG low 4<br>of 8<br>SQG high 1<br>of 8 |
| Mercury | 0.15    | 1                      | 5 of 8  | 0.01            | 4.25            | 1.823            | SQG low 2<br>of 8                       |
| Silver  | 1       | 3.7                    | 5 of 8  | <0.1            | 3.0             | 1.421            | SQG low 2 of 8                          |
| Zinc    | 200     | 410                    | 7 of 8  | <1.0            | 445             | 445 <sup>1</sup> | SQG <sub>high</sub> 1<br>of 8           |

### Table 7 Summary of analytes exceeding nominated criteria

| Analyte                              | SQG Low | SQG<br>HIGH | Detects | Min.<br>(mg/kg) | Max.<br>(mg/kg) | 95%<br>UCL                    | Guideline<br>exceedanc<br>es (a) |
|--------------------------------------|---------|-------------|---------|-----------------|-----------------|-------------------------------|----------------------------------|
| PAHs                                 |         |             |         |                 |                 |                               |                                  |
| Acenaphthene<br>2                    | 0.016   | 0.5         | 1 of 8  | <0.004          | 0.024           | Unable<br>to<br>calculat<br>e | SQG <sub>low</sub> 2<br>of 8     |
| Acenaphthylen<br>e <sup>2</sup>      | 0.04    | 0.64        | 3 of 8  | <0.004          | 0.192           | 0.126                         | SQG low 3 of 8                   |
| Anthracene <sup>2</sup>              | 0.085   | 1.1         | 3 of 8  | <0.004          | 0.11            | 0.0835                        | SQG low 3 of 8                   |
| Benz(a)anthra<br>cene²               | 0.261   | 1.6         | 4 of 8  | <0.004          | 0.8             | 0.414                         | SQG <sub>low</sub> 4 of 8        |
| Benzo(a)<br>pyrene²                  | 0.43    | 1.6         | 5 of 8  | <0.004          | 0.830           | 0.541                         | SQG low 3 of 8                   |
| Chrysene <sup>2</sup>                | 0.384   | 0.28        | 4 of 8  | <0.004          | 0.666           | 0.359                         | SQG low 1<br>of 8                |
| Dibenz(a,h)ant<br>hracene²           | 0.063   | 0.26        | 4 of 8  | <0.004          | 0.121           | 0.0835                        | SQG low 3 of 8                   |
| Fluoranthene <sup>2</sup>            | 0.6     | 5.1         | 5 of 8  | <0.004          | 1.4             | 0.718                         | SQG low 2 of 8                   |
| Fluorene <sup>2</sup>                | 0.019   | 0.54        | 3 of 8  | <0.004          | 0.039           | 0.0261                        | SQG <sub>low</sub> 3 of 8        |
| Phenanthrene <sup>2</sup>            | 0.24    | 1.5         | 4 of 8  | <0.004          | 0.667           | 0.338                         | SQG low 3 of 8                   |
| Pyrene <sup>2</sup>                  | 0.665   | 2.6         | 4 of 8  | <0.004          | 1.429           | 0.719                         | SQG low 1<br>of 8                |
| PAHs (Sum of total) <sup>2</sup>     | 10      | 50          | 4 of 8  | <0.004          | 7.14            | 4.731                         | SQG <sub>low</sub> 0 of 8        |
| Other                                |         |             |         |                 |                 |                               |                                  |
| Tributyltin                          | 0.009   | 0.07        | 3 of 8  | <0.0005         | 0.0194          | 0.0123 <sup>3</sup>           | SQG low 2 of 8                   |
| PCBs                                 | 0.034   | -           | 2 of 8  | <0.0018         | 0.0645          | 0.0566 <sup>3</sup>           | SQG low 2 of 8                   |
| TRH C <sub>10</sub> -C <sub>36</sub> | 550     | -           | 5 of 8  | <3              | 221             | 280.1                         | SQG low 1 of 8                   |

#### Notes:

<sup>1</sup> Maximum value is used as 95% UCL is greater than highest value

<sup>2</sup>Concentrations normalised to TOC content as discussed in Section 5.3.1.

<sup>3</sup> Dataset not considered statistically valid for 95% UCL calculation

BOLD 95% UCL exceeds SQG<sub>low</sub>

Italic 95% UCL exceeds SQG<sub>high</sub>

#### Heavy metals in sediments

Exceedances of the NAGD (2009) screening levels were identified for copper, lead, mercury, silver and zinc and exceedances of the NAGD (2009) SQG-high values for zinc, lead and mercury.

The highest metal concentrations were reported in samples VC02\_0.0-0.5, and VC07\_0.0-0.5 with exceedances of the SQG<sub>low</sub> for copper, lead, mercury and silver. Zinc exceeded the SQG<sub>high</sub> in VC02\_0.0-0.5 with a value of 445 mg/kg compared to the guideline of 410 mg/kg.

The 95% UCLs for the exceeding metals also exceeded the SQG<sub>low</sub> for copper, lead, mercury and silver and the SQG<sub>high</sub> for lead and zinc. The Zinc 95% UCL however is unlikely to be an accurate representation as it is skewed by a single elevated value, rather than being representative of the dataset as a whole.

#### **Concentrations of TRH and BTEX**

NAGD (2009) presents a screening level of 550 mg/kg for total petroleum hydrocarbons (TPH). The concentration of TPH in the fraction  $C_{10}$ - $C_{36}$  (normalised to 1% TOC) ranged from below the limit of reporting to 650 mg/kg with a 95% UCL average of 280.1 mg/kg (standard deviation 264.9), below the SQG<sub>Iow</sub> of 550 mg/kg.

Concentrations of volatile TRH in the fraction  $C_6$ - $C_{10}$  and BTEXN were reported below the laboratory limit of reporting (LOR) in all samples selected for analysis.

#### **Concentrations of PAH**

PAHs were detected in samples VC02\_0.0-0.5, VC07\_0.0-0.5 and VC12\_0.0-0.5.

In these samples there were a number of exceedances of the SQG<sub>low</sub> for individual PAH compounds as listed in Table 7 and in Table C6 in Appendix C. Total PAHs did not exceeded the SQG<sub>low</sub> in any samples. The 95 % UCL is exceeded for Acenaphthylene, Benz(a)anthracene, Benzo(a)pyrene, Dibenz(a,h)anthracene, Fluoranthene, Fluorene and Phenanthrene.

#### **Concentrations of other parameters**

- Cyanide was below the LOR in all samples
- Concentrations of TBT (normalised to TOC) were above the LOR in three of eight samples submitted for analysis. The detected concentrations normalised to TOC were 19.4 µg Sn/kg, 20.3 µg Sn/kg and 1 µg Sn/kg, two of which (VC07\_0.0-0.5 and VC12\_0.0-0.5) were above the NAGD (2009) SQG low of 9 µg Sn/kg.
- Total organic carbon ranged from 0.05 to 2.82 %.
- Total PCBs were detected, and exceeded the SQG<sub>low</sub> value of 0.034 mg/kg in VC07\_0.0-0.5 and VC12\_0.0-0.5 with values of 0.064 mg/kg and 0.102 mg/kg respectively. The total PCBs is entirely comprised of Arochlor 1254 in both samples. The 95% UCL also exceeds the SQG<sub>low</sub> with a value of 0.0566 mg/kg.

• Herbicides, chlorinated hydrocarbons, explosives, nitroaromatics, nitrosoamines and phthalates were below the limit of reporting in all samples.

### 6.3.2 Toxicity

The NAGD requires that those analytes where the 95% UCL exceeds the screening criteria are subjected to a Phase III analysis, to assess their potential toxicity to marine organisms.

The results of the Phase III analyses are presented in Table C7, in Appendix C.

This Phase III analysis included elutriate analysis, which measures the release of contaminants from sediments into seas water. A sea water blank and three samples with exceedances of the SQG<sub>low</sub> were analysed for PAH, PCB, copper, mercury and silver.

No detects for any analytes were identified in the elutriate samples or the seawater blank.

Copper and silver were also assessed by the 1M HCl extractable metals method, this gives a closer estimate of the bioavailable fraction of the metals than the whole sediment analysis. Silver was not detected by the method in any of the three samples tested. Copper was below the SQG<sub>low</sub> in all three samples.

### 6.4 Acid sulphate soils

### 6.4.1 Field screen

Samples for potential acid sulphate soil (PASS) were initially submitted to the lab for a pH field screen, the results of the field screen are presented in Table C2 in Appendix C.

The results for initial pH of the sample (pH<sub>F</sub>) range from 7.3 to 8.9. pH after digestion with hydrogen peroxide (pH<sub>Fox</sub>) ranged from 5.2 to 6.5. Samples showed a reaction rate of 3 with one sample showing a reaction rate of 4 and one of 2. The decrease in pH for all samples ranged from 1.3 to 3.5. While a final pH of less than 3.5 is considered an indicator of potential acid sulphate soils (PASS), and the lowest final PH in these samples was 5.2 the presence of PASS cannot be excluded as pH is often higher when samples are from a marine source.

### 6.4.2 Acid sulphate soils – Chromium Reducible Sulphur method

In order to supplement the acid sulphate soil (ASS) field screen, 22 samples were selected for laboratory analyses at the primary laboratory using the chromium reducible sulphur suite (CRS), with one or two samples per core selected.

The results were compared to the action criteria provided in the QLD (2014) Acid Sulfate Soils Technical Manual – Soil management Guidelines V4.0 based on more than 1000 tonnes of fine texture soils to be disturbed.

The laboratory report is included in Appendix E. The results are summarised in Appendix C, Table C2.

Of 22 samples analysed, 13 exceeded the action criteria of 0.03 % sulphur and 18 M H<sup>+</sup>/t at all depths. These samples all had pHKCl greater than 8.6 pH units and acid neutralising capacity that ranged from 254 to 9,590 M H<sup>+</sup>/t. The liming rates were less than 1 kg CaCO<sub>3</sub>/t.

The acid neutralising capacity of the sediments (ANC) indicates that there is the potential for the sediments to self-neutralise. However, it is common for not all neutralising capacity to be available to the reaction, thus the actual ANC may be reduced compared to that measured by the laboratory.

It should be noted that measurement of ANC does not measure the effectiveness of the material in neutralising acidity, large fragments of carbonate material (i.e. shell) are be ineffectual at

neutralising acidity, however are still measured by the laboratory. Therefore, the presence of shell fragments in the sediments sampled, as recorded on the borehole logs in Appendix B, suggests the possibility that not all ANC in the analysed sediments would be available to the neutralising reaction.

The National Acid Sulfate Soil Guidance – National acid sulfate soils identification and laboratory methods manual (Water Quality Australia, 2018) recommends that where the ANC is not corroborated with other data, as is the case in this instance, the net acidity calculation should not incorporate the ANC.

### 6.5 Dioxins

'Dioxins' refers to a group of persistent chlorinated chemical compounds known as polychlorinated dibenzodioxins (PCDD), which share certain similar chemical structures, properties and biological characteristics, including toxicity (Mueller, et al, 2004). Dioxins are not deliberately produced, but are released into the environment as a result of combustion activities including power generation, waste incineration, metal smelting and manufacture of some chemicals (EPHC, 2005).

Dioxins occur as a complex mixture in most environmental media and as such, toxic equivalents (TEQs) are used to assist with interpretation of data, allowing the toxicity to be expressed as a single number. TEQs are calculated by normalising individual compounds to 2,3,7,8-tetrachlorodibenzo-p-dioxin, the most toxic PCDD. The total toxicity of any mixture is then expressed as the sum of the individual TEQs (Mueller, et al, 2004)

Samples were analysed for dioxins across the dredge footprint. A total of eight samples were analysed as per the sampling frequency requirement of the NAGD (2009). The results are reported in full in the laboratory report provided in Appendix E and presented in Table C8, Appendix C and summarised in Table 8. Both the World Health Organisation (WHO) TEQ and International TEQ (I-TEQ) are reported by the laboratory and summarised in Table 8. For the purpose of this report, the following TEQ values were applied

- WHO TEQ (0.5 LOR) where value of half LOR was used to calculate the TEQ where results were reported by the laboratory as non detect
- I-TEQ (0.5 LOR) where value of half LOR was used to calculate the TEQ where results were reported by the laboratory as non detect.

| Sample ID    | WHO TEQ (0.5 LOR) | I-TEQ (0.5 LOR) |
|--------------|-------------------|-----------------|
| VC01_0.5-1.0 | 10.50             | 26.46           |
| VC02_0.5-1.0 | 134.61            | 156.94          |
| VC03_0.0-0.5 | 24.96             | 69.14           |
| VC04_0.5-1.0 | 14.73             | 38.61           |
| VC07_0.0-0.5 | 40.45             | 51.46           |
| VC08_1.0-1.5 | 13.79             | 25.92           |
| VC10_0.0-0.5 | 28.16             | 79.27           |
| VC12_0.0-0.5 | 17.79             | 27.16           |

### **Table 8 Summary of Dioxin results**

| Sample ID              | WHO TEQ (0.5 LOR) | I-TEQ (0.5 LOR) |
|------------------------|-------------------|-----------------|
| Mean Average Total TEQ | 36                | 59              |

Results from all samples were strongly dominated by 1234678-HpCDD, Octa-dioxin, Hexadioxin and OCDD (octachlorodibenzo-p-dioxin) which all had concentrations a number of orders of magnitude above the LOR and other dioxin compounds in the same samples. The results were relatively consistent across all samples with the variation in dioxin TEQs not appearing to possess an identifiable spatial pattern, laterally or with depth. It is noted that the highest TEQ is in a sample at 0.5 - 1.0 m depth.

## 6.6 Quality assurance and quality control

Sediment samples were transported in ice-cooled chests (eskys) to the following NATA accredited laboratories under chain of custody:

- ALS Environmental Services Pty Ltd, Sydney, NSW primary samples and intra-laboratory duplicates.
- Eurofins|MGT laboratory, Lane Cove, NSW inter-laboratory duplicates.

A copy of the chain of custody for all batches is attached. The laboratories selected to carry out analysis are NATA accredited for the analysis performed. Test methods are listed on the attached laboratory reports, in Appendix E.

Samples were selected for analysis to include a sample set which was representative of all sediment types encountered and to be spatially distributed across the entire dredging area and therefore are considered to be representative of material to be excavated, as far as practicable.

## 6.6.1 Field and laboratory quality control assessment

All fieldwork was conducted in general accordance with GHD standard operating procedures. Laboratory and field quality control and quality assurance procedures are summarised in Table 9.

| Parameter                       | Assessment                                                                                                |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|
| Laboratory                      |                                                                                                           |
| Laboratory Duplicates           | All laboratory duplicates were within acceptable RPDs.                                                    |
| Laboratory control spikes (LCS) | No LCS non-conformances were identified.                                                                  |
| Matrix Spikes (MS)              | The following MS non-conformances in the form of recovery outside of the assigned limits were identified: |
|                                 | • ES1936029 – 1,1-Dichloroethene, organotins                                                              |
|                                 | ES1936922 – hexavalent chromium                                                                           |
|                                 | <ul> <li>ES1936183 – hexavalent chromium,<br/>tributyltin</li> </ul>                                      |
|                                 | ES1937111 - hexavalent chromium                                                                           |
| Method blanks                   | No method blank non-conformances were identified.                                                         |

## Table 9 Summary of quality control parameters

| Parameter                   | Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limits of reporting         | Limits of reporting were equal to or below the assessment criterion for all analytes.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Field                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rinsate Blanks              | Results of the rinsate blanks are presented in table C10,<br>Appendix C. No detections of any analytes were found in<br>the rinsate blank samples, indicating that the equipment<br>decontamination protocol was effective.                                                                                                                                                                                                                                                                       |
| Duplicates                  | Results of the relative percentage difference (RPD)<br>calculations are presented in Table C9, Appendix C. All<br>duplicates were within the acceptable limits of 30 %<br>RPD for inorganics and 50% RPD for organics, where<br>the measured concentration was more than 10 times the<br>LOR, with the exception of the intra-lab duplicate sample<br>FD05, where the iron concentrations had an RPD of<br>41%. This is likely due to the natural heterogeneity of<br>contamination in sediments. |
| Trip spikes and trip blanks | All trip spikes and trip blanks were within acceptable limits.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Holding Times               | <ul> <li>Holding time exceedances were identified in the following reports: <ul> <li>ES1937111</li> <li>ES1937483</li> <li>ES1936029</li> </ul> </li> <li>These holding time exceedances were for analytes that are generally considered to be stable, and given the samples were correctly stored by the laboratory, are unlikely to have a detrimental effect on the results to the analysis.</li> </ul>                                                                                        |

Overall the instances of non-conformance of the QA/QC parameters are not considered to affect the conclusions drawn from the results provided.

# 7. Discussion and conclusions

Referring to the objectives of this report outlined in Section 1.2, and the limitations of this investigation as outlined in Section 1.4, the following sections provide a summary of conclusions made on the basis of the analytical results obtained during the course of these works

### 7.1 Waste classification

Based on observations made during sampling, and GHD's understanding of the site, the samples collected are considered to be generally representative of site conditions. Historical samples have not been taken into account as the available information is not representative of the entire samples depth, and also were sampled more than five years prior to this sampling event.

Under NSW EPA (2014) step one of classifying waste is to determine if the waste is 'special waste'. Due to the presence of dioxin and tributyltin the waste may be considered special waste this is discussed further below.

### Special waste considerations - Dioxins

Dioxin contaminated waste is subject to the Chemical Control Order in Relation to Dioxin-Contaminated Waste Materials (1986) (The Dioxin Waste CCO). The Dioxin Waste CCO is currently under review by NSW EPA. This document defines dioxin contaminated waste as waste materials containing more than one part in 100 million (by weight; equivalent to 0.01 ppm, or 10  $\mu$ g/kg) of dioxin. Dioxin is in turn defined as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The Dioxin Waste CCO prohibits the disposal of 2,3,7,8-TCDD wastes and the NSW EPA states that "You must get a licence from the EPA for processing, storing, selling, distributing or conveying these wastes".

2,3,7,8-TCDD was detected in four of the eight samples analysed at a highest concentration of 18.4 ng/kg and an average concentration of 3.6 ng/kg. Concentrations of dioxin, reported as 2,3,7,8-TCDD are therefore below the concentration regulated by The Dioxin Waste CCO and are not considered classified as dioxin contaminated waste.

#### Special waste considerations - TBT

Tributyltin waste is subject to the Chemical Control Order in Relation to Organotin Wastes (1989) (The Organotin Waste CCO). However, the NSW EPA's organotin waste management framework is currently under review.

In correspondence during this project, the NSW EPA has advised that the current policy with respect to the disposal of organotin waste is that for waste to be classified as General Solid Waste (GSW), the ANZAST (2018) Default Guideline for Sediment Quality – High Value should be used as guidance as follows:

- Concentrations of tributyltin below the guideline being classified as GSW,
- Concentrations of tributyltin above the guideline being classified as Restricted Solid Waste (RSW).

Based on the results of this sampling, the concentration of tributyltin in the sediments meet the criteria to be classified as GSW.

#### Waste classification – general considerations

The following summarises the chemical analysis of the waste:

- Analytical results indicated exceedances of the General Solid Waste CT1 criteria for lead, mercury and B(a)P and a single exceedance of the Restricted Solid Waste CT2 criterion for B(a)P.
- The 95% UCL for the COPCs which exceeded the Waste Classification criteria were all below the CT1 criteria
- Based on the exceedances, selected samples were submitted for TCLP extraction and analysis for lead, mercury and B(a)P all samples were below the General Solid Waste SCC1 criteria and TCLP 1 criteria.

Based on the above analysis results the materials can be classified as General Solid Waste (GSW) and should be disposed of to a facility with appropriate license to accept material based on this.

## 7.2 Analysis under NAGD (2009)

For the purpose of potential off-shore disposal, data was reviewed with reference to NAGD (2009). In summary, the following points are noted:

- Homogenised bulk sediment analysis identified exceedances of the SQG<sub>low</sub> for total PCBs, TBT, a number of individual PAHs, copper, lead, mercury and silver, and one exceedance of the SQG<sub>high</sub> for zinc and lead.
- Elutriate testing was conducted for copper, silver, mercury, PAHs and PCBs, and 1M HCI extractable metals for copper and silver.
- No detections of any COPCs were identified during elutriate analyses or on the seawater blank and the results of the 1M HCl extractable metals analysis showed results below the relevant guidelines. It is considered unlikely that the COPCs are bioavailable in the current marine environment.
- While elutriate testing was not conducted for lead, it should be noted that TCLP testing conducted as part of the waste classification, showed no exceedances of the ANZAST (2018) 95% Marine Water Guideline of 0.004 mg/L for lead.
- It should also be noted that the result for zinc, appears anomalous.
- The investigation identified scattered occurrences of TBT in the sediments, thought it appears the majority of the sediments only contain low levels of TBT, which is demonstrated by the fact that six of the eight tested samples reported TBT concentration at or below the laboratory PQL of 1 µg Sn/kg. While elutriate or bioavailability testing for TBT could not be completed for the two samples (VC07\_0.0-0.5 and VC12\_0.0-0.5) containing higher TBT concentrations due to limited amount of sediment samples available from this sampling event, it is noted elutriate testing of these two samples for other chemicals (including metals) showed no detections of COPC in the elutriate analysis or sea water blanks.
- Samples VC02\_0.0-0.5 and VC07\_0.0-0.5 have the most exceedances of the COPCs, however there does not appear to be a spatially relationship regarding contamination at the site.
- Some dioxin compounds were detected in all of the eight samples analysed. These levels fall within the range that has been identified for background in Australia.

Given these results, the dredge sediment may be suitable for offshore disposal, with reference to the recommendations in Section 8 of this report.

## 7.3 Acid sulphate soils

The analytical results for chromium reducible sulphur indicate the presence of PASS and the potential acid generating capacity of the sediments throughout the lateral and vertical extent of the sediments.

# 8. Recommendations

Based on the findings of these works, and subject to the limitations outlined in Section 1.4 the following recommendations are made with respect to waste disposal options for dredged sediment:

- For the option of offshore disposal, it is recommended that PANSW seek information regarding the contaminant levels at the preferred disposal site, particularly with reference to tributyltin and dioxin. This site characterisation is recommended in the NAGD (2009) in order to inform selection of the most appropriate disposal location and to establish how a disposal site may be impacted.
- PASS conditions are present within the dredge footprint. The dredging strategy should be designed to limit the timeframe for potential for oxidisation of the sediments. If offshore disposal were chosen the potential for ASS generation would reduce greatly due to sediments being transferred to the disposal area immediately after dredging, limiting time for oxidation. Should onshore disposal be selected, it is recommended that the liming requirements are assessed during dredging by ongoing monitoring of the excavated sediments. To assist in outlining the procedure for PASS monitoring during excavation GHD recommends that an Acid Sulphate Soil Management Plan (ASSMAP) is prepared, as recommended by National Acid Sulfate Soil Guidance Guidelines for the dredging of acid sulfate soil sediments and associated dredge spoil management (Water Quality Australia, 2018).

# 9. References

ANZAST. (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG). Australian and New Zealand Governments and Australian State and Teritory Governments (ANZAST).

ANZECC/ARMCANZ. (2000). *Australian Water Quality Guidelines for Fresh and Marine Water Qaulity*. Canberra, October 2000: Australian and New Zealand Environemnt and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.

Arup. (2019). OPT Berth Infrastructure - Desktop Study - Existing Geotechnical Data.

ASSMAC. (1998). Acid Sulfate Soil Manual. Acid SUlfate Soil Management Advisoriy Committee.

Coffey. (2019). OPT Berth Deepening Investigations Geotechical and Geophysical Investigations Report (draft). Coffey Services Australia Pty Ltd.

Commonwealth of Australia. (2009). *National Assessment Guidelines for Dredging.* Canberra, 2009: Commonwealth of Australia.

Dear SE, M. N. (2002). *Soil Management Guidelines. In QueenaInd Acid Sulfate Soil Technical Manual v4 (2014).* Infooroopilly, Queensland, Australia: Department of Natural Resources and Mines.

Douglas Partners. (2014). Sediment Quality Assessment Overseas Passenger termianl - Circular Quay.

EPHC. (2005). *National Dioxins Program: National Action Plan for Addressing Dioxins in Australia*. July 2005.

GHD Geotechnics. (2006). Preliminary Geotechnical and Geochemcial investigation.

Mueller J, M. R. (2004). *Dioxins in Aquatic Environments in Australia, National Dioxin Program Technical Report No. 6, .* Canberra: Australian Government Department of Environment and Heritage.

NSW EPA. (1995). *Contaminated Sites: Sampling Design Guidelines*. NSW Environmental Protection Authority.

NSW EPA. (2014). Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014. The excavated natural matrial order 2014. NSW Environmental Protection Authority.

NSW EPA. (2014). *Waste Classification Guidelines*. New South Wales Environmental Protection Authority (NSW EPA).

OSPAR. (2009). Update of JAMP guidelines for monitoring contaminants in sediment: Technical annex on normalisation of contaminant concentrations in sediment.

Water Quality Australia. (2018). *National Acid Sulfate Soil Guidacne - Guidelines for the dredging of acid sulfate soil sediments and associated dredge spoil management.* Water Quality Australia.

Water Quality Australia. (2018). National Acid Sulfate Soil Guidance - National acid sulfate soils identification and laboratory methods manual. Water Quality Australia.

# **Appendices**

GHD | Report for Port Authority of New South Wales - Sediment Contamination Assessment Report, 12517046

# Appendix A - Figures



G:\21\12517046\GIS\Maps\Deliverables\21\_12517046\_Z001\_SiteLocation.mxd Print date: 16 Dec 2019 - 20:15 Data source: General Topo - NSW LPI DTDB 2019. Cadastre - NSW LPI DCDB 2019. Aerial Imagery - Sixmaps 2019 . Created by: kqvelasco



Investigation Locations (Coffey, Nov 2019)

Lot Boundary

Borehole Locations

 $\mathbf{O}$ Borehole / CPT Locations

Meters Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

Date 16 Dec 2019

Exceedances of Nominated Guidelines for Offshore Disposal

FIGURE 2

Data source: General Topo - NSW LPI DTDB 2019. Cadastre - NSW LPI DCDB 2019. Aerial Imagery - Sixmaps 2019. Created by: kgw

# Appendix B - Borehole Logs



### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

Client PANSW Drill Co. Easting 344418 Project Circular Quay Investigation Driller Darren Skene Northing 6251919 Grid MGA94 Project No. 12517046 Rig Type Site Overseas Passenger Terminal Drill Method Vibrocore Elevation -10.77 m AHD Location VC01 Total Depth (m) 1.1 Logged By SE Date Drilled 30/10/2019 Checked By CY Diameter (mm) 100 COMMENTS/ **Drilling Method** CONTAMINANT LITHOLOGICAL DESCRIPTION Elevation (m) Graphic Log Consistency INDICATORS Soil Type (Classification Group Symbol); Particle PID (ppm) Sample ID Depth (m) Odours, staining, waste materials,separate phase liquids, imported fill, ash. Moisture Size; Colour; Secondary / Minor Components. VC VC01\_0-0.2 0.9 Clayey SAND, dark grey, with shell and wood W L organic odour, no staining. fragments. - 0.2 -0.2 VC01\_0-0.5 Clayey SAND, medium grained, pale yellow-grey, W L no odour, no staining. weathered sandstone. - 0.4 -0.4 VC01\_0.4-0.6 0.8 VC01\_0.5-0.6 0.6 -0.6 VC01\_0.5-1.0 - 0.8 -0.8 1 -1 0.7 VC01\_1-1.1 Core recovery: 1.10 m Total penetration: 1.58 m - 1.2 - -1.2 Refusal in residual - 1.4 -1.4 1.6 -1.6 - 1.8 -1.8 - 2 -2 2.2 -2.2 24 -2.4 - 2.6 -2.6 2.8 -2.8 Notes

This log is not intended for geotechnical purposes. **Drilling Abbreviations** Moisture Abbreviations Consistency Abbreviations AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, D-Dry, SM-Slightly Moist, Granular Soils VL-Very Cohesive Soils VS-Very DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation M-Moist, VM-Very Moist, Loose, L-Loose, MD-Medium Soft, S-Soft, F-Firm, (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, W-Wet, S-Saturated Dense, D-Dense, VD - Very ST-Stiff, VST-Very Stiff, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore, Dense H-Hard WB-Wash Bore, WS-Window Sampler



## ENVIRONMENTAL-SOIL BORE

Page 1 of 1

| Client PANSW<br>Project Circular Quay Investigation<br>Project No. 12517046<br>Site Overseas Passenger Terminal<br>Location VC02<br>Date Drilled 31/10/2019 |           |                                        |             | Drill Co.<br>Driller Darren Skene<br>Rig Type<br>Drill Method Vibrocore<br>Total Depth (m) 1.6<br>Diameter (mm) 100          |          |             | Easting 334466<br>Northing 6251945<br>Grid MGA94<br>Elevation -11.57 m AHD<br>Logged By SE<br>Checked By CY                   |                                                                                             |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
| Depth (m)<br>Drilling Method                                                                                                                                | PID (ppm) | Sample ID                              | Graphic Log | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Group Symbol); Particle<br>Size; Colour; Secondary / Minor Components. | Moisture | Consistency | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | Elevation (m)                                                                               |  |  |  |
| - VC<br>- 0.2<br>                                                                                                                                           | 1.2       | VC02_0-0.2<br>VC02_0.0-0.5             |             | Clayey SILT with sand, low to medium plasticity, dark grey, shell fragments.                                                 | W        | S           | organic odour, no staining                                                                                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |  |  |
| - 0.6<br>                                                                                                                                                   | 1.0       | VC02_0.5-0.6<br>VC02_0.5-1.0           |             | Clayey SAND, fine and medium grained, dark<br>grey-brown, shell fragments.                                                   | W        | L           | organic odour, no staining                                                                                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |  |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>1.2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                  | 1.1       | VC02_0.9-1<br>VC02_1-1.2<br>VC02_1-1.5 |             | CLAY with sand, medium to high plasticity, grey.                                                                             | M        | ST          | no odour, no staining.                                                                                                        |                                                                                             |  |  |  |
| - 1.6<br>                                                                                                                                                   |           |                                        |             | Core recovery: 1.60 m<br>Total penetration: 2.45 m<br>Refusal on bedrock                                                     |          |             |                                                                                                                               | 1.6<br>                                                                                     |  |  |  |
| -<br>- 2.4<br>-<br>- 2.6<br>-<br>- 2.6<br>-<br>- 2.8<br>-<br>                                                                                               |           |                                        |             |                                                                                                                              |          |             |                                                                                                                               | 2.4<br>2.6<br>                                                                              |  |  |  |

| This log is not intended for geotechnical purposes.                                                                                                                                                                                                                                                                                           |                                                                            |                                                                                          |                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Drilling Abbreviations                                                                                                                                                                                                                                                                                                                        | Moisture Abbreviations                                                     | Consistency Abbreviations                                                                |                                                                                        |
| AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring,<br>DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation<br>(shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube,<br>SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore,<br>WB-Wash Bore, WS-Window Sampler | D-Dry, SM-Slightly Moist,<br>M-Moist, VM-Very Moist,<br>W-Wet, S-Saturated | Granular Soils VL-Very<br>Loose, L-Loose, MD-Medium<br>Dense, D-Dense,VD - Very<br>Dense | Cohesive Soils VS-Very<br>Soft, S-Soft, F-Firm,<br>ST-Stiff, VST-Very Stiff,<br>H-Hard |



### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

Client PANSW Drill Co. Easting 334437 Project Circular Quay Investigation Driller Darren Skene Northing 6251990 Grid MGA94 Project No. 12517046 Rig Type Site Overseas Passenger Terminal Drill Method Vibrocore Elevation -12.61 m AHD Location VC03 Total Depth (m) 1.1 Logged By SE Date Drilled 30/10/2019 Checked By CY Diameter (mm) 100 COMMENTS/ **Drilling Method** CONTAMINANT LITHOLOGICAL DESCRIPTION Elevation (m) Graphic Log Consistency INDICATORS Soil Type (Classification Group Symbol); Particle PID (ppm) Sample ID Depth (m) Odours, staining, waste Moisture Size; Colour; Secondary / Minor Components. materials, separate phase liquids, imported fill, ash. VC VC03\_0-0.2 0.9 S VS Sandy CLAY, low to medium plasticity, dark grey, weak organic odour, no trace shells staining. Clayey SAND with silt, medium to fine grained, pale W D no odour, no staining. grey. - -0.2 0.2 VC03\_0-0.5 VC03\_0.3-0.4 - 0.4 -0.4 VC03\_\_0.4-0.6 1.0 VC03 0.5-0.6 0.6 -0.6 VC03\_0.6-0.7 W D SAND, pale grey. no odour, no staining. VC03\_0.5-1 -0.8 - 0.8 -1 1.1 VC03\_1-1.1 Core recovery: 1.10 m Total penetration: 1.32 m - 1.2 - -1.2 Refusal in residual -1.4 - 1.4 1.6 -1.6 - 1.8 -1.8 - 2 -2 2.2 -2.2 24 -2.4 -2.6 - 2.6 2.8 -2.8 Notes

10103

This log is not intended for geotechnical purposes.

**Drilling Abbreviations** Moisture Abbreviations Consistency Abbreviations AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, D-Dry, SM-Slightly Moist, Granular Soils VL-Very Cohesive Soils VS-Very DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation M-Moist, VM-Very Moist, Loose, L-Loose, MD-Medium Soft, S-Soft, F-Firm, (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, W-Wet, S-Saturated Dense, D-Dense, VD - Very ST-Stiff, VST-Very Stiff, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore, Dense H-Hard WB-Wash Bore, WS-Window Sampler



### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

| Client               |                        | NA/             |                 |                                        | Drill Co                                                                                                                     | Feeti    |                                  | 464                                                                                                                           |               |
|----------------------|------------------------|-----------------|-----------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Projec               | t Circ                 | ovv<br>ular Qua | v Investigation |                                        | Driller Darren Skene                                                                                                         | Eastin   | <b>ng</b> 334<br>1 <b>ina</b> 62 | 464<br>251999                                                                                                                 |               |
| Project No. 12517046 |                        |                 | 16              |                                        | Rig Type                                                                                                                     | .94      |                                  |                                                                                                                               |               |
| Site (               | Oversea                | as Passe        | enger Terminal  |                                        | Drill Method Vibrocore                                                                                                       | Eleva    | tion -1                          | 2.76 m AHD                                                                                                                    |               |
| Locat                | ion VC                 | 04              | 5               |                                        | Total Depth (m) 1.0                                                                                                          | Loga     | ed Bv                            | SE                                                                                                                            |               |
| Date I               | Drilled                | 31/10/2         | 019             |                                        | Diameter (mm) 100                                                                                                            | Chec     | ked By                           | CY                                                                                                                            |               |
|                      |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               |               |
| Depth (m)            | <b>Drilling Method</b> | (mqq) Olc       | Sample ID       | Graphic Log                            | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Group Symbol); Particle<br>Size; Colour; Secondary / Minor Components. | Moisture | Consistency                      | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | Elevation (m) |
| _                    | VC                     | 0.7             | VC04_0-0.1      |                                        | CLAY with sand, medium plasticity, pale grey, with                                                                           | w        | F                                | no odour, no staining                                                                                                         | _             |
| -                    |                        |                 | VC04 0.05       |                                        | shell fragments.                                                                                                             |          |                                  |                                                                                                                               | F             |
|                      |                        |                 | 0-0.5           |                                        |                                                                                                                              |          |                                  |                                                                                                                               |               |
| _ 0.2                |                        |                 |                 |                                        |                                                                                                                              |          |                                  | A.                                                                                                                            | L -0.2        |
| -                    |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | -             |
|                      |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               |               |
| - 0.4                |                        |                 | VC04_0.4-0.5    | V///////////////////////////////////// |                                                                                                                              |          |                                  |                                                                                                                               | -0.4          |
| -                    |                        |                 | VC04 0506       |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
|                      |                        |                 | VC040.5-0.6     |                                        |                                                                                                                              |          |                                  |                                                                                                                               |               |
| - 0.6                |                        |                 | VC040.5-1.0     | ///                                    | Clayey SAND with silt, fine to medium grained, pale<br>vellow-brown.                                                         | VM       | D                                | no odour, no staining.                                                                                                        | -0.8          |
|                      |                        | 1               | VC04_0.7-0.8    | ] / / ,                                |                                                                                                                              |          |                                  |                                                                                                                               | F             |
| - 0.8                |                        |                 |                 | / / /                                  |                                                                                                                              |          |                                  |                                                                                                                               | -0.8          |
| E I                  |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | t             |
| -                    |                        | 0.9             | VC04_0.9-1      |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
| -1                   |                        |                 |                 | /:/.                                   | Core recovery: 1.00 m                                                                                                        |          |                                  |                                                                                                                               | -1            |
|                      |                        |                 |                 |                                        | Total penetration: 1.10 m                                                                                                    |          |                                  |                                                                                                                               | E             |
| -                    |                        |                 |                 |                                        | Refusal in residual                                                                                                          |          |                                  |                                                                                                                               | ╞             |
| - 1.2                |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | E -1.2        |
| _                    |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | -             |
|                      |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
| - 1.4                |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | -1.4          |
| -                    |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | ╞             |
| - 16                 |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               |               |
| - 1.0                |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               |               |
| -                    |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | ╞             |
| - 18                 |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               |               |
| -                    |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | -             |
| -                    |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
| <b>_</b> 2           |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F-2           |
| -                    |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
| t I                  |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | È             |
| - 2.2                |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | -2.2          |
| F                    |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
| F I                  |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
| - 2.4                |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | -2.4          |
| Εl                   |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | t             |
| FI                   |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | Ļ             |
| - 2.6                |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | -2.6          |
| t I                  |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | Ľ             |
| - I                  |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
| - 2.8                |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | -2.8          |
| E I                  |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
| - I                  |                        |                 |                 |                                        |                                                                                                                              |          |                                  |                                                                                                                               | F             |
|                      |                        |                 | 1               | 1                                      | I                                                                                                                            | 1        | 1                                | I                                                                                                                             |               |

This log is not intended for geotechnical purposes.
Drilling Abbreviations

Drilling AbbreviationsMoisture AbbreviationsConsistency AbbreviationsAH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring,<br/>DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation<br/>(shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube,<br/>SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore,<br/>WB-Wash Bore, WS-Window SamplerD-Dry, SM-Slightly Moist,<br/>M-Moist, VM-Very Moist,<br/>W-Wet, S-SaturatedGranular Soils VL-Very<br/>Loose, L-Loose, MD-Medium<br/>Dense, D-Dense, VD - Very<br/>DenseCohesive Soils VS-Very<br/>Soft, S-Soft, F-Firm,<br/>ST-Stiff, VST-Very Stiff,<br/>H-Hard

ESlog



# BOREHOLE LOG

### ENVIRONMENTAL-SOIL BORE

SOIL BORE VC05

Page 1 of 1

| Client<br>Projec<br>Projec<br>Site C<br>Locati<br>Date D | PANS<br>t Circ<br>t No.<br>oversea<br>on VC<br>orilled | SW<br>ular Qua<br>1251704<br>as Passe<br>C05<br>30/10/2 | y Investigation<br>16<br>enger Terminal<br>019 |             | Drill Co.<br>Driller Darren Skene<br>Rig Type<br>Drill Method Vibrocore<br>Total Depth (m) 0.9<br>Diameter (mm) 100          | Eastii<br>North<br>Grid<br>Eleva<br>Loggo<br>Chec | ng 334<br>hing 62<br>MGA94<br>htion -1<br>ed By<br>ked By | 450<br>252060<br>4<br>11.86 m AHD<br>SE<br>5 CY                                                                               |                                                                           |
|----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Depth (m)                                                | <b>Drilling Method</b>                                 | PID (ppm)                                               | Sample ID                                      | Graphic Log | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Group Symbol); Particle<br>Size; Colour; Secondary / Minor Components. | Moisture                                          | Consistency                                               | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | Elevation (m)                                                             |
|                                                          | VC                                                     | 0.7                                                     | VC05_0-0.1                                     |             | Sandy CLAY, low to medium plasticity, dark grey,                                                                             | s                                                 | s                                                         | weak organic odour, no                                                                                                        | -                                                                         |
| - 0.2                                                    |                                                        |                                                         | VC05_0-0.5                                     |             | Clayey SAND, fine to medium grained, poorly graded, pale yellow-brown and pale grey.                                         | W                                                 | L                                                         | no odour, no staining.                                                                                                        | 0.2<br>0.2<br>0.4                                                         |
|                                                          |                                                        | 0.6                                                     | VC050.5-0.7                                    | +//         |                                                                                                                              |                                                   |                                                           |                                                                                                                               | È.                                                                        |
| 0.6                                                      |                                                        |                                                         | -                                              |             |                                                                                                                              |                                                   |                                                           |                                                                                                                               | -0.6                                                                      |
|                                                          |                                                        |                                                         | VC050.5-0.9                                    | +//         |                                                                                                                              |                                                   |                                                           |                                                                                                                               | Ł                                                                         |
| 0.8                                                      |                                                        | 0.8                                                     | VC050.8-0.9                                    | +//         |                                                                                                                              |                                                   |                                                           |                                                                                                                               | -0.8                                                                      |
| 1.2<br>1.4<br>1.6<br>1.8<br>2<br>2<br>2.2                |                                                        |                                                         |                                                |             | Refusal in residual                                                                                                          |                                                   |                                                           |                                                                                                                               | 1.2<br>1.4<br>1.6<br>1.6<br>1.8<br>1.8<br>1.8<br>1.8<br>1.8<br>1.8<br>1.8 |
| 2.4                                                      |                                                        |                                                         |                                                |             |                                                                                                                              |                                                   |                                                           |                                                                                                                               |                                                                           |
| 2.8                                                      |                                                        |                                                         |                                                |             |                                                                                                                              |                                                   |                                                           |                                                                                                                               | -<br>2.8<br>-<br>-                                                        |

Notes

This log is not intended for geotechnical purposes.

 
 Drilling Abbreviations
 Moisture Abbreviations
 Consistency Abbreviations

 AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore, WB-Wash Bore, WS-Window Sampler
 D-Dry, SM-Slightly Moist, W-Wet, S-Saturated
 Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense
 Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard



### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

| Client                              | PANS           | w                                     |                    |                                        | Drill Co.                                                                                                                    | Easti   | na 334     | 482                                                                                                                           |                   |  |  |  |  |
|-------------------------------------|----------------|---------------------------------------|--------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------|------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Project Circular Quay Investigation |                | Driller Darren Skene Northing 6252048 |                    |                                        |                                                                                                                              |         |            |                                                                                                                               |                   |  |  |  |  |
| Proje                               | ct No.         | 1251704                               | 6                  |                                        | Rig Type                                                                                                                     |         |            | Grid MGA94                                                                                                                    |                   |  |  |  |  |
| Site                                | Oversea        | as Passe                              | enger Terminal     |                                        | Drill Method Vibrocore                                                                                                       | Eleva   | tion -1    | 2.86 m AHD                                                                                                                    |                   |  |  |  |  |
| Locat                               | ion VC         | :06                                   |                    |                                        | Total Depth (m) 1.0                                                                                                          | Logg    | ed By      | SE                                                                                                                            |                   |  |  |  |  |
| Date I                              | Drilled        | 31/10/2                               | 019                |                                        | Diameter (mm) 100                                                                                                            | Chec    | ked By     | CY                                                                                                                            |                   |  |  |  |  |
|                                     |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               |                   |  |  |  |  |
| epth (m)                            | rilling Method | D (ppm)                               | Sample ID          | raphic Log                             | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Group Symbol); Particle<br>Size; Colour; Secondary / Minor Components. | oisture | onsistency | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | levation (m)      |  |  |  |  |
| Ľ                                   | ā              | L<br>0.5                              | VC06 0.0.1         | Ū                                      |                                                                                                                              | ž       | Ŭ          |                                                                                                                               |                   |  |  |  |  |
|                                     | VC             | 0.5                                   | VC06_0-0.1         |                                        | CLAY, medium plasticity, dark grey, trace shells.                                                                            | W       | F          | weak organic odour,<br>organic staining, metal                                                                                | Ł                 |  |  |  |  |
| <b>_</b>                            |                |                                       | VC06_0-0.5         | V////////                              |                                                                                                                              |         |            | bolt at 0.3 m.                                                                                                                | F                 |  |  |  |  |
| - 0.2                               |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | -0.2              |  |  |  |  |
|                                     |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | E                 |  |  |  |  |
| -                                   |                |                                       | VC060.3-0.4        |                                        | CLAY with sand, medium plasticity, pale grey mottled                                                                         | W       | S          | no odour, no staining.                                                                                                        | F                 |  |  |  |  |
| - 0.4                               |                |                                       |                    | V///////////////////////////////////// | yellow-brown.                                                                                                                |         |            |                                                                                                                               | -0.4              |  |  |  |  |
| E I                                 |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | È                 |  |  |  |  |
| -                                   |                | 0.6                                   | VC060.5-0.6        |                                        |                                                                                                                              |         |            |                                                                                                                               | +                 |  |  |  |  |
| — 0.6<br>-                          |                |                                       | VC060.5-1.0        |                                        |                                                                                                                              |         |            |                                                                                                                               | 0.6               |  |  |  |  |
| -                                   |                |                                       | VC06_0.7-0.8       |                                        |                                                                                                                              |         |            |                                                                                                                               | F                 |  |  |  |  |
| - 0.8                               |                | 1                                     | VC060.8-0.9 & FD06 |                                        |                                                                                                                              |         |            |                                                                                                                               | -0.8              |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | F                 |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | -                 |  |  |  |  |
| - '                                 |                |                                       |                    |                                        | Core recovery: 1.0 m                                                                                                         |         |            |                                                                                                                               | -                 |  |  |  |  |
| -                                   |                |                                       |                    |                                        | Refusal in residual                                                                                                          |         |            |                                                                                                                               | F                 |  |  |  |  |
| - 1.2                               |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | L -1.2            |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | $\vdash$          |  |  |  |  |
|                                     |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | Ľ                 |  |  |  |  |
| - 1.4                               |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | -1.4              |  |  |  |  |
| Ľ                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | E                 |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | $\vdash$          |  |  |  |  |
| - 1.6                               |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | -1.6              |  |  |  |  |
| <b>F</b>                            |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | F                 |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | +                 |  |  |  |  |
| - 1.8                               |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | F -1.8            |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | $\vdash$          |  |  |  |  |
| -2                                  |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | L <sub>-2</sub>   |  |  |  |  |
| $\left  - \right $                  |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | $\mathbf{F}$      |  |  |  |  |
| E I                                 |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | Ę                 |  |  |  |  |
| - 2.2                               |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | -2.2              |  |  |  |  |
| t I                                 |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | t                 |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | ╞                 |  |  |  |  |
| - 2.4                               |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | -2.4              |  |  |  |  |
| F                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | F                 |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               |                   |  |  |  |  |
| - 2.6                               |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | F <sup>-2.6</sup> |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | F                 |  |  |  |  |
| 2.8                                 |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | -2.8              |  |  |  |  |
| -                                   |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | -                 |  |  |  |  |
| t I                                 |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               | Ĺ                 |  |  |  |  |
|                                     |                |                                       |                    |                                        |                                                                                                                              |         |            |                                                                                                                               |                   |  |  |  |  |

Notes

This log is not intended for geotechnical purposes.

Drilling AbbreviationsMoisture AbbreviationsConsistency AbbreviationsAH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring,<br/>DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation<br/>(shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube,<br/>SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore,<br/>WB-Wash Bore, WS-Window SamplerD-Dry, SM-Slightly Moist,<br/>M-Moist, VM-Very Moist,<br/>W-Wet, S-SaturatedGranular Soils VL-Very<br/>Loose, L-Loose, MD-Medium<br/>Soft, S-Soft, F-Firm,<br/>ST-Stiff, VST-Very Stiff,<br/>H-Hard



# ENVIRONMENTAL-SOIL BORE

Page 1 of 1

| Client PANSW<br>Project Circular Quay Investigation<br>Project No. 12517046<br>Site Overseas Passenger Terminal<br>Location VC07<br>Date Drilled 30/10/2019 |                 |           |                                               |             | Drill Co.Easting 334458Driller Darren SkeneNorthing 6252136Rig TypeGrid MGA94Drill Method VibrocoreElevation -11.56 m AHDTotal Depth (m) 1.2Logged By SEDiameter (mm) 100Checked By CY |          |             |                                                                                                                               |                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-----------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Depth (m)                                                                                                                                                   | Drilling Method | PID (ppm) | Sample ID                                     | Graphic Log | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Group Symbol); Particle<br>Size; Colour; Secondary / Minor Components.                                                           | Moisture | Consistency | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | Elevation (m)                                                                               |  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                 | VC              | 0.5       | VC07_0-0.1<br>VC07_0-0.2 & FD03<br>VC07_0-0.5 |             | Clayey SAND with silt, fine to medium grained, dark grey, trace shells.                                                                                                                | W        | L           | weak organic odour, no<br>staining.                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |
| -<br>-<br>-<br>-<br>-<br>-<br>0.8                                                                                                                           |                 | 0.8       | VC070.5-0.6<br>VC070.5-1<br>VC070.7-0.8       |             | Sandy CLAY, low plasticity, pale grey mottled red.                                                                                                                                     | W        | ST          | no odour, no staining.                                                                                                        |                                                                                             |  |
| - 1<br>-<br>-<br>-<br><u>1.2</u>                                                                                                                            |                 | 0.8       | VC07_1-1.1<br>VC07_1-1.2                      |             | Coro receventi 1.20 m                                                                                                                                                                  |          |             |                                                                                                                               | 1<br>-<br>-<br>-<br>1.2                                                                     |  |
| - 1.4<br>- 1.6<br>- 1.6<br>- 1.8<br>- 2<br>- 2.2<br>- 2.2<br>- 2.4<br>2.6<br>2.8<br>2.8                                                                     |                 |           |                                               |             | Total penetration: 1.55 m<br>Refusal in residual                                                                                                                                       |          |             |                                                                                                                               | 1.4<br>                                                                                     |  |

| This log is not intended for geotechnical purposes.                                                                                                                                                                                                                                                                                           |                                                                            |                                                                                          |                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Drilling Abbreviations                                                                                                                                                                                                                                                                                                                        | Moisture Abbreviations                                                     | Consistency Abbreviations                                                                |                                                                                        |
| AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring,<br>DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation<br>(shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube,<br>SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore,<br>WB-Wash Bore, WS-Window Sampler | D-Dry, SM-Slightly Moist,<br>M-Moist, VM-Very Moist,<br>W-Wet, S-Saturated | Granular Soils VL-Very<br>Loose, L-Loose, MD-Medium<br>Dense, D-Dense,VD - Very<br>Dense | Cohesive Soils VS-Very<br>Soft, S-Soft, F-Firm,<br>ST-Stiff, VST-Very Stiff,<br>H-Hard |



### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

Client PANSW Drill Co. Easting 334499 Project Circular Quay Investigation Driller Darren Skene Northing 6252126 Project No. 12517046 Grid MGA94 **Rig Type** Site Overseas Passenger Terminal Drill Method Vibrocore Elevation -12.07 m AHD Location VC08 Total Depth (m) 1.6 Logged By SE Date Drilled 31/10/2019 Checked By CY Diameter (mm) 100 COMMENTS/ **Drilling Method** CONTAMINANT LITHOLOGICAL DESCRIPTION Elevation (m) Graphic Log Consistency INDICATORS Soil Type (Classification Group Symbol); Particle PID (ppm) Sample ID Depth (m) Odours, staining, waste materials,separate phase liquids, imported fill, ash. Moisture Size; Colour; Secondary / Minor Components. VC VC08\_0-0.1 & FD07 Sandy CLAY, low to medium plasticity, dark W 0.7 S weak organic odour, no brown-grey, trace shells. staining VC08\_0-0.5 - 0.2 - -0.2 VC08\_0.3-0.4 - 0.4 -0.4 0.8 VC08\_0.5-0.6 0.6 -0.6 VC08\_0.5-1 W MD Clayey SAND, fine to medium grained, grey. no odour, no staining. VC08\_0.7-0.8 - 0.8 -0.8 L 0.9 VC08\_1-1.1 & FD08 Sandy CLAY, high plasticity, pale grey. W S no odour, minor organic staining VC08 1-1.5 - 1.2 --1.2 VC08\_\_1.3-1.4 -1.4 1.4 0.8 VC08\_\_1.5-1.6 Core recovery: 1.60 m Total penetration: 2.45 m Refusal on bedrock · 1.8 -1.8 - 2 -2 2.2 -2.2 24 -2.4 -2.6 - 2.6 2.8 -2.8 Notes This log is not intended for geotechnical purposes. **Drilling Abbreviations** Moisture Abbreviations Consistency Abbreviations

D-Dry, SM-Slightly Moist,

M-Moist, VM-Very Moist,

W-Wet, S-Saturated

Granular Soils VL-Very

Loose, L-Loose, MD-Medium

Dense, D-Dense, VD - Very

Dense

Cohesive Soils VS-Very

ST-Stiff, VST-Very Stiff,

Soft, S-Soft, F-Firm,

H-Hard

AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring,

DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation

SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore,

WB-Wash Bore, WS-Window Sampler

(shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube,



### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

| United Product Damy Investigation     Damit Co.     Estand 3-341, 1       Project Ciscular Damy Investigation     Damits Dames Sterme     Northing 052211     Orif MGAM       Project Ciscular Damy Investigation     Damits Dames Sterme     Northing 052211     Orif MGAM       Data Drive Dames Sterme     Northing 052211     Orif MGAM     Data Drive Ciscular Data Investigation     Data Drive Ciscular Data Investigation       Data Drive D                                                                                                                                                                                               | Client          |                 | 214/             |                   |                 | D-W C-                                                                                                                       | Fasti    |                                  | 474                                                                                                              |               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|------------------|-------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|
| Projector         Rig Type         Ord MGA4           Location VC000         Diff Method Vibocore         Elevation -15.82 m AHD           Location VC000         Diff Method Vibocore         Elevation -15.82 m AHD           Location VC000         Diff Method Vibocore         Elevation -15.82 m AHD           Location VC000         Sample ID         Rig Type         Community           Location VC000         Sample ID         Rig Type         Community           Rig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Projec          | t Circ          | svv<br>:ular Qua | v Investigation   |                 | Drill Co.<br>Driller Darren Skene                                                                                            | Easti    | <b>ng</b> 334<br>1 <b>ina</b> 62 | 474<br>252211                                                                                                    |               |
| Site Oversea Pasanger Terminal<br>Location V/OD<br>Date Drilled 30(10/2019     Dill Method Viscore<br>Total Depth (m) 1     Logged By SE<br>Checked By CY       Image: State Drilled 30(10/2019)     Sample ID     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)       Image: State Drilled 30(10/2019)     Sample ID     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)       Image: State Drilled 30(10/2016)     Sample ID     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)       Image: State Drilled 30(10/2016)     Sample ID     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)       Image: State Drilled 30(10/2016)     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)       Image: State Drilled 30(10/2016)     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)     Image: State Drilled 10(10/2016)       Image: State Drilled 30(10/2016)       Image: State Drilled 30(10/2016)     Image: State Drilled 30(10/2016)     Image: State Drilled 30(10/2016)     Image: State Drilled 30(10/2016)       Image: State Drilled 30(10/2016)     Image: State Drille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Projec          | ct No.          | 1251704          | 46                |                 | Rig Type                                                                                                                     | Grid     | MGA94                            | 1                                                                                                                |               |
| Location VC00<br>Date Drilled 30/10/2019         Total Depth (m) 1<br>Diameter (mm) 100         Logged by SE<br>Checked by CV           Image: Strate Control (Control (Contro) (Control (Control (Control (Control (Control (Co                                    | Site C          | Oversea         | as Passe         | enger Terminal    |                 | Drill Method Vibrocore                                                                                                       | Eleva    | tion -1                          | 3.62 m AHD                                                                                                       |               |
| Date Drilled 30/10/2019         Diameter (mm) 100         Checked By CY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Locati          | ion VC          | 209              |                   |                 | Total Depth (m) 1                                                                                                            | Logg     | ed By                            | SE                                                                                                               |               |
| Image: state in the s | Date D          | Drilled         | 30/10/2          | 019               |                 | Diameter (mm) 100                                                                                                            | Chec     | ked By                           | CY                                                                                                               |               |
| Bit Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                  |                   |                 |                                                                                                                              |          |                                  | COMMENTS/                                                                                                        |               |
| VC         1.8         VC08_0.0.1         Claysy SAND, madium grained, orange-brown and gray, with shells in top 100 mm.         W         MD         weak organic odour, organic staining.           0.4         VC08_0.0.0.2 & FD02         VC08_0.0.0.8         VC08_0.0.0.0         VC08_0.0.0.0.0         VC08_0.0.0.0         VC08_0.0.0.0.0         VC08_0.0.0.0         VC0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth (m)       | Drilling Method | PID (mqq) OIA    | Sample ID         | Graphic Log     | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Group Symbol); Particle<br>Size; Colour; Secondary / Minor Components. | Moisture | Consistency                      | CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | Elevation (m) |
| 02         vc0e_023 # F02           04         vc0e_03.6           0.9         vc0e_03.6           0.8         vc0e_03.6           vc0e_03.6         vc0e_03.6           0.8         vc0e_03.6           vc0e_03.6         vc0e_03.6           0.5         vc0e_03.6           1.2         vc0e_03.6           1.4         vc0e_03.6           1.5         vc0e_03.6           1.6         vc0e_03.6           1.7         vc0e_03.6           1.8         vc0e_03.6           1.4         vc0e_03.6           1.5         vc0e_03.6           1.6         vc0e_03.6           1.7         vc0e_03.6 <t< td=""><td>_</td><td>VC</td><td>1.8</td><td>VC09_0-0.1</td><td></td><td>Clayey SAND, medium grained, orange-brown and<br/>grey, with shells in top 100 mm.</td><td>W</td><td>MD</td><td>weak organic odour,<br/>organic staining.</td><td>E</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _               | VC              | 1.8              | VC09_0-0.1        |                 | Clayey SAND, medium grained, orange-brown and<br>grey, with shells in top 100 mm.                                            | W        | MD                               | weak organic odour,<br>organic staining.                                                                         | E             |
| 0.4     V00=_0.05       0.6     V00=_0.61       0.8     V00=_0.61       0.8     V00=_0.61       0.5     V00=_0.61       12     0.5       14     0.5       12     0.5       13     0.5       24     0.5       24     0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 0.2           |                 |                  | VC09_0-0.2 & FD02 |                 |                                                                                                                              |          |                                  |                                                                                                                  | E             |
| 0.4     VC09_0406       0.8     VC09_051       0.8     VC09_081       0.5     VC09_081       0.5     VC09_081       0.6     VC09_081       0.7     VC09_081       0.8     VC09_081       0.9     VC09_081       0.9     VC09_081       0.6     VC09_081       0.7     VC09_081       0.8     VC09_081       0.9     VC09_081       1.2     VC09_081       1.2     VC09_081       1.2     VC09_081       1.4     VC09_081       1.4     VC09_081       1.4     VC09_081       1.4     VC09_081       1.4     VC09_081       1.4     VC09_081       1.5     VC09_081       1.6     VC09_081       1.8     VC09_081       2.2     VC09_081       2.2     VC09_081       2.3     VC08_081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0.2<br>-<br>- |                 |                  | VC09_0-0.5        |                 |                                                                                                                              |          |                                  |                                                                                                                  | -             |
| 0.6     0.9     VC09_0.5-0.6       0.8     VC09_0.7-0.8       VC09_0.9-1     0.5       0.5     VC09_0.9-1       1.2     0.5       1.4     1.4       1.6     1.4       1.8     1.8       2.2     1.8       2.2     1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 0.4<br>-      |                 |                  | VC09_0.4-0.6      |                 |                                                                                                                              |          |                                  |                                                                                                                  | 0.4<br>-      |
| 0.0     VC00_0.0.4       0.8     VC00_0.0.4       0.5     VC00_0.0.4       0.5     VC00_0.0.4       1.2     Core recovery: 1.00 m       1.4     Refusal in residual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F               |                 | 0.9              | VC090.5-0.6       | $\left \right $ |                                                                                                                              |          |                                  |                                                                                                                  | F             |
| VC09_0.7.0.8         VC09_0.8-1           0.5         VC09_0.9-1           1.2         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.4         0.5           1.8         0.5           1.8         0.5           2.2         0.5           2.4         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 0.6           |                 |                  | VC090.5-1         |                 |                                                                                                                              |          |                                  |                                                                                                                  |               |
| VC09_08-1         Core recovery: 100 m           12         Core recovery: 100 m           14         Core recovery: 100 m           14         Refusal in residual           14         Core recovery: 100 m           112         Core recovery: 100 m           114         Core recovery: 100 m           118         Core recovery: 100 m           118         Core recovery: 100 m           118         Core recovery: 100 m           119         Core recovery: 100 m           120         Core recovery: 100 m           121         Core recovery: 100 m           122         Core recovery: 100 m           123         Core recovery: 100 m           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                 |                  | VC09_0.7-0.8      |                 |                                                                                                                              |          |                                  |                                                                                                                  | E-08          |
| 0.5     VC09_0.0.1       1.2     Core recovery: 1.00 m       1.4     Trial Penetration: 0.95 m       1.4     Refusal in residual       1.4     Image: Core recovery: 1.00 m       1.5     Image: Core recovery: 1.00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               |                 |                  | VC090.8-1         |                 | -                                                                                                                            |          |                                  |                                                                                                                  |               |
| Core recovery: 1.00 m<br>Total Penetration: 0.95 m<br>Refusal in residual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -               |                 | 0.5              | VC09_0.9-1        |                 |                                                                                                                              |          |                                  |                                                                                                                  | 1             |
| 12     14       1.4       1.6       1.8       2.2       2.4       2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                 |                  |                   |                 | Core recovery: 1.00 m<br>Total Penetration: 0.95 m                                                                           |          |                                  |                                                                                                                  | È             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>- 1.2      |                 |                  |                   |                 | Refusal in residual                                                                                                          |          |                                  |                                                                                                                  | 1.2           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | Ę             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>- 1.4      |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | -1.4          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | F             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>- 1.6      |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | -1.6          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>F</b>        |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | F             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>- 1.8      |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | 1.8           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -               |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | F             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2              |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | 2             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -               |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | F             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2.2           |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | -2.2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -               |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | F             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2.4           |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | -2.4          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F               |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | F             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2.6           |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | -2.6          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F               |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | F             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2.8           |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | -2.8          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E               |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | E             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notes           |                 |                  |                   |                 |                                                                                                                              |          |                                  |                                                                                                                  | Γ             |

This log is not intended for geotechnical purposes.

| Drilling Abbreviations                                                                                                                                                                                                                                                                                                                        | Moisture Abbreviations                                                     | Consistency Abbreviations                                                                |                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring,<br>DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation<br>(shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube,<br>SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC_Vibracore,<br>WB-Wash Bore, WS-Window Sampler | D-Dry, SM-Slightly Moist,<br>M-Moist, VM-Very Moist,<br>W-Wet, S-Saturated | Granular Soils VL-Very<br>Loose, L-Loose, MD-Medium<br>Dense, D-Dense,VD - Very<br>Dense | Cohesive Soils VS-Very<br>Soft, S-Soft, F-Firm,<br>ST-Stiff, VST-Very Stiff,<br>H-Hard |


#### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

Client PANSW Drill Co. Easting 334452 Project Circular Quay Investigation Driller Darren Skene Northing 6251976 Grid MGA94 Project No. 12517046 Rig Type Site Overseas Passenger Terminal Drill Method Vibrocore Elevation -11.99 m AHD Location VC10 Total Depth (m) 0.8 Logged By SE Date Drilled 31/10/2019 Checked By CY Diameter (mm) 100 COMMENTS/ **Drilling Method** CONTAMINANT LITHOLOGICAL DESCRIPTION Elevation (m) Graphic Log Consistency INDICATORS Soil Type (Classification Group Symbol); Particle PID (ppm) Sample ID Depth (m) Odours, staining, waste materials,separate phase liquids, imported fill, ash. Moisture Size; Colour; Secondary / Minor Components. VC VC10\_0-0.1 0.9 Clayey SAND with silt, pale grey, shell fragments. W D weak organic odour, organic staining. VC10\_0-0.2 - 0.2 - -0.2 VC10\_0-0.5 & FD05 - 0.4 -0.4 0.8 VC10 0.5-0.6 0.6 -0.6 VC10\_0.5-1 W MD Clayey SAND, fine to medium grained, pale grey. no odour, no staining. VC10\_0.7-0.8 0 <del>0</del> 9 Core recovery: 0.80 m Total penetration: 1.3 m Refusal in sediment ⊢ .1 - 1.2 -1.2 - 1.4 -1.4 1.6 -1.6 - 1.8 -1.8 - 2 -2 2.2 -2.2 24 -2.4 - 2.6 -2.6 2.8 -2.8

Notes

This log is not intended for geotechnical purposes.

**Drilling Abbreviations** Moisture Abbreviations Consistency Abbreviations AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, D-Dry, SM-Slightly Moist, Granular Soils VL-Very Cohesive Soils VS-Very DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation M-Moist, VM-Very Moist, Loose, L-Loose, MD-Medium Soft, S-Soft, F-Firm, (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, W-Wet, S-Saturated Dense, D-Dense, VD - Very ST-Stiff, VST-Very Stiff, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore, Dense H-Hard WB-Wash Bore, WS-Window Sampler



#### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

Client PANSW Drill Co. Easting 334478 Project Circular Quay Investigation Driller Darren Skene Northing 6252271 Grid MGA94 Project No. 12517046 Rig Type Site Overseas Passenger Terminal Drill Method Vibrocore Elevation -12.87 m AHD Location VC11 Total Depth (m) 1.2 Logged By SE Date Drilled 30/10/2019 Checked By CY Diameter (mm) 100 COMMENTS/ **Drilling Method** CONTAMINANT LITHOLOGICAL DESCRIPTION Elevation (m) Graphic Log Consistency INDICATORS Soil Type (Classification Group Symbol); Particle PID (ppm) Sample ID Depth (m) Odours, staining, waste materials,separate phase liquids, imported fill, ash. Moisture Size; Colour; Secondary / Minor Components. VC VC11\_0-0.1 0.6 Clayey SAND, fine to medium grained, grey, increase W MD no odour, no staining. in sand content with depth, trace shells. VC11\_0-0.2 - 0.2 - -0.2 VC11\_0-0.5 - 0.4 -0.4 0.8 VC11\_0.5-0.6 0.6 -0.6 VC11\_0.5-0.7 & FD01 VC11\_0.5-1 - 0.8 -0.8 -1 1.2 VC11\_1.0-1.1 VC11\_1-1.2 Core recovery: 1.20 m Total penetration: 3.0 m Target depth acheieved - 1.4 -1.4 1.6 -1.6 - 1.8 -1.8 - 2 -2 2.2 -2.2 24 -2.4 - 2.6 -2.6 2.8 -2.8 Notes

This log is not intended for geotechnical purposes. **Drilling Abbreviations** Moisture Abbreviations Consistency Abbreviations AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, D-Dry, SM-Slightly Moist, Granular Soils VL-Very Cohesive Soils VS-Very DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation M-Moist, VM-Very Moist, Loose, L-Loose, MD-Medium Soft, S-Soft, F-Firm, (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, W-Wet, S-Saturated Dense, D-Dense, VD - Very ST-Stiff, VST-Very Stiff, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore, Dense H-Hard WB-Wash Bore, WS-Window Sampler



#### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

Client PANSW Project Circular Quay Investigation Project No. 12517046 Site Overseas Passenger Terminal Location VC12 Date Drilled 31/10/2019 Drill Co. Driller Darren Skene Rig Type Drill Method Vibrocore Total Depth (m) 1.1 Diameter (mm) 100 Easting 334472 Northing 6252092 Grid MGA94 Elevation -12.07 m AHD Logged By SE Checked By CY

| Depth (m)  | <b>Drilling Method</b> | PID (ppm) | Sample ID   | Graphic Log | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Group Symbol); Particle<br>Size; Colour; Secondary / Minor Components. | Moisture | Consistency | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | Elevation (m) |
|------------|------------------------|-----------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| -          | VC                     | 0.8       | VC12_0-0.1  |             | Clayey SAND with silt, dark grey, trace shells.                                                                              | w        | MD          | weak organic odour, no staining.                                                                                              | -             |
| -<br>- 0.2 | 0                      |           | VC12_0-0.5  |             |                                                                                                                              |          |             |                                                                                                                               | -0.2          |
| -          |                        |           |             |             | SAND with clay, fine-medium grained, poorly graded,<br>orange-brown mottled red.                                             | W        | MD          | no odour, minor iron oxide staining.                                                                                          | È             |
| -<br>- 0.4 |                        |           | VC120.3-0.4 |             |                                                                                                                              |          |             |                                                                                                                               | -0.4          |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | È             |
| -<br>      |                        | 0.9       | VC120.5-0.6 |             |                                                                                                                              |          |             |                                                                                                                               | -0.6          |
| _          |                        |           | VC120.5-1   |             |                                                                                                                              |          |             |                                                                                                                               | È             |
| - 0.8      |                        |           |             |             | Clayey SAND, fine-medium grained, poorly graded,<br>pale grey.                                                               | W        | D           | no odour, no staining.                                                                                                        | -0.8          |
| _          |                        |           | VC120.8-0.9 |             |                                                                                                                              |          |             |                                                                                                                               | F             |
| - 1        |                        |           |             |             | CLAY, high plasticity, pale grey.                                                                                            | М        | ST          | no odour, no staining.                                                                                                        | L_1           |
|            |                        | 0.8       | VC12_1-1.1  |             |                                                                                                                              |          |             |                                                                                                                               | F.            |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | - 12          |
| _          |                        |           |             |             | Core recovery: 1.20 m<br>Total penetration: 1.36 m                                                                           |          |             |                                                                                                                               |               |
| -          |                        |           |             |             | Refusal in residual                                                                                                          |          |             |                                                                                                                               |               |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | E             |
| - 16       |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | E_16          |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | -             |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | E1.           |
| - 1.0      |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | E -1.8        |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | F             |
| - 2        |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | F             |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | E             |
| - 2.2<br>- |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | F -2.2        |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | F             |
| - 2.4      |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | 2.4           |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | F             |
| - 2.6<br>- |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | F -2.6        |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | F             |
| - 2.8<br>- |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | 2.8           |
| -          |                        |           |             |             |                                                                                                                              |          |             |                                                                                                                               | F             |

Notes

This log is not intended for geotechnical purposes.

 
 Drilling Abbreviations
 Moisture Abbreviations
 Consistency Abbreviations

 AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore, WS-Window Sampler
 D-Dry, SM-Slightly Moist, W-Wet, S-Saturated
 Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense
 Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard



# ENVIRONMENTAL-SOIL BORE

Page 1 of 1

| Client<br>Projec<br>Projec<br>Site C<br>Locat<br>Date I | t PANS<br>ct Circ<br>ct No.<br>Dversea<br>ion VC<br>Drilled | SW<br>ular Qua<br>1251704<br>as Passe<br>C13<br>31/10/2 | y Investigation<br>16<br>enger Terminal<br>019    | 1           | Drill Co.<br>Driller Darren Skene<br>Rig Type<br>Drill Method Vibrocore<br>Total Depth (m) 1.1<br>Diameter (mm) 100          | Eastin<br>North<br>Grid<br>Eleva<br>Logg<br>Chec | ng 334<br>MGA94<br>Ition -1<br>ed By<br>ked By | 505<br>52316<br>4<br>2.73 m AHD<br>SE<br>CY                                                                                   |                                                                      |
|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Depth (m)                                               | <b>Drilling Method</b>                                      | PID (ppm)                                               | Sample ID                                         | Graphic Log | LITHOLOGICAL DESCRIPTION<br>Soil Type (Classification Group Symbol); Particle<br>Size; Colour; Secondary / Minor Components. | Moisture                                         | Consistency                                    | COMMENTS/<br>CONTAMINANT<br>INDICATORS<br>Odours, staining, waste<br>materials,separate phase<br>liquids, imported fill, ash. | Elevation (m)                                                        |
| - 0.2                                                   | VC                                                          | 1.0                                                     | VC13_0-0.1<br>VC13_0-0.5<br>VC13_0.3-0.4          |             | Sandy CLAY, low to medium plasticity, dark grey, trace shells.                                                               | W                                                | S                                              | weak organic odour, no<br>staining.                                                                                           | -<br>-<br>                                                           |
| - 0.4<br>                                               |                                                             | 1.2                                                     | VC13_0.5-0.6 & FD09<br>VC13_0.5-1<br>VC13_0.7-0.8 |             | Clayey SAND, fine-medium grained, poorly graded,<br>pale grey mottled orange-red, trace rootlets.                            | м                                                | D                                              | no odour, minor organic<br>staining.                                                                                          | 0.4<br>                                                              |
| -<br>-<br>- 1<br>-                                      |                                                             | 1.1                                                     | VC13_1-1.1                                        |             | Core recovery: 1.10 m                                                                                                        |                                                  |                                                |                                                                                                                               | -<br>-<br>                                                           |
| -<br>-<br>-<br>-<br>-<br>-<br>1.4<br>-                  |                                                             |                                                         |                                                   |             | Total penetration: 1.60 m<br>Refusal in residual                                                                             |                                                  |                                                |                                                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>1.4 |
| -<br>- 1.6<br>-<br>-<br>- 1.8<br>-                      |                                                             |                                                         |                                                   |             |                                                                                                                              |                                                  |                                                |                                                                                                                               | -<br>1.6<br>-<br>-<br>-<br><br>1.8<br>-                              |
| -<br>- 2<br>-<br>-<br>- 2.2<br>-                        |                                                             |                                                         |                                                   |             |                                                                                                                              |                                                  |                                                |                                                                                                                               | -<br>-<br>-<br>-<br>2.2                                              |
| -<br>- 2.4<br>-<br>-<br>- 2.6<br>-                      |                                                             |                                                         |                                                   |             |                                                                                                                              |                                                  |                                                |                                                                                                                               | -<br>2.4<br>-<br>-<br>-<br>2.6<br>-                                  |
| -<br>- 2.8<br>-                                         |                                                             |                                                         |                                                   |             |                                                                                                                              |                                                  |                                                |                                                                                                                               | -<br>-<br>2.8<br>-<br>-                                              |

This log is not intended for geotechnical purposes.

| Drilling Abbreviations                                                                                                                                                                                                                                                                                                                        | Moisture Abbreviations                                                     | Consistency Abbreviations                                                                |                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring,<br>DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation<br>(shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube,<br>SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore,<br>WB-Wash Bore, WS-Window Sampler | D-Dry, SM-Slightly Moist,<br>M-Moist, VM-Very Moist,<br>W-Wet, S-Saturated | Granular Soils VL-Very<br>Loose, L-Loose, MD-Medium<br>Dense, D-Dense,VD - Very<br>Dense | Cohesive Soils VS-Very<br>Soft, S-Soft, F-Firm,<br>ST-Stiff, VST-Very Stiff,<br>H-Hard |



#### ENVIRONMENTAL-SOIL BORE

Page 1 of 1

Client PANSW Drill Co. Easting 334528 Project Circular Quay Investigation Driller Darren Skene Northing 6252314 Project No. 12517046 Grid MGA94 **Rig Type** Site Overseas Passenger Terminal Drill Method Vibrocore Elevation -13.18 m AHD Location VC14 Total Depth (m) 1.4 Logged By SE Date Drilled 31/10/2019 Checked By CY Diameter (mm) 100 COMMENTS/ **Drilling Method** CONTAMINANT LITHOLOGICAL DESCRIPTION Elevation (m) Graphic Log Consistency INDICATORS Soil Type (Classification Group Symbol); Particle PID (ppm) Sample ID Depth (m) Odours, staining, waste Moisture Size; Colour; Secondary / Minor Components. materials, separate phase liquids, imported fill, ash. VC VC14\_0-0.1 0.9 W Sandy CLAY, low to medium plasticity, dark brown, S weak organic odour, no trace shells staining VC14\_0-0.5 0.2 - -0.2 VC14\_0.3-0.4 0.4 -0.4 VC14\_0.5-0.6 & FD10 1.1 0.6 -0.6 VC14\_0.5-1 W MD SAND with clay, medium grained, poorly graded, dark no odour, no staining, grey, trace shells (increase in shell fragments content at 1.1 m). VC14\_0.7-0.8 - 0.8 -0.8 .1 0.4 VC14\_1-1.1 - 1.2 -1.2 Sandy CLAY, medium to high plasticity, orange-brown М F no odour, minor iron oxide mottled red staining 0.6 VC14\_1.3-1.4 14 1.4 Core recovery: 1.40 m Total penetration: 2.43 m Refusal in residual 1.6 -1.6 · 1.8 -1.8 - 2 -2 2.2 -2.2 24 -2.4 -2.6 2.6 2.8 -2.8 Notes

This log is not intended for geotechnical purposes. **Drilling Abbreviations** Moisture Abbreviations Consistency Abbreviations D-Dry, SM-Slightly Moist, Granular Soils VL-Very Cohesive Soils VS-Very AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation M-Moist, VM-Very Moist, Loose, L-Loose, MD-Medium Soft, S-Soft, F-Firm, (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, W-Wet, S-Saturated Dense, D-Dense, VD - Very ST-Stiff, VST-Very Stiff, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, VC-Vibracore, Dense H-Hard WB-Wash Bore, WS-Window Sampler

Appendix C - Analytical results



## Appendix C Table C1 Particle size distribution

|                       |            |              |         |                   |                 |                       |                  |                |        |          | Par         | ticle Size Anal | ysis        |           |           |           |          |           |           |           |
|-----------------------|------------|--------------|---------|-------------------|-----------------|-----------------------|------------------|----------------|--------|----------|-------------|-----------------|-------------|-----------|-----------|-----------|----------|-----------|-----------|-----------|
|                       |            |              |         | % (Cobbles (>6cm) | % Gravel (>2mm) | % Sand (0.06-2.00 mm) | % Silt (2-60 µm) | % Clay (<2 µm) | m125+% | % +150µm | +300µm<br>% | % +425µm        | шноод+<br>% | % +1180µm | % +2.36mm | % +4.75mm | % +9.5mm | % +19.0mm | % +37.5mm | % +75.0mm |
| EQL                   |            |              |         | 1                 | 1               | 1                     | 1                | 1              | 1      | 1        | 1           | 1               | 1           | 1         | 1         | 1         | 1        | 1         | 1         | 1         |
| Location Code         | Date       | Field ID     | Depth   |                   |                 |                       |                  |                |        |          |             |                 |             |           |           |           |          |           |           |           |
| VC01                  | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1 | <1                | <1              | 72                    | 8                | 20             | 70     | 64       | 43          | 26              | 9           | <1        | <1        | <1        | <1       | <1        | <1        | <1        |
| VC02                  | 31/10/2019 | VC02_0.0-0.5 | 0 - 0.5 | <1                | <1              | 22                    | 52               | 26             | 10     | 4        | 2           | <1              | <1          | <1        | <1        | <1        | <1       | <1        | <1        | <1        |
| VC03                  | 30/10/2019 | VC03_0.0-0.5 | 0-0.5   | <1                | <1              | 51                    | 12               | 3/             | 48     | 42       | 27          | 14              | 4           | <1        | <1        | <1        | <1       | <1        | <1        | <1        |
| VC04                  | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1 | <1                | <1              | 80                    | 4                | 10             | 80     | 12       | 30          | 10              | 3           | <1        | <1        | <1        | <1       | <1        | <1        | <1        |
| VC08                  | 31/10/2019 | VC08_1.0-1.5 | 1 - 1.5 | <1                | 5               | 48                    | 9                | 33             | 00     | 35       | 47          | 10              | 3           | 0<br><1   | 4         | <br>      | <1       | <1        | <1        | <1        |
| VC10                  | 31/10/2019 | VC10_0.0-0.5 | 0-05    | <1                | <1              | 56                    | 13               | 32             | 51     | 40       | 10          | 10              | 3           | <1        | <1        | <1        | <1       | <1        | <1        | <1        |
| VC12                  | 31/10/2019 | VC12 0.0-0.5 | 0 - 0.5 | <1                | <1              | 81                    | 4                | 15             | 81     | 75       | 52          | 29              | 10          | 1         | <1        | <1        | <1       | <1        | <1        | <1        |
| Statistics            |            |              |         | -                 |                 | -                     |                  | -              | -      | -        | -           | -               | -           |           |           |           |          |           |           |           |
| Number of Results     |            |              |         | 8                 | 8               | 8                     | 8                | 8              | 8      | 8        | 8           | 8               | 8           | 8         | 8         | 8         | 8        | 8         | 8         | 8         |
| Number of Detects     |            |              |         | 0                 | 1               | 8                     | 8                | 8              | 8      | 8        | 8           | 7               | 7           | 2         | 1         | 1         | 0        | 0         | 0         | 0         |
| Minimum Concentration | n          |              |         | <1                | <1              | 22                    | 4                | 15             | 10     | 4        | 2           | <1              | <1          | <1        | <1        | <1        | <1       | <1        | <1        | <1        |
|                       |            |              |         |                   |                 |                       |                  |                |        |          |             |                 |             |           |           |           |          |           |           |           |

#### Appendix C Table C2

# Acid sulphate soils analytical results

|                       |                                |              |           |          | ASS      | - Field          |               | ASS - pH | ASS - Acio                   | dity Trail                                  | ASS -                        | Potential                                     | ASS                           | ANC                                           |                               |                                 | ASS                 | - Acid Base                    | Accountin                     | Iq          |                              | SPOCAS                                       |
|-----------------------|--------------------------------|--------------|-----------|----------|----------|------------------|---------------|----------|------------------------------|---------------------------------------------|------------------------------|-----------------------------------------------|-------------------------------|-----------------------------------------------|-------------------------------|---------------------------------|---------------------|--------------------------------|-------------------------------|-------------|------------------------------|----------------------------------------------|
|                       |                                |              |           | PHE      | рн-FOX   | pHF minus pH-fox | Reaction Rate | PHKC     | Titratable Actual<br>Acidity | Titratable Actual<br>Acidity (sulfur units) | Chromium Reducible<br>Sulfur | Chromium Reducible<br>Sulphur (acidity units) | Acid Neutralising<br>Capacity | Acid Neutralising<br>Capacity (acidity units) | s-Net Acidity without<br>ANCE | s-Net Acidity without -<br>ANCE | ANC Fineness Factor | Net Acidity (acidity<br>units) | Net Acidity (sulfur<br>units) | Liming Rate | Liming Rate excluding<br>ANC | Acid Neutralising<br>Capacity (sulfur units) |
|                       |                                |              |           | pH Units | pH Units | pH Units         | -             | pH Units | mole H+/t                    | %S                                          | %S                           | mole H+/t                                     | % CaCO3                       | mole H+/t                                     | %S                            | mole H+/t                       | -                   | mole H+/t                      | %S                            | kg CaCO3/   | t kg CaCO3/1                 | t %S                                         |
| EQL                   | Kata Osila Tashuisal Manual    |              | - \/4.0   | 0.1      | 0.1      |                  | 1             | 0.1      | 2                            | 0.02                                        | 0.005                        | 10                                            | 0.01                          | 10                                            | 0.02                          | 10                              | 0.5                 | 10                             | 0.02                          | 1           | 1                            | 0.01                                         |
| QLD (2014) Acid Sui   | Itate Solis Technical Manual - |              | s v4.0    |          |          |                  |               |          |                              |                                             | 0.03                         | 18                                            |                               |                                               |                               |                                 |                     |                                |                               |             |                              |                                              |
| Location Code         | Date                           |              | Deptn     | 0.1      | 60       | 1 1 0            | 1 4           | 0.0      | L -0                         | L <0.02                                     | 1 20                         | 746                                           | 16.5                          | 2 200                                         | 1 20                          | 746                             | 1 4 5               | <10                            | <0.00                         | 1           | 50                           | 5.00                                         |
| BH05                  | 20/10/2019                     | BH05 4.6-4.7 | 4.6 - 4.7 | 8.5      | 6.2      | 2.3              | 4             | 0.0      | < <u>&lt;</u><br><2          | <0.02                                       | 0.161                        | 101                                           | 0.53                          | 1 000                                         | 0.16                          | 101                             | 1.5                 | <10                            | <0.02                         |             | 8                            | 3.05                                         |
| VC01                  | 30/10/2019                     | VC01_0.0-0.1 | 0.5-0.6   | 7.7      | 5.7      | 2.3              | 3             | 9.0      | ~2                           | ~0.0Z                                       | 0.101                        | 101                                           | 9.55                          | 1,900                                         | 0.10                          | 101                             | 1.5                 | ×10                            | <u> ~0.02</u>                 |             |                              | - 3.05                                       |
|                       | 20/10/2019                     | VC01_0.5-0.0 | 0.3 - 0.0 | 7.2      | 5.2      | 21               | 3             | 0.2      | -2                           | <0.02                                       | 0.023                        | 14                                            | 0.47                          | 03                                            | 0.02                          | 14                              | 1.5                 | <10                            | <0.02                         |             | 1                            | 0.15                                         |
| 1/002                 | 20/10/2019                     | VC02_0.0_01  | 0.01      | 8.8      | 6.0      | 2.1              | 3             | 9.2      | <2                           | <0.02                                       | 0.023                        | 171                                           | 1/ 8                          | 2 95                                          | 0.02                          | 171                             | 1.5                 | <10                            | <0.02                         | <1          | 13                           | 4.75                                         |
| 10002                 | 30/10/2019                     | VC02 0.0-0.1 | 05.06     | 8.8      | 6.3      | 2.0              | 3             | 0.3      | ~2                           | ~0.0Z                                       | 0.214                        | 17.1                                          | 14.0                          | 2,300                                         | 0.21                          | 1/1                             | 1.5                 | \$10                           | ~0.02                         |             | - 15                         | 4.75                                         |
|                       | 30/10/2019                     | VC02_0.5-0.6 | 0.0 1     | 7.9      | 6.3      | 1.5              | 3             |          |                              |                                             |                              |                                               |                               |                                               |                               |                                 |                     |                                |                               |             | +                            | +                                            |
|                       | 20/10/2019                     | VC02_0.9-1.0 | 15 16     | 7.0      | 5.0      | 1.5              | 3             | 81       | <2                           | <0.02                                       | 0.022                        | 1/                                            | 0.76                          | 151                                           | 0.02                          | 14                              | 15                  | <10                            | <0.02                         | <1          | 1                            | 0.24                                         |
| VC03                  | 30/10/2019                     | VC03_0.0-0.1 | 0-01      | 7.4      | 6.2      | 1.0              | 2             | 0.1      | ~2                           | ~0.0Z                                       | 0.022                        | 14                                            | 0.70                          | 151                                           | 0.02                          | 14                              | 1.5                 | \$10                           | ~0.02                         |             | <u>+ '</u>                   | 0.24                                         |
| 10003                 | 30/10/2019                     | VC03_0.5_0.6 | 05.06     | 7.5      | 5.7      | 1.7              | 2             |          |                              |                                             |                              |                                               |                               |                                               |                               |                                 |                     |                                |                               |             | +                            |                                              |
|                       | 30/10/2019                     | VC03 1 0 1 1 | 1 1 1     | 7.0      | 5.1      | 1.0              | 3             | 7.0      | -2                           | <0.02                                       | 0.021                        | 13                                            | 0.25                          | 50                                            | 0.02                          | 13                              | 15                  | <10                            | <0.02                         |             |                              | 0.08                                         |
| VC04                  | 31/10/2019                     | VC04_0.0-0.1 | 0.01      | 7.4      | 5.8      | 17               | 3             | 7.0      | <2                           | <0.02                                       | 0.021                        | <10                                           | 0.23                          | 86                                            | <0.02                         | <10                             | 1.5                 | <10                            | <0.02                         | <1          |                              | 0.00                                         |
| 10004                 | 21/10/2010                     | VC04_0.010   | 0.0.1     | 7.0      | 5.6      | 1.7              | 3             | 1.2      | ~2                           | ~0.0Z                                       | 0.011                        | \$10                                          | 0.45                          | 00                                            | ~0.02                         | \$10                            | 1.5                 | \$10                           | ~0.02                         |             | +                            | - 0.14                                       |
| VC05                  | 20/10/2019                     | VC05_0.0_0_1 | 0.9-1     | 9.3      | 6.2      | 2.1              | 3             | 0.1      | -2                           | <0.02                                       | 0.020                        | 12                                            | 0.08                          | 106                                           | 0.02                          | 12                              | 1.5                 | <10                            | <0.02                         | -1          |                              | 0.31                                         |
| VC05                  | 30/10/2019                     | VC05_0.5_0.6 | 0.5 0.6   | 8.0      | 6.0      | 2.1              | 3             | 9.1      | ~2                           | ~0.0Z                                       | 0.020                        | 12                                            | 0.90                          | 190                                           | 0.02                          | 12                              | 1.5                 | <10                            | NU.UZ                         |             | <u> </u>                     | 0.51                                         |
|                       | 30/10/2019                     | VC05_0.9-0.0 | 0.5 - 0.0 | 7.4      | 5.3      | 21               | 3             | 74       |                              | <0.02                                       | 0.010                        | <10                                           | 0.22                          | 45                                            | <0.02                         | <10                             | 1.5                 | <10                            | <0.02                         |             |                              | 0.07                                         |
| VCOC                  | 30/10/2019                     |              | 0.0-1     | 0.7      | 5.0      | 2.1              | 2             | 0.0      | <2                           | <0.02                                       | 0.010                        | 201                                           | 12.5                          | 2 500                                         | 0.02                          | 201                             | 1.5                 | <10                            | <0.02                         | <1          | 20                           | 0.07                                         |
| 10000                 | 31/10/2019                     | VC06_0.0-0.1 | 0-0.1     | 0.7      | 5.7      | 2.0              | 2             | 0.9      | <u>~</u>                     | <b>~</b> 0.02                               | 0.010                        | 301                                           | 12.5                          | 2,300                                         | 0.01                          | 301                             | 1.5                 | \$10                           | ~0.02                         |             | 20                           | + *                                          |
| VC07                  | 20/10/2019                     | VC07_0.0_01  | 0.01      | 8.6      | 63       | 2.4              | 3             | 0.2      | <2                           | <0.02                                       | 0 107                        | 67                                            | 28.0                          | 5 590                                         | 0.11                          | 67                              | 15                  | <10                            | <0.02                         | <1          | 5                            | 8.96                                         |
| 10007                 | 30/10/2019                     | VC07_0.5_0.6 | 0.5 0.6   | 8.3      | 6.2      | 2.0              | 3             | 5.2      | ~2                           | ~0.02                                       | 0.107                        | 07                                            | 20.0                          | 3,330                                         | 0.11                          |                                 | 1.5                 | \$10                           | ~0.02                         |             | <del></del>                  | 0.30                                         |
|                       | 30/10/2019                     | VC07_1.0.1.1 | 1 1 1     | 7.0      | 5.0      | 2.1              | 3             | 80       | 62                           | <0.02                                       | 0.023                        | 1/                                            | 1 3/                          | 260                                           | 0.02                          | 14                              | 15                  | <10                            | <0.02                         | <1          | 1                            | 0.43                                         |
| VC08                  | 31/10/2019                     | VC08 0.0.01  | 0.01      | 8.2      | 6.3      | 10               | 3             | 0.3      | ~2                           | N.02                                        | 0.025                        | 14                                            | 1.04                          | 203                                           | 0.02                          | 14                              | 1.5                 | \$10                           | ~0.0Z                         |             | + '                          | 0.40                                         |
| 10000                 | 31/10/2019                     | VC08_0.5_0.6 | 05.06     | 8.5      | 6.4      | 21               | 3             | 92       | <2                           | <0.02                                       | 0 295                        | 184                                           | 21.2                          | 4 230                                         | 0.29                          | 184                             | 15                  | <10                            | <0.02                         | <1          | 14                           | 6.78                                         |
|                       | 31/10/2019                     | VC08 1 0 1 1 | 1 1 1     | 7.0      | 5.0      | 2.1              | 3             | 0.2      |                              | 10.02                                       | 0.200                        | 104                                           | 21.2                          | 4,200                                         | 0.20                          | 104                             | 1.0                 | 10                             | 40.02                         |             |                              | 0.70                                         |
|                       | 31/10/2019                     | VC08 1 5 1 6 | 15 16     | 8.1      | 6.3      | 1.8              | 3             | 0.0      | 62                           | <0.02                                       | 0.056                        | 35                                            | 1 27                          | 254                                           | 0.06                          | 35                              | 15                  | <10                            | <0.02                         | < 1         | 3                            | 0.11                                         |
| VC00                  | 30/10/2019                     | VC09_0.0_0 1 | 0_01      | 8.8      | 6.0      | 2.4              | 3             | 3.0      | ~2                           | N.02                                        | 0.000                        |                                               | 1.27                          | 204                                           | 0.00                          |                                 | 1.5                 | \$10                           | ~0.02                         |             |                              | 0.41                                         |
| 10009                 | 30/10/2019                     | VC09_0.5-0.6 | 0.5-0.6   | 8.0      | 6.0      | 2.4              | 3             |          |                              |                                             |                              |                                               |                               |                                               |                               |                                 |                     |                                |                               |             | +                            | -                                            |
|                       | 30/10/2019                     | VC09_0.0_1.0 | 0.0 1     | 8.1      | 5.6      | 25               | 3             | 80       | < <u>-</u> 2                 | <0.02                                       | 0.015                        | <10                                           | 0.77                          | 153                                           | <0.02                         | <10                             | 15                  | <10                            | <0.02                         | <1          |                              | 0.24                                         |
| VC10                  | 31/10/2019                     | VC10_0_0_0_1 | 0.9-1     | 77       | 6.4      | 13               | 3             | 6.7      | <2                           | <0.02                                       | 0.010                        | 12                                            | 0.77                          | 60                                            | <0.02                         | 12                              | 1.5                 | <10                            | <0.02                         | <1          | 1<br>21                      | 0.24                                         |
| VCIU                  | 31/10/2019                     | VC10_0.5.0.6 | 05.06     | 7.5      | 5.8      | 1.0              | 3             | 0.7      | ~2                           | ~0.0Z                                       | 0.013                        | 12                                            | 0.00                          | 03                                            | ×0.02                         | 12                              | 1.5                 | \$10                           | ~0.02                         |             | <u> </u>                     | 0.11                                         |
| VC11                  | 30/10/2019                     | VC11_0_0_0_1 | 0.01      | 8.8      | 6.2      | 2.6              | 3             | 92       | <2                           | <0.02                                       | 0 195                        | 121                                           | 35.1                          | 7 010                                         | 0.19                          | 121                             | 15                  | <10                            | <0.02                         | <1          | - a                          | 11.2                                         |
|                       | 30/10/2019                     | VC11_0.5-0.6 | 05-06     | 8.8      | 6.4      | 2.0              | 3             | 0.2      | - 12                         | 10.02                                       | 0.100                        | 121                                           | 00.1                          | 7,010                                         | 0.10                          | 121                             | 1.0                 | 10                             | 10.02                         |             |                              | 11.2                                         |
|                       | 30/10/2019                     | VC11_1.0-1.1 | 1 - 1 1   | 8.9      | 63       | 2.4              | 3             | 9.2      | <2                           | <0.02                                       | 0.286                        | 178                                           | 22.1                          | 4 4 1 0                                       | 0.29                          | 178                             | 15                  | <10                            | <0.02                         | <1          | 13                           | 7.07                                         |
| VC12                  | 31/10/2019                     | VC12 0 0-0 1 | 0-01      | 8.7      | 6.0      | 2.0              | 3             | 9.1      | <2                           | <0.02                                       | 0.087                        | 54                                            | 16.4                          | 3 280                                         | 0.09                          | 54                              | 1.5                 | <10                            | <0.02                         | <1          | 4                            | 5.26                                         |
| 1012                  | 31/10/2019                     | VC12_0.5-0.6 | 05-06     | 82       | 5.9      | 2.3              | 3             | -        |                              | 0.02                                        | 0.001                        | 0.                                            |                               | 0,200                                         | 0.00                          | <u> </u>                        |                     |                                | 0.02                          | · · ·       | + <u>·</u>                   |                                              |
|                       | 31/10/2019                     | VC12_1.0-1.1 | 1 - 1 1   | 7.3      | 5.6      | 17               | 3             | 1        | 1                            |                                             |                              |                                               |                               |                                               |                               |                                 |                     |                                |                               |             | +                            | 1                                            |
| VC13                  | 31/10/2019                     | VC13_0.0-0.1 | 0-01      | 8.3      | 6.4      | 1.9              | 3             |          | 1                            |                                             |                              |                                               |                               |                                               |                               |                                 |                     |                                |                               |             | +                            | 1                                            |
|                       | 30/10/2019                     | VC13 0.5-0.6 | 05-06     | 8.2      | 6.2      | 2                | 3             | 9.0      | <2                           | < 0.02                                      | 0.040                        | 25                                            | 1.11                          | 222                                           | 0.04                          | 25                              | 1.5                 | <10                            | <0.02                         | <1          | 2                            | 0.36                                         |
|                       | 30/10/2019                     | VC13 1.0-1.1 | 1 - 1.1   | 7.8      | 6.3      | 1.5              | 3             |          |                              |                                             |                              | -                                             |                               |                                               |                               |                                 |                     |                                |                               |             |                              |                                              |
| VC14                  | 31/10/2019                     | VC14_0.0-0.1 | 0-01      | 8.4      | 6.4      | 2                | 3             | 9.1      | <2                           | < 0.02                                      | 0.358                        | 224                                           | 48.0                          | 9.590                                         | 0.36                          | 224                             | 1.5                 | <10                            | <0.02                         | <1          | 17                           | 15.4                                         |
|                       | 31/10/2019                     | VC14 0.5-0.6 | 0.5 - 0.6 | 8.6      | 6.5      | 2.1              | 3             |          |                              |                                             |                              |                                               |                               | - /                                           |                               |                                 |                     |                                |                               |             | -                            |                                              |
|                       | 31/10/2019                     | VC14 1.0-1.1 | 1 - 1.1   | 8.6      | 6.5      | 2.1              | 3             |          |                              |                                             |                              |                                               |                               |                                               |                               |                                 |                     |                                |                               |             | -                            |                                              |
|                       | 31/10/2019                     | VC14 1.3-1.4 | 1.3 - 1.4 | 8.1      | 6.3      | 1.8              | 3             | 8.9      | <2                           | < 0.02                                      | 0.030                        | 18                                            | 1.65                          | 330                                           | 0.03                          | 18                              | 1.5                 | <10                            | < 0.02                        | <1          | 1                            | 0.53                                         |
| Statistics            |                                | · -          |           | •        |          |                  | •             |          |                              | •                                           |                              |                                               |                               |                                               |                               |                                 | •                   | •                              |                               | •           |                              |                                              |
| Number of Posulte     |                                |              |           | 13       | 13       | 13               | 13            | 22       | 22                           | 22                                          | 22                           | 22                                            | 22                            | 22                                            | 22                            | 22                              | 22                  | 22                             | 22                            | 22          | 22                           | 1 22                                         |
| Number of Detects     |                                |              |           | 43       | 43       | 43               | 43            | 22       | 0                            | 0                                           | 22                           | 10                                            | 22                            | 22                                            | 18                            | 10                              | 22                  | 0                              | 0                             | 0           | 16                           | - 22                                         |
| Minimum Concentrat    | tion                           |              |           | 73       | 52       | 35               | -+5           | 67       | - 0<br>- 22                  | <0.02                                       | 0.01                         | <10                                           | 0.22                          | 45                                            | 0.02                          | <10                             | 15                  | <10                            | <0.02                         | - U<br>- 1  | 1                            |                                              |
| Maximum Concentra     | ation                          |              |           | 80       | 6.5      | 1 3              | <u> </u>      | 0.7      | 12                           | <0.02                                       | 12                           | 7/6                                           | 18                            | 9.500                                         | 1.02                          | 7/6                             | 1.5                 | <10                            | <0.02                         | 21          | 56                           | 15.07                                        |
| Linaxiniani Concellua |                                |              |           | 0.3      | 0.0      | 1 1.0            | 1 7           | 1 3.2    | 1 12                         | 1-0.02                                      | 1 1.4                        | 1-10                                          | 1 70                          | 0,000                                         | 1.4                           | 1 140                           | 1 1.0               | 10                             | 1 10.02                       |             |                              | 10.4                                         |

#### **Circular Quay Investigation** Port Authority of NSW

| 22                  | 22            | 22            | 22           |
|---------------------|---------------|---------------|--------------|
| 0                   | 0             | 16            | 22           |
| <0.02               | <1            | 1             | 0.07         |
| <0.02               | <1            | 56            | 15.4         |
| 0<br><0.02<br><0.02 | 0<br><1<br><1 | 16<br>1<br>56 | 0.07<br>15.4 |

# Appendix C Table C3 Wastle Classification - solid waste guidelines analytical results

|                   |                              |               |            |                                           | 1    |           |               |          |       |             |        |                                               |       |         |       |              |          |          |           |          |             |           |       |       |       |       |       | Organa   | 1        |              |             |                 |
|-------------------|------------------------------|---------------|------------|-------------------------------------------|------|-----------|---------------|----------|-------|-------------|--------|-----------------------------------------------|-------|---------|-------|--------------|----------|----------|-----------|----------|-------------|-----------|-------|-------|-------|-------|-------|----------|----------|--------------|-------------|-----------------|
|                   |                              |               |            | Cyanides Inorganics Major Ions TOC Metals |      |           |               |          |       |             |        |                                               |       |         |       | Metals       |          |          |           | BTEXN    |             |           |       |       |       |       |       |          |          |              |             |                 |
|                   |                              |               |            | - C Juindo                                |      | annoo     |               |          |       |             |        |                                               |       |         |       |              |          |          |           |          |             |           |       |       |       |       |       | inotaio  |          |              |             | 1               |
|                   |                              |               |            |                                           |      |           |               | ۲<br>۲   |       |             |        |                                               |       |         |       |              |          |          |           |          |             |           |       |       |       |       |       |          |          |              | 1           |                 |
|                   |                              |               |            |                                           |      |           |               | ar l     |       |             |        |                                               |       | Ĩ       |       |              |          |          |           |          |             |           |       |       |       |       |       | <u> </u> |          |              | 1           |                 |
|                   |                              |               |            |                                           |      | tal)      |               | 0        |       |             |        |                                               |       | ÷       |       |              |          |          |           |          |             | _         |       |       |       |       |       | s<br>s   |          |              | Ð           |                 |
|                   |                              |               |            | l S                                       | 8    | £         |               | ani      | Ę     |             |        |                                               |       | ן)<br>ע | l L L |              |          |          |           | se       |             | L<br>L    |       | _     |       | c     |       | a)       |          |              | zen         |                 |
|                   |                              |               |            | e                                         | e l  | ge        | <u>e</u>      |          | je.   | l r         | 0      | Ē                                             | Ľ.    | iu      | ale   |              | 5        |          |           |          | ≥           | der       |       | En la |       | iu    |       | Ē        | e e      | e            | enz         | 0               |
|                   |                              |               |            | anic                                      | istr | anic      | o <u>ri</u> c | a        | Ē     | Ĕ           | eni    | <u></u>                                       | 두     | μo      | Xa/   | alt          | l ğ      |          | g         | ğ        | 2           | ₫ <u></u> | kel   | eni   | er.   | Jad   | υ     | l fi     | ZC       | ner          | dł          | ene             |
|                   |                              |               |            | Š                                         | l ≥  | Š         | Ē             | [] []    | Alu   | And I       | Ars    | <u>B</u> er                                   | aŭ (  | - F     | Le e  | Ö            | l S      | 2        | e e       | Mai      | Ā           | Mol       | Nic   | Sel   | Sil   | ٧ar   | Ξ     | L i i    | l a      | 2            | 댪           | 1 Ž             |
|                   |                              |               |            | mg/kg                                     | %    | mg/kg     | mg/kg         | %        | mg/kg | mg/kg       | mg/kg  | mg/kg                                         | mg/kg | mg/kg   | mg/kg | mg/kg        | mg/kg    | mg/kg    | mg/kg     | mg/kg    | mg/kg       | mg/kg     | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg    | mg/kg    | mg/kg        | mg/kg       | mg/kg           |
| EQL               |                              |               |            | 1                                         | 0.1  | 1         | 40            | 0.02     | 50    | 0.5         | 1      | 1                                             | 0.1   | 1       | 0.5   | 0.5          | 1        | 50       | 1         | 10       | 0.01        | 2         | 1     | 0.1   | 0.1   | 2     | 1     | 0.0005   | 0.1      | 0.1          | 0.1         | 0.1             |
| NSW EPA (2014) Ge | eneral Solid Waste CT1 (No   | Leaching)     |            |                                           |      | 320       | 3,000         |          |       |             | 100    | 20                                            | 20    | 100     | 100   |              |          |          | 100       |          | 4           | 100       | 40    | 20    | 100   |       |       |          | 10       | 288          | 600         |                 |
| NSW EPA (2014) Re | estricted Solid Waste CT2 (N | lo Leaching)  |            |                                           |      | 1,280     | 12,000        |          |       |             | 400    | 80                                            | 80    | 400     | 400   |              |          |          | 400       |          | 16          | 400       | 160   | 80    | 400   |       |       |          | 40       | 1,152        | 2,400       |                 |
|                   |                              |               |            |                                           |      |           |               |          |       |             |        |                                               |       |         |       |              |          |          |           |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| Location Code     | Date                         | Field ID      | Depth      |                                           |      |           |               |          |       |             |        |                                               |       |         |       |              |          |          |           |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| BH05              | 7/11/2019                    | BH05_4.6-4.7  | 4.6 - 4.7  | <1                                        | 47   | <1        | 160           |          |       |             | 10     | <1                                            | <1    |         | < 0.5 |              |          |          | 127       |          | 1.1         | <2        | 5     | <5    | <2    |       |       |          | <0.2     | < 0.5        | < 0.5       | <0.5            |
| BH06              | 7/11/2019                    | BH06_1.2-1.45 | 1.2 - 1.45 | <1                                        | 23.7 | <1        | 170           | <u> </u> |       | <u> </u>    | 6      | <1                                            | <1    |         | <0.5  |              |          | <u> </u> | 68        |          | 0.2         | <2        | 2     | <5    | <2    |       |       |          | <0.2     | <0.5         | < 0.5       | <0.5            |
|                   | 20/10/2010                   | BH07_2.5-2.95 | 2.5 - 2.95 |                                           | 10.2 | <1        | 40            | <u> </u> |       | <u> </u>    | < 5    |                                               |       |         | <0.5  |              | <u> </u> | <u> </u> | 156       |          | <0.1<br>1.0 | <2        | 5     | <0    | <2    |       |       |          | <0.2     | <0.5         | <0.5        |                 |
| VC01              | 30/10/2019                   | VC01_0.0-0.2  | 0.0 - 0.2  |                                           | 13.8 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | <5        |          | 1.9         |           |       |       |       |       |       |          |          |              | <u> </u>    |                 |
| VC01              | 30/10/2019                   | VC01_0.5-1.0  | 0.5 - 1.0  |                                           | 13.5 | <1        |               | 0.06     | 3870  | <0.50       | <1 00  | <u> </u>                                      | <0.1  | 3       |       | <0.5         | <10      | 1470     | 14        | <10      | <0.01       |           | <10   | <0.1  | <0.1  | 3.8   | <10   | <0 0005  | <0.2     | <0.2         | <0.2        | <0.2            |
| VC01              | 30/10/2019                   | VC01 1.0-1.1  | 1.0 - 1.1  |                                           | 14.5 | <1        |               | 0.04     | 2820  | < 0.50      | <1.00  |                                               | <0.1  | 2.5     |       | < 0.5        | <1.0     | 1020     | 1.1       | <10      | < 0.01      |           | <1.0  | <0.1  | <0.1  | 2.5   | <1.0  | 0.0000   | <0.2     | <0.2         | <0.2        | <0.2            |
| VC02              | 30/10/2019                   | VC02 0.0-0.2  | 0.0 - 0.2  |                                           | 43.8 |           |               |          |       |             |        | <u>                                      </u> |       |         |       |              |          |          | 223       |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC02              | 31/10/2019                   | VC02_0.0-0.5  | 0.0 - 0.5  |                                           | 49.1 | <1        |               | 2.82     | 12200 | <0.50       | 16.1   | 1                                             | 0.5   | 42      |       | 4.2          | 120      | 34900    | 318       | 88       | 4.25        |           | 10.4  | 0.6   | 3     | 32.6  | 445   | 0.0028   | <0.2     | <0.2         | <0.2        | <0.2            |
| VC02              | 31/10/2019                   | VC02_0.5-0.6  | 0.5 - 0.6  |                                           | 22.4 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 66        |          | 0.9         |           |       |       |       |       |       |          |          |              |             |                 |
| VC02              | 30/10/2019                   | VC02_0.5-1.0  | 0.5 - 1.0  |                                           | 21.4 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 6         |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC02              | 30/10/2019                   | VC02_1.0-1.2  | 1.0 - 1.2  |                                           | 20.7 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 13        |          | <0.1        |           |       |       |       |       |       |          |          |              |             |                 |
| VC02              | 30/10/2019                   | VC02_1.0-1.5  | 1.0 - 1.5  |                                           | 17.6 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 8         |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC02              | 30/10/2019                   | VC02_1.5-1.6  | 1.5 - 1.6  |                                           | 13   | <1        |               | 0.07     | 8610  | <0.50       | 1.22   | L                                             | <0.1  | 8.9     |       | <0.5         | <1.0     | 5400     | 3.1       | <10      | <0.01       |           | 1     | 0.2   | <0.1  | 14.8  | 1.9   |          | <0.2     | <0.2         | <0.2        | <0.2            |
| VC03              | 30/10/2019                   | VC03_0.0-0.2  | 0.0 - 0.2  |                                           | 20.4 |           |               | 0.45     | 44000 | .0.50       | 1.1.00 |                                               | .0.4  | 40.7    |       | 0.5          |          | 4000     | 14        |          | 0.05        |           |       | 0.4   | .0.4  |       | 40.7  | .0.0005  |          |              |             |                 |
| VC03              | 30/10/2019                   | VC03_0.0-0.5  | 0.0 - 0.5  | _                                         | 13.1 | <1        | 40            | 0.15     | 11300 | < 0.50      | <1.00  |                                               | <0.1  | 10.7    |       | 0.5          | <1.0     | 1290     | 33.6      | <10      | 0.05        |           | 2     | 0.1   | <0.1  | 5.5   | 16.7  | <0.0005  | <0.2     | <0.2         | < 0.2       | <0.2            |
| VC03              | 30/10/2019                   | VC03_0.3-0.4  | 0.3 - 0.4  |                                           | 12.1 | <1        | 40            | 0.10     | 11600 | <0.50       | <1.00  | <u> </u>                                      | <0.1  | 12.5    |       | <0.5         | <1.0     | 1240     | 13.5      | < 10     | 0.04        |           | 1.9   | <0.1  | 0.1   | 5.1   | 0.2   |          | <0.2     | <0.2         | <0.2        | <u> &lt;0.2</u> |
| VC03              | 30/10/2019                   | VC03_0.4-0.0  | 0.4 - 0.0  |                                           | 18.5 |           |               | <u> </u> |       |             |        |                                               |       |         |       |              | <u> </u> |          | 29        |          |             |           |       |       |       |       |       |          |          |              | <u> </u>    |                 |
| VC03              | 30/10/2019                   | VC03_0.6-0.7  | 0.6 - 0.7  |                                           | 19.3 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 5         |          |             |           |       |       |       |       |       |          |          |              | <u> </u>    |                 |
| VC03              | 30/10/2019                   | VC03 1.0-1.2  | 1.0 - 1.2  |                                           | 17.3 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | <5        |          |             |           |       |       |       |       |       |          |          |              | <u> </u>    | -               |
| VC04              | 30/10/2019                   | VC04 0.0-0.1  | 0.0 - 0.1  |                                           | 24   |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 16        |          | <0.1        |           |       |       |       |       |       |          |          |              |             |                 |
| VC04              | 30/10/2019                   | VC04_0.3-0.4  | 0.3 - 0.4  |                                           | 17.1 | <1        |               | 0.1      | 14800 | <0.50       | <1.00  |                                               | <0.1  | 13.2    |       | < 0.5        | <1.0     | 2510     | 28        | <10      | <0.01       |           | 2     | 0.2   | 0.1   | 10.4  | 3.4   |          | <0.2     | <0.2         | <0.2        | <0.2            |
| VC04              | 31/10/2019                   | VC04_0.5-0.6  | 0.5 - 0.6  |                                           | 15.9 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 7         |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC04              | 30/10/2019                   | VC04_0.5-1.0  | 0.5 - 1.0  |                                           | 64.3 | <1        |               | 0.05     | 14600 | <0.50       | <1.00  |                                               | <0.1  | 12      |       | <0.5         | <1.0     | 3080     | 4.9       | <10      | <0.01       |           | 1.6   | 0.1   | 0.3   | 8.9   | 2.3   | <0.0005  | <0.2     | <0.2         | <0.2        | <0.2            |
| VC04              | 31/10/2019                   | VC04_0.7-0.8  | 0.7 - 0.8  |                                           | 19.2 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | <5        |          |             |           |       |       |       |       |       |          |          |              | $\square$   |                 |
| VC04              | 31/10/2019                   | VC04_0.9-1.0  | 0.9 - 1.0  |                                           | 20.1 |           |               |          |       |             |        | ļ                                             |       |         |       |              |          |          | <5        |          |             |           |       |       |       |       |       |          |          |              | <b> </b> '  |                 |
| VC05              | 30/10/2019                   | VC05_0.0-0.1  | 0.0 - 0.1  |                                           | 23.5 |           |               | <u> </u> |       |             |        | <u> </u>                                      |       |         |       |              |          |          | 56        |          | 0.6         |           |       |       |       |       |       |          |          |              | <b> </b>    | <u> </u>        |
| VC05              | 30/10/2019                   | VC05_0.5-0.7  | 0.5 - 0.7  |                                           | 17.8 |           |               | <u> </u> |       |             |        |                                               |       |         |       |              |          | <u> </u> | <5        |          |             |           |       |       |       |       |       |          |          |              | ──          | <u> </u>        |
| VC05              | 30/10/2019                   | VC05_0.5-0.9  | 0.5 - 0.9  |                                           | 14.7 | <1        | <10           | 0 11     | 1150  | <0.50       | 3.22   |                                               | <01   | 13      |       | <0.5         | <10      | 3840     | 5<br>16   | <10      | <0.01       |           | <10   | <0.1  | 0.1   | 15.6  | 15    |          | <0.2     | <0.2         | <0.2        | -02             |
| VC05              | 31/10/2019                   | VC06_0.0-0.1  | 0.0 - 0.1  | <1                                        | 4.3  | <1        | 90            | 2 05     | 4130  | ~0.50       | 18     | <1                                            | <1    | 4.5     | <0.5  | <b>~</b> 0.5 | 1.0      | 3040     | 224       | <10      | 34          | <2        | 10    | <5    | <2    | 13.0  | 1.5   |          | <0.2     | <0.2         | <0.2        | <0.2            |
| VC06              | 31/10/2019                   | VC06 0.0-0.5  | 0.0 - 0.5  |                                           | 20   |           |               | 2.00     |       |             | 1.0    |                                               |       |         | -0.0  |              |          |          | 11        |          | 0.1         | -2        | 10    | .0    |       |       |       |          | -0.2     | -0.0         | -0.0        |                 |
| VC06              | 31/10/2019                   | VC06 0.3-0.4  | 0.3 - 0.4  |                                           | 18.1 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 8         |          | <0.1        |           |       |       |       |       |       |          |          |              |             | <u> </u>        |
| VC06              | 31/10/2019                   | VC06_0.5-0.6  | 0.5 - 0.6  |                                           | 18.9 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 11        |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC06              | 31/10/2019                   | VC06_0.5-1.0  | 0.5 - 1.0  |                                           | 21.4 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 30        |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC06              | 31/10/2019                   | VC06_0.7-0.8  | 0.7 - 0.8  |                                           | 22.1 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 36        |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC06              | 31/10/2019                   | VC06_0.8-0.9  | 0.8 - 0.9  |                                           | 21.6 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 18        |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC07              | 30/10/2019                   | VC07_0.0-0.2  | 0.0 - 0.2  |                                           | 1.5  | <1        | 80            | 1.28     | 3930  | < 0.50      | 6.28   |                                               | <0.1  | 12.5    |       | 1.4          | 38.2     | 11800    | 67.7      | 34       | 0.84        |           | 3     | 0.2   | 0.3   | 11.9  | 96.6  | 0.0004   | <0.2     | <0.2         | <0.2        | <0.2            |
| VC07              | 30/10/2019                   |               | 0.0 - 0.5  |                                           | 31.3 | <1        |               | 1.05     | 5550  | <0.50       | 9.04   |                                               | <0.1  | 10.0    |       | 2.4          | 189      | 15600    | 110       | 31       | 1.61        |           | 4.4   | 0.3   | 1.5   | 10.2  | 158   | 0.0204   | <0.2     | <0.2         | <0.2        | <0.2            |
| VC07              | 30/10/2019                   | VC07_0.2-0.4  | 0.2 - 0.4  |                                           | 32.7 |           |               | <u> </u> |       |             |        |                                               |       |         |       |              |          |          | 09        |          | <01         |           |       |       |       |       |       |          |          |              | ├───        | <u> </u>        |
| VC07              | 30/10/2019                   | VC07_0.5-0.0  | 0.5 - 1.0  | _                                         | 22.3 |           |               | <u> </u> |       |             |        | <u> </u>                                      |       |         |       |              | <u> </u> | <u> </u> | 7         |          | <b>NO.1</b> |           |       |       |       |       |       |          |          |              | <u> </u>    |                 |
| VC07              | 30/10/2019                   | VC07_0.7-0.8  | 0.7 - 0.8  |                                           | 20.6 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 6         |          |             |           |       |       |       |       |       |          |          |              | <u> </u>    | <u> </u>        |
| VC07              | 30/10/2019                   | VC07 1.0-1.2  | 1.0 - 1.2  |                                           | 17.4 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 198       |          | <0.1        |           |       |       |       |       |       |          |          |              |             | <u> </u>        |
| VC08              | 31/10/2019                   | VC08 0.0-0.1  | 0.0 - 0.1  | <1                                        | 31.1 | <1        | 120           | 1.2      |       |             | 14     | <1                                            | <1    |         | <0.5  |              |          |          | 117       |          | 1.8         | <2        | 6     | <5    | <2    |       |       |          | <0.2     | <0.5         | <0.5        | < 0.5           |
| VC08              | 31/10/2019                   | VC08_0.0-0.5  | 0.0 - 0.5  |                                           | 36.7 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 111       |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC08              | 31/10/2019                   | VC08_0.3-0.4  | 0.3 - 0.4  |                                           | 46   |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 216       |          | 2.5         |           |       |       |       |       |       |          |          |              |             |                 |
| VC08              | 31/10/2019                   | VC08_0.5-0.6  | 0.5 - 0.6  |                                           | 31.3 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 19        |          |             |           |       |       |       |       |       |          |          |              | $\square$   |                 |
| VC08              | 31/10/2019                   | VC08_0.5-1.0  | 0.5 - 1.0  |                                           | 27.3 |           |               |          |       |             |        |                                               |       |         |       |              | <u> </u> | <u> </u> |           |          |             |           |       |       |       |       |       |          | <u> </u> | <u> </u>     | <b> </b>    | <u> </u>        |
| VC08              | 31/10/2019                   | VC08_0.7-0.8  | 0.7 - 0.8  |                                           | 27.1 |           |               | <u> </u> |       |             |        | <b> </b>                                      |       |         |       |              |          |          | 6         |          |             |           |       |       |       |       |       |          | <u> </u> |              | <b> </b>    | <del> </del>    |
|                   | 31/10/2019                   |               | 1.0 - 1.1  | _                                         | 18.6 | ~1        |               | 0.45     | 7000  | 20.50       | 244    |                                               | 101   | 10.0    |       | <0 F         | Z10      | 2460     | 14.6      | -10      | 0.05        |           | 10    | 0.2   | 0.0   | 21.2  | 20    | <0.0005  | -0.0     | -0.2         | -0.0        | 1 -0 0          |
| VC08              | 31/10/2019                   | VC08_1.0-1.5  | 13-14      | _                                         | 18.7 | <u>×1</u> |               | 10.15    | 1220  | <u>\.50</u> | 3.11   |                                               | ×0.1  | 10.8    |       | < <u>0.5</u> | <u> </u> | 3400     | 14.0<br>0 | 10       | 0.05        |           | 1.2   | 0.3   | 0.2   | ∠1.3  | J.2   | ~0.0005  | <u> </u> | <u> ∼∪.∠</u> | <u>~U.2</u> | +~0.2           |
| VC08              | 31/10/2019                   | VC08 1 5-1 6  | 15-16      | _                                         | 15.4 |           |               | <u> </u> |       | <u> </u>    |        |                                               |       |         |       |              | <u> </u> | <u> </u> | 11        | <u> </u> |             |           |       |       |       |       |       |          | <u> </u> | -            | t           | <u> </u>        |
| VC09              | 30/10/2019                   | VC09 0 0-0 2  | 0.0 - 0.2  |                                           | 34.5 | <1        |               | 0.08     | 8120  | <0.50       | 1 74   | 1                                             | <0.1  | 10.3    |       | 0.8          | <10      | 4720     | 10.7      | 20       | 0.02        |           | 1.8   | 0.2   | 0.1   | 15.4  | 2.9   |          | <0.2     | <0.2         | <0.2        | <0.2            |
| VC09              | 30/10/2019                   | VC09 0.0-0.5  | 0.0 - 0.5  |                                           | 14.5 | · ·       |               | 1        | 2.20  | 0.00        | 1      | 1                                             |       |         |       | 0.0          |          |          | <5        | <u> </u> |             |           |       |       | 2.1   |       |       |          | 1        |              | <u> </u>    | 1               |
| VC09              | 30/10/2019                   | VC09_0.4-0.6  | 0.4 - 0.6  |                                           | 16.3 |           |               |          |       |             | 1      | 1                                             |       |         |       | 1            |          |          | 17        |          |             |           |       |       |       |       |       |          | 1        |              |             | 1               |
| VC09              | 30/10/2019                   | VC09_0.5-1.0  | 0.5 - 1.0  |                                           | 17.8 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 22        |          |             |           |       |       |       |       |       |          |          |              |             |                 |
| VC09              | 30/10/2019                   | VC09_0.7-0.8  | 0.7 - 0.8  |                                           | 17.2 |           |               |          |       |             |        |                                               |       |         |       |              |          |          | 10        |          |             |           |       |       |       |       |       |          |          |              |             |                 |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx



# Appendix C Table C3 Wastle Classification - solid waste guidelines analytical results

|                       |            |              |           | Cyanide       | s Inor       | ganics          | Major lons | тос                  |           |          |         |           |         |                   |                          |         |        | Metals |       |           |         |            |        |          |        |          |       | Organo<br>Metals    |         |         |              | BTEXN      |
|-----------------------|------------|--------------|-----------|---------------|--------------|-----------------|------------|----------------------|-----------|----------|---------|-----------|---------|-------------------|--------------------------|---------|--------|--------|-------|-----------|---------|------------|--------|----------|--------|----------|-------|---------------------|---------|---------|--------------|------------|
|                       |            |              |           | Cyanide (WAD) | Moisture (%) | Cyanide (Total) | Fluoride   | Total Organic Carbon | Aluminium | Antimony | Arsenic | Beryllium | Cadmium | Chromium (III+VI) | Chromium<br>(hexavalent) | Cobalt  | Copper | lron   | Lead  | Manganese | Mercury | Molybdenum | Nickel | Selenium | Silver | Vanadium | Zinc  | Tributyltin (as Sn) | Benzene | Toluene | Ethylbenzene | Xylene (o) |
|                       |            |              |           | mg/kg         | %            | mg/kg           | mg/kg      | %                    | mg/kg     | mg/kg    | mg/kg   | mg/kg     | mg/kg   | g mg/kg           | g mg/kg                  | g mg/kg | mg/kg  | mg/kg  | mg/kg | mg/kg     | mg/kg   | mg/kg      | mg/kg  | mg/kg    | mg/kg  | mg/kg    | mg/kg | mg/kg               | mg/kg   | mg/kg   | mg/kg        | mg/kg      |
| VC09                  | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |               | 15.6         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 5     |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC10                  | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |               | 19.4         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 29    |           | 0.1     |            |        |          |        |          |       |                     |         |         |              |            |
| VC10                  | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |               | 15.4         | <1              |            | 0.06                 | 9760      | < 0.50   | <1.00   |           | <0.1    | 6.9               |                          | <0.5    | <1.0   | 1360   | 4.6   | <10       | <0.01   |            | 1.3    | 0.1      | <0.1   | 6.3      | 2.1   | <0.0005             | <0.2    | <0.2    | <0.2         | <0.2       |
| VC10                  | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |               | 20.4         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 9     |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC10                  | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |               | 18.8         | <1              |            | 0.12                 | 14600     | <0.50    | <1.00   |           | <0.1    | 11.9              |                          | <0.5    | <1.0   | 1230   | 24.5  | <10       | 0.01    |            | 2      | <0.1     | <0.1   | 4.7      | 4.2   |                     | <0.2    | <0.2    | <0.2         | <0.2       |
| VC11                  | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |               | 28.6         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 55    |           | 0.8     |            |        |          |        |          |       |                     |         |         |              |            |
| VC11                  | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |               | 28.4         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 5     |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC11                  | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 |               | 28.4         | <1              | 150        | 0.53                 | 6760      | <0.50    | 8.73    |           | <0.1    | 12.2              |                          | 1.4     | 3.2    | 17800  | 7     | 28        | 0.03    |            | 4.3    | 0.4      | 0.4    | 13.6     | 14    |                     | <0.2    | <0.2    | <0.2         | <0.2       |
| VC11                  | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |               | 29           |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 9     |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC11                  | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |               | 27.7         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 6     |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC12                  | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 |               | 24.2         | <1              |            | 0.34                 | 4790      | <0.50    | 2.2     |           | <0.1    | 6                 |                          | < 0.5   | 4.5    | 4290   | 10.6  | <10       | 0.12    |            | <1.0   | <0.1     | 0.2    | 13.5     | 14.4  | 0.0069              | <0.2    | <0.2    | <0.2         | <0.2       |
| VC12                  | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |               | 19.3         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | <5    |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC12                  | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |               | 19.6         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | <5    |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC12                  | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |               | 16.6         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | <5    |           |         |            |        |          |        |          |       |                     |         |         | $\square$    |            |
| VC12                  | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 | <1            | 19.9         | <1              | 80         | 0.13                 |           |          | <5      | <1        | <1      |                   | < 0.5                    |         |        |        | 42    |           | <0.1    | <2         | 4      | <5       | <2     |          |       |                     | <0.2    | <0.5    | < 0.5        | <0.5       |
| VC13                  | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 | <1            | 32.2         | <1              | 180        | 1.45                 |           |          | 13      | <1        | <1      |                   | < 0.5                    |         |        |        | 154   |           | 2.2     | <2         | 7      | <5       | <2     |          |       |                     | <0.2    | <0.5    | <0.5         | <0.5       |
| VC13                  | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |               | 30           |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 84    |           |         |            |        |          |        |          |       |                     |         |         | $\square$    |            |
| VC13                  | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |               | 30.5         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 18    |           | 0.3     |            |        |          |        |          |       |                     |         |         | $\square$    |            |
| VC13                  | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |               | 15.4         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 6     |           |         |            |        |          |        |          |       |                     |         |         | $\square$    |            |
| VC13                  | 31/10/2019 | VC13 0.5-1.0 | 0.5 - 1.0 |               | 15           |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 9     |           |         |            |        |          |        |          |       |                     |         |         | $\square$    |            |
| VC13                  | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |               | 14.8         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 16    |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC13                  | 31/10/2019 | VC13 1.0-1.1 | 1.0 - 1.1 |               | 13.6         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 7     |           |         |            |        |          |        |          |       |                     |         |         | $\square$    |            |
| VC14                  | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |               | 35.7         |                 |            |                      |           |          |         |           |         |                   |                          |         | 1      | 1      | 57    |           | 0.7     |            |        |          |        |          |       |                     |         |         |              |            |
| VC14                  | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |               | 38           |                 |            |                      |           | 1        | 1       | 1         |         |                   |                          |         | 1      | 1      | 14    |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC14                  | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |               | 34           |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 20    |           |         |            |        |          |        |          |       |                     |         |         | $\square$    |            |
| VC14                  | 31/10/2019 | VC14 0.5-1.0 | 0.5 - 1.0 |               | 31.7         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 6     |           |         |            |        |          |        |          |       |                     |         |         |              |            |
| VC14                  | 31/10/2019 | VC14 0.7-0.8 | 0.7 - 0.8 |               | 26.1         |                 |            |                      |           | 1        | 1       | 1         | 1       |                   | 1                        |         | 1      | 1      | <5    |           | <0.1    |            |        |          |        |          |       |                     |         |         |              |            |
| VC14                  | 31/10/2019 | VC14 1.0-1.1 | 1.0 - 1.1 | <1            | 24.9         | <1              | 70         | 0.29                 |           |          | 9       | <1        | <1      |                   | < 0.5                    |         |        |        | <5    |           | <0.1    | <2         | 3      | <5       | <2     |          |       |                     | <0.2    | <0.5    | < 0.5        | < 0.5      |
| VC14                  | 31/10/2019 | VC14 1.3-1.4 | 1.3 - 1.4 |               | 17.9         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 8     |           |         |            |        |          |        |          |       |                     |         |         | $\square$    |            |
| VC14                  | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |               | 30.8         |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        | 6     |           |         |            |        |          |        |          |       |                     |         |         | $\square$    |            |
| Statistics            |            |              | ·         |               |              |                 | •          |                      |           | •        | •       | •         |         |                   |                          | •       | •      | •      | •     |           |         |            |        |          |        |          |       | •                   |         |         |              |            |
| Number of Results     |            |              |           |               | 8 90         | 25              | 12         | 2 22                 | 17        | 7 17     | 25      | 5 8       | 2       | 5 17              | 7                        | 8 17    | 17     | / 17   | 90    | 17        | 40      | 8          | 25     | 25       | 25     | 17       | 17    | 8                   | 25      | 25      | 25           | 25         |
| Number of Detects     |            |              |           |               | 0 90         | 0               | 1          | 1 22                 | 17        | / (      | ) 15    | 5 0       |         | 1 17              | 7                        | 0 6     | 5 5    | 5 17   | 77    | 5         | 24      | 0          | 21     | 11       | 11     | 17       | 15    | 3                   | 0       | 0       | 0            | 0          |
| Minimum Concentration |            |              |           | <             | 1 1.5        | <1              | <4(        | 0.04                 | 2820      | ) <0.5   | 5 <1.0  | ) <1      | <0.1    | 1 2.5             | 5 <0.                    | 5 < 0.5 | 5 <1.0 | 1020   | 1.1   | <10       | <0.01   | <2         | <1.0   | <0.1     | <0.1   | 2.5      | <1.0  | < 0.0005            | < 0.2   | <0.2    | <0.2         | <0.2       |
| Maximum Concentration |            |              |           | <             | 1 64.3       | <1              | 180        | 2.82                 | 14800     | ) <0.5   | 5 18    | 3 <1      | <       | 1 42              | 2 <0.                    | 5 4.2   | 189    | 34900  | 318   | 88        | 4.25    | <2         | 10.4   | 0.6      | 3      | 32.6     | 445   | 0.0204              | <0.2    | <0.5    | <0.5         | <0.5       |
|                       |            |              |           |               |              |                 |            |                      |           |          |         |           |         |                   |                          |         |        |        |       |           |         |            |        |          |        |          |       |                     |         |         |              |            |

Appendix C

Table C3

Wastle Classification - solid waste guidelines analytical results

|                     |                             |                               |            |               |             |                                 |                         |                |                                  |                  |                         |                         |                          | TRH                | H - NEPN           | M 2013             | - SG                       |               |                 |                 |                 |                         | TRH               | I - NEPN          | N 1999 -          | SG                        |                                          |                   |                   |               |              |                  |
|---------------------|-----------------------------|-------------------------------|------------|---------------|-------------|---------------------------------|-------------------------|----------------|----------------------------------|------------------|-------------------------|-------------------------|--------------------------|--------------------|--------------------|--------------------|----------------------------|---------------|-----------------|-----------------|-----------------|-------------------------|-------------------|-------------------|-------------------|---------------------------|------------------------------------------|-------------------|-------------------|---------------|--------------|------------------|
|                     |                             |                               |            |               |             |                                 |                         |                | TRH                              | - NEPM           | 2013                    |                         |                          |                    | Clea               | anup               |                            |               | TRH             | - NEPM          | 1999            |                         |                   | Clea              | anup              |                           |                                          |                   |                   |               |              |                  |
|                     |                             |                               |            | ylene (m & p) | ylene Total | TEX (Sum of Total) -<br>ab Calc | 1 (C6-C10 minus<br>TEX) | 6-C10 Fraction | 2 (>C10-C16 minus<br>aphthalene) | C10-C16 Fraction | 3 (>C16-C34<br>raction) | 4 (>C34-C40<br>raction) | C10-C40 (Sum of<br>otal) | C10-C16 SG Cleanup | C16-C34 SG Cleanup | C34-C40 SG Cleanup | C10-C40 (sum) SG<br>leanup | 6-C9 Fraction | 10-C14 Fraction | 15-C28 Fraction | 29-C36 Fraction | 10-C36 (Sum of<br>otal) | 10-C14 SG Cleanup | 15-C28 SG Cleanup | 29-C36 SG Cleanup | 10-C36 (sum) SG<br>leanup | um of polycyclic<br>romatic hydrocarbons | enzo(e)pyrene     | cenaphthene       | cenaphthylene | nthracene    | enz(a)anthracene |
|                     |                             |                               |            | ×<br>mg/kg    |             |                                 |                         | O<br>ma/ka     |                                  | Λ<br>ma/ka       |                         |                         |                          |                    | Λ<br>ma/ka         | Λ<br>ma/ka         |                            | U<br>ma/ka    | O<br>ma/ka      | O<br>ma/ka      |                 |                         | O<br>ma/ka        | U<br>ma/ka        | U<br>ma/ka        |                           | <u>ທີສ</u>                               | <u>n</u><br>ma/ka | <u>ح</u><br>ma/ka | ₹<br>ma/ka    | <br>ma/ka    | ma/ka            |
| EQL                 |                             |                               |            | 0.2           | 0.3         | 0.2                             | 3                       | 3              | 3                                | 3                | 3                       | 5                       | 3                        | 50                 | 100                | 100                | 50                         | 3             | 3               | 3               | 5               | 3                       | 50                | 100               | 100               | 50                        | 0.5                                      | 0.004             | 0.004             | 0.004         | 0.004        | 0.004            |
| NSW EPA (2014) Gen  | eral Solid Waste CT1 (No L  | _eaching)                     |            |               | 1,000       |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            | 650           |                 |                 |                 | 10,000                  |                   |                   |                   | 10,000                    |                                          |                   |                   |               |              |                  |
| NSW EPA (2014) Rest | tricted Solid Waste CT2 (No | o Leaching)                   |            |               | 4,000       |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            | 2,600         |                 |                 |                 | 40,000                  |                   |                   |                   | 40,000                    |                                          |                   |                   |               |              |                  |
|                     |                             |                               |            |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           |                                          |                   |                   |               |              |                  |
| Location Code       | Date                        | Field ID                      | Depth      | <0 F          |             |                                 |                         | <10            |                                  |                  |                         |                         |                          | <50                | 220                | <100               | 200                        | <10           |                 |                 |                 |                         | <50               | 220               | 140               | 260                       | 20.0                                     |                   | <0 F              | 0.5           | 0.6          |                  |
| BH05<br>BH06        | 7/11/2019                   | BH05_4.6-4.7<br>BH06_1.2-1.45 | 4.0 - 4.7  | <0.5          | +           | -                               |                         | <10            |                                  |                  |                         |                         |                          | <50                | 320                | 170                | 1020                       | <10           |                 |                 |                 |                         | <50               | 220               | 400               | 360                       | 30.9<br>9.1                              |                   | < 0.5             | 0.5<br><0.5   | 0.0<br><0.5  | 2.4              |
| BH07                | 7/11/2019                   | BH07 2.5-2.95                 | 2.5 - 2.95 | <0.5          | +           |                                 |                         | <10            |                                  |                  |                         |                         |                          | <50                | <100               | <100               | <50                        | <10           |                 |                 |                 |                         | <50               | <100              | <100              | <50                       | < 0.5                                    |                   | < 0.5             | < 0.5         | < 0.5        | <0.5             |
| VC01                | 30/10/2019                  | VC01_0.0-0.2                  | 0.0 - 0.2  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | 13                                       |                   | <0.5              | <0.5          | <0.5         | 1.2              |
| VC01                | 30/10/2019                  | VC01_0.4-0.6                  | 0.4 - 0.6  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC01                | 30/10/2019                  | VC01_0.5-1.0                  | 0.5 - 1.0  | < 0.2         | <0.5        | < 0.2                           | <3.0                    | <3             | <3                               | <3               | <3                      | <5                      | <3                       |                    |                    |                    |                            | <3            | <3              | <3              | <5              | <3                      |                   |                   |                   |                           |                                          | < 0.004           | < 0.004           | < 0.004       | < 0.004      | < 0.004          |
| VC01                | 30/10/2019                  | VC01_1.0-1.1                  | 1.0 - 1.1  | <0.2          | <0.5        | <0.2                            | <3.0                    | <3             | <3                               | <3               | <3                      | <5                      | <3                       |                    |                    |                    | <u> </u>                   | <3            | <3              | <3              | <5              | <3                      |                   |                   |                   |                           | 177                                      | <0.004            | <0.004            | < 0.004       | <0.004       | < 0.004          |
| VC02                | 31/10/2019                  | VC02_0.0-0.5                  | 0.0-0.5    | <0.2          | <0.5        | <0.2                            | <3.0                    | <3             | 4                                | 4                | 78                      | 28                      | 110                      |                    |                    |                    |                            | <3            | <3              | 48              | 46              | 94                      |                   |                   |                   |                           | 17.7                                     | 0.631             | 0.044             | 0.297         | 0.286        | 1.5              |
| VC02                | 31/10/2019                  | VC02 0.5-0.6                  | 0.5 - 0.6  |               | 10.0        | 10.2                            | 10.0                    |                |                                  |                  | 10                      | 20                      |                          |                    |                    |                    |                            | -~            |                 | 10              | 10              | 01                      |                   |                   |                   |                           | 1                                        | 0.001             | < 0.5             | < 0.5         | < 0.5        | 1.5              |
| VC02                | 30/10/2019                  | VC02_0.5-1.0                  | 0.5 - 1.0  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC02                | 30/10/2019                  | VC02_1.0-1.2                  | 1.0 - 1.2  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC02                | 30/10/2019                  | VC02_1.0-1.5                  | 1.0 - 1.5  |               | 10.5        | 10.0                            | 12.0                    | 2              | -12                              | 2                | 2                       |                         |                          |                    |                    |                    |                            | 2             |                 |                 |                 | -0                      |                   |                   |                   |                           | <0.5                                     | 10.004            | < 0.5             | < 0.5         | < 0.5        | < 0.5            |
|                     | 30/10/2019                  | VC02_1.5-1.6                  | 1.5 - 1.0  | <0.2          | <0.5        | <0.2                            | <3.0                    | <3             | <3                               | <3               | <3                      | <5                      | <3                       |                    |                    |                    | <u> </u>                   | <3            | <3              | <3              | <5              | <3                      |                   |                   |                   |                           | <0.5                                     | <0.004            | <0.004            | <0.004        | <0.004       | 0.005            |
| VC03                | 30/10/2019                  | VC03_0.0-0.5                  | 0.0-0.5    | <0.2          | <0.5        | <0.2                            | <3.0                    | <3             | <3                               | <3               | <3                      | <5                      | <3                       |                    |                    |                    |                            | <3            | <3              | <3              | <5              | <3                      |                   |                   |                   |                           | <b>NU.3</b>                              | <0.004            | <0.04             | <0.04         | <0.04        | <0.04            |
| VC03                | 30/10/2019                  | VC03 0.3-0.4                  | 0.3 - 0.4  | <0.2          | <0.5        | <0.2                            | <3.0                    | <3             | <3                               | <3               | <3                      | <5                      | <3                       |                    |                    |                    |                            | <3            | <3              | <3              | <5              | <3                      |                   |                   |                   |                           |                                          | < 0.004           | < 0.004           | < 0.004       | < 0.004      | < 0.004          |
| VC03                | 30/10/2019                  | VC03_0.4-0.6                  | 0.4 - 0.6  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC03                | 30/10/2019                  | VC03_0.5-1.0                  | 0.4 - 1.0  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC03                | 30/10/2019                  | VC03_0.6-0.7                  | 0.6 - 0.7  | _             | <u> </u>    |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | < 0.5                                    |                   | < 0.5             | < 0.5         | < 0.5        | < 0.5            |
|                     | 30/10/2019                  | VC04_0.0-0.1                  | 1.0 - 1.2  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC04                | 30/10/2019                  | VC04_0.0-0.1                  | 0.0-0.1    | <0.2          | <0.5        | <0.2                            | <3.0                    | <3             | <3                               | <3               | <3                      | <5                      | <3                       |                    |                    |                    |                            | <3            | <3              | <3              | <5              | <3                      |                   |                   |                   |                           | <b>NU.3</b>                              | <0.004            | <0.04             | <0.04         | <0.04        | <0.04            |
| VC04                | 31/10/2019                  | VC04 0.5-0.6                  | 0.5 - 0.6  |               |             | 0.2                             | 0.0                     | Ŭ              | Ŭ                                | - Ŭ              | <u> </u>                | Ť                       | Ť                        |                    |                    |                    |                            | Ť             |                 | Ŭ               | Ŭ               |                         |                   |                   |                   |                           | <0.5                                     | 0.001             | < 0.5             | < 0.5         | < 0.5        | <0.5             |
| VC04                | 30/10/2019                  | VC04_0.5-1.0                  | 0.5 - 1.0  | <0.2          | <0.5        | <0.2                            | <3.0                    | <3             | <3                               | <3               | 4                       | <5                      | 4                        |                    |                    |                    |                            | <3            | <3              | 5               | <5              | 5                       |                   |                   |                   |                           |                                          | <0.005            | < 0.005           | <0.005        | <0.005       | <0.005           |
| VC04                | 31/10/2019                  | VC04_0.7-0.8                  | 0.7 - 0.8  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC04                | 31/10/2019                  | VC04_0.9-1.0                  | 0.9 - 1.0  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | < 0.5                                    |                   | < 0.5             | < 0.5         | < 0.5        | <0.5             |
| VC05                | 30/10/2019                  | VC05_0.0-0.1                  | 0.0 - 0.1  |               | +           |                                 |                         |                |                                  |                  | <u> </u>                |                         |                          |                    |                    |                    | <u> </u>                   |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | < 0.5             | < 0.5         | < 0.5        | < 0.5            |
| VC05                | 30/10/2019                  | VC05_0.5-0.9                  | 0.5 - 0.9  |               | +           |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | < 0.5                                    |                   | < 0.5             | < 0.5         | < 0.5        | <0.5             |
| VC05                | 30/10/2019                  | VC05_0.8-0.9                  | 0.8 - 0.9  | <0.2          | < 0.5       | <0.2                            | <3.0                    | <3             | <3                               | <3               | <3                      | <5                      | <3                       |                    |                    |                    |                            | <3            | <3              | <3              | <5              | <3                      |                   |                   |                   |                           |                                          | < 0.004           | < 0.004           | < 0.004       | < 0.004      | < 0.004          |
| VC06                | 31/10/2019                  | VC06_0.0-0.1                  | 0.0 - 0.1  | <0.5          |             |                                 |                         | <10            |                                  |                  |                         |                         |                          | <50                | 610                | 190                | 800                        | <10           |                 |                 |                 |                         | <50               | 350               | 370               | 720                       | 14                                       |                   | <0.5              | <0.5          | <0.5         | 1                |
| VC06                | 31/10/2019                  | VC06_0.0-0.5                  | 0.0 - 0.5  |               | <u> </u>    |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | < 0.5                                    |                   | < 0.5             | < 0.5         | < 0.5        | < 0.5            |
|                     | 31/10/2019                  | VC06_0.3-0.4                  | 0.3 - 0.4  | _             |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    | <u> </u>                   |               |                 |                 |                 |                         |                   |                   |                   |                           | < 0.5                                    |                   | < 0.5             | < 0.5         | <0.5         | <0.5             |
| VC00                | 31/10/2019                  | VC06_0.5-1.0                  | 0.5 - 1.0  | _             | +           |                                 |                         |                |                                  |                  |                         |                         | <u> </u>                 |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | < 0.5                                    |                   | < 0.5             | < 0.5         | < 0.5        | <0.5             |
| VC06                | 31/10/2019                  | VC06 0.7-0.8                  | 0.7 - 0.8  |               | +           |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | < 0.5                                    |                   | < 0.5             | < 0.5         | < 0.5        | < 0.5            |
| VC06                | 31/10/2019                  | VC06_0.8-0.9                  | 0.8 - 0.9  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC07                | 30/10/2019                  | VC07_0.0-0.2                  | 0.0 - 0.2  | <0.2          | < 0.5       | <0.2                            | <3.0                    | <3             | 4                                | 4                | 122                     | 49                      | 175                      |                    |                    |                    |                            | <3            | <3              | 68              | 79              | 147                     | ]                 |                   |                   | ]                         |                                          | 0.307             | < 0.025           | 0.132         | 0.103        | 0.417            |
| VC07                | 30/10/2019                  | VC07_0.0-0.5                  | 0.0 - 0.5  | <0.2          | <0.5        | <0.2                            | <3.0                    | <3             | 1                                | 7                | 176                     | 69                      | 252                      |                    |                    |                    | <u> </u>                   | <3            | <3              | 101             | 111             | 212                     |                   |                   |                   |                           | 3.6                                      | 0.373             | < 0.025           | 0.202         | 0.116        | 0.542            |
| VC07                | 30/10/2019                  | VC07_0.2-0.4                  | 0.2 - 0.4  |               | +           |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5<br><0.5 | <0.5             |
| VC07                | 30/10/2019                  | VC07_0.5-1.0                  | 0.5 - 1.0  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | < 0.5                                    |                   | < 0.5             | < 0.5         | < 0.5        | <0.5             |
| VC07                | 30/10/2019                  | VC07_0.7-0.8                  | 0.7 - 0.8  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC07                | 30/10/2019                  | VC07_1.0-1.2                  | 1.0 - 1.2  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC08                | 31/10/2019                  | VC08_0.0-0.1                  | 0.0 - 0.1  | < 0.5         |             |                                 |                         | <10            |                                  |                  |                         |                         |                          | <50                | 190                | <100               | 190                        | <10           |                 |                 |                 |                         | <50               | 110               | 110               | 220                       | 5.9                                      |                   | < 0.5             | < 0.5         | < 0.5        | 0.6              |
|                     | 31/10/2019                  | VC08_0.0-0.5                  | 0.0 - 0.5  |               |             |                                 |                         |                |                                  |                  | <u> </u>                |                         | <u> </u>                 |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | 2.8                                      |                   | < 0.5             | < 0.5         | <0.5         | <0.5             |
| VC08                | 31/10/2019                  | VC08_0.5-0.6                  | 0.5 - 0.6  |               | -           |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC08                | 31/10/2019                  | VC08_0.5-1.0                  | 0.5 - 1.0  |               | 1           | 1                               |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | < 0.5             | < 0.5         | < 0.5        | <0.5             |
| VC08                | 31/10/2019                  | VC08_0.7-0.8                  | 0.7 - 0.8  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
| VC08                | 31/10/2019                  | VC08_1.0-1.1                  | 1.0 - 1.1  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
|                     | 31/10/2019                  | VC08_1.0-1.5                  | 1.0 - 1.5  | <0.2          | <0.5        | <0.2                            | <3.0                    | <3             | <3                               | <3               | 66                      | 48                      | 114                      |                    |                    |                    |                            | <3            | <3              | 18              | 70              | 88                      |                   |                   |                   |                           | <0 F                                     | <0.004            | < 0.004           | < 0.004       | < 0.004      | 0.006            |
| VC08                | 31/10/2019                  | VC00_1.3-1.4                  | 1.5 - 1.4  |               | +           |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    | <u> </u>                   | +             |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5<br><0.5      | <0.5          | <0.5<br><0.5 | >0.0<br><0.5     |
| VC09                | 30/10/2019                  | VC09 0.0-0.2                  | 0.0 - 0.2  | < 0.2         | <0.5        | <0.2                            | <3.0                    | <3             | <3                               | <3               | <3                      | <5                      | <3                       |                    |                    |                    |                            | <3            | <3              | <3              | <5              | <3                      |                   |                   |                   |                           | -0.0                                     | <0.004            | < 0.004           | < 0.004       | < 0.004      | <0.004           |
| VC09                | 30/10/2019                  | VC09_0.0-0.5                  | 0.0 - 0.5  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | < 0.5             | < 0.5         | < 0.5        | < 0.5            |
| VC09                | 30/10/2019                  | VC09_0.4-0.6                  | 0.4 - 0.6  |               |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |
|                     | 30/10/2019                  | VC09_0.5-1.0                  | 0.5 - 1.0  | _             |             |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | < 0.5                                    |                   | < 0.5             | < 0.5         | < 0.5        | < 0.5            |
| VC09                | 30/10/2019                  | 10009_0.7-0.8                 | JU.7 - U.8 |               | 1           |                                 |                         |                |                                  |                  |                         |                         |                          |                    |                    |                    |                            |               |                 |                 |                 |                         |                   |                   |                   |                           | <0.5                                     |                   | <0.5              | <0.5          | <0.5         | <0.5             |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx

# Circular Quay Investigation

Port Authority of NSW

Appendix C Table C3

Wastle Classification - solid waste guidelines analytical results

|                       |            |              |           |                |              |                               |                           |                 |                                   |                   |                           |                           |                            | TR               | RH - NEF         | PM 2013          | 3 - SG                       |                |                  |                  |                  |                           | TR               | H - NEP          | M 1999           | - SG                        |                                         |                |              |                |            |                   |
|-----------------------|------------|--------------|-----------|----------------|--------------|-------------------------------|---------------------------|-----------------|-----------------------------------|-------------------|---------------------------|---------------------------|----------------------------|------------------|------------------|------------------|------------------------------|----------------|------------------|------------------|------------------|---------------------------|------------------|------------------|------------------|-----------------------------|-----------------------------------------|----------------|--------------|----------------|------------|-------------------|
|                       |            |              |           |                |              |                               |                           |                 | TRH                               | - NEPM            | M 2013                    |                           |                            |                  | Cle              | eanup            |                              |                | TR               | H - NEPN         | / 1999           |                           |                  | Cle              | anup             |                             |                                         |                |              |                |            |                   |
|                       |            |              |           |                |              | - (1                          |                           |                 | s                                 |                   |                           |                           |                            | dnu              | dnu              | dnu              | 0                            |                |                  |                  |                  |                           | dn               | dn               | dn               |                             | suo                                     |                |              |                |            |                   |
|                       |            |              |           | Xylene (m & p) | Xylene Total | BTEX (Sum of Tota<br>Lab Calc | F1 (C6-C10 minus<br>BTEX) | C6-C10 Fraction | F2 (>C10-C16 minu<br>Naphthalene) | >C10-C16 Fraction | F3 (>C16-C34<br>Fraction) | F4 (>C34-C40<br>Fraction) | >C10-C40 (Sum of<br>Total) | >C10-C16 SG Clea | >C16-C34 SG Clea | >C34-C40 SG Clea | >C10-C40 (sum) S0<br>Cleanup | C6-C9 Fraction | C10-C14 Fraction | C15-C28 Fraction | C29-C36 Fraction | C10-C36 (Sum of<br>Total) | C10-C14 SG Clean | C15-C28 SG Clean | C29-C36 SG Clean | C10-C36 (sum) SG<br>Cleanup | Sum of polycyclic<br>aromatic hydrocarb | Benzo(e)pyrene | Acenaphthene | Acenaphthylene | Anthracene | Benz(a)anthracene |
|                       |            |              |           | mg/kę          | g mg/kg      | g mg/kg                       | mg/kg                     | mg/kg           | g mg/kg                           | mg/kg             | g mg/kg                   | mg/kg                     | g mg/kg                    | mg/kg            | g mg/k           | g mg/k           | g mg/k                       | g mg/kg        | g mg/k           | g mg/kg          | mg/kg            | mg/kg                     | mg/kg            | mg/kg            | mg/kg            | mg/kg                       | mg/kg                                   | mg/kg          | mg/kg        | mg/kg          | mg/kg      | mg/kg             |
| VC09                  | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | <0.5           | < 0.5      | < 0.5             |
| VC10                  | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | < 0.5          | < 0.5      | < 0.5             |
| VC10                  | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | < 0.2          | < 0.5        | <0.2                          | <3.0                      | <3              | <3                                | <3                | <3                        | <5                        | <3                         |                  |                  |                  |                              | <3             | <3               | <3               | <5               | <3                        |                  |                  |                  |                             |                                         | <0.004         | < 0.004      | <0.004         | < 0.004    | < 0.004           |
| VC10                  | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | <0.5           | < 0.5      | <0.5              |
| VC10                  | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 | < 0.2          | < 0.5        | <0.2                          | <3.0                      | <3              | <3                                | <3                | <3                        | <5                        | <3                         |                  |                  |                  |                              | <3             | <3               | <3               | <5               | <3                        |                  |                  |                  |                             |                                         | 0.006          | < 0.004      | <0.004         | < 0.004    | 0.012             |
| VC11                  | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | < 0.5                                   |                | <0.5         | <0.5           | < 0.5      | < 0.5             |
| VC11                  | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | <0.5           | < 0.5      | < 0.5             |
| VC11                  | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 | < 0.2          | < 0.5        | <0.2                          | <3.0                      | <3              | <3                                | <3                | 6                         | <5                        | 6                          |                  |                  |                  |                              | <3             | <3               | 4                | <5               | 4                         |                  |                  |                  |                             |                                         | <0.004         | < 0.004      | <0.004         | < 0.004    | < 0.004           |
| VC11                  | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | < 0.5                                   |                | <0.5         | < 0.5          | < 0.5      | < 0.5             |
| VC11                  | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | <0.5           | < 0.5      | < 0.5             |
| VC12                  | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | < 0.2          | < 0.5        | <0.2                          | <3.0                      | <3              | <12                               | <12               | 185                       | 72                        | 257                        |                  |                  |                  |                              | <3             | <6               | 109              | 112              | 221                       |                  |                  |                  |                             |                                         | 0.117          | <0.004       | 0.06           | 0.037      | 0.147             |
| VC12                  | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | < 0.5                                   |                | <0.5         | <0.5           | < 0.5      | < 0.5             |
| VC12                  | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | <0.5           | <0.5       | <0.5              |
| VC12                  | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | <0.5           | < 0.5      | <0.5              |
| VC12                  | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 | < 0.5          |              |                               |                           | <10             |                                   |                   |                           |                           |                            | <50              | <100             | ) <100           | ) <50                        | <10            |                  |                  |                  |                           | <50              | <100             | <100             | <50                         | <0.5                                    |                | <0.5         | <0.5           | <0.5       | <0.5              |
| VC13                  | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 | < 0.5          |              |                               |                           | <10             |                                   |                   |                           |                           |                            | <50              | 160              | <100             | 160                          | <10            |                  |                  |                  |                           | <50              | <100             | 100              | 100                         | 6.9                                     |                | <0.5         | <0.5           | <0.5       | 0.7               |
| VC13                  | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | 10.2                                    |                | <0.5         | <0.5           | <0.5       | 1                 |
| VC13                  | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | 4.4                                     |                | <0.5         | <0.5           | <0.5       | 0.5               |
| VC13                  | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | <0.5           | <0.5       | <0.5              |
| VC13                  | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | <0.5           | <0.5       | <0.5              |
| VC13                  | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | < 0.5                                   |                | <0.5         | <0.5           | <0.5       | <0.5              |
| VC13                  | 31/10/2019 | VC13 1.0-1.1 | 1.0 - 1.1 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | < 0.5                                   |                | <0.5         | < 0.5          | < 0.5      | < 0.5             |
| VC14                  | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | < 0.5                                   |                | <0.5         | < 0.5          | < 0.5      | < 0.5             |
| VC14                  | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |                |              |                               |                           |                 |                                   | 1                 | 1                         |                           |                            | 1                |                  |                  |                              |                | 1                |                  | 1                |                           |                  | 1                |                  | 1                           | < 0.5                                   |                | <0.5         | <0.5           | <0.5       | < 0.5             |
| VC14                  | 31/10/2019 | VC14 0.3-0.4 | 0.3 - 0.4 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | < 0.5                                   |                | <0.5         | < 0.5          | < 0.5      | < 0.5             |
| VC14                  | 31/10/2019 | VC14 0.5-1.0 | 0.5 - 1.0 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | < 0.5                                   |                | <0.5         | < 0.5          | < 0.5      | < 0.5             |
| VC14                  | 31/10/2019 | VC14 0.7-0.8 | 0.7 - 0.8 |                |              |                               |                           |                 |                                   | 1                 | 1                         |                           |                            | 1                |                  |                  |                              |                | 1                |                  |                  |                           |                  | 1                |                  | 1                           | < 0.5                                   |                | <0.5         | < 0.5          | < 0.5      | < 0.5             |
| VC14                  | 31/10/2019 | VC14 1.0-1.1 | 1.0 - 1.1 | < 0.5          |              |                               |                           | <10             |                                   |                   |                           |                           |                            | <50              | <100             | ) <100           | ) <50                        | <10            |                  |                  |                  |                           | <50              | <100             | <100             | <50                         | < 0.5                                   |                | <0.5         | < 0.5          | < 0.5      | < 0.5             |
| VC14                  | 31/10/2019 | VC14 1.3-1.4 | 1.3 - 1.4 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | < 0.5                                   |                | <0.5         | < 0.5          | < 0.5      | < 0.5             |
| VC14                  | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             | <0.5                                    |                | <0.5         | <0.5           | <0.5       | <0.5              |
| Statistics            |            |              |           |                |              |                               |                           |                 |                                   |                   |                           |                           |                            |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             |                                         |                |              |                |            |                   |
| Number of Results     |            |              |           | 2              | 5 17         | 7 17                          | 17                        | 25              | 5 17                              | / 17              | 7 17                      | / 17                      | 7 17                       | 7 8              | 8                | 8                | 8                            | 8 25           | 5 1              | 17 17            | 17               | 17                        | 8                | 8                | 8                | 8                           | 73                                      | 17             | 90           | 90             | 90         | 90                |
| Number of Detects     |            |              |           |                |              | 0 0                           | Ó                         |                 | 0 3                               | 3                 | 3 7                       | 7 5                       | 5 7                        | / (              | 0                | 5                | 2                            | 5 0            |                  | 0 7              | 5                | 7                         | 0                | 4                | 5                | 5                           | 14                                      | 5              | 1            | 5              | F          | 18                |
| Minimum Concentration |            |              |           | <0.            | 2 <0.5       | 5 < 0.2                       | <3.0                      | <               | 3 <3                              | 3 <               | 3 <3                      | 3 <                       | 5 <3                       | 3 <50            | 0 <10            | 0 <10            | 0 <5                         | 0 <3           | 3 <              | <3 <3            | <                | <3                        | <50              | <100             | <100             | <50                         | < 0.5                                   | < 0.004        | < 0.004      | < 0.004        | < 0.004    | < 0.004           |
| Maximum Concentration | ı          |              |           | <0.            | 5 < 0.5      | 5 < 0.2                       | <3.0                      | <10             | 0 <12                             | 2 <12             | 2 185                     | 5 72                      | 2 257                      | / <50            | 0 85             | 0 19             | 0 102                        | 0 <10          | > <              | 6 109            | 112              | 221                       | <50              | 560              | 400              | 960                         | 30.9                                    | 0.631          | 0.044        | 0.5            | 3.0        | 2.4               |
| L                     |            |              |           |                |              |                               |                           |                 |                                   |                   |                           |                           | -                          |                  |                  |                  |                              |                |                  |                  |                  |                           |                  |                  |                  |                             |                                         | • • •          |              |                |            | <u> </u>          |

# **Circular Quay Investigation**

Port Authority of NSW

Appendix C

Table C3

Wastle Classification - solid waste guidelines analytical results

|                      |                            |                               |            |                    |                |                     |                   |                   | PAH            | s                 |                |                |                |                     |                |                |                            |                                       |                                       |                                       |                           |                   |                   |                |                |                |              | Phenols          | 3            |              |
|----------------------|----------------------------|-------------------------------|------------|--------------------|----------------|---------------------|-------------------|-------------------|----------------|-------------------|----------------|----------------|----------------|---------------------|----------------|----------------|----------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------|-------------------|-------------------|----------------|----------------|----------------|--------------|------------------|--------------|--------------|
|                      |                            |                               |            | zo(b+j+k)fluoranth | zo(a) pyrene   | zo[b+j]fluoranthene | zo(k)fluoranthene | zo(g,h,i)perylene | sene           | nz(a,h)anthracene | ranthene       | nthalene       | rene           | no(1,2,3-<br>yrrene | anthrene       | це             | s (Sum of total) -<br>calc | I 8 PAHs (as BaP<br>)(zero LOR) - Lab | I 8 PAHs (as BaP<br>)(half LOR) - Lab | I 8 PAHs (as BaP<br>)(full LOR) - Lab | Methylphenol (m,p-<br>ol) | b-trichlorophenol | 3-trichlorophenol | dichlorophenol | dimethylphenol | dichlorophenol | lorophenol   | sthylnaphthalene | sthylphenol  | rophenol     |
|                      |                            |                               |            | Benz               | Benz           | Benz                | Benz              | Benz              | Chry           | Dibe              | Fluo           | Napl           | Fluo           | lnde<br>c,d)p       | Pher           | Pyre           | PAH<br>Lab                 | Tota<br>TEQ<br>Calc                   | Tota<br>TEQ<br>Calc                   | Tota<br>TEQ<br>Calc                   | 3,4-h<br>cres             | 2,4,5             | 2,4,6             | 2,4-0          | 2,4-0          | 2,6-0          | 2-ch         | 2-me             | 2-me         | 2-nit        |
| EQL                  |                            |                               |            | mg/kg              | mg/kg<br>0.004 | mg/kg<br>0.004      | mg/kg<br>0.004    | mg/kg<br>0.004    | mg/kg<br>0.004 | mg/kg<br>0.004    | mg/kg<br>0.004 | mg/kg<br>0.005 | mg/kg<br>0.004 | mg/kg<br>0.004      | mg/kg<br>0.004 | mg/kg<br>0.004 | mg/kg<br>0.004             | mg/kg<br>0.5                          | mg/kg<br>0.5                          | mg/kg<br>0.5                          | mg/kg<br>0.4              | mg/kg<br>0.5      | mg/kg<br>0.5      | mg/kg<br>0.5   | mg/kg<br>0.5   | mg/kg<br>0.5   | mg/kg<br>0.5 | mg/kg<br>0.005   | mg/kg<br>0.2 | mg/kg<br>0.5 |
| NSW EPA (2014) Gene  | eral Solid Waste CT1 (No I | Leaching)                     |            |                    | 0.8            |                     |                   |                   |                |                   |                |                |                |                     |                |                | 200                        |                                       |                                       |                                       |                           | 8,000             | 40                |                |                |                |              |                  | 4,000        |              |
| 113W EFA (2014) Nest | licted Solid Waste CT2 (N  | io Leaching)                  |            |                    | 5.2            |                     |                   |                   |                |                   |                |                |                |                     |                |                | 000                        |                                       |                                       |                                       |                           | 32,000            | 100               |                |                |                |              |                  | 10,000       |              |
| Location Code        | Date                       | Field ID                      | Depth      |                    | 1              | 12                  | 17                | 1.0               | 22             | <0.5              | 10             | <0.5           | <0.5           | 15                  | 11             | 57             | 1                          | 5                                     | 53                                    | 55                                    | <u>_1</u>                 | <0.5              | <0.5              |                |                |                |              |                  | <0.5         |              |
| BH06                 | 7/11/2019                  | BH05_4.0-4.7<br>BH06_1.2-1.45 | 1.2 - 1.45 |                    | 1.1            | 4.2                 | 0.7               | 0.8               | 0.7            | <0.5              | 1.4            | <0.5           | < 0.5          | 0.6                 | <0.5           | 1.6            |                            | 1.5                                   | 1.7                                   | 2                                     | <1                        | <0.5              | < 0.5             |                |                |                |              |                  | <0.5         |              |
| BH07                 | 7/11/2019                  | BH07_2.5-2.95                 | 2.5 - 2.95 |                    | < 0.5          | <0.5                | < 0.5             | <0.5              | <0.5           | < 0.5             | <0.5           | < 0.5          | < 0.5          | < 0.5               | <0.5           | <0.5           |                            | <0.5                                  | 0.6                                   | 1.2                                   | <1                        | <0.5              | <0.5              |                |                |                |              |                  | <0.5         |              |
| VC01                 | 30/10/2019                 | VC01_0.4-0.6                  | 0.4 - 0.6  |                    | < 0.5          | <0.5                | < 0.5             | <0.5              | <0.5           | <0.5              | < 0.5          | <0.5           | < 0.5          | < 0.5               | <0.7           | <0.5           |                            | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  |              | +            |
| VC01                 | 30/10/2019                 | VC01_0.5-1.0                  | 0.5 - 1.0  | <1                 | < 0.004        | < 0.004             | < 0.004           | < 0.004           | < 0.004        | < 0.004           | < 0.004        | < 0.005        | < 0.004        | < 0.004             | < 0.004        | < 0.004        | < 0.004                    | < 0.5                                 | 0.6                                   | 1.2                                   | < 0.5                     | < 0.5             | < 0.5             | < 0.5          | < 0.5          | < 0.5          | < 0.5        | < 0.005          | < 0.5        | < 0.5        |
| VC01<br>VC02         | 30/10/2019                 | VC01_1.0-1.1                  | 0.0 - 0.2  |                    | 1.9            | 2.7                 | 0.9               | 1.6               | 1.5            | < 0.004           | 2.6            | <0.005         | < 0.004        | 1.2                 | 0.9            | 2.9            | <0.004                     | 2.6                                   | 2.8                                   | 3.1                                   | ~1                        | <0.5              | <0.5              | <0.5           | <0.5           | <0.5           | <0.5         | <0.005           | <0.5         | <0.5         |
| VC02                 | 31/10/2019                 | VC02_0.0-0.5                  | 0.0 - 0.5  |                    | 1.57           | 1.49                | 0.661             | 1                 | 0.997          | 0.219             | 1.89           | < 0.2          | 0.095          | 0.963               | 0.885          | 1.78           | 14.8                       | -0.5                                  |                                       | 4.0                                   | <1                        | <0.5              | <0.5              | <0.5           | <0.5           | <0.5           | <0.5         | 0.044            | <0.5         | <0.5         |
| VC02<br>VC02         | 31/10/2019                 | VC02_0.5-0.6                  | 0.5 - 0.6  |                    | 1.9            | 0.8<br><0.5         | 1.1               | 1.1               | <05            | 1.9               | <0.5           | <0.5           | <0.5<br><0.5   | < 0.5               | <0.5           | <0.5           |                            | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  | '            |              |
| VC02                 | 30/10/2019                 | VC02_1.0-1.2                  | 1.0 - 1.2  |                    | <0.5           | <0.5                | <0.5              | <0.5              | <0.5           | <0.5              | <0.5           | < 0.5          | <0.5           | <0.5                | <0.5           | < 0.5          |                            | < 0.5                                 | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  |              |              |
| VC02                 | 30/10/2019                 | VC02_1.0-1.5                  | 1.0 - 1.5  | _                  | <0.5           | <0.5                | <0.5              | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | <0.5           | <0.5                | <0.5           | <0.5           | 0.039                      | < 0.5                                 | 0.6                                   | 1.2                                   | <1                        | <0.5              | <0.5              | <0.5           | <0.5           | <0.5           | <0.5         | <0.005           | <0.5         | <0.5         |
| VC03                 | 30/10/2019                 | VC03_0.0-0.2                  | 0.0 - 0.2  |                    | < 0.5          | <0.5                | < 0.5             | <0.5              | <0.5           | <0.5              | < 0.5          | < 0.5          | < 0.5          | <0.5                | <0.5           | <0.5           | 0.000                      | <0.5                                  | 0.6                                   | 1.2                                   |                           | -0.0              | -0.0              | -0.0           | -0.0           | -0.0           | -0.0         | -0.000           | -0.0         |              |
| VC03                 | 30/10/2019                 | VC03_0.0-0.5                  | 0.0 - 0.5  |                    | < 0.004        | <0.004              | < 0.004           | <0.004            | < 0.004        | < 0.004           | < 0.004        | < 0.005        | < 0.004        | < 0.004             | < 0.004        | < 0.004        | < 0.004                    |                                       |                                       |                                       | <1                        | < 0.5             | < 0.5             | < 0.5          | < 0.5          | < 0.5          | < 0.5        | < 0.005          | < 0.5        | < 0.5        |
| VC03                 | 30/10/2019                 | VC03_0.4-0.6                  | 0.3 - 0.4  |                    | < 0.004        | <0.004              | < 0.004           | <0.004            | <0.004         | <0.004            | < 0.004        | <0.005         | < 0.004        | < 0.004             | <0.004         | < 0.004        | ~0.004                     | <0.5                                  | 0.6                                   | 1.2                                   |                           | <0.5              | <0.5              | <0.5           | <0.5           | <0.5           | <0.5         | <0.005           | <0.5         | <0.5         |
| VC03                 | 30/10/2019                 | VC03_0.5-1.0                  | 0.4 - 1.0  |                    | < 0.5          | < 0.5               | < 0.5             | < 0.5             | < 0.5          | < 0.5             | < 0.5          | < 0.5          | < 0.5          | < 0.5               | < 0.5          | < 0.5          |                            | < 0.5                                 | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  |              |              |
| VC03                 | 30/10/2019                 | VC03_0.6-0.7                  | 0.6 - 0.7  | _                  | <0.5           | <0.5                | <0.5              | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | <0.5           | < 0.5               | <0.5           | <0.5           |                            | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  | '            |              |
| VC04                 | 30/10/2019                 | VC04_0.0-0.1                  | 0.0 - 0.1  |                    | < 0.5          | < 0.5               | < 0.5             | < 0.5             | <0.5           | < 0.5             | < 0.5          | < 0.5          | < 0.5          | <0.5                | < 0.5          | < 0.5          |                            | < 0.5                                 | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  |              |              |
| VC04                 | 30/10/2019                 | VC04_0.3-0.4                  | 0.3 - 0.4  |                    | < 0.004        | < 0.004             | < 0.004           | < 0.004           | < 0.004        | < 0.004           | < 0.004        | < 0.005        | < 0.004        | < 0.004             | < 0.004        | < 0.004        | < 0.004                    | -0.5                                  |                                       | 10                                    | <1                        | <0.5              | <0.5              | <0.5           | <0.5           | <0.5           | <0.5         | <0.005           | < 0.5        | <0.5         |
| VC04<br>VC04         | 31/10/2019                 | VC04_0.5-0.6                  | 0.5 - 0.6  | <1                 | <0.5           | <0.5                | <0.005            | <0.005            | <0.5           | <0.005            | <0.005         | <0.005         | <0.5           | <0.005              | <0.5           | <0.5           | < 0.005                    | <0.5                                  | 0.6                                   | 1.2                                   | <0.6                      | <0.6              | <0.6              | <0.6           | <0.6           | <0.6           | <0.6         | < 0.005          | <0.6         | <0.6         |
| VC04                 | 31/10/2019                 | VC04_0.7-0.8                  | 0.7 - 0.8  |                    | < 0.5          | < 0.5               | < 0.5             | <0.5              | <0.5           | < 0.5             | < 0.5          | < 0.5          | <0.5           | < 0.5               | <0.5           | < 0.5          |                            | < 0.5                                 | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  |              |              |
| VC04                 | 31/10/2019                 | VC04_0.9-1.0                  | 0.9 - 1.0  | _                  | < 0.5          | <0.5                | < 0.5             | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | < 0.5          | < 0.5               | <0.5           | <0.5           |                            | < 0.5                                 | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  | <b></b> '    |              |
| VC05                 | 30/10/2019                 | VC05_0.5-0.7                  | 0.5 - 0.7  |                    | <0.5           | <0.5                | < 0.5             | <0.5              | <0.5           | <0.5              | <0.7           | <0.5           | <0.5           | < 0.5               | <0.5           | <0.5           |                            | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  | '            |              |
| VC05                 | 30/10/2019                 | VC05_0.5-0.9                  | 0.5 - 0.9  |                    | < 0.5          | < 0.5               | < 0.5             | < 0.5             | < 0.5          | < 0.5             | < 0.5          | < 0.5          | < 0.5          | < 0.5               | < 0.5          | < 0.5          |                            | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   |                | <u> </u>       |                |              |                  |              |              |
| VC05<br>VC06         | 30/10/2019                 | VC05_0.8-0.9                  | 0.8 - 0.9  |                    | <0.004         | <0.004              | <0.004            | <0.004            | <0.004         | <0.004            | 2.3            | <0.005         | <0.004         | <0.004              | <0.004         | 2 6            | <0.004                     | 23                                    | 2.5                                   | 28                                    | <1<br><1                  | <0.5              | < 0.5             | <0.5           | <0.5           | <0.5           | <0.5         | <0.005           | <0.5         | <0.5         |
| VC06                 | 31/10/2019                 | VC06_0.0-0.5                  | 0.0 - 0.5  |                    | < 0.5          | <0.5                | < 0.5             | <0.5              | <0.5           | < 0.5             | < 0.5          | < 0.5          | < 0.5          | < 0.5               | <0.5           | < 0.5          |                            | < 0.5                                 | 0.6                                   | 1.2                                   |                           | 0.0               | 0.0               |                |                |                |              |                  | 0.0          |              |
| VC06                 | 31/10/2019                 | VC06_0.3-0.4                  | 0.3 - 0.4  |                    | < 0.5          | < 0.5               | < 0.5             | < 0.5             | < 0.5          | < 0.5             | < 0.5          | < 0.5          | < 0.5          | < 0.5               | <0.5           | < 0.5          | <u> </u>                   | < 0.5                                 | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  | '            |              |
| VC06                 | 31/10/2019                 | VC06_0.5-1.0                  | 0.5 - 1.0  |                    | <0.5           | <0.5                | < 0.5             | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | <0.5           | < 0.5               | <0.5           | <0.5           | <u> </u>                   | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  | ·'           |              |
| VC06                 | 31/10/2019                 | VC06_0.7-0.8                  | 0.7 - 0.8  |                    | < 0.5          | < 0.5               | < 0.5             | < 0.5             | < 0.5          | < 0.5             | < 0.5          | < 0.5          | <0.5           | <0.5                | <0.5           | < 0.5          |                            | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  |              |              |
| VC06                 | 31/10/2019                 | VC06_0.8-0.9                  | 0.8 - 0.9  | _                  | <0.5           | <0.5                | <0.5              | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | <0.5           | <0.5                | <0.5           | <0.5           | 5.72                       | < 0.5                                 | 0.6                                   | 1.2                                   | <1                        | <0.5              | <0.5              | <0.5           | <0.5           | <0.5           | <0.5         | <0.025           | <0.5         | <0.5         |
| VC07                 | 30/10/2019                 | VC07_0.0-0.5                  | 0.0 - 0.5  | 1                  | 0.872          | 0.799               | 0.375             | 0.663             | 0.7            | 0.127             | 1.5            | 0.06           | 0.041          | 0.517               | 0.7            | 1.5            | 7.5                        | 1                                     | 1.3                                   | 1.5                                   | <0.5                      | <0.5              | < 0.5             | < 0.5          | < 0.5          | < 0.5          | < 0.5        | <0.025           | < 0.5        | < 0.5        |
| VC07                 | 30/10/2019                 | VC07_0.2-0.4                  | 0.2 - 0.4  |                    | 0.7            | 0.7                 | < 0.5             | < 0.5             | < 0.5          | < 0.5             | 1              | < 0.5          | < 0.5          | < 0.5               | <0.5           | 1.2            | <u> </u>                   | 0.8                                   | 1.1                                   | 1.4                                   |                           |                   |                   |                |                |                |              |                  | '            |              |
| VC07<br>VC07         | 30/10/2019                 | VC07_0.5-0.6                  | 0.5 - 0.6  | _                  | < 0.5          | <0.5                | < 0.5             | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | < 0.5          | < 0.5               | <0.5           | <0.5           | <u> </u>                   | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  | ·'           |              |
| VC07                 | 30/10/2019                 | VC07_0.7-0.8                  | 0.7 - 0.8  |                    | < 0.5          | < 0.5               | <0.5              | <0.5              | < 0.5          | < 0.5             | < 0.5          | < 0.5          | <0.5           | <0.5                | <0.5           | <0.5           |                            | < 0.5                                 | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  |              |              |
| VC07                 | 30/10/2019                 | VC07_1.0-1.2                  | 1.0 - 1.2  | _                  | < 0.5          | <0.5                | < 0.5             | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | < 0.5          | < 0.5               | <0.5           | <0.5           |                            | <0.5                                  | 0.6                                   | 1.2                                   | <1                        | <0.5              | <0.5              |                |                |                |              |                  | <0.5         |              |
| VC08                 | 31/10/2019                 | VC08_0.0-0.5                  | 0.0 - 0.5  |                    | 0.6            | 0.7                 | < 0.5             | <0.5              | <0.5           | <0.5              | 0.7            | <0.5           | <0.5           | <0.5                | <0.5           | 0.8            |                            | 0.7                                   | 1.4                                   | 1.3                                   |                           | ×0.0              | -0.0              |                |                |                |              |                  | -0.0         |              |
| VC08                 | 31/10/2019                 | VC08_0.3-0.4                  | 0.3 - 0.4  |                    | 3              | 3                   | 1.3               | 1.1               | 2              | < 0.5             | 4.6            | < 0.5          | < 0.5          | 0.9                 | 2.7            | 5              |                            | 3.8                                   | 4                                     | 4.2                                   |                           |                   |                   |                |                |                |              |                  |              |              |
| VC08                 | 31/10/2019                 | VC08_0.5-0.6                  | 0.5 - 0.6  |                    | <0.5           | <0.5                | <0.5              | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | < 0.5          | < 0.5               | <0.5           | <0.5           | -                          | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  | ·'           | +            |
| VC08                 | 31/10/2019                 | VC08_0.7-0.8                  | 0.7 - 0.8  |                    | < 0.5          | < 0.5               | < 0.5             | < 0.5             | < 0.5          | < 0.5             | < 0.5          | < 0.5          | < 0.5          | < 0.5               | < 0.5          | < 0.5          |                            | < 0.5                                 | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  |              |              |
| VC08                 | 31/10/2019                 | VC08_1.0-1.1                  | 1.0 - 1.1  | -1                 | <0.5           | <0.5                | < 0.5             | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | < 0.5          | <0.5                | <0.5           | <0.5           | 0.070                      | <0.5                                  | 0.6                                   | 1.2                                   | <0.5                      | <0.5              | <0.5              | <0 5           | <0.5           | <0.5           | <0 F         | <0.005           | <0.5         | <0.5         |
| VC08                 | 31/10/2019                 | VC08_1.3-1.4                  | 1.3 - 1.4  |                    | <0.5           | <0.5                | < 0.5             | <0.5              | <0.5           | <0.004            | <0.5           | <0.005         | < 0.5          | < 0.5               | <0.5           | <0.5           | 0.019                      | < 0.5                                 | 0.6                                   | 1.2                                   | -0.0                      | -0.0              | ~0.0              | ~0.0           | -0.0           | -0.0           | ~0.0         | -0.005           | -0.0         | -0.0         |
| VC08                 | 31/10/2019                 | VC08_1.5-1.6                  | 1.5 - 1.6  |                    | < 0.5          | < 0.5               | < 0.5             | < 0.5             | < 0.5          | < 0.5             | < 0.5          | < 0.5          | < 0.5          | < 0.5               | < 0.5          | < 0.5          |                            | <0.5                                  | 0.6                                   | 1.2                                   |                           | -0.5              | -0.5              | -0             | -0.5           |                | -0.5         | 10.007           |              |              |
| VC09                 | 30/10/2019                 | VC09_0.0-0.2                  | 0.0 - 0.2  |                    | <0.004         | <0.004              | <0.004            | <0.004            | <0.004         | <0.004            | <0.004         | <0.005         | <0.004         | <0.004              | <0.004         | <0.004         | <0.004                     | <0.5                                  | 0.6                                   | 1.2                                   | <1                        | <0.5              | <0.5              | <0.5           | <0.5           | <0.5           | <0.5         | <0.005           | <0.5         | <0.5         |
| VC09                 | 30/10/2019                 | VC09_0.4-0.6                  | 0.4 - 0.6  |                    | < 0.5          | <0.5                | < 0.5             | < 0.5             | <0.5           | <0.5              | < 0.5          | < 0.5          | < 0.5          | < 0.5               | <0.5           | < 0.5          |                            | < 0.5                                 | 0.6                                   | 1.2                                   |                           |                   |                   |                |                |                |              |                  |              |              |
| VC09                 | 30/10/2019                 | VC09_0.5-1.0                  | 0.5 - 1.0  | _                  | <0.5           | <0.5                | <0.5              | <0.5              | <0.5           | <0.5              | <0.5           | <0.5           | < 0.5          | <0.5                | <0.5           | <0.5           |                            | <0.5                                  | 0.6                                   | 1.2                                   |                           |                   |                   | └──┤           |                |                |              |                  | <u> </u> '   | ┨──┤         |
|                      | 00/10/2010                 | 1,000_0.1-0.0                 | 10.1 0.0   |                    | 1 .0.0         | 1 .0.0              | 10.0              | 1 .0.0            | 1 .0.0         | 1 .0.0            | 1 .0.0         | 1 .0.0         | .0.0           | .0.0                | 1 .0.0         | 1 .0.0         | 1                          | -0.0                                  | 1 0.0                                 | 1 1.4                                 |                           | 1                 |                   |                |                |                |              | 1                |              |              |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx



Appendix C

Table C3

#### Wastle Classification - solid waste guidelines analytical results

|                       |            |               |           |                              |                 |                        |                      |                      | PAH      | s                     |              |             |                 |                            |                      |         |                                   |                                                      |                                                      |                                                      |                                   |                       |                       |                    |                    |                    |                | Phenols             | 3              |               |
|-----------------------|------------|---------------|-----------|------------------------------|-----------------|------------------------|----------------------|----------------------|----------|-----------------------|--------------|-------------|-----------------|----------------------------|----------------------|---------|-----------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------|-----------------------|-----------------------|--------------------|--------------------|--------------------|----------------|---------------------|----------------|---------------|
|                       |            |               |           | Benzo(b+j+k)fluoranth<br>ene | Benzo(a) pyrene | Benzo[b+j]fluoranthene | Benzo(k)fluoranthene | Benzo(g,h,i)perylene | Chrysene | Dibenz(a,h)anthracene | Fluoranthene | Vaphthalene | Fluorene        | ndeno(1,2,3-<br>c,d)pyrene | Phenanthrene         | Pyrene  | PAHs (Sum of total) -<br>Lab calc | Total 8 PAHs (as BaP<br>TEQ)(zero LOR) - Lab<br>Calc | Total 8 PAHs (as BaP<br>TEQ)(half LOR) - Lab<br>Calc | Total 8 PAHs (as BaP<br>TEQ)(full LOR) - Lab<br>Calc | 3,4-Methylphenol (m,p-<br>cresol) | 2,4,5-trichlorophenol | 2,4,6-trichlorophenol | 2,4-dichlorophenol | 2,4-dimethylphenol | 2,6-dichlorophenol | 2-chlorophenol | 2-methylnaphthalene | 2-methylphenol | 2-nitrophenol |
|                       |            |               |           | mg/kg                        | mg/kg           | mg/kg                  | mg/kg                | mg/kg                | mg/kg    | mg/kg                 | mg/kg        | mg/kg       | mg/kg           | mg/kg                      | mg/kg                | mg/kg   | mg/kg                             | mg/kg                                                | mg/kg                                                | mg/kg                                                | mg/kg                             | mg/kg                 | mg/kg                 | mg/kg              | mg/kg              | mg/kg              | mg/kg          | mg/kg               | mg/kg          | mg/kg         |
| VC09                  | 30/10/2019 | VC09_0.8-1.0  | 0.8 - 1.0 |                              | <0.5            | <0.5                   | <0.5                 | < 0.5                | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.6                                                  | 1.2                                                  |                                   |                       |                       |                    |                    |                    |                |                     |                |               |
| VC10                  | 31/10/2019 | VC10_0.0-0.2  | 0.0 - 0.2 |                              | <0.5            | < 0.5                  | < 0.5                | < 0.5                | <0.5     | <0.5                  | < 0.5        | < 0.5       | <0.5            | < 0.5                      | <0.5                 | < 0.5   |                                   | <0.5                                                 | 0.6                                                  | 1.2                                                  |                                   |                       |                       |                    |                    |                    |                |                     |                |               |
| VC10                  | 31/10/2019 | VC10_0.0-0.5  | 0.0 - 0.5 |                              | < 0.004         | < 0.004                | < 0.004              | < 0.004              | < 0.004  | < 0.004               | < 0.004      | <0.005      | < 0.004         | < 0.004                    | < 0.004              | < 0.004 | <0.004                            |                                                      |                                                      |                                                      | <1                                | < 0.5                 | <0.5                  | <0.5               | < 0.5              | <0.5               | < 0.5          | <0.005              | < 0.5          | <0.5          |
| VC10                  | 31/10/2019 | VC10_0.5-0.6  | 0.5 - 0.6 |                              | < 0.5           | < 0.5                  | <0.5                 | < 0.5                | < 0.5    | <0.5                  | < 0.5        | < 0.5       | <0.5            | < 0.5                      | <0.5                 | < 0.5   |                                   | <0.5                                                 | 0.6                                                  | 1.2                                                  |                                   |                       |                       | <u> </u>           |                    |                    |                | <u> </u>            |                | <u> </u>      |
| VC10                  | 30/10/2019 | VC10_0.7-0.8  | 0.7 - 0.8 |                              | 0.013           | 0.01                   | 0.007                | 0.008                | 0.008    | < 0.004               | 0.016        | < 0.005     | < 0.004         | 0.008                      | 0.008                | 0.017   | 0.113                             |                                                      |                                                      |                                                      | <1                                | < 0.5                 | <0.5                  | <0.5               | < 0.5              | <0.5               | < 0.5          | <0.005              | < 0.5          | <0.5          |
| VC11                  | 30/10/2019 | VC11_0.0-0.2  | 0.0 - 0.2 |                              | < 0.5           | < 0.5                  | < 0.5                | < 0.5                | < 0.5    | < 0.5                 | < 0.5        | < 0.5       | < 0.5           | < 0.5                      | < 0.5                | < 0.5   |                                   | < 0.5                                                | 0.6                                                  | 1.2                                                  |                                   |                       |                       | <u> </u>           |                    |                    | L              | <b> </b> '          |                | <b></b>       |
| VC11                  | 30/10/2019 | VC11_0.0-0.5  | 0.0 - 0.5 | _                            | < 0.5           | < 0.5                  | < 0.5                | < 0.5                | < 0.5    | < 0.5                 | < 0.5        | < 0.5       | < 0.5           | < 0.5                      | <0.5                 | < 0.5   |                                   | < 0.5                                                | 0.6                                                  | 1.2                                                  | <u> </u>                          |                       |                       | '                  |                    |                    |                |                     |                | L             |
| VC11                  | 30/10/2019 | VC11_0.5-0.7  | 0.5 - 0.7 |                              | < 0.004         | < 0.004                | < 0.004              | < 0.004              | < 0.004  | < 0.004               | < 0.004      | < 0.005     | < 0.004         | < 0.004                    | < 0.004              | < 0.004 | <0.004                            |                                                      |                                                      |                                                      | <1                                | < 0.5                 | < 0.5                 | <0.5               | < 0.5              | <0.5               | < 0.5          | <0.005              | <0.5           | < 0.5         |
| VC11                  | 30/10/2019 | VC11_0.5-1.0  | 0.5 - 1.0 | _                            | < 0.5           | < 0.5                  | < 0.5                | < 0.5                | < 0.5    | < 0.5                 | < 0.5        | < 0.5       | < 0.5           | < 0.5                      | <0.5                 | < 0.5   |                                   | < 0.5                                                | 0.6                                                  | 1.2                                                  | L                                 | L                     |                       | <u> </u>           |                    |                    | <b></b>        | <b> </b> '          |                | <b></b>       |
| VC11                  | 30/10/2019 | VC11_1.0-1.2  | 1.0 - 1.2 |                              | < 0.5           | < 0.5                  | < 0.5                | < 0.5                | < 0.5    | < 0.5                 | < 0.5        | < 0.5       | <0.5            | < 0.5                      | <0.5                 | < 0.5   |                                   | < 0.5                                                | 0.6                                                  | 1.2                                                  | L                                 |                       |                       | <u> </u>           |                    |                    | <u> </u>       | L                   |                | <u> </u>      |
| VC12                  | 31/10/2019 | VC12_0.0-0.5  | 0.0 - 0.5 | <1                           | 0.255           | 0.226                  | 0.116                | 0.197                | 0.122    | 0.04                  | 0.201        | 0.01        | 0.008           | 0.155                      | 0.096                | 0.217   | 2.18                              | < 0.5                                                | 0.6                                                  | 1.2                                                  | <0.5                              | <0.5                  | <0.5                  | <0.5               | < 0.5              | <0.5               | <0.5           | <0.005              | <0.5           | <0.5          |
| VC12                  | 31/10/2019 | VC12_0.3-0.4  | 0.3 - 0.4 |                              | < 0.5           | < 0.5                  | < 0.5                | <0.5                 | <0.5     | <0.5                  | < 0.5        | <0.5        | <0.5            | < 0.5                      | <0.5                 | <0.5    |                                   | < 0.5                                                | 0.6                                                  | 1.2                                                  | <b> </b>                          | ļ                     |                       | <u> </u>           |                    |                    | <u> </u>       | <b> </b> '          | +              | ──            |
| VC12                  | 31/10/2019 | VC12_0.5-0.6  | 0.5 - 0.6 |                              | < 0.5           | < 0.5                  | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | < 0.5                                                | 0.6                                                  | 1.2                                                  | ļ                                 | ļ                     |                       | <u> </u>           |                    |                    | <b> </b> '     | <b> </b> '          | +              | └───          |
| VC12                  | 31/10/2019 | VC12_0.8-0.9  | 0.8 - 0.9 |                              | < 0.5           | < 0.5                  | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | < 0.5                                                | 0.6                                                  | 1.2                                                  | <u> </u>                          |                       |                       | <u> </u>           |                    |                    | <u> </u>       | <b> </b> '          |                | ──            |
| VC12                  | 31/10/2019 | VC12_1.0-1.1  | 1.0 - 1.1 |                              | < 0.5           | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | < 0.5                                                | 0.6                                                  | 1.2                                                  | <1                                | <0.5                  | <0.5                  | <u> </u>           |                    |                    | <u> </u>       | <u> </u>            | <0.5           | <b> </b>      |
| VC13                  | 31/10/2019 | VC13_0.0-0.1  | 0.0 - 0.1 |                              | 1               | 1.1                    | <0.5                 | 0.6                  | 0.6      | <0.5                  | 1.4          | <0.5        | <0.5            | <0.5                       | <0.5                 | 1.5     |                                   | 1.2                                                  | 1.5                                                  | 1.8                                                  | <1                                | <0.5                  | < 0.5                 | <u> </u>           |                    |                    | <b></b>        | <b> </b> '          | <0.5           | <b> </b>      |
| VC13                  | 31/10/2019 | VC13_0.0-0.5  | 0.0 - 0.5 | _                            | 1               | 1.2                    | 0.5                  | 0.7                  | 0.9      | <0.5                  | 2            | <0.5        | <0.5            | <0.5                       | 0.8                  | 2.1     |                                   | 1.3                                                  | 1.6                                                  | 1.8                                                  | L                                 |                       |                       | '                  |                    |                    | <b></b>        | <b> </b> '          | +              | <b> </b>      |
| VC13                  | 31/10/2019 | VC13_0.3-0.4  | 0.3 - 0.4 | _                            | 0.7             | 0.8                    | <0.5                 | 0.5                  | <0.5     | <0.5                  | 0.9          | <0.5        | <0.5            | <0.5                       | <0.5                 | 1       |                                   | 0.8                                                  | 1.1                                                  | 1.4                                                  | L                                 |                       |                       | <u> </u>           |                    |                    | <u> </u>       | <b> </b> '          | $\rightarrow$  | <b> </b>      |
| VC13                  | 31/10/2019 | VC13_0.5-0.6  | 0.5 - 0.6 | _                            | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.6                                                  | 1.2                                                  | L                                 |                       |                       | <u> </u>           |                    |                    | <u> </u>       | <b> </b> '          | +              | ──            |
| VC13                  | 31/10/2019 | VC13_0.5-1.0  | 0.5 - 1.0 |                              | < 0.5           | < 0.5                  | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.6                                                  | 1.2                                                  | <b> </b>                          |                       |                       | <u> </u> '         |                    |                    | <u> </u>       | <b> </b> '          | +              | ──            |
| VC13                  | 31/10/2019 | VC13_0.7-0.8  | 0.7 - 0.8 |                              | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  | <b> </b>                          |                       |                       | <u> </u>           |                    |                    | <u> </u>       | <b> </b> '          | +              | ──            |
| VC13                  | 31/10/2019 |               | 1.0 - 1.1 |                              | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  |                                   |                       |                       | <u> </u> '         |                    |                    | <u> </u>       | <b> </b> '          | +              | ──            |
| VC14                  | 31/10/2019 | VC14_0.0-0.1  | 0.0 - 0.1 |                              | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  |                                   |                       |                       | <b> </b> '         |                    |                    | <u> </u>       | <b> </b> '          | ──┤            | ──            |
| VC14                  | 31/10/2019 | VC14_0.0-0.5  | 0.0 - 0.5 |                              | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  |                                   |                       |                       | <b> </b> '         | <u> </u>           |                    | <u> </u>       | <b> </b> '          | +              | ──            |
| VC14                  | 31/10/2019 | VC14_0.3-0.4  | 0.5 - 0.4 | _                            | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  | <u> </u>                          |                       |                       | <u> </u>           |                    |                    | <u> </u>       | <b> </b> '          | +              | <del> </del>  |
| VC14                  | 31/10/2019 | VC14_0.5-1.0  | 0.5 - 1.0 | _                            | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  | <u> </u>                          |                       |                       | <u> </u> '         |                    |                    | <u> </u>       | <b> </b>            | +              | ──            |
| VC14                  | 31/10/2019 | VC14_0.7-0.8  | 0.7 - 0.0 |                              | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  | - 1                               | <0.5                  | <0.5                  | <u> </u>           |                    |                    | <u> </u>       | <b> </b> '          | <0.5           | <del> </del>  |
| VC14                  | 21/10/2019 | VC14_1.0-1.1  | 1.0 - 1.1 | _                            | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  |                                   | <b>NU.5</b>           | <b>NU.5</b>           | <u> </u>           |                    | -                  | <u> </u>       | <b> </b> '          | <b>NO.5</b>    | <del> </del>  |
| VC14                  | 21/10/2019 | VC14_1.3-1.4  | 0.5 0.6   |                              | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <0.5            | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  |                                   |                       |                       | <u> </u>           | <u> </u>           |                    | <u> </u>       | <u> </u>            | ──┤            | <u> </u>      |
| 10014                 | 31/10/2019 | VC 14-0.5-0.0 | 0.5 - 0.6 |                              | <0.5            | <0.5                   | <0.5                 | <0.5                 | <0.5     | <0.5                  | <0.5         | <0.5        | <b>&lt;</b> 0.5 | <0.5                       | <0.5                 | <0.5    |                                   | <0.5                                                 | 0.0                                                  | 1.2                                                  |                                   | 1                     |                       |                    |                    |                    | <u> </u>       | <u> </u>            | <u> </u>       | I             |
| Statistics            |            |               |           | 5                            |                 | 00                     |                      |                      | 00       | 00                    | 00           | 00          | 00              |                            |                      | 00      | 17                                | 70                                                   | 79                                                   | 79                                                   | 25                                | 25                    | 25                    | 17                 | 17                 | 17                 | 7 17           | 17                  | 25             | 17            |
| Number of Detects     |            |               |           | 1                            | 20              | 10                     | 12                   | 3 16                 | 16       | 5                     | 20           | 30          | 30              | 2 10                       | 12                   | 21      | 7                                 | 10                                                   | 70                                                   | 70                                                   |                                   | 0 23                  | 23                    |                    |                    |                    |                |                     | 20             |               |
| Minimum Concentration | 1          |               |           | <1                           | <0.004          | <0.004                 |                      | 1 <0 004             |          | <0.004                | <0.004       |             | <0.004          | $\frac{12}{1} < 0.004$     | <                    | < 0.004 | <0.004                            | <0.5                                                 |                                                      | 12                                                   |                                   | <0.5                  | <0.5                  |                    | <0.5               |                    | 1 <0 5         | <0.005              | <0.5           | <0.5          |
| Maximum Concentration | n          |               |           | 1                            | 10.004          | 4 2 2                  | 1 7                  | 7 1 9                | 22       | 1 0                   | 10.004       | 0.004       | 0.004           | 1 4                        | 27                   | 5 7     | 14 8                              | -0.0                                                 | 5 3                                                  | 55                                                   | 0.0                               | <0.5                  | <0.0                  |                    | <0.0               | <0.0               | 1 <0.5         | 0.000               | <0.5           | <0.0          |
|                       |            |               |           | '                            | 4               | 4.2                    | . I. <i>I</i>        | 1.0                  | <u> </u> | 1.9                   | 4.9          | 1 0.00      | 0.090           | <u></u>                    | <u>'</u> <u>2.</u> / | JJ.1    | 1 14.0                            | 1 3                                                  | 1 0.0                                                | 1 0.0                                                | <u>'</u>                          | <u> </u>              | ~0.0                  | 0.0                | <u>~0.0</u>        | , \0.0             | 1 -0.0         | 0.044               | -0.3           | -0.0          |

# Appendix C

Table C3

Wastle Classification - solid waste guidelines analytical results

|                      |                            |                                |            |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       | VO                   | 6         |                   |          |          |                   |                   |            |            |                   |           |
|----------------------|----------------------------|--------------------------------|------------|-------------|---------|--------------|----------|-----------|-------------------------|-----------|-----------|-------|----------------------------------------|--------|----------|-----------------------------|----------|----------|------------|--------------|------------|-----------------------|----------------------|-----------|-------------------|----------|----------|-------------------|-------------------|------------|------------|-------------------|-----------|
|                      |                            |                                |            | 0           | Τ       |              | 1        |           |                         | Ð         | e         |       | 1                                      |        | 1        | e                           | ue<br>L  |          |            | 5            |            |                       |                      | 03        |                   |          |          |                   |                   |            |            | <u> </u>          |           |
|                      |                            |                                |            | Lene        |         |              |          |           | e                       | Jzen      | ban       | e     | ene                                    | Q      | ⊊        | lou                         | etha     |          |            | etha         |            |                       | ż                    |           |                   |          |          | e                 | e                 | ۵          |            | 0                 | ē         |
|                      |                            |                                |            | anth        | _       | e            | hen      |           | thar                    | oper      | opro      | thai  | enz                                    | ĺΞ     | B        | enta                        | L mo     |          | fide       | L DC         |            | ene                   | -oro                 | Jane      |                   | e e      | ene      | sthai             | luer              | zene       | ene        | zene              | then      |
|                      |                            |                                |            | loho        | eno     | - Du         | bro      |           | oroe                    | Jor       | Jor       | moe   | prob                                   | ue (   | e e      | -2-<br>5-                   | l la     | ε        | isul       | Lon          | ane        | rope                  | ichle                | neth      | ane               | nze      | enz      | Droe              | ylto              | pen        | ethe       | jen;              | roet      |
|                      |                            |                                |            | thyle       | - dd    | phe          | gchle    | -         | chlo                    | friol     | trici     | pro   | ch c                                   | ano    | ano      | l<br>Ţ<br>Ź                 | odic     | ofor     | p u d      | odik         | oeth       | 3-<br>orop            | e-D                  | L L       | neth              | ylbe     | d yd     | gchle             | prop              | utyl       | oro        | lty               | chlo      |
|                      |                            |                                |            | - Per       | eth.    | cetc         | ente     | hen       | -1-<br>1-d              | 5,3       | 5,3       | 2-d   | b G                                    | -prt   | l ê      | JIBI                        | Lom      | Lom      | arbo       | Plo          | hlor<br>L  | s-1,<br>ichld         | s-1,<br>uter         | ibro      | dor               | prt      | - bro    | ents              | -isol             |            | rich       | rt-b              | etra      |
|                      |                            |                                |            | ෆ්<br>ma/ka | 1 ma/ka | ₹<br>1 ma/ka | ma/ka    | <br>ma/ka | <del>, ´</del><br>ma/ka | <br>ma/ka | <br>ma/ka | <br>  | l <del>∈</del> <sup>°</sup><br>1 ma/ka | na/ka  | ma/ka    | <del>  4 ⊆</del><br>1 ma/ka | ma/ka    | ma/ka    | U<br>ma/ka | Ο φ<br>ma/ka | U<br>ma/ka | <u>.</u> ⊆.≙<br>wa∖ka | <u>'ਹ ਠ</u><br>ma/ka | <br>ma/ka | <u>o</u><br>ma/ka | <u> </u> | <u> </u> | <u>n</u><br>ma/ka | <u>d</u><br>ma/ka | წ<br>ma/ka | ⊢<br>ma/ka | <u>₽</u><br>ma/kc | i ma/ka   |
| EQL                  |                            |                                |            | 0.5         | 0.5     | 0.5          | 1        | 0.5       | 0.5                     | 0.5       | 0.5       | 0.5   | 0.5                                    | 5      | 5        | 5                           | 0.5      | 0.5      | 0.5        | 0.5          | 5          | 0.5                   | 0.5                  | 0.5       | 0.5               | 0.5      | 0.5      | 0.5               | 0.5               | 0.5        | 0.5        | 0.5               | 0.5       |
| NSW EPA (2014) Gene  | eral Solid Waste CT1 (No L | Leaching)                      |            |             |         |              |          |           |                         |           |           |       |                                        | 4,000  |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            | 10         | <b></b>           | 14        |
| 113W EFA (2014) Nesu |                            | o Leaching)                    |            |             |         |              |          |           |                         |           |           |       |                                        | 10,000 |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            | 40         |                   | 50        |
| Location Code        | Date                       | Field ID                       | Depth      |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| BH05                 | 7/11/2019                  | BH05_4.6-4.7                   | 4.6 - 4.7  |             | <0.5    |              | <2       | <0.5      |                         |           |           |       |                                        | <5     |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            | < 0.5      | ─                 | < 0.5     |
| BH07                 | 7/11/2019                  | BH00_1.2-1.45<br>BH07_2.5-2.95 | 2.5 - 2.95 |             | <0.5    |              | <2       | <0.5      |                         |           |           |       | +                                      | <5     |          |                             |          | <u> </u> |            |              |            |                       |                      |           |                   |          |          |                   |                   |            | < 0.5      | <u> </u>          | < 0.5     |
| VC01                 | 30/10/2019                 | VC01_0.0-0.2                   | 0.0 - 0.2  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC01                 | 30/10/2019                 | VC01_0.4-0.6                   | 0.4 - 0.6  | <0.5        | <0.5    | <0.5         | 1        | <0.5      |                         |           |           |       | <0.5                                   |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | ─                 | +         |
| VC01                 | 30/10/2019                 | VC01_0.3-1.0                   | 1.0 - 1.1  | 0.5         | <0.5    | 0.5          | <2       | <0.5      |                         |           |           |       |                                        |        | +        |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC02                 | 30/10/2019                 | VC02_0.0-0.2                   | 0.0 - 0.2  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC02                 | 31/10/2019                 | VC02_0.0-0.5                   | 0.0 - 0.5  |             | <0.5    |              | <2       | <0.5      |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <b> </b>          |           |
| VC02                 | 30/10/2019                 | VC02_0.5-0.0                   | 0.5 - 1.0  |             | +       |              |          |           |                         |           |           |       | +                                      |        |          |                             |          |          |            | <u> </u>     |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC02                 | 30/10/2019                 | VC02_1.0-1.2                   | 1.0 - 1.2  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC02                 | 30/10/2019                 | VC02_1.0-1.5                   | 1.0 - 1.5  |             | <0.5    |              | -2       | <0.5      |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <b> </b>          | +         |
| VC02<br>VC03         | 30/10/2019                 | VC02_1.5-1.0                   | 0.0 - 0.2  |             | - ~0.5  |              | <u>~</u> | 0.5       |                         |           |           |       | +                                      |        |          |                             |          |          |            | <u> </u>     |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC03                 | 30/10/2019                 | VC03_0.0-0.5                   | 0.0 - 0.5  |             | < 0.5   |              | <2       | <0.5      |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC03                 | 30/10/2019                 | VC03_0.3-0.4                   | 0.3 - 0.4  | _           | <0.5    |              | <2       | <0.5      | <0.5                    | <0.5      | < 0.5     | < 0.5 | <0.5                                   | <5     | <5       | <5                          | < 0.5    | < 0.5    | <0.5       | <0.5         | <5         | <0.5                  | <0.5                 | <0.5      | <0.5              | < 0.5    | <0.5     | < 0.5             | < 0.5             | < 0.5      | < 0.5      | <0.5              | < 0.5     |
| VC03                 | 30/10/2019                 | VC03_0.4-0.6                   | 0.4 - 1.0  | +           |         |              |          |           |                         |           |           |       |                                        |        | +        |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC03                 | 30/10/2019                 | VC03_0.6-0.7                   | 0.6 - 0.7  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC03                 | 30/10/2019                 | VC03_1.0-1.2                   | 1.0 - 1.2  |             |         |              |          |           |                         |           |           |       |                                        |        | <u> </u> |                             | <u> </u> |          |            | <u> </u>     |            |                       |                      |           |                   |          |          |                   |                   |            |            | —                 | ┥──┤      |
| VC04<br>VC04         | 30/10/2019                 | VC04_0.3-0.4                   | 0.3 - 0.4  | +           | <0.5    |              | <2       | < 0.5     |                         |           |           |       |                                        |        | +        |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC04                 | 31/10/2019                 | VC04_0.5-0.6                   | 0.5 - 0.6  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC04                 | 30/10/2019                 | VC04_0.5-1.0                   | 0.5 - 1.0  | <0.6        | <0.6    | <0.6         | <1       | <0.6      |                         |           |           |       | <0.6                                   |        | <u> </u> |                             | <u> </u> |          |            | <u> </u>     |            |                       |                      |           |                   |          |          |                   |                   |            |            | —                 | ┥──┤      |
| VC04<br>VC04         | 31/10/2019                 | VC04_0.7-0.8                   | 0.9 - 1.0  | +           |         | +            |          |           |                         |           |           |       |                                        |        | +        |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC05                 | 30/10/2019                 | VC05_0.0-0.1                   | 0.0 - 0.1  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC05                 | 30/10/2019                 | VC05_0.5-0.7                   | 0.5 - 0.7  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC05                 | 30/10/2019                 | VC05_0.8-0.9                   | 0.8 - 0.9  |             | < 0.5   |              | <2       | <0.5      | <0.5                    | <0.5      | < 0.5     | < 0.5 | <0.5                                   | <5     | <5       | <5                          | < 0.5    | < 0.5    | <0.5       | <0.5         | <5         | <0.5                  | <0.5                 | <0.5      | < 0.5             | <0.5     | < 0.5    | < 0.5             | < 0.5             | < 0.5      | < 0.5      | <0.5              | <0.5      |
| VC06                 | 31/10/2019                 | VC06_0.0-0.1                   | 0.0 - 0.1  |             | <0.5    |              | <2       | <0.5      |                         |           |           |       |                                        | <5     |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            | <0.5       |                   | <0.5      |
| VC06                 | 31/10/2019                 | VC06_0.0-0.5                   | 0.0 - 0.5  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   | +         |
| VC06                 | 31/10/2019                 | VC06 0.5-0.6                   | 0.5 - 0.6  |             | 1       |              |          |           |                         |           |           |       | 1                                      |        |          |                             |          |          |            | 1            |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | + +       |
| VC06                 | 31/10/2019                 | VC06_0.5-1.0                   | 0.5 - 1.0  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC06                 | 31/10/2019                 | VC06_0.7-0.8                   | 0.7 - 0.8  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC07                 | 30/10/2019                 | VC07 0.0-0.2                   | 0.0 - 0.2  |             | < 0.5   |              | <2       | <0.5      | <0.5                    | <0.5      | < 0.5     | <0.5  | <0.5                                   | <5     | <5       | <5                          | < 0.5    | < 0.5    | <0.5       | <0.5         | <5         | <0.5                  | <0.5                 | <0.5      | <0.5              | <0.5     | <0.5     | <0.5              | < 0.5             | < 0.5      | < 0.5      | <0.5              | <0.5      |
| VC07                 | 30/10/2019                 | VC07_0.0-0.5                   | 0.0 - 0.5  | <0.5        | <0.5    | <0.5         | <1       | <0.5      |                         |           |           |       | <0.5                                   |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC07                 | 30/10/2019                 | VC07_0.2-0.4                   | 0.2 - 0.4  |             | -       |              |          |           |                         |           |           |       |                                        |        | <u> </u> |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | —                 | +         |
| VC07                 | 30/10/2019                 | VC07_0.5-1.0                   | 0.5 - 1.0  |             | +       |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC07                 | 30/10/2019                 | VC07_0.7-0.8                   | 0.7 - 0.8  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC07                 | 30/10/2019                 | VC07_1.0-1.2                   | 1.0 - 1.2  |             | <0.5    |              | <2       | <0.5      |                         |           |           |       |                                        | <5     | <u> </u> |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            | <0.5       | —                 | <0.5      |
| VC08                 | 31/10/2019                 | VC08_0.0-0.5                   | 0.0 - 0.5  |             | 1 10.0  |              | <u>~</u> | 10.0      |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            | ~0.0       | <u> </u>          | 0.0       |
| VC08                 | 31/10/2019                 | VC08_0.3-0.4                   | 0.3 - 0.4  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC08                 | 31/10/2019                 | VC08_0.5-0.6                   | 0.5 - 0.6  | -           |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | +         |
| VC08                 | 31/10/2019                 | VC08_0.7-0.8                   | 0.7 - 0.8  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC08                 | 31/10/2019                 | VC08_1.0-1.1                   | 1.0 - 1.1  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          | $\square$ |
| VC08                 | 31/10/2019                 | VC08_1.0-1.5                   | 1.0 - 1.5  | <0.5        | <0.5    | <0.5         | <1       | <0.5      |                         |           |           |       | <0.5                                   |        |          |                             |          |          |            |              |            |                       |                      |           |                   | <u> </u> |          |                   |                   |            |            | ──                | ╂───┦     |
| VC08                 | 31/10/2019                 | VC08_1.5-1.6                   | 1.5 - 1.6  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC09                 | 30/10/2019                 | VC09_0.0-0.2                   | 0.0 - 0.2  |             | <0.5    |              | <2       | <0.5      |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            | <u> </u>          |           |
| VC09                 | 30/10/2019                 | VC09_0.0-0.5                   | 0.0 - 0.5  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           | <u> </u>          | <u> </u> |          | <u> </u>          |                   |            |            | <u> </u>          | ╂───┦     |
| VC09                 | 30/10/2019                 | VC09_0.5-1.0                   | 0.5 - 1.0  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |
| VC09                 | 30/10/2019                 | VC09_0.7-0.8                   | 0.7 - 0.8  |             |         |              |          |           |                         |           |           |       |                                        |        |          |                             |          |          |            |              |            |                       |                      |           |                   |          |          |                   |                   |            |            |                   |           |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx

## **Circular Quay Investigation** Port Authority of NSW

## 7

# Appendix C

#### Table C3

#### Wastle Classification - solid waste guidelines analytical results

|                                 |            |              |           |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             | VC                            | Cs              |
|---------------------------------|------------|--------------|-----------|----------------------|-----------------------------|--------------|-------------------|--------|--------------------|------------------------|------------------------|-------------------|---------------------|------------------|------------------|--------------------------------|----------------------|-----------|------------------|--------------------------|--------------|-----------------------------|-------------------------------|-----------------|
|                                 |            |              |           | 3-methylcholanthrene | 4-chloro-3-<br>methylphenol | Acetophenone | Pentachlorophenol | Phenol | 1,1-dichloroethane | 1,2,3-trichlorobenzene | 1,2,3-trichloropropane | 1,2-dibromoethane | 1,3-dichlorobenzene | 2-butanone (MEK) | 2-hexanone (MBK) | 4-methyl-2-pentanone<br>(MIBK) | Bromodichloromethane | Bromoform | Carbon disulfide | Chlorodibromomethan<br>e | Chloroethane | cis-1,3-<br>dichloropropene | cis-1,4-Dichloro-2-<br>butene |                 |
|                                 |            |              |           | mg/kg                | mg/kg                       | mg/kg        | mg/kg             | mg/kg  | mg/kg              | mg/kg                  | mg/kg                  | mg/kg             | mg/kg               | mg/kg            | mg/kg            | mg/kg                          | mg/kg                | mg/kg     | mg/kg            | mg/kg                    | mg/kg        | mg/kg                       | mg/kg                         | / m             |
| VC09                            | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC10                            | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC10                            | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |                      | <0.5                        |              | <2                | <0.5   |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC10                            | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC10                            | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |                      | <0.5                        |              | <2                | < 0.5  |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC11                            | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC11                            | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC11                            | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 |                      | <0.5                        |              | <2                | <0.5   | <0.5               | < 0.5                  | <0.5                   | <0.5              | <0.5                | <5               | <5               | <5                             | < 0.5                | <0.5      | <0.5             | <0.5                     | <5           | <0.5                        | <0.5                          | <               |
| VC11                            | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC11                            | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC12                            | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | < 0.5                | <0.5                        | <0.5         | <1                | <0.5   |                    |                        |                        |                   | <0.5                |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC12                            | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC12                            | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC12                            | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC12                            | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 |                      | <0.5                        |              | <2                | < 0.5  |                    |                        |                        |                   |                     | <5               |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC13                            | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 |                      | <0.5                        |              | <2                | < 0.5  |                    |                        |                        |                   |                     | <5               |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC13                            | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC13                            | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC13                            | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC13                            | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC13                            | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC13                            | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC14                            | 31/10/2019 | VC14_0.0-0.1 | 0.0 - 0.1 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC14                            | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC14                            | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC14                            | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC14                            | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC14                            | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |                      | <0.5                        |              | <2                | <0.5   |                    |                        |                        |                   |                     | <5               |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC14                            | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| VC14                            | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                      |           |                  |                          |              |                             |                               |                 |
| Statistics<br>Number of Results |            |              |           | 5                    | 25                          | 5            | 25                | 25     | 4                  | 4                      | 4                      | 4                 | 9                   | 12               | 4                | 4                              | 4                    | 4         | 4                | 4                        | 4            | 4                           | 4                             | 1               |
| Number of Detects               |            |              |           | 0                    | 0                           | 0            | 0 0               | 0      | 0                  | 0                      | 0                      | 0 0               | 0                   | 0                | 0                | 0                              | 0                    | 0         | 0                | 0                        | 0            | 0                           | 0                             | ١T              |
| Minimum Concentra               | ation      |              |           | <0.5                 | < 0.5                       | < 0.5        | <1                | < 0.5  | < 0.5              | < 0.5                  | < 0.5                  | < 0.5             | < 0.5               | <5               | <5               | <5                             | < 0.5                | <0.5      | <0.5             | <0.5                     | < 0.5        | < 0.5                       | < 0.5                         | <del>،</del> از |
| Maximum Concentra               | ation      |              |           | <0.6                 | <0.6                        | <0.6         | <2                | < 0.6  | < 0.5              | < 0.5                  | < 0.5                  | < 0.5             | <0.6                | <5               | <5               | <5                             | < 0.5                | < 0.5     | <0.5             | < 0.5                    | < 0.5        | < 0.5                       | < 0.5                         | <del>،</del> از |
|                                 |            |              |           |                      | -                           | -            | -                 | -      | -                  | -                      | -                      | -                 |                     |                  | -                |                                | -                    | -         |                  |                          |              |                             |                               | -               |

| Dibromomethane | lodomethane | n-butylbenzene | n-propylbenzene | Pentachloroethane | p-isopropyltoluene | sec-butylbenzene | Trichloroethene | tert-butylbenzene | Tetrachloroethene |
|----------------|-------------|----------------|-----------------|-------------------|--------------------|------------------|-----------------|-------------------|-------------------|
| g/kg           | mg/kg       | mg/kg          | mg/kg           | mg/kg             | mg/kg              | mg/kg            | mg/kg           | mg/kg             | mg/kg             |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
| :0.5           | <0.5        | <0.5           | <0.5            | <0.5              | <0.5               | <0.5             | <0.5            | <0.5              | <0.5              |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  | <0.5            |                   | <0.5              |
|                |             |                |                 |                   |                    |                  | < 0.5           |                   | < 0.5             |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  | <0.5            |                   | <0.5              |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |
|                |             |                |                 |                   |                    |                  |                 |                   |                   |

| 4    | 4    | 4    | 4    | 4    | 4    | 4    | 12   | 4    | 12   |
|------|------|------|------|------|------|------|------|------|------|
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
| <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |

# Appendix C

#### Table C3

#### Wastle Classification - solid waste guidelines analytical results

|                          |                             |               |            |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         | SVOCs     | 5               |          |                               |                  |                   |              |
|--------------------------|-----------------------------|---------------|------------|-------------------------------|------------------------------|---------------------------------|------------------------|---------------|-----------------|-----------------------------|----------------|-----------------------|----------------|---------------------------------|-------------------------------|-----------------|--------------------------------|----------------|------------------------------|---------------------|----------------------------------------|---------|------------|--------------------------------|-------------------------|-----------|-----------------|----------|-------------------------------|------------------|-------------------|--------------|
|                          |                             |               |            | trans-1,3-<br>dichloropropene | trans-1,2-<br>dichloroethene | trans-1,4-Dichloro-2-<br>butene | Trichlorofluoromethane | Vinyl acetate | 1-naphthylamine | 2-(acetylamino)<br>fluorene | 2-nitroaniline | 3,3-Dichlorobenzidine | 3-nitroaniline | 4-(dimethylamino)<br>azobenzene | 4-bromophenyl phenyl<br>ether | 4-chloroaniline | 4-chlorophenyl phenyl<br>ether | 4-nitroaniline | 4-Nitroquinoline-N-<br>oxide | 5-nitro-o-toluidine | 7,12-<br>dimethylbenz(a)anthra<br>cene | Aniline | Azobenzene | Bis(2-chloroethoxy)<br>methane | Bis(2-chloroethyl)ether | Carbazole | Chlorobenzilate | Coronene | Hexachlorocyclopentad<br>iene | Hexachloroethane | Hexachloropropene | lsophorone   |
| 501                      |                             |               |            | mg/k                          | g mg/kg                      | g mg/kg                         | mg/kg                  | mg/kg         | mg/kg           | mg/kg                       | mg/kg          | mg/kg                 | mg/kg          | mg/kg                           | mg/kg                         | mg/kg           | mg/kg                          | mg/kg          | mg/kg                        | mg/kg               | mg/kg                                  | mg/kg   | mg/kg      | mg/kg                          | mg/kg                   | mg/kg     | mg/kg           | mg/kg    | mg/kg                         | mg/kg            | mg/kg             | mg/kg        |
| EQL<br>NSW FPA (2014) Ge | eneral Solid Waste CT1 (No  | Leaching)     |            | 0.5                           | 0.5                          | 0.5                             | 5                      | 5             | 0.5             | 0.5                         | 1              | 0.5                   | 1              | 0.5                             | 0.5                           | 0.5             | 0.5                            | 0.5            | 0.5                          | 0.5                 | 0.5                                    | 0.5     | 1          | 0.5                            | 0.5                     | 0.5       | 0.5             | 0.005    | 2.5                           | 0.5              | 0.5               | 0.5          |
| NSW EPA (2014) Re        | stricted Solid Waste CT2 (I | No Leaching)  |            |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| Location Code            | Date                        | Field ID      | Denth      |                               | -                            | -                               | -                      |               |                 |                             |                | -                     | -              |                                 | -                             |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| BH05                     | 7/11/2019                   | BH05 4.6-4.7  | 4.6 - 4.7  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| BH06                     | 7/11/2019                   | BH06_1.2-1.45 | 1.2 - 1.45 |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| BH07                     | 7/11/2019                   | BH07_2.5-2.95 | 2.5 - 2.95 |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <u> </u>                      | <b> </b> '       |                   |              |
| VC01                     | 30/10/2019                  | VC01_0.0-0.2  | 0.0 - 0.2  |                               |                              |                                 |                        |               |                 |                             |                |                       | <u> </u>       | <u> </u>                        |                               | <u> </u>        |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <u> </u>                      | <b> </b> '       | <u> </u>          |              |
| VC01                     | 30/10/2019                  | VC01_0.4-0.6  | 0.4 - 0.6  | _                             |                              |                                 |                        | <u> </u>      | <0.5            | <0.5                        | <10            | <0.5                  | <10            | <0.5                            | <0.5                          | <0.5            | <0.5                           | <0.5           | <0.5                         | <0.5                | <0.5                                   | <0.5    | <1         | <0.5                           | <0.5                    | <0.5      | <0.5            | <0.005   | <25                           | <0.5             | <0.5              | <0.5         |
| VC01                     | 30/10/2019                  | VC01_0.5-1.0  | 10-11      | +                             | +                            | +                               |                        |               | <0.5            | <0.5                        | <1.0           | <0.5                  | 1 < 1.0        | <b>NO.5</b>                     | <0.5                          | <b>VU.5</b>     | <b>~</b> 0.5                   | <0.5           | <0.5                         | <0.5                | <b>NU.5</b>                            | <0.5    | ~1         | <0.5                           | <0.5                    | <0.5      | <0.5            | <0.005   |                               | <0.5             |                   | <0.5         |
| VC02                     | 30/10/2019                  | VC02_0.0-0.2  | 0.0 - 0.2  | +                             | +                            | +                               |                        |               |                 |                             |                |                       | <u> </u>       | <u> </u>                        |                               | <u> </u>        | <u> </u>                       |                |                              |                     |                                        |         |            |                                |                         |           |                 | -0.000   | <u> </u>                      | <u> </u>         | <u> </u>          |              |
| VC02                     | 31/10/2019                  | VC02 0.0-0.5  | 0.0 - 0.5  | 1                             | 1                            |                                 |                        |               |                 |                             |                |                       | 1              | 1                               |                               |                 | 1                              |                |                              |                     |                                        |         |            |                                |                         |           |                 | 0.375    |                               | <u> </u>         | <u> </u>          |              |
| VC02                     | 31/10/2019                  | VC02_0.5-0.6  | 0.5 - 0.6  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC02                     | 30/10/2019                  | VC02_0.5-1.0  | 0.5 - 1.0  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC02                     | 30/10/2019                  | VC02_1.0-1.2  | 1.0 - 1.2  | _                             |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | L        | /                             | L                |                   |              |
| VC02                     | 30/10/2019                  | VC02_1.0-1.5  | 1.0 - 1.5  |                               |                              |                                 |                        | <u> </u>      |                 |                             | <u> </u>       |                       | <u> </u>       | <u> </u>                        |                               | <u> </u>        |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | 10.005   | <u> </u>                      | <b> </b> '       | <b></b>           | <u> </u>     |
|                          | 30/10/2019                  | VC02_1.5-1.6  | 1.5 - 1.6  |                               |                              |                                 |                        | <u> </u>      |                 |                             | <u> </u>       |                       |                | <u> </u>                        |                               | <u> </u>        | <u> </u>                       |                |                              |                     |                                        |         |            |                                |                         |           |                 | <0.005   | '                             | <u> </u>         |                   |              |
| VC03                     | 30/10/2019                  | VC03_0.0-0.2  | 0.0 - 0.2  | +                             | +                            | +                               |                        |               |                 |                             |                |                       |                | <u> </u>                        |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <0.005   | <u>'</u>                      | ├───             |                   | ╂───┦        |
| VC03                     | 30/10/2019                  | VC03_0.3-0.4  | 0.0-0.0    | <0.5                          | <0.5                         | <0.5                            | <5                     | <5            |                 |                             |                |                       | <u> </u>       |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <0.005   | <u></u>                       | <u> </u>         | <u> </u>          | <u>├</u> ──┤ |
| VC03                     | 30/10/2019                  | VC03 0.4-0.6  | 0.4 - 0.6  | +                             | -                            | -                               |                        |               |                 |                             |                |                       |                | <u> </u>                        |                               | <u> </u>        |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               | <u> </u>         | <u> </u>          |              |
| VC03                     | 30/10/2019                  | VC03_0.5-1.0  | 0.4 - 1.0  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC03                     | 30/10/2019                  | VC03_0.6-0.7  | 0.6 - 0.7  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC03                     | 30/10/2019                  | VC03_1.0-1.2  | 1.0 - 1.2  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | L        | /                             |                  |                   |              |
| VC04                     | 30/10/2019                  | VC04_0.0-0.1  | 0.0 - 0.1  |                               |                              |                                 |                        |               |                 |                             |                |                       |                | <u> </u>                        |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | 0.005    | <u> </u>                      | <b> </b> '       | <u> </u>          | $\vdash$     |
| VC04                     | 30/10/2019                  | VC04_0.3-0.4  | 0.3 - 0.4  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               | I               |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <0.005   | <b> </b> '                    | <b> </b> '       | <b> </b>          | ┥            |
| VC04                     | 31/10/2019                  | VC04_0.5-0.6  | 0.5 - 0.6  | <u> </u>                      |                              |                                 |                        | <u> </u>      | <0.6            | <0.6                        | <10            | <0.6                  | <10            | <0.6                            | <0.6                          | <0.6            | <0.6                           | <0.6           | <0.6                         | <0.6                | <0.6                                   | <0.6    | <1         | <0.6                           | <0.6                    | <0.6      | <0.6            | <0.005   | <25                           | <0.6             | <0.6              | <0.6         |
| VC04                     | 31/10/2019                  | VC04_0.3-1.0  | 0.7 - 0.8  |                               |                              |                                 |                        | <u> </u>      | ~0.0            | <0.0                        | 1.0            | ~0.0                  | 1.0            | ~0.0                            | ~0.0                          | ~0.0            | ~0.0                           | <0.0           | <0.0                         | <0.0                | <b>\U.U</b>                            | <0.0    | ~1         | <0.0                           | <b>\U.U</b>             | <0.0      | <0.0            | <0.003   | -2.5                          | ~0.0             |                   | <0.0         |
| VC04                     | 31/10/2019                  | VC04 0.9-1.0  | 0.9 - 1.0  | -                             |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <u> </u>                      | <u> </u>         |                   |              |
| VC05                     | 30/10/2019                  | VC05 0.0-0.1  | 0.0 - 0.1  |                               |                              |                                 |                        |               |                 |                             |                |                       | 1              |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC05                     | 30/10/2019                  | VC05_0.5-0.7  | 0.5 - 0.7  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC05                     | 30/10/2019                  | VC05_0.5-0.9  | 0.5 - 0.9  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC05                     | 30/10/2019                  | VC05_0.8-0.9  | 0.8 - 0.9  | < 0.5                         | < 0.5                        | < 0.5                           | <5                     | <5            |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <0.005   | <u> </u>                      | <b></b> '        |                   |              |
| VC06                     | 31/10/2019                  | VC06_0.0-0.1  | 0.0 - 0.1  |                               |                              |                                 |                        |               |                 |                             |                |                       | <u> </u>       |                                 |                               | <b></b>         |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <b> </b> | '                             | <b> </b> '       | <u> </u>          |              |
|                          | 31/10/2019                  | VC06_0.0-0.5  | 0.0 - 0.5  |                               |                              |                                 |                        | <u> </u>      |                 |                             | <u> </u>       |                       |                | <u> </u>                        |                               | <u> </u>        |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> |                               | ──               |                   |              |
| VC06                     | 31/10/2019                  | VC06_0.5-0.6  | 0.5 - 0.6  |                               |                              |                                 |                        | <u> </u>      |                 |                             | <u> </u>       |                       |                |                                 |                               | <u> </u>        |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | '                             | <u> </u>         |                   |              |
| VC06                     | 31/10/2019                  | VC06 0.5-1.0  | 0.5 - 1.0  | +                             | +                            | -                               |                        |               |                 |                             |                |                       |                | <u> </u>                        |                               | <u> </u>        |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <u> </u>                      | <u> </u>         | <u> </u>          |              |
| VC06                     | 31/10/2019                  | VC06 0.7-0.8  | 0.7 - 0.8  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               | <u> </u>         |                   |              |
| VC06                     | 31/10/2019                  | VC06_0.8-0.9  | 0.8 - 0.9  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC07                     | 30/10/2019                  | VC07_0.0-0.2  | 0.0 - 0.2  | < 0.5                         | < 0.5                        | < 0.5                           | <5                     | <5            |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | 0.256    |                               |                  |                   |              |
| VC07                     | 30/10/2019                  | VC07_0.0-0.5  | 0.0 - 0.5  |                               |                              |                                 |                        |               | < 0.5           | <0.5                        | <1.0           | <0.5                  | <1.0           | <0.5                            | < 0.5                         | < 0.5           | <0.5                           | <0.5           | <0.5                         | <0.5                | < 0.5                                  | <0.5    | <1         | <0.5                           | <0.5                    | <0.5      | <0.5            | 0.25     | <2.5                          | <0.5             | <0.5              | <0.5         |
|                          | 30/10/2019                  | VC07_0.2-0.4  | 0.2 - 0.4  | +                             | +                            |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <b> </b> '                    | <b> </b> '       |                   | +            |
|                          | 30/10/2019                  | VC07_0.5-0.6  | 0.5 - 0.6  |                               |                              |                                 |                        | <u> </u>      |                 |                             | <u> </u>       |                       |                | <u> </u>                        |                               | <u> </u>        | <u> </u>                       |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <u> </u>                      | <b> </b>         |                   |              |
| VC07                     | 30/10/2019                  | VC07_0.3-1.0  | 0.7 - 0.8  |                               |                              |                                 |                        | <u> </u>      |                 |                             | <u> </u>       |                       |                | <u> </u>                        |                               | <u> </u>        | <u> </u>                       |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <u> </u> '                    | <u> </u>         |                   |              |
| VC07                     | 30/10/2019                  | VC07 1.0-1.2  | 1.0 - 1.2  | -                             |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <u> </u>                      | <u> </u>         | <u> </u>          |              |
| VC08                     | 31/10/2019                  | VC08_0.0-0.1  | 0.0 - 0.1  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC08                     | 31/10/2019                  | VC08_0.0-0.5  | 0.0 - 0.5  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC08                     | 31/10/2019                  | VC08_0.3-0.4  | 0.3 - 0.4  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          | ′                             |                  |                   |              |
| VC08                     | 31/10/2019                  | VC08_0.5-0.6  | 0.5 - 0.6  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <b> </b> | <u> </u>                      | <b> </b> '       | <u> </u>          | $\vdash$     |
|                          | 31/10/2019                  |               | 0.5 - 1.0  | +                             |                              |                                 |                        | <u> </u>      | I               |                             | <u> </u>       |                       | <u> </u>       | <b>I</b>                        |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <b> </b> '                    | <del> </del>     | <b> </b>          | ╂───┦        |
| VC08                     | 31/10/2019                  |               | 10-11      | +                             | +                            |                                 |                        | <u> </u>      |                 |                             | <u> </u>       |                       |                |                                 |                               | <u> </u>        |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <u> </u> | <u>+'</u>                     | <u> </u>         | <u> </u>          | ┨───┤        |
| VC08                     | 31/10/2019                  | VC08 1 0-1 5  | 10-15      |                               |                              |                                 |                        |               | <0.5            | <0.5                        | <10            | <0.5                  | <10            | <0.5                            | <0.5                          | <0.5            | <0.5                           | <0.5           | <0.5                         | <0.5                | <0.5                                   | <0.5    | <1         | <0.5                           | <0.5                    | <0.5      | <0.5            | <0.005   | <2.5                          | <0.5             | <0.5              | <0.5         |
| VC08                     | 31/10/2019                  | VC08 1.3-1.4  | 1.3 - 1.4  | 1                             | 1                            | 1                               | 1                      |               |                 |                             |                | 1.0.0                 | 1              | 1                               | -0.0                          | 1               |                                |                |                              | 0.0                 | -0.0                                   |         | - 1        |                                | 0.0                     |           | 0.0             | 0.000    |                               |                  | 1.0.0             |              |
| VC08                     | 31/10/2019                  | VC08_1.5-1.6  | 1.5 - 1.6  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 |          |                               |                  |                   |              |
| VC09                     | 30/10/2019                  | VC09_0.0-0.2  | 0.0 - 0.2  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | <0.005   |                               |                  |                   |              |
| VC09                     | 30/10/2019                  | VC09_0.0-0.5  | 0.0 - 0.5  |                               |                              |                                 |                        |               |                 |                             |                |                       |                |                                 |                               |                 |                                |                |                              |                     |                                        |         |            |                                |                         |           |                 | $\vdash$ |                               | $\square$        |                   |              |
| VC09                     | 30/10/2019                  | VC09_0.4-0.6  | 0.4 - 0.6  |                               |                              |                                 |                        |               |                 |                             |                |                       |                | <b> </b>                        | l                             | <b> </b>        | <b> </b>                       |                |                              |                     |                                        |         |            |                                |                         |           |                 | <b> </b> | ──′                           | <b> </b>         | <b> </b>          | $\vdash$     |
| VC09                     | 30/10/2019                  | VC09_0.5-1.0  | 0.5 - 1.0  |                               |                              |                                 | I                      |               | I               |                             |                |                       |                | <b>I</b>                        |                               | I               | <b> </b>                       |                |                              |                     |                                        |         |            | ⊢ −                            |                         |           |                 | ┢────    | <b>+</b> '                    | <b> </b>         | +                 | ┥──┤         |
| v C U B                  | 30/10/2019                  | IACOATO:4     | 10.7 - 0.0 |                               | 1                            | 1                               | 1                      | 1             | 1               | I                           | 1              | 1                     | 1              | 1                               | 1                             | 1               | 1                              |                |                              |                     |                                        |         |            | ı                              |                         | ı         |                 | 1        | 1                             | 1                | 1                 |              |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx



## Appendix C

Table C3

#### Wastle Classification - solid waste guidelines analytical results

|                                 |            |              |           | trans-1,3-<br>dichloropropene | trans-1,2-<br>dichloroethene | trans-1,4-Dichloro-2-<br>butene | Trichlorofluoromethane | Vinyl acetate | 1-naphthylamine | 2-(acetylamino)<br>fluorene | 2-nitroaniline | 3, 3-Dichlorobenzidine | 3-nitroaniline | 4-(dimethylamino)<br>azobenzene | 4-bromophenyl phenyl<br>ether | 4-chloroaniline | 4-chlorophenyl phenyl<br>ether | 4-nitroaniline | 4-Nitroquinoline-N-<br>oxide | 5-nitro-o-toluidine | 7,12-<br>dimethylbenz(a)anthra<br>cene | Aniline   | Azobenzene |
|---------------------------------|------------|--------------|-----------|-------------------------------|------------------------------|---------------------------------|------------------------|---------------|-----------------|-----------------------------|----------------|------------------------|----------------|---------------------------------|-------------------------------|-----------------|--------------------------------|----------------|------------------------------|---------------------|----------------------------------------|-----------|------------|
|                                 |            |              |           | mg/kg                         | mg/kg                        | mg/kg                           | mg/kg                  | mg/kg         | mg/kg           | mg/kg                       | mg/kg          | mg/kg                  | mg/kg          | mg/kg                           | mg/kg                         | mg/kg           | mg/kg                          | mg/kg          | mg/kg                        | mg/kg               | mg/kg                                  | mg/kg     | mg/kg      |
| VC09                            | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        | $\square$ |            |
| VC10                            | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC10                            | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC10                            | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC10                            | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC11                            | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC11                            | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC11                            | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 | <0.5                          | <0.5                         | <0.5                            | <5                     | <5            |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC11                            | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC11                            | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC12                            | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 |                               |                              |                                 |                        |               | < 0.5           | < 0.5                       | <1.0           | < 0.5                  | <1.0           | <0.5                            | <0.5                          | <0.5            | <0.5                           | <0.5           | < 0.5                        | < 0.5               | <0.5                                   | < 0.5     | <1         |
| VC12                            | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC12                            | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC12                            | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC12                            | 31/10/2019 | VC12 1.0-1.1 | 1.0 - 1.1 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC13                            | 31/10/2019 | VC13 0.0-0.1 | 0.0 - 0.1 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC13                            | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |                               |                              |                                 |                        | 1             |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC13                            | 31/10/2019 | VC13 0.3-0.4 | 0.3 - 0.4 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC13                            | 31/10/2019 | VC13 0.5-0.6 | 0.5 - 0.6 |                               |                              |                                 | 1                      | 1             |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC13                            | 31/10/2019 | VC13 0.5-1.0 | 0.5 - 1.0 |                               | 1                            |                                 | 1                      | 1             |                 | 1                           |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC13                            | 31/10/2019 | VC13 0.7-0.8 | 0.7 - 0.8 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC13                            | 31/10/2019 | VC13 1.0-1.1 | 1.0 - 1.1 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        | -+        |            |
| VC14                            | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC14                            | 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC14                            | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC14                            | 31/10/2019 | VC14 0.5-1.0 | 0.5 - 1.0 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC14                            | 31/10/2019 | VC14 0.7-0.8 | 0.7 - 0.8 |                               |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        |           |            |
| VC14                            | 31/10/2019 | VC14 1.0-1.1 | 1.0 - 1.1 | +                             | 1                            |                                 |                        | 1             |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        | -+        |            |
| VC14                            | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 | +                             |                              |                                 | <u> </u>               |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        | -+        |            |
| VC14                            | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 | +                             |                              |                                 |                        |               |                 |                             |                |                        |                |                                 |                               |                 |                                |                |                              |                     |                                        | -+        |            |
| Statistics<br>Number of Results |            |              | •         | 4                             | 4                            | 4                               | 4                      | 4             | 5               | 5                           | 5              | 5                      | 5              | 5                               | 5                             | 5               | 5                              | 5              | 5                            | 5                   | 5                                      | 5         | 5          |
| Number of Detects               |            |              |           |                               | 0 0                          | 0                               |                        | 0 0           | 0               | 0                           | 0              | 0                      | 0              | 0                               | 0                             | 0               | 0                              | 0              | 0                            | 0                   | 0                                      | 0         | 0          |
| Minimum Concentration           |            |              |           | <0.5                          | < 0.5                        | < 0.5                           | <5                     | 5 <5          | < 0.5           | < 0.5                       | <1.0           | < 0.5                  | <1.0           | < 0.5                           | < 0.5                         | <0.5            | <0.5                           | < 0.5          | < 0.5                        | < 0.5               | <0.5                                   | <0.5      | <1         |
| Maximum Concentration           |            |              |           | <0.5                          | <u> </u>                     | < 0.5                           | <5                     | 5  <5         | <0.6            | <0.6                        | <1.0           | <0.6                   | <1.0           | <0.6                            | <0.6                          | <0.6            | <0.6                           | <0.6           | <0.6                         | <0.6                | <0.6                                   | <0.6      | <1         |

|                                |                         | SVOC      | 6               |          |                               |                  |                   |            |
|--------------------------------|-------------------------|-----------|-----------------|----------|-------------------------------|------------------|-------------------|------------|
| Bis(2-chloroethoxy)<br>methane | Bis(2-chloroethyl)ether | Carbazole | Chlorobenzilate | Coronene | Hexachlorocyclopentad<br>iene | Hexachloroethane | Hexachloropropene | lsophorone |
| mg/kg                          | mg/kg                   | mg/kg     | mg/kg           | mg/kg    | mg/kg                         | mg/kg            | mg/kg             | mg/kg      |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 | 10.005   |                               |                  |                   |            |
|                                |                         |           |                 | <0.005   |                               |                  |                   |            |
|                                |                         |           |                 | <0.005   |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 | <0.005   |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
| <05                            | <0.5                    | <0.5      | <0.5            | 0 126    | <25                           | <0.5             | <0.5              | <0.5       |
| -0.0                           | ~0.5                    | ×0.5      | ×0.5            | 0.120    | ~2.5                          | ×0.5             | ~0.5              | <0.5       |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |
|                                |                         |           |                 |          |                               |                  |                   |            |

| 5    | 5    | 5    | 5    | 17     | 5    | 5    | 5    | 5    |
|------|------|------|------|--------|------|------|------|------|
| 0    | 0    | 0    | 0    | 4      | 0    | 0    | 0    | 0    |
| <0.5 | <0.5 | <0.5 | <0.5 | <0.005 | <2.5 | <0.5 | <0.5 | <0.5 |
| <0.6 | <0.6 | <0.6 | <0.6 | 0.375  | <2.5 | <0.6 | <0.6 | <0.6 |

# Appendix C

Table C3

Wastle Classification - solid waste guidelines analytical results

|                                        |                             |                               |            | lethapyrilene | -nitrosodiethylamine | -nitrosodi-n-<br>utylamine | -nitrosodi-n-<br>ropylamine | -<br>litrosomethylethylamin | -nitrosomorpholine | l-nitrosopiperidine | l-nitrosopyrrolidine | entachlorobenzene | erylene  | henacetin | rganochlorine<br>esticides EPAVic | other organochlorine<br>esticides EPAVic | ,4-DDE     | BHC       | Idrin     | ldrin + Dieldrin | -BHC      | hlordane   | :hlordane (cis) | hlordane (trans) | -BHC      | ,4 DDD    | 4 DDT        | DT+DDE+DDD - Lab |
|----------------------------------------|-----------------------------|-------------------------------|------------|---------------|----------------------|----------------------------|-----------------------------|-----------------------------|--------------------|---------------------|----------------------|-------------------|----------|-----------|-----------------------------------|------------------------------------------|------------|-----------|-----------|------------------|-----------|------------|-----------------|------------------|-----------|-----------|--------------|------------------|
|                                        |                             |                               |            | ≥<br>mg/kg    | Z<br>  mg/kg         | mg/kg                      | mg/kg                       | <u>ZZ</u><br>mg/kg          | z<br>mg/kg         | mg/kg               | mg/kg                | mg/kg             | mg/kg    | mg/kg     | mg/kg                             | g mg/kg                                  | mg/kg      | mg/kg     | rg/kg     | <br>mg/kg        | mg/kg     | mg/kg      | mg/kg           | mg/kg            | mg/kg     | <br>mg/kg | mg/kg        | mg/kg            |
| EQL                                    | maral Calid Wasts CT1 (Na   | Loophing)                     |            | 0.5           | 0.5                  | 0.5                        | 0.5                         | 0.5                         | 0.5                | 0.5                 | 1                    | 0.5               | 0.004    | 0.5       | 0.1                               | 0.1                                      | 0.0005     | 0.0005    | 0.0005    | 0.05             | 0.0005    | 0.00025    | 0.00025         | 0.00025          | 0.0005    | 0.0005    | 0.0005       | 0.0005           |
| NSW EPA (2014) Ge<br>NSW EPA (2014) Re | stricted Solid Waste CT2 (N | Vo Leaching)                  |            |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
|                                        | ·                           |                               | _          |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| Location Code                          | Date                        | Field ID                      | Depth      |               | 1                    |                            |                             | 1                           |                    |                     |                      | 1                 | 1        |           | -                                 | -                                        | <0.05      | <0.05     | <0.05     | 1                | <0.05     | <0.05      | <0.05           | <0.05            | <0.05     | <0.05     |              | <b></b>          |
| BH05<br>BH06                           | 7/11/2019                   | BH05_4.0-4.7<br>BH06_1.2-1.45 | 1.2 - 1.45 | -             |                      |                            |                             |                             |                    |                     | -                    |                   |          |           |                                   | -                                        | <0.05      | < 0.05    | <0.05     |                  | < 0.05    | < 0.05     | <0.05           | < 0.05           | < 0.05    | < 0.05    | <0.2         | +                |
| BH07                                   | 7/11/2019                   | BH07_2.5-2.95                 | 2.5 - 2.95 |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          | < 0.05     | < 0.05    | < 0.05    |                  | < 0.05    | < 0.05     | < 0.05          | <0.05            | <0.05     | < 0.05    | <0.2         |                  |
| VC01                                   | 30/10/2019                  | VC01_0.0-0.2                  | 0.0 - 0.2  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC01                                   | 30/10/2019                  | VC01_0.4-0.6                  | 0.4 - 0.6  | <0.5          | <0.5                 | <0.5                       | <0.5                        | <0.5                        | <0.5               | <0.5                | <10                  | <0.5              | <0.004   | <0.5      |                                   |                                          | <0.00050   | <0.00050  | <0.00050  | <0.5             | <0.00050  | <0.00025   | <0.00025        | <0.00025         | <0.00050  | <0.00050  | <0.00050     | 1 <0.00050       |
| VC01                                   | 30/10/2019                  | VC01_0.0-1.0                  | 1.0 - 1.1  |               | - 10.0               | ~0.0                       |                             | 0.0                         | ~0.5               | ~0.5                | 1 1.0                | 1 40.0            | < 0.004  | ~0.0      | +                                 | +                                        | < 0.00050  | < 0.00050 | < 0.00050 | ~0.5             | < 0.00050 | <0.00025   | <0.00025        | <0.00025         | < 0.00050 | < 0.00050 | < 0.00050    | ) <0.00050       |
| VC02                                   | 30/10/2019                  | VC02_0.0-0.2                  | 0.0 - 0.2  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC02                                   | 31/10/2019                  | VC02_0.0-0.5                  | 0.0 - 0.5  |               |                      |                            |                             |                             |                    |                     |                      |                   | 0.329    |           |                                   |                                          | <0.00050   | <0.00050  | <0.00050  |                  | <0.00050  | <0.00025   | <0.00025        | <0.00025         | <0.00050  | <0.00050  | <0.00050     | < 0.00050        |
| VC02                                   | 31/10/2019                  | VC02_0.5-0.6                  | 0.5 - 0.6  | _             |                      |                            |                             |                             |                    |                     | <u> </u>             | <b>_</b>          |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     |                  |
| VC02                                   | 30/10/2019                  | VC02_0.5-1.0                  | 10-12      | -             | +                    |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     | +                |
| VC02                                   | 30/10/2019                  | VC02 1.0-1.5                  | 1.0 - 1.5  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     | +                |
| VC02                                   | 30/10/2019                  | VC02_1.5-1.6                  | 1.5 - 1.6  |               |                      |                            |                             |                             |                    |                     |                      |                   | < 0.004  |           |                                   |                                          | <0.00050   | <0.00050  | <0.00050  |                  | <0.00050  | <0.00025   | <0.00025        | <0.00025         | <0.00050  | <0.00050  | <0.00050     | / <0.00050       |
| VC03                                   | 30/10/2019                  | VC03_0.0-0.2                  | 0.0 - 0.2  | _             | <b> </b>             |                            |                             |                             |                    |                     |                      | I                 |          |           | <b> </b>                          |                                          |            |           |           |                  |           |            |                 |                  |           | 0.00050   |              |                  |
| VC03                                   | 30/10/2019                  | VC03_0.0-0.5                  | 0.0 - 0.5  | -             |                      |                            |                             |                             |                    |                     |                      |                   | < 0.004  |           |                                   |                                          | < 0.00050  | <0.00050  | <0.00050  |                  | <0.00050  | <0.00025   | <0.00025        | <0.00025         | < 0.00050 | < 0.00050 | < 0.00050    | <0.00050         |
| VC03                                   | 30/10/2019                  | VC03_0.4-0.6                  | 0.4 - 0.6  |               | +                    |                            | <u> </u>                    |                             | <u> </u>           |                     | +                    | <u> </u>          | 1 10.004 |           | +                                 | +                                        | 1 <0.00030 | ~0.00030  | <0.00000  |                  | <0.00030  | 1 40.00020 | 1 <0.00020      | <0.00020         | <0.00000  | ~0.00000  | 1 40.000000  | ~0.00030         |
| VC03                                   | 30/10/2019                  | VC03_0.5-1.0                  | 0.4 - 1.0  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC03                                   | 30/10/2019                  | VC03_0.6-0.7                  | 0.6 - 0.7  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC03                                   | 30/10/2019                  | VC03_1.0-1.2                  | 1.0 - 1.2  |               |                      |                            |                             |                             |                    |                     |                      | <b> </b>          |          |           | <b> </b>                          |                                          |            |           |           |                  |           |            |                 |                  |           |           | <del> </del> |                  |
| VC04<br>VC04                           | 30/10/2019                  | VC04_0.0-0.1                  | 0.0 - 0.1  | -             | <u> </u>             |                            |                             |                             |                    |                     |                      | <u> </u>          | <0.004   |           | -                                 | -                                        | <0.00050   | <0 00050  | <0.00050  |                  | <0.00050  | <0.00025   | <0.00025        | <0.00025         | <0.00050  | <0.00050  | <0.00050     | ) <0.00050       |
| VC04                                   | 31/10/2019                  | VC04_0.5-0.6                  | 0.5 - 0.6  | 1             | 1                    |                            |                             |                             |                    |                     | 1                    | 1                 |          |           |                                   |                                          |            |           |           |                  |           | 0.00020    | 0.00020         | 0.00020          | 0.00000   | 0.00000   |              |                  |
| VC04                                   | 30/10/2019                  | VC04_0.5-1.0                  | 0.5 - 1.0  | <0.6          | <0.6                 | <0.6                       | <0.6                        | <0.6                        | <0.6               | <0.6                | <1.0                 | <0.6              | < 0.005  | <0.6      |                                   |                                          | <0.00050   | <0.00050  | <0.00050  | <0.5             | <0.00050  | <0.00025   | <0.00025        | <0.00025         | <0.00050  | <0.00050  | <0.00050     | <0.00050         |
| VC04                                   | 31/10/2019                  | VC04_0.7-0.8                  | 0.7 - 0.8  |               |                      |                            |                             |                             |                    |                     |                      | <u> </u>          |          |           | <u> </u>                          |                                          | L          |           |           |                  |           |            |                 |                  |           |           | <u> </u>     |                  |
| VC04                                   | 31/10/2019                  | VC04_0.9-1.0                  | 0.9 - 1.0  |               | +                    |                            |                             |                             |                    |                     | -                    |                   |          |           |                                   | +                                        |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     | +                |
| VC05                                   | 30/10/2019                  | VC05 0.5-0.7                  | 0.5 - 0.7  |               | <u> </u>             |                            |                             |                             |                    |                     |                      | <u> </u>          |          |           | -                                 | -                                        |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     | +                |
| VC05                                   | 30/10/2019                  | VC05_0.5-0.9                  | 0.5 - 0.9  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC05                                   | 30/10/2019                  | VC05_0.8-0.9                  | 0.8 - 0.9  | _             |                      |                            |                             |                             |                    |                     |                      |                   | < 0.004  |           |                                   |                                          | <0.00050   | < 0.00050 | < 0.00050 |                  | < 0.00050 | <0.00025   | <0.00025        | < 0.00025        | < 0.00050 | < 0.00050 | <0.00050     | / <0.00050       |
| VC06                                   | 31/10/2019                  | VC06_0.0-0.1                  | 0.0 - 0.1  | _             |                      |                            |                             |                             | <u> </u>           |                     |                      |                   |          |           |                                   |                                          | <0.05      | < 0.05    | <0.05     |                  | < 0.05    | < 0.05     | <0.05           | <0.05            | <0.05     | < 0.05    | <0.2         |                  |
| VC06                                   | 31/10/2019                  | VC06_0.3-0.4                  | 0.3 - 0.4  | -             | +                    |                            |                             |                             |                    |                     |                      | <u> </u>          |          |           |                                   | -                                        |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     | +                |
| VC06                                   | 31/10/2019                  | VC06_0.5-0.6                  | 0.5 - 0.6  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC06                                   | 31/10/2019                  | VC06_0.5-1.0                  | 0.5 - 1.0  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC06                                   | 31/10/2019                  | VC06_0.7-0.8                  | 0.7 - 0.8  |               |                      | <u> </u>                   | <u> </u>                    | <u> </u>                    |                    | <u> </u>            | <u> </u>             |                   | <u> </u> |           | <u> </u>                          |                                          |            |           |           |                  |           |            |                 |                  |           |           | <b> </b>     |                  |
| VC06                                   | 31/10/2019                  | VC06_0.8-0.9                  | 0.8 - 0.9  |               |                      |                            | -                           |                             |                    |                     | -                    |                   | 0 136    |           |                                   | +                                        | <0.00050   | <0.00050  | <0.00050  |                  | <0.00050  | <0.00025   | <0.00025        | <0.00025         | <0.00050  | <0.00050  | <0.00050     | ) <0.00050       |
| VC07                                   | 30/10/2019                  | VC07_0.0-0.5                  | 0.0 - 0.5  | < 0.5         | < 0.5                | <0.5                       | <0.5                        | <0.5                        | <0.5               | <0.5                | <1.0                 | <0.5              | 0.174    | <0.5      | <u> </u>                          | 1                                        | < 0.00050  | < 0.00050 | < 0.00050 | <0.5             | < 0.00050 | <0.00025   | <0.00025        | < 0.00025        | < 0.00050 | < 0.00050 | < 0.00050    | < 0.00050        |
| VC07                                   | 30/10/2019                  | VC07_0.2-0.4                  | 0.2 - 0.4  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC07                                   | 30/10/2019                  | VC07_0.5-0.6                  | 0.5 - 0.6  | _             |                      |                            |                             |                             |                    |                     | <u> </u>             | I                 | ļ        |           | <b> </b>                          |                                          | ļ          |           |           |                  |           |            |                 |                  |           |           | <u> </u>     |                  |
| VC07                                   | 30/10/2019                  | VC07_0.5-1.0                  | 0.5 - 1.0  | _             |                      |                            |                             |                             | <u> </u>           |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     |                  |
| VC07                                   | 30/10/2019                  | VC07_1.0-1.2                  | 1.0 - 1.2  |               | +                    |                            |                             |                             |                    |                     |                      | <u> </u>          |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     | +                |
| VC08                                   | 31/10/2019                  | VC08_0.0-0.1                  | 0.0 - 0.1  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          | <0.05      | <0.05     | < 0.05    |                  | <0.05     | <0.05      | <0.05           | <0.05            | <0.05     | <0.05     | <0.2         |                  |
| VC08                                   | 31/10/2019                  | VC08_0.0-0.5                  | 0.0 - 0.5  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           | L            |                  |
| VC08                                   | 31/10/2019                  | VC08_0.3-0.4                  | 0.3 - 0.4  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     |                  |
| VC08                                   | 31/10/2019                  | VC08_0.5-0.0                  | 0.5 - 1.0  | -             |                      | <u> </u>                   | <u> </u>                    |                             | <u> </u>           | <u> </u>            | -                    |                   | -        |           | -                                 | +                                        | -          |           |           |                  |           | -          | -               |                  |           |           |              | +                |
| VC08                                   | 31/10/2019                  | VC08_0.7-0.8                  | 0.7 - 0.8  |               | 1                    |                            |                             |                             |                    |                     |                      | 1                 |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              | +                |
| VC08                                   | 31/10/2019                  | VC08_1.0-1.1                  | 1.0 - 1.1  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC08                                   | 31/10/2019                  | VC08_1.0-1.5                  | 1.0 - 1.5  | < 0.5         | <0.5                 | <0.5                       | < 0.5                       | <0.5                        | <0.5               | <0.5                | <1.0                 | <0.5              | < 0.004  | <0.5      |                                   |                                          | < 0.00050  | < 0.00050 | < 0.00050 | <0.5             | <0.00050  | < 0.00025  | < 0.00025       | <0.00025         | <0.00050  | <0.00050  | <0.00050     | <0.00050         |
| VC08                                   | 31/10/2019                  | VC08_1.3-1.4                  | 1.5 - 1.4  |               |                      | <u> </u>                   | <u> </u>                    |                             |                    | <u> </u>            |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     | +                |
| VC09                                   | 30/10/2019                  | VC09 0.0-0.2                  | 0.0 - 0.2  | -             |                      |                            |                             |                             |                    |                     |                      |                   | < 0.004  |           |                                   | 1                                        | < 0.00050  | < 0.00050 | < 0.00050 |                  | < 0.00050 | < 0.00025  | <0.00025        | <0.00025         | <0.00050  | < 0.00050 | < 0.00050    | <0.00050         |
| VC09                                   | 30/10/2019                  | VC09_0.0-0.5                  | 0.0 - 0.5  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          |            |           |           |                  |           |            |                 |                  |           |           |              |                  |
| VC09                                   | 30/10/2019                  | VC09_0.4-0.6                  | 0.4 - 0.6  |               |                      |                            |                             |                             |                    |                     |                      |                   |          |           |                                   |                                          | ļ          |           |           |                  |           |            |                 |                  |           |           | <u> </u>     |                  |
| VC09                                   | 30/10/2019                  | VC09_0.5-1.0                  | 0.5 - 1.0  |               |                      | <u> </u>                   |                             |                             |                    |                     |                      |                   |          |           |                                   | -                                        |            |           |           |                  |           |            |                 |                  |           |           | <u> </u>     | +                |
|                                        | 00/10/2013                  | 1.000_0.1-0.0                 | 0.0 - 0.0  |               | -                    |                            | L                           |                             |                    |                     | 1                    | 1                 |          |           |                                   | 1                                        |            |           |           | I                |           |            |                 |                  |           |           |              |                  |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx

 VC09

 VC10

 VC10

 VC11

 VC11

 VC11

 VC11

 VC11

 VC12

 VC12

 VC12

 VC12

 VC12

 VC13

 VC13

 VC13

 VC13

 VC14

 VC14

 VC14

 VC14

 VC14

 VC14

#### Appendix C Table C3

#### Wastle Classification - solid waste guidelines analytical results

|            |              |           | Methapyrilene | N-nitrosodiethylamine | N-nitrosodi-n-<br>butylamine | N-nitrosodi-n-<br>propylamine | N-<br>Nitrosomethylethylamin<br>e | N-nitrosomorpholine | N-nitrosopiperidine | N-nitrosopyrrolidine | Pentachlorobenzene | Perylene | Phenacetin | Organochlorine<br>pesticides EPAVic | Other organochlorine<br>pesticides EPAVic | 4,4'-DDE  | a-BHC     | Aldrin    | Aldrin + Dieldrin | b-BHC     |           |
|------------|--------------|-----------|---------------|-----------------------|------------------------------|-------------------------------|-----------------------------------|---------------------|---------------------|----------------------|--------------------|----------|------------|-------------------------------------|-------------------------------------------|-----------|-----------|-----------|-------------------|-----------|-----------|
|            |              |           | mg/kg         | mg/kg                 | mg/kg                        | mg/kg                         | mg/kg                             | mg/kg               | mg/kg               | mg/kg                | mg/kg              | mg/kg    | mg/kg      | mg/kg                               | mg/kg                                     | mg/kg     | mg/kg     | mg/kg     | mg/kg             | mg/kg     | 1         |
| 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           |           |
| 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |               |                       |                              |                               |                                   |                     |                     |                      |                    | < 0.004  |            |                                     |                                           | < 0.00050 | < 0.00050 | < 0.00050 |                   | < 0.00050 | <0        |
| 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |               |                       |                              |                               |                                   |                     |                     |                      |                    | < 0.004  |            |                                     |                                           | < 0.00050 | < 0.00050 | < 0.00050 |                   | < 0.00050 | <(        |
| 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 |               |                       |                              |                               |                                   |                     |                     |                      |                    | < 0.004  |            |                                     |                                           | < 0.00050 | < 0.00050 | < 0.00050 |                   | < 0.00050 | <(        |
| 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | < 0.5         | < 0.5                 | < 0.5                        | < 0.5                         | < 0.5                             | < 0.5               | < 0.5               | <1.0                 | < 0.5              | 0.055    | < 0.5      |                                     |                                           | < 0.00050 | < 0.00050 | < 0.00050 | < 0.5             | < 0.00050 | <0        |
| 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           | < 0.05    | < 0.05    | < 0.05    |                   | < 0.05    | <b>—</b>  |
| 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           | < 0.05    | < 0.05    | < 0.05    |                   | < 0.05    | · ·       |
| 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC13 0.5-1.0 | 0.5 - 1.0 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           |           |
| 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC14_0.0-0.1 | 0.0 - 0.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC14 0.7-0.8 | 0.7 - 0.8 |               |                       |                              | 1                             |                                   | 1                   | 1                   | 1                    | 1                  | 1        |            |                                     | 1                                         |           |           | 1         | 1                 |           |           |
| 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     | 1                                         | < 0.05    | < 0.05    | < 0.05    |                   | < 0.05    | · ·       |
| 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           | $\square$ |
| 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |           |           |                   |           |           |
|            |              | ·         |               |                       |                              |                               | •                                 |                     | -                   |                      |                    |          | -          |                                     | -                                         | •         | -         | •         |                   |           |           |
|            |              |           |               | -                     | -                            | -                             | -                                 |                     | -                   | -                    | -                  | 1 47     | -          |                                     |                                           |           | 1         |           |                   | 1         |           |
|            |              |           | 5             | 1 5                   | 1 5                          | y 5                           | 5                                 | y 5                 | 5                   | 1 5                  | 5                  | 1/       | 5          | 0                                   | 0                                         | 25        | 25        | 25        | 5                 | 25        | ←         |

 Statistics

 Number of Results
 5
 5
 5
 5
 5
 5
 5
 17
 5
 0
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25

| Chlordane | Chlordane (cis) | Chlordane (trans) | d-BHC     | 4,4 DDD   | 4,4 DDT   | DDT+DDE+DDD - Lab<br>Calc |
|-----------|-----------------|-------------------|-----------|-----------|-----------|---------------------------|
| mg/kg     | mg/kg           | mg/kg             | mg/kg     | mg/kg     | mg/kg     | mg/kg                     |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
| 0.00025   | <0.00025        | <0.00025          | <0.00050  | <0.00050  | <0.00050  | <0.00050                  |
| 00005     | -0.00005        | -0.00005          | -0.00050  | 10 00050  | -0.00050  | -0.00050                  |
| J.00025   | <0.00025        | <0.00025          | <0.00050  | <0.00050  | <0.00050  | <0.00050                  |
|           |                 |                   |           |           |           |                           |
| 00025     | <0 00025        | <0.00025          | <0.00050  | <0.00050  | <0.00050  | <0.00050                  |
|           | 0.00020         | 0.00020           | 0.00000   | 0.00000   | 0.00000   | 0.00000                   |
|           |                 |                   |           |           |           |                           |
| 0.00025   | <0.00025        | < 0.00025         | < 0.00050 | < 0.00050 | < 0.00050 | <0.00050                  |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
| .0.05     | .0.05           | -0.05             | -0.05     | .0.05     | .0.0      |                           |
| < 0.05    | <0.05           | <0.05             | < 0.05    | < 0.05    | <0.2      |                           |
| <0.05     | <0.05           | <0.05             | <0.05     | <0.05     | <0.2      |                           |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
|           |                 |                   |           |           |           |                           |
| <0.05     | <0.05           | <0.05             | <0.05     | <0.05     | <0.2      |                           |
| 5.00      | 0.00            | 0.00              | 0.00      | 0.00      | 0.2       |                           |
|           |                 |                   |           |           |           |                           |

| 25      | 25        | 25        | 25       | 25      | 25      | 17      |
|---------|-----------|-----------|----------|---------|---------|---------|
| 0       | 0         | 0         | 0        | 0       | 0       | 0       |
| 0.00025 | < 0.00025 | < 0.00025 | < 0.0005 | <0.0005 | <0.0005 | <0.0005 |
| <0.05   | < 0.05    | < 0.05    | <0.05    | <0.05   | <0.2    | <0.0005 |

# Appendix C Table C3 Wastle Classification - solid waste guidelines analytical results

|                                                         | OC Pestic | cides      |                      |                      |                    |        |                 |               |                 |            |                    |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |
|---------------------------------------------------------|-----------|------------|----------------------|----------------------|--------------------|--------|-----------------|---------------|-----------------|------------|--------------------|-------------------|--------------|--------------|-----------|-----------|-----------------|---------------------|-----------------|-----------------|-----------------|-------------------|--------------|---------------------|
|                                                         | Dieldrin  | Endosulfan | Endosulfan I (alpha) | Endosulfan II (beta) | Endosulfan Sulfate | Endrin | Endrin aldehyde | Endrin ketone | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide | Hexachlorobenzene | Methoxychlor | Oxychlordane | Toxaphene | Tokuthion | Azinphos methyl | Bolstar (Sulprofos) | Bromophos-ethyl | Carbophenothion | Chlorfenvinphos | Chlorfenvinphos E | Chlorpyrifos | Chlorpyrifos-methyl |
|                                                         | mg/kg     | mg/kg      | mg/kg                | mg/kg                | mg/kg              | mg/kg  | mg/kg           | mg/kg         | mg/kg           | mg/kg      | mg/kg              | mg/kg             | mg/kg        | mg/kg        | mg/kg     | mg/kg     | mg/kg           | mg/kg               | mg/kg           | mg/kg           | mg/kg           | mg/kg             | mg/kg        | mg/kg               |
| EQL                                                     | 0.0005    | 0.0005     | 0.0005               | 0.0005               | 0.0005             | 0.0005 | 0.0005          | 0.0005        | 0.00025         | 0.0005     | 0.0005             | 0.0005            | 0.0005       | 0.0005       | 1         | 0.2       | 0.01            | 0.2                 | 0.01            | 0.01            | 0.2             | 0.01              | 0.01         | 0.01                |
| NSW EPA (2014) General Solid Waste CT1 (No Leaching)    |           | 60         |                      |                      |                    |        |                 |               |                 |            |                    |                   |              |              |           |           |                 |                     |                 |                 |                 |                   | 4            |                     |
| NSW EPA (2014) Restricted Solid Waste CT2 (No Leaching) |           | 240        |                      |                      |                    |        |                 |               |                 |            |                    |                   |              |              |           |           |                 |                     |                 |                 |                 |                   | 16           |                     |

| Location Code | Date       | Field ID      | Depth      |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
|---------------|------------|---------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------|---------------------|-------------------|-------------------|---------------------|-------------------|----------|--------|----------|
| BH05          | 7/11/2019  | BH05_4.6-4.7  | 4.6 - 4.7  | < 0.05    |           | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    |           | < 0.05    | < 0.05    | < 0.05    | < 0.05    |           |           |                   |                     |                   |                   |                     |                   |          | < 0.05 |          |
| BH06          | 7/11/2019  | BH06_1.2-1.45 | 1.2 - 1.45 | < 0.05    |           | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    |           | < 0.05    | < 0.05    | <0.05     | < 0.05    |           |           |                   |                     |                   |                   |                     |                   |          | < 0.05 |          |
| BH07          | 7/11/2019  | BH07_2.5-2.95 | 2.5 - 2.95 | < 0.05    |           | <0.05     | <0.05     | < 0.05    | <0.05     | < 0.05    |           | < 0.05    | < 0.05    | < 0.05    | < 0.05    |           |           |                   |                     |                   |                   |                     |                   |          | < 0.05 |          |
| VC01          | 30/10/2019 | VC01_0.0-0.2  | 0.0 - 0.2  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC01          | 30/10/2019 | VC01_0.4-0.6  | 0.4 - 0.6  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC01          | 30/10/2019 | VC01_0.5-1.0  | 0.5 - 1.0  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |                   | <0.01               |                   | < 0.01 <          | :0.01               | <0.5              | <0.0100  | <0.01  | < 0.01   |
| VC01          | 30/10/2019 | VC01_1.0-1.1  | 1.0 - 1.1  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |                   | < 0.01              |                   | < 0.01 <          | 0.01                |                   | < 0.0100 | <0.01  | < 0.01   |
| VC02          | 30/10/2019 | VC02_0.0-0.2  | 0.0 - 0.2  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC02          | 31/10/2019 | VC02_0.0-0.5  | 0.0 - 0.5  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00025  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00050  |                   | < 0.01              |                   | < 0.01 <          | :0.01               |                   | <0.0100  | < 0.01 | < 0.01   |
| VC02          | 31/10/2019 | VC02_0.5-0.6  | 0.5 - 0.6  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC02          | 30/10/2019 | VC02_0.5-1.0  | 0.5 - 1.0  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC02          | 30/10/2019 | VC02_1.0-1.2  | 1.0 - 1.2  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC02          | 30/10/2019 | VC02_1.0-1.5  | 1.0 - 1.5  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC02          | 30/10/2019 | VC02_1.5-1.6  | 1.5 - 1.6  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |                   | < 0.01              |                   | < 0.01 <          | 0.01                |                   | < 0.0100 | <0.01  | < 0.01   |
| VC03          | 30/10/2019 | VC03_0.0-0.2  | 0.0 - 0.2  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC03          | 30/10/2019 | VC03_0.0-0.5  | 0.0 - 0.5  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00050  | -                 | < 0.01              |                   | < 0.01 <          | :0.01               |                   | <0.0100  | < 0.01 | < 0.01   |
| VC03          | 30/10/2019 | VC03_0.3-0.4  | 0.3 - 0.4  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |                   | < 0.01              |                   | < 0.01 <          | :0.01               |                   | < 0.0100 | <0.01  | < 0.01   |
| VC03          | 30/10/2019 | VC03_0.4-0.6  | 0.4 - 0.6  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC03          | 30/10/2019 | VC03_0.5-1.0  | 0.4 - 1.0  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC03          | 30/10/2019 | VC03 0.6-0.7  | 0.6 - 0.7  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC03          | 30/10/2019 | VC03_1.0-1.2  | 1.0 - 1.2  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC04          | 30/10/2019 | VC04_0.0-0.1  | 0.0 - 0.1  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC04          | 30/10/2019 | VC04_0.3-0.4  | 0.3 - 0.4  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |                   | < 0.01              |                   | < 0.01 <          | :0.01               |                   | <0.0100  | < 0.01 | < 0.01   |
| VC04          | 31/10/2019 | VC04_0.5-0.6  | 0.5 - 0.6  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC04          | 30/10/2019 | VC04_0.5-1.0  | 0.5 - 1.0  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00025  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00050  |                   | < 0.01              |                   | < 0.01 <          | :0.01               | <0.6              | <0.0100  | < 0.01 | < 0.01   |
| VC04          | 31/10/2019 | VC04_0.7-0.8  | 0.7 - 0.8  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC04          | 31/10/2019 | VC04_0.9-1.0  | 0.9 - 1.0  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC05          | 30/10/2019 | VC05_0.0-0.1  | 0.0 - 0.1  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC05          | 30/10/2019 | VC05_0.5-0.7  | 0.5 - 0.7  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC05          | 30/10/2019 | VC05_0.5-0.9  | 0.5 - 0.9  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC05          | 30/10/2019 | VC05_0.8-0.9  | 0.8 - 0.9  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00050  | -                 | < 0.01              |                   | < 0.01 <          | :0.01               |                   | <0.0100  | < 0.01 | < 0.01   |
| VC06          | 31/10/2019 | VC06_0.0-0.1  | 0.0 - 0.1  | < 0.05    |           | <0.05     | < 0.05    | < 0.05    | < 0.05    | < 0.05    |           | < 0.05    | < 0.05    | <0.05     | < 0.05    |           |           |                   |                     |                   |                   |                     |                   |          | < 0.05 |          |
| VC06          | 31/10/2019 | VC06_0.0-0.5  | 0.0 - 0.5  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC06          | 31/10/2019 | VC06_0.3-0.4  | 0.3 - 0.4  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC06          | 31/10/2019 | VC06_0.5-0.6  | 0.5 - 0.6  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC06          | 31/10/2019 | VC06_0.5-1.0  | 0.5 - 1.0  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC06          | 31/10/2019 | VC06_0.7-0.8  | 0.7 - 0.8  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC06          | 31/10/2019 | VC06_0.8-0.9  | 0.8 - 0.9  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC07          | 30/10/2019 | VC07_0.0-0.2  | 0.0 - 0.2  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00025  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |                   | <0.01               |                   | < 0.01 <          | :0.01               |                   | <0.0100  | <0.01  | < 0.01   |
| VC07          | 30/10/2019 | VC07_0.0-0.5  | 0.0 - 0.5  | <0.00050  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00025  | < 0.00050 | <0.00050  | < 0.00050 | <0.00050  | < 0.00050 |                   | <0.01               |                   | < 0.01 <          | :0.01               | <0.5              | <0.0100  | <0.01  | < 0.01   |
| VC07          | 30/10/2019 | VC07_0.2-0.4  | 0.2 - 0.4  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC07          | 30/10/2019 | VC07_0.5-0.6  | 0.5 - 0.6  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC07          | 30/10/2019 | VC07_0.5-1.0  | 0.5 - 1.0  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          | /      |          |
| VC07          | 30/10/2019 | VC07_0.7-0.8  | 0.7 - 0.8  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC07          | 30/10/2019 | VC07_1.0-1.2  | 1.0 - 1.2  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |
| VC08          | 31/10/2019 | VC08_0.0-0.1  | 0.0 - 0.1  | <0.05     |           | <0.05     | <0.05     | < 0.05    | <0.05     | < 0.05    |           | < 0.05    | < 0.05    | <0.05     | < 0.05    |           |           |                   |                     |                   |                   |                     |                   |          | <0.05  |          |
| VC08          | 31/10/2019 | VC08_0.0-0.5  | 0.0 - 0.5  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          | /      |          |
| VC08          | 31/10/2019 | VC08_0.3-0.4  | 0.3 - 0.4  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   | $ \rightarrow $     |                   |          |        |          |
| VC08          | 31/10/2019 | VC08_0.5-0.6  | 0.5 - 0.6  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   | $\rightarrow$       |                   |          |        |          |
| VC08          | 31/10/2019 | VC08_0.5-1.0  | 0.5 - 1.0  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   | $ \rightarrow $     |                   |          |        |          |
| VC08          | 31/10/2019 | VC08_0.7-0.8  | 0.7 - 0.8  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   | $ \rightarrow $     |                   |          |        |          |
| VC08          | 31/10/2019 | VC08_1.0-1.1  | 1.0 - 1.1  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   | $ \rightarrow $     |                   |                   | $ \rightarrow $     |                   |          | ]      |          |
| VC08          | 31/10/2019 | VC08_1.0-1.5  | 1.0 - 1.5  | <0.00050  | <0.00050  | <0.00050  | < 0.00050 | <0.00050  | <0.00050  | <0.00050  | <0.00050  | <0.00025  | <0.00050  | <0.00050  | <0.00050  | <0.00050  | <0.00050  | <sup>.</sup>      | <0.01               |                   | <0.01 <           | 0.01                | <0.5              | <0.0100  | <0.01  | <0.01    |
| VC08          | 31/10/2019 | VC08_1.3-1.4  | 1.3 - 1.4  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   | $ \longrightarrow $ |                   |                   | $ \longrightarrow $ |                   |          | ]      |          |
| VC08          | 31/10/2019 | VC08_1.5-1.6  | 1.5 - 1.6  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          | ]      |          |
| VC09          | 30/10/2019 | VC09_0.0-0.2  | 0.0 - 0.2  | <0.00050  | <0.00050  | <0.00050  | <0.00050  | <0.00050  | < 0.00050 | <0.00050  | <0.00050  | <0.00025  | <0.00050  | <0.00050  | <0.00050  | <0.00050  | <0.00050  |                   | <0.01               |                   | <0.01 <           | 0.01                | '                 | <0.0100  | <0.01  | <0.01    |
| VC09          | 30/10/2019 | VC09_0.0-0.5  | 0.0 - 0.5  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   | $ \longrightarrow $ |                   |                   | $ \longrightarrow $ |                   |          | ]      | <b></b>  |
| VC09          | 30/10/2019 | VC09_0.4-0.6  | 0.4 - 0.6  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   | $\longrightarrow$   |                   |                   | $ \rightarrow $     |                   |          | ]      | $\vdash$ |
| VC09          | 30/10/2019 | VC09_0.5-1.0  | 0.5 - 1.0  | ļ         |           |           |           |           |           |           |           |           |           |           |           |           |           | $\longrightarrow$ | $\longrightarrow$   | $\longrightarrow$ | $\longrightarrow$ | $\rightarrow$       | $\longrightarrow$ |          | ]      | <b>I</b> |
| VC09          | 30/10/2019 | VC09_0.7-0.8  | 0.7 - 0.8  |           |           |           |           |           |           |           |           |           |           |           |           |           |           |                   |                     |                   |                   |                     |                   |          |        |          |

# Appendix C Table C3 Wastle Classification - solid waste guidelines analytical results

|                  |            |              |           | OC Pesti  | cides      |                      |                      |                    |           |                 |               |                 |            |                    |                                               | . <u> </u>   | ·            |           |
|------------------|------------|--------------|-----------|-----------|------------|----------------------|----------------------|--------------------|-----------|-----------------|---------------|-----------------|------------|--------------------|-----------------------------------------------|--------------|--------------|-----------|
|                  |            |              |           | Dieldrin  | Endosulfan | Endosulfan I (alpha) | Endosulfan II (beta) | Endosulfan Sulfate | Endrin    | Endrin aldehyde | Endrin ketone | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide | Hexachlorobenzene                             | Methoxychlor | Oxychlordane | Toxaphene |
|                  |            |              |           | mg/kg     | mg/kg      | mg/kg                | mg/kg                | mg/kg              | mg/kg     | mg/kg           | mg/kg         | mg/kg           | mg/kg      | mg/kg              | mg/kg                                         | mg/kg        | mg/kg        | mg/       |
| VC09             | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |           |            |                      |                      |                    |           |                 |               |                 |            | ļ'                 | Ļ                                             | <u> </u>     |              | <b> </b>  |
| VC10             | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |           |            |                      |                      |                    |           |                 |               |                 |            | ļ'                 | L                                             | <b>_</b>     |              | <b>—</b>  |
| VC10             | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | < 0.00050 | <0.00050   | <0.00050             | <0.00050             | <0.00050           | <0.00050  | <0.00050        | <0.00050      | <0.00025        | <0.00050   | <0.00050           | <0.00050                                      | <0.00050     | <0.00050     | <b></b>   |
| VC10             | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |           |            |                      |                      |                    |           |                 |               |                 |            |                    |                                               |              |              | <b></b>   |
| VC10             | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 | < 0.00050 | < 0.00050  | < 0.00050            | < 0.00050            | < 0.00050          | < 0.00050 | < 0.00050       | < 0.00050     | < 0.00025       | < 0.00050  | < 0.00050          | < 0.00050                                     | < 0.00050    | <0.00050     | i i       |
| VC11             | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |           |            |                      |                      |                    |           |                 |               |                 |            |                    |                                               |              |              | 1         |
| VC11             | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |           |            |                      |                      |                    |           |                 |               |                 |            |                    |                                               |              |              | i —       |
| VC11             | 30/10/2019 | VC11 0.5-0.7 | 0.5 - 0.7 | < 0.00050 | < 0.00050  | < 0.00050            | < 0.00050            | < 0.00050          | < 0.00050 | < 0.00050       | < 0.00050     | < 0.00025       | < 0.00050  | < 0.00050          | < 0.00050                                     | < 0.00050    | < 0.00050    |           |
| VC11             | 30/10/2019 | VC11 0.5-1.0 | 0.5 - 1.0 |           |            |                      |                      |                    |           |                 |               |                 | 1          |                    |                                               | 1            |              |           |
| VC11             | 30/10/2019 | VC11 1.0-1.2 | 1.0 - 1.2 |           |            |                      |                      |                    |           |                 |               |                 | 1          |                    |                                               | 1            |              |           |
| VC12             | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | < 0.00050 | < 0.00050  | < 0.00050            | < 0.00050            | <0.00050           | < 0.00050 | < 0.00050       | < 0.00050     | < 0.00025       | <0.00050   | < 0.00050          | < 0.00050                                     | < 0.00050    | < 0.00050    |           |
| VC12             | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |           |            |                      |                      |                    |           |                 |               |                 |            |                    |                                               |              |              |           |
| VC12             | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |           |            |                      |                      |                    |           |                 |               | 1               | 1          |                    | 1                                             | +            | ++           | <u> </u>  |
| VC12             | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |           |            |                      |                      |                    |           |                 |               | l               |            |                    | <u>                                      </u> | +            | ++           | <u> </u>  |
| VC12             | 31/10/2019 | VC12_1.0-1.1 | 10-11     | <0.05     |            | <0.05                | <0.05                | <0.05              | <0.05     | <0.05           |               | <0.05           | <0.05      | <0.05              | <0.05                                         | +            | ++           |           |
| VC13             | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 | <0.00     |            | <0.00                | <0.00                | <0.00              | <0.00     | <0.00           |               | <0.00           | <0.00      | <0.00              | <0.00                                         |              | ++           |           |
| VC13             | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 | ~0.05     |            | ~0.05                | ~0.05                | ~0.00              | ~0.00     | ~0.00           |               | ~0.00           | ~0.00      | 0.00               | ~0.05                                         | +            | ++           |           |
| VC13             | 31/10/2019 | VC13_0.3_0.4 | 0.0 - 0.5 |           |            |                      |                      |                    |           |                 |               | <u> </u>        |            | <b>├</b> ────′     | <u> </u>                                      | +            | ++           | <u> </u>  |
| VC13             | 21/10/2019 | VC12_0.5-0.4 | 0.5 - 0.4 |           |            |                      |                      |                    |           |                 |               |                 |            | <b>├</b> ────′     | I                                             | +            | ───┦         | <u> </u>  |
| VC13             | 21/10/2019 | VC13_0.5-0.0 | 0.5 - 0.0 |           |            |                      |                      |                    |           |                 |               |                 |            | '                  | <u> </u>                                      | +            | ──┤          |           |
|                  | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |           |            |                      |                      |                    |           |                 |               |                 |            | ļ'                 | ───                                           | <u> </u>     | ───┦         | <u> </u>  |
| VC13             | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |           |            |                      |                      |                    |           |                 |               | l               |            | <b> '</b>          | ───                                           | ───          | ──┤          | <u> </u>  |
| VC13             | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |           |            |                      |                      |                    |           |                 |               | l               |            | Į′                 | ───                                           | <b></b>      | ──┤          | <u> </u>  |
| VC14             | 31/10/2019 | VC14_0.0-0.1 | 0.0 - 0.1 |           |            |                      |                      |                    |           |                 |               | l               |            | Į′                 | ───                                           | <b></b>      | ──┤          | <u> </u>  |
| VC14             | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |           |            |                      |                      |                    |           |                 |               |                 |            | ļ'                 | <b></b>                                       | <b></b>      | ───┦         | <b>—</b>  |
| VC14             | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |           |            |                      |                      |                    |           |                 |               |                 |            | ļ'                 | <b></b>                                       | <u> </u>     | $\downarrow$ | <b> </b>  |
| VC14             | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |           |            |                      |                      |                    |           |                 |               |                 |            |                    | <u> </u>                                      |              | $\downarrow$ | <b> </b>  |
| VC14             | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |           |            |                      |                      |                    |           |                 |               |                 |            |                    | L                                             | <u> </u>     |              | <b> </b>  |
| VC14             | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 | < 0.05    |            | < 0.05               | < 0.05               | < 0.05             | < 0.05    | < 0.05          |               | < 0.05          | < 0.05     | < 0.05             | < 0.05                                        | <b>_</b>     |              | <b> </b>  |
| VC14             | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |           |            |                      |                      |                    |           |                 |               |                 |            |                    |                                               |              |              | <b></b>   |
| VC14             | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |           |            |                      |                      |                    |           |                 |               |                 |            |                    |                                               |              |              | i         |
| Statistics       |            |              |           |           |            |                      |                      |                    |           |                 |               |                 |            |                    |                                               |              |              |           |
| Number of Result | te         |              |           | 25        | 17         | 25                   | 25                   | 25                 | 25        | 25              | 17            | 25              | 25         | 25                 | 25                                            | 17           | 17           | <u> </u>  |
| Number of Detect | 10<br>to   |              |           | 20        | 17         | 20                   | 25                   | 20                 | 20        | 20              |               | 20              | 20         | 20                 | 20                                            |              |              | ,         |
| Minimum Concern  | 15         |              |           |           |            |                      |                      |                    |           |                 |               |                 |            |                    |                                               |              |              | <u> </u>  |
| Maximum Concen   | ntration   |              |           | <0.0005   | <0.0005    | <0.0005              | <0.0005              | <0.0005            | <0.0005   | <0.0005         |               |                 |            | <u> </u>           | <0.0005                                       | <0.0005      |              | <u> </u>  |
| Iviaximum Concer | ntration   |              |           | < 0.05    | < 0.0005   | < 0.05               | <0.05                | <0.05              | <0.05     | <0.05           | <0.0005       | <0.05           | <u> </u>   | <0.05              | <0.05                                         | <0.0005      | <0.0005      | i         |

#### **Circular Quay Investigation** Port Authority of NSW

|     | Tokuthion | Azinphos methyl | Bolstar (Sulprofos) | Bromophos-ethyl | Carbophenothion | Chlorfenvinphos | Chlorfenvinphos E | Chlorpyrifos | Chlorpyrifos-methyl |
|-----|-----------|-----------------|---------------------|-----------------|-----------------|-----------------|-------------------|--------------|---------------------|
| /kg | mg/kg     | mg/kg           | mg/kg               | mg/kg           | mg/kg           | mg/kg           | mg/kg             | mg/kg        | mg/kg               |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           | < 0.01          |                     | <0.01           | <0.01           |                 | <0.0100           | <0.01        | <0.01               |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           | <0.01           |                     | <0.01           | <0.01           |                 | <0.0100           | <0.01        | <0.01               |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           | <0.01           |                     | <0.01           | <0.01           |                 | <0.0100           | <0.01        | <0.01               |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           | .0.04           |                     | .0.01           | .0.04           | -0.5            | .0.0400           | .0.04        | .0.01               |
|     |           | <0.01           |                     | <0.01           | <0.01           | <0.5            | <0.0100           | <0.01        | <0.01               |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   | <0.05        |                     |
|     |           |                 |                     |                 |                 |                 |                   | <0.05        |                     |
| _   |           |                 |                     |                 |                 |                 |                   | ~0.00        |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   | <0.05        |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |
|     |           |                 |                     |                 |                 |                 |                   |              |                     |

| 0 | 0 | 17    | 0 | 17    | 17    | 5    | 17       | 25    | 17    |
|---|---|-------|---|-------|-------|------|----------|-------|-------|
| 0 | 0 | 0     | 0 | 0     | 0     | 0    | 0        | 0     | 0     |
|   |   | <0.01 |   | <0.01 | <0.01 | <0.5 | <0.0100  | <0.01 | <0.01 |
|   |   | <0.01 |   | <0.01 | <0.01 | <0.6 | < 0.0100 | <0.05 | <0.01 |

#### Appendix C Table C3

Wastle Classification - solid waste guidelines analytical results

|                   |                             |                              |            |        |          |        |            |          |             |          |          |           |          |          | OP Pes  | ticides  |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
|-------------------|-----------------------------|------------------------------|------------|--------|----------|--------|------------|----------|-------------|----------|----------|-----------|----------|----------|---------|----------|-----------|----------|----------|----------|---------|-----------|----------------|---------|----------|--------|----------|-----------------------------------------------|----------|-------------------|----------|---------------|----------|
|                   |                             |                              |            | soho   | 0-4      | n-S    | n-S-methyl | Ē        | rfenvinphos | SO       | ate      | ц         |          |          | ٩       | soho     | noir      | othion   | Ē        | ц        |         | barathion | ios (Phosdrin) | otophos | Jibrom)  | ate    | Ę        |                                               | os-ethyl | os-methyl         | so       | hos           |          |
|                   |                             |                              |            | Coumap | Demeto   | Demeto | Demetor    | Diazinor | cis-Chlo    | Dichlorv | Dimetho  | Disulfoto | EPN      | Ethion   | Ethopro | Fenamip  | Fenitroth | Fensulfo | Fenthior | Malathic | Merphos | Methyl p  | Mevinph        | Monocro | Naled (D | Ometho | Parathic | Phorate                                       | Pirimpho | Pirimiph          | Prothiof | Pyrazop       | Ronnel   |
| FOI               |                             |                              |            | mg/kg  | g mg/kg  | mg/kg  | mg/kg      | mg/kg    | mg/kg       | mg/kg    | mg/kg    | mg/kg     | g mg/kg  | mg/kg    | mg/kg   | mg/kg    | g mg/kg   | g mg/kg  | mg/kg    | mg/kg    | mg/kg   | mg/kg     | mg/kg          | mg/kg   | mg/kg    | mg/kg  | mg/kg    | mg/kg r                                       | mg/kg    | mg/kg             | mg/kg    | mg/kg         | mg/kg    |
| NSW EPA (2014) G  | eneral Solid Waste CT1 (No  | o Leaching)                  |            | 2      | 0.2      | 0.2    | 0.01       | 0.01     | 0.01        | 0.01     | 0.01     | 0.2       | 0.2      | 0.01     | 0.2     | 0.01     | 0.2       | 0.2      | 0.01     | 0.01     | 0.2     | 0.01      | 0.2            | 0.01    | 0.2      | 2      | 0.01     | 0.2                                           | 0.01     | 0.2               | 0.01     | 0.2           | 0.2      |
| NSW EPA (2014) Re | estricted Solid Waste CT2 ( | (No Leaching)                |            |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| Location Code     | Date                        | Field ID                     | Denth      |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| BH05              | 7/11/2019                   | BH05_4.6-4.7                 | 4.6 - 4.7  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| BH06              | 7/11/2019                   | BH06_1.2-1.45                | 1.2 - 1.45 |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| BH07              | 7/11/2019                   | BH07_2.5-2.95                | 2.5 - 2.95 |        |          |        |            |          |             |          |          |           |          |          |         |          |           | + -      |          |          |         |           |                |         |          |        |          | +                                             |          | +                 | !        | ──            | +        |
| VC01              | 30/10/2019                  | VC01_0.0-0.2                 | 0.4 - 0.6  |        | -        |        | 1          |          |             |          |          |           | +        |          |         |          | -         | + +      |          |          |         |           |                |         |          |        |          | +                                             |          | +                 |          | <u> </u>      | +        |
| VC01              | 30/10/2019                  | VC01_0.5-1.0                 | 0.5 - 1.0  |        |          |        | <0.01      | <0.01    | <0.01       | <0.01    | <0.01    |           |          | <0.01    |         | <0.01    |           |          | <0.01    | <0.01    |         | <0.01     |                | <0.01   |          |        | <0.01    |                                               | <0.01    |                   | <0.01    |               |          |
| VC01              | 30/10/2019                  | VC01_1.0-1.1                 | 1.0 - 1.1  |        |          |        | <0.01      | <0.01    | <0.01       | <0.01    | <0.01    |           |          | <0.01    |         | <0.01    |           |          | <0.01    | <0.01    |         | <0.01     |                | <0.01   |          |        | <0.01    | <b></b>                                       | <0.01    | $\longrightarrow$ | <0.01    | —             | <u> </u> |
| VC02              | 30/10/2019                  | VC02_0.0-0.2                 | 0.0 - 0.2  | _      | +        |        | <0.01      | <0.01    | <0.01       | <0.01    | <0.01    |           | +        | <0.01    |         | <0.01    | -         | + +      | <0.01    | <0.01    |         | <0.01     |                | <0.01   |          |        | <0.01    | +                                             | <0.01    |                   | <0.01    | ──            | +        |
| VC02              | 31/10/2019                  | VC02_0.5-0.6                 | 0.5 - 0.6  |        | -        |        |            |          | 40.01       | -0.01    | 1 10.01  |           |          | 40.01    |         | 10.01    |           |          | -0.01    | 40.01    |         | 40.01     |                | 40.01   |          |        |          | +                                             |          | -+                | -0.01    | <u> </u>      | +        |
| VC02              | 30/10/2019                  | VC02_0.5-1.0                 | 0.5 - 1.0  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC02              | 30/10/2019                  | VC02_1.0-1.2                 | 1.0 - 1.2  |        |          |        |            |          |             |          |          |           |          | <u> </u> |         |          |           |          |          |          |         |           |                |         |          |        |          | +-+                                           |          |                   | !        | ──            |          |
| VC02              | 30/10/2019                  | VC02_1.0-1.5                 | 1.5 - 1.6  | _      | +        |        | <0.01      | <0.01    | <0.01       | < 0.01   | <0.01    |           |          | <0.01    |         | < 0.01   | -         |          | < 0.01   | <0.01    |         | < 0.01    |                | < 0.01  |          |        | <0.01    | +                                             | <0.01    | $\rightarrow$     | < 0.01   | <u> </u>      | +        |
| VC03              | 30/10/2019                  | VC03_0.0-0.2                 | 0.0 - 0.2  |        | +        |        |            | 0.01     | 0.01        | 0.01     |          |           | 1        |          |         |          | +         | + +      | 0.01     | 0.01     |         | 0.01      |                | 0.01    |          |        | 0.01     |                                               |          | +                 | 0.01     | <u> </u>      | 1        |
| VC03              | 30/10/2019                  | VC03_0.0-0.5                 | 0.0 - 0.5  |        |          |        | < 0.01     | <0.01    | < 0.01      | < 0.01   | <0.01    |           |          | < 0.01   |         | < 0.01   |           |          | < 0.01   | < 0.01   |         | < 0.01    |                | < 0.01  |          |        | < 0.01   |                                               | <0.01    |                   | <0.01    | $\square$     |          |
| VC03              | 30/10/2019                  | VC03_0.3-0.4                 | 0.3 - 0.4  |        |          |        | <0.01      | <0.01    | <0.01       | <0.01    | <0.01    |           |          | <0.01    |         | < 0.01   |           |          | <0.01    | <0.01    |         | <0.01     |                | <0.01   |          |        | <0.01    | <b>└──</b> ┤                                  | <0.01    | $\longrightarrow$ | <0.01    | ──            |          |
| VC03              | 30/10/2019                  | VC03_0.4-0.6                 | 0.4 - 0.6  |        | -        |        |            |          |             |          |          |           |          |          |         |          | -         | +        |          |          |         |           |                |         |          |        |          | +                                             |          |                   |          | <u> </u>      | +        |
| VC03              | 30/10/2019                  | VC03_0.6-0.7                 | 0.6 - 0.7  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          | <u> </u>      |          |
| VC03              | 30/10/2019                  | VC03_1.0-1.2                 | 1.0 - 1.2  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC04              | 30/10/2019                  | VC04_0.0-0.1                 | 0.0 - 0.1  | _      | <u> </u> |        | 10.01      | 10.01    | 10.01       | -0.04    | 10.01    |           | <u> </u> | 10.01    |         | 10.04    | _         |          | -0.04    | 10.01    |         | 10.01     |                | 10.01   |          |        | 10.01    | +-+                                           | 10.01    | <del> </del>      | 10.01    | ──            |          |
| VC04              | 30/10/2019                  | VC04_0.3-0.4                 | 0.3 - 0.4  | _      | +        |        | <0.01      | <0.01    | <0.01       | <0.01    | < 0.01   |           |          | < 0.01   |         | < 0.01   | -         | + +      | < 0.01   | < 0.01   |         | <0.01     |                | <0.01   |          |        | < 0.01   | <u>                                      </u> | <0.01    |                   | <0.01    | ──            | +        |
| VC04              | 30/10/2019                  | VC04_0.5-0.0                 | 0.5 - 1.0  |        | +        |        | <0.01      | <0.01    | <0.01       | <0.01    | <0.01    |           | -        | <0.01    |         | <0.01    |           |          | < 0.01   | < 0.01   |         | <0.01     |                | <0.01   |          |        | <0.01    | +                                             | <0.01    |                   | <0.01    | <u> </u>      | +        |
| VC04              | 31/10/2019                  | VC04_0.7-0.8                 | 0.7 - 0.8  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC04              | 31/10/2019                  | VC04_0.9-1.0                 | 0.9 - 1.0  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   | !        |               |          |
| VC05              | 30/10/2019                  | VC05_0.0-0.1                 | 0.0 - 0.1  |        |          |        |            |          |             |          |          |           |          | <u> </u> |         |          |           |          |          |          |         |           |                |         |          |        |          | +-+                                           |          |                   | !        | <u> </u>      |          |
| VC05              | 30/10/2019                  | VC05 0.5-0.9                 | 0.5 - 0.9  |        | -        |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          | +                                             |          |                   |          | <u> </u>      | +        |
| VC05              | 30/10/2019                  | VC05_0.8-0.9                 | 0.8 - 0.9  |        |          |        | <0.01      | <0.01    | <0.01       | <0.01    | <0.01    |           |          | <0.01    |         | <0.01    |           |          | <0.01    | <0.01    |         | <0.01     |                | <0.01   |          |        | <0.01    |                                               | <0.01    |                   | <0.01    |               |          |
| VC06              | 31/10/2019                  | VC06_0.0-0.1                 | 0.0 - 0.1  |        |          |        |            |          |             |          |          |           |          | ļ        |         |          |           |          |          |          |         |           |                |         |          |        |          | +                                             |          | $\longrightarrow$ | !        | <b> </b>      | <b>_</b> |
| VC06              | 31/10/2019                  | VC06_0.0-0.5                 | 0.0 - 0.5  |        |          |        |            |          |             |          |          |           |          | <u> </u> |         |          |           |          |          |          |         |           |                |         |          |        | <u> </u> | +                                             |          | +                 | !        | ──            |          |
| VC06              | 31/10/2019                  | VC06 0.5-0.6                 | 0.5 - 0.6  | -      | 1        |        |            |          |             |          |          |           | 1        |          |         |          | 1         | + +      |          |          |         |           |                |         |          |        |          | +                                             |          | +                 |          | <u> </u>      | +        |
| VC06              | 31/10/2019                  | VC06_0.5-1.0                 | 0.5 - 1.0  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC06              | 31/10/2019                  | VC06_0.7-0.8                 | 0.7 - 0.8  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          | <u> </u>      |          |
| VC06              | 31/10/2019                  | VC06_0.8-0.9                 | 0.8 - 0.9  |        |          |        | <0.01      | <0.01    | <0.01       | <0.01    | <0.01    |           |          | <0.01    |         | <0.01    |           | +        | <0.01    | <0.01    |         | <0.01     |                | <0.01   |          |        | <0.01    | +                                             | <0.01    | $\rightarrow$     | <0.01    | ──            | +        |
| VC07              | 30/10/2019                  | VC07_0.0-0.2                 | 0.0 - 0.2  |        | +        | -      | <0.01      | < 0.01   | < 0.01      | < 0.01   | < 0.01   |           | +        | < 0.01   |         | < 0.01   | 1         | + +      | < 0.01   | < 0.01   |         | < 0.01    |                | < 0.01  |          |        | <0.01    | <u>├</u> ──┼                                  | <0.01    | -+                | <0.01    | <u> </u>      | +        |
| VC07              | 30/10/2019                  | VC07_0.2-0.4                 | 0.2 - 0.4  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC07              | 30/10/2019                  | VC07_0.5-0.6                 | 0.5 - 0.6  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC07              | 30/10/2019                  | VC07_0.5-1.0                 | 0.5 - 1.0  |        |          |        |            |          |             |          |          |           |          |          |         | <u> </u> |           | + -      |          |          |         |           |                |         |          |        |          | +-+                                           |          |                   | !        | ──            | +        |
| VC07              | 30/10/2019                  | VC07_0.7-0.8                 | 1.0 - 1.2  |        | +        |        | +          |          |             |          |          |           | +        | <u> </u> |         |          | +         | + +      |          |          |         |           |                |         |          |        |          | +                                             |          | -+                |          | <u> </u>      | +        |
| VC08              | 31/10/2019                  | VC08_0.0-0.1                 | 0.0 - 0.1  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC08              | 31/10/2019                  | VC08_0.0-0.5                 | 0.0 - 0.5  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          | <u> </u>      |          |
| VC08              | 31/10/2019                  | VC08_0.3-0.4                 | 0.3 - 0.4  | _      | +        |        |            |          |             |          |          |           | +        |          |         |          | +         | + -      |          |          |         |           |                |         |          |        |          | ──┼                                           |          | $\rightarrow$     | !        | ──            | +        |
| VC08              | 31/10/2019                  | VC08_0.5-0.0                 | 0.5 - 0.0  |        | -        | -      | -          |          |             |          | <u> </u> | -         | -        |          | -       | <u> </u> | -         | + -      |          |          |         |           |                |         |          |        | <u> </u> | +                                             |          | $\rightarrow$     | ]        | <u> </u>      | +        |
| VC08              | 31/10/2019                  | VC08_0.7-0.8                 | 0.7 - 0.8  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC08              | 31/10/2019                  | VC08_1.0-1.1                 | 1.0 - 1.1  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC08              | 31/10/2019                  | VC08_1.0-1.5                 | 1.0 - 1.5  |        |          |        | <0.01      | <0.01    | <0.01       | <0.01    | < 0.01   |           |          | < 0.01   |         | < 0.01   |           |          | <0.01    | <0.01    |         | <0.01     |                | <0.01   |          |        | < 0.01   | <b> </b>                                      | <0.01    | $ \rightarrow $   | <0.01    | ──            | <b></b>  |
| VC08              | 31/10/2019                  | VC00_1.3-1.4<br>VC08_1.5-1.6 | 1.5 - 1.6  |        | +        | -      |            |          |             |          |          |           | +        |          |         | <u> </u> | -         | + -      |          |          |         |           |                |         |          |        |          | +                                             |          | -+                |          | <u> </u>      | +        |
| VC09              | 30/10/2019                  | VC09_0.0-0.2                 | 0.0 - 0.2  |        | 1        |        | <0.01      | <0.01    | <0.01       | <0.01    | <0.01    |           | 1        | <0.01    |         | <0.01    |           |          | <0.01    | <0.01    |         | <0.01     |                | <0.01   |          |        | <0.01    | +                                             | <0.01    | -+                | <0.01    | <u> </u>      | +        |
| VC09              | 30/10/2019                  | VC09_0.0-0.5                 | 0.0 - 0.5  |        |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          |                                               |          |                   |          |               |          |
| VC09              | 30/10/2019                  | VC09_0.4-0.6                 | 0.4 - 0.6  | _      |          |        |            |          |             |          |          |           |          |          |         |          |           |          |          |          |         |           |                |         |          |        |          | +                                             |          | $ \rightarrow $   | !        | —             | <b></b>  |
| VC09              | 30/10/2019                  | VC09_0.5-1.0                 | 0.5 - 1.0  |        | +        | -      |            |          |             |          |          |           | +        |          |         | <u> </u> | +         | + -      |          |          |         |           |                |         |          |        | <u> </u> | +                                             |          | $\rightarrow$     | !        | <u> </u>      | +        |
| L                 | 00/10/2013                  | 1.000_0.1-0.0                | 10.1 0.0   |        | 1        | 1      | 1          | 1        |             |          | 1        | 1         | 1        | 1        | 1       |          | 1         | 1        |          | 1        | I       |           |                |         |          |        | I        | L                                             |          |                   |          | <u>ــــــ</u> |          |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx

# Appendix C Table C3 Wastle Classification - solid waste guidelines analytical results

|                       |            |              |           |           |           |           |                  |          |                     |            |            |            |          |        | OP Pes   | ticides    |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
|-----------------------|------------|--------------|-----------|-----------|-----------|-----------|------------------|----------|---------------------|------------|------------|------------|----------|--------|----------|------------|--------------|---------------|----------|-----------|---------|------------------|----------------------|---------------|----------------|-----------|-----------|----------------------------|-------------------|------------|------------|----------|
|                       |            |              |           | Coumaphos | Demeton-O | Demeton-S | Demeton-S-methyl | Diazinon | cis-Chlorfenvinphos | Dichlorvos | Dimethoate | Disulfoton | EPN      | Ethion | Ethoprop | Fenamiphos | Fenitrothion | Fensulfothion | Fenthion | Malathion | Merphos | Methyl parathion | Mevinphos (Phosdrin) | Monocrotophos | Naled (Dibrom) | Omethoate | Parathion | Phorate<br>Dirimphos-ethvl | Pirimiphos-methyl | Prothiofos | Pyrazophos | Ronnel   |
|                       |            |              |           | mg/kg     | mg/kg     | g mg/kg   | mg/kg            | mg/kg    | mg/kg               | mg/kg      | mg/kg      | mg/kg      | mg/kg    | mg/kg  | mg/kg    | mg/kg      | mg/kg        | mg/kg         | mg/kg    | mg/kg     | mg/kg   | mg/kg            | mg/kg                | mg/kg         | mg/kg          | mg/kg     | mg/kg     | mg/kg mg                   | /kg mg/           | kg mg/k    | g mg/l     | kg mg/kg |
| VC09                  | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC10                  | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC10                  | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |           |           |           | <0.01            | <0.01    | <0.01               | <0.01      | <0.01      |            |          | <0.01  |          | <0.01      |              |               | <0.01    | <0.01     |         | <0.01            |                      | <0.01         |                |           | <0.01     | <0                         | .01               | <0.0       | 1          |          |
| VC10                  | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC10                  | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |           |           |           | <0.01            | <0.01    | <0.01               | <0.01      | <0.01      |            |          | <0.01  |          | <0.01      |              |               | <0.01    | <0.01     |         | <0.01            |                      | <0.01         |                |           | <0.01     | <0                         | .01               | <0.0       | 1          |          |
| VC11                  | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC11                  | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC11                  | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 |           |           |           | < 0.01           | <0.01    | < 0.01              | <0.01      | < 0.01     |            |          | < 0.01 |          | < 0.01     |              |               | < 0.01   | < 0.01    |         | < 0.01           |                      | < 0.01        |                |           | <0.01     | <0                         | .01               | < 0.0      | 1          |          |
| VC11                  | 30/10/2019 | VC11 0.5-1.0 | 0.5 - 1.0 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC11                  | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC12                  | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 |           |           |           | < 0.01           | < 0.01   | < 0.01              | <0.01      | < 0.01     |            |          | < 0.01 |          | < 0.01     |              |               | < 0.01   | < 0.01    |         | < 0.01           |                      | < 0.01        |                |           | < 0.01    | <0                         | .01               | < 0.0      | 1          |          |
| VC12                  | 31/10/2019 | VC12 0.3-0.4 | 0.3 - 0.4 |           | 1         |           |                  |          |                     |            | 1          |            | 1        |        |          | 1          | 1            |               | 1        | 1         |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC12                  | 31/10/2019 | VC12 0.5-0.6 | 0.5 - 0.6 |           |           |           |                  |          |                     |            | 1          |            | 1        |        |          | 1          |              |               | 1        | 1         |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC12                  | 31/10/2019 | VC12 0.8-0.9 | 0.8 - 0.9 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            | -        |
| VC12                  | 31/10/2019 | VC12 1.0-1.1 | 1.0 - 1.1 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC13                  | 31/10/2019 | VC13 0.0-0.1 | 0.0 - 0.1 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC13                  | 31/10/2019 | VC13 0.0-0.5 | 0.0 - 0.5 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            | -        |
| VC13                  | 31/10/2019 | VC13 0.3-0.4 | 0.3 - 0.4 | 1         | 1         |           |                  |          |                     |            |            |            | 1        |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC13                  | 31/10/2019 | VC13 0.5-0.6 | 0.5 - 0.6 |           |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC13                  | 31/10/2019 | VC13 0.5-1.0 | 0.5 - 1.0 | 1         | 1         |           |                  |          |                     |            | 1          |            | 1        |        |          |            | <u> </u>     | 1             |          | 1         |         |                  |                      |               |                |           |           |                            |                   | -          |            |          |
| VC13                  | 31/10/2019 | VC13 0.7-0.8 | 0.7 - 0.8 | -         | <u> </u>  | <u> </u>  |                  |          |                     |            |            |            |          |        |          | <u> </u>   |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   | _          | _          |          |
| VC13                  | 31/10/2019 | VC13 1.0-1.1 | 1.0 - 1.1 | +         | <u> </u>  | <u> </u>  |                  |          |                     |            |            |            | <u> </u> |        |          | <u> </u>   | <u> </u>     |               |          |           |         |                  |                      |               |                |           |           |                            |                   | <u> </u>   | _          |          |
| VC14                  | 31/10/2019 | VC14_0_0-0_1 | 0.0 - 0.1 |           | <u> </u>  |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC14                  | 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 | -         |           |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   | _          |            |          |
| VC14                  | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 | +         | +         | +         |                  |          |                     |            | 1          | <u> </u>   | 1        |        |          | <u> </u>   | <u> </u>     | -             | <u> </u> |           |         |                  |                      |               |                |           |           |                            |                   |            | -          |          |
| VC14                  | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 | -         | <u> </u>  |           |                  |          |                     |            |            |            |          |        |          |            |              |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            | -          |          |
| VC14                  | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 | +         | +         | +         |                  |          |                     |            |            | 1          |          |        |          |            | <u> </u>     |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            |            |          |
| VC14                  | 31/10/2019 | VC14_1.0-1.1 | 10-11     | +         | +         | +         |                  |          |                     | <u> </u>   | +          | <u> </u>   | +        |        |          | <u> </u>   | <u> </u>     | +             | <u> </u> | <u> </u>  |         |                  |                      |               |                |           |           |                            |                   | +          |            |          |
| VC14                  | 31/10/2019 | VC14_1_3-1_4 | 13-14     | +         | +         | +         |                  |          |                     | <u> </u>   | <u> </u>   | <u> </u>   | +        |        |          | <u> </u>   | <u> </u>     |               | <u> </u> | <u> </u>  |         |                  |                      |               |                |           |           |                            |                   | +          | -          |          |
| VC14                  | 31/10/2019 | VC14-0 5-0 6 | 0.5 - 0.6 | +         | +         |           |                  |          |                     |            |            |            |          |        |          | <u> </u>   | <u> </u>     |               |          |           |         |                  |                      |               |                |           |           |                            |                   |            | -          |          |
| Statistics            | 01110/2013 | 1014-0.0-0.0 | 0.0 - 0.0 | 1         | 1         | 1         |                  | 1        | 1                   | 1          | 1          | 1          | 1        | 1      |          | 1          | 1            | 1             | 1        | 1         | II      |                  |                      |               |                | 1         | 1         |                            |                   | -1         |            |          |
| Number of Results     |            |              |           | (         |           | 0 0       | 17               | 17       | 17                  | 17         | / 17       | 0          | 0 0      | 17     | 0        | 17         | 0            | 0 0           | 17       | 17        | 0       | 17               | 0                    | 17            | 0              | 0         | 17        | 0                          | 17                | 0 1        | 7          | 0 0      |
| Number of Detects     |            |              |           | (         |           | 0 0       | 0                | 0        | 0                   | 0          | 0 0        | 0 0        | 0 0      | 0      | 0        | 0          | 0            | 0 0           | 0        | 0         | 0       | 0                | 0                    | 0             | 0              | 0         | 0         | 0                          | 0                 | 0          | 0          | 0 0      |
| Minimum Concentration |            |              |           |           |           |           | < 0.01           | <0.01    | <0.01               | <0.01      | < 0.01     |            |          | < 0.01 |          | <0.01      |              |               | <0.01    | < 0.01    |         | <0.01            |                      | < 0.01        |                |           | <0.01     | <0                         | .01               | <0.0       | )1         |          |
| Maximum Concentration |            |              |           |           |           |           | < 0.01           | <0.01    | < 0.01              | < 0.01     | <0.01      |            |          | < 0.01 |          | < 0.01     |              |               | < 0.01   | < 0.01    |         | < 0.01           |                      | < 0.01        |                |           | < 0.01    | <0                         | .01               | <0.0       | )1         |          |

# Circular Quay Investigation

Port Authority of NSW

Appendix C

Table C3

Wastle Classification - solid waste guidelines analytical results

|                            |                          |               |            |          |               |                   |                       |         |                       |                  | Halog        | enated                     |               |               |               | D             | OD <sub>2</sub> |               |               |              | Llarhiaidea |                               |                       |                               |                       |                    |                     |                        |                              |                     |
|----------------------------|--------------------------|---------------|------------|----------|---------------|-------------------|-----------------------|---------|-----------------------|------------------|--------------|----------------------------|---------------|---------------|---------------|---------------|-----------------|---------------|---------------|--------------|-------------|-------------------------------|-----------------------|-------------------------------|-----------------------|--------------------|---------------------|------------------------|------------------------------|---------------------|
|                            |                          |               |            |          |               |                   | Ð                     | IVI.    | υ                     |                  | Hyaroo       | carbons<br>⊆               |               | 1             |               |               |                 | 1             |               |              | Herbicides  |                               |                       |                               |                       |                    |                     | Ð                      | <u> </u>                     |                     |
|                            |                          |               |            | Terbufos | Trichloronate | Tetrachlorvinphos | 1,2,4-trimethylbenzen | Styrene | 1,3,5-trimethylbenzen | lsopropylbenzene | Bromomethane | Dichlorodifluorometha<br>e | Arochlor 1016 | Arochlor 1221 | Arochlor 1232 | Arochlor 1242 | Arochlor 1248   | Arochlor 1254 | Arochlor 1260 | PCBs (Total) | Pronamide   | 1,1,1,2-<br>tetrachloroethane | 1,1,1-trichloroethane | 1,1,2,2-<br>tetrachloroethane | 1,1,2-trichloroethane | 1,1-dichloroethene | 1,1-dichloropropene | 1,2,4-trichlorobenzene | 1,2-dibromo<br>chloropropane | 1,2-dichlorobenzene |
| 50                         |                          |               |            | mg/kg    | g mg/kg       | mg/kg             | mg/kg                 | mg/kg   | mg/kg                 | mg/kg            | mg/kg        | mg/kg                      | g mg/kg       | mg/kg         | mg/kg         | mg/kg         | mg/kg           | mg/kg         | mg/kg         | mg/kg        | mg/kg       | mg/kg                         | mg/kg                 | mg/kg                         | mg/kg                 | mg/kg              | mg/kg               | mg/kg r                | ng/kg                        | mg/kg               |
| EQL<br>NSW FPA (2014) Gene | eral Solid Waste CT1 (No | l eaching)    |            | 0.2      | 0.2           | 0.2               | 0.5                   | 0.5     | 0.5                   | 0.5              | 5            | 5                          | 0.005         | 0.005         | 0.005         | 0.005         | 0.005           | 0.005         | 0.005         | 0.005        | 0.5         | 200                           | 0.5                   | 0.5                           | 0.5                   | 0.5                | 0.5                 | 0.5                    | 0.5                          | 0.5                 |
| NSW EPA (2014) Restr       | icted Solid Waste CT2 (N | No Leaching)  |            |          |               |                   |                       | 240     |                       |                  |              |                            |               |               |               |               |                 |               |               | 50           |             | 800                           | 2,400                 | 104                           | 96                    | 56                 |                     |                        |                              | 344                 |
| Location Code              | Data                     | Field ID      | Donth      |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| BH05                       | 7/11/2019                | BH05 4.6-4.7  | 4.6 - 4.7  |          |               |                   |                       | <0.5    |                       |                  |              |                            |               | 1             |               | 1             | 1               | 1             | 1             | <0.1         |             | < 0.5                         | <0.5                  | <0.5                          | <0.5                  | <0.5               |                     |                        | <u> </u>                     |                     |
| BH06                       | 7/11/2019                | BH06_1.2-1.45 | 1.2 - 1.45 |          |               |                   |                       | <0.5    |                       |                  |              |                            |               |               |               |               |                 |               |               | <0.1         |             | <0.5                          | <0.5                  | <0.5                          | <0.5                  | <0.5               |                     |                        |                              |                     |
| BH07                       | 7/11/2019                | BH07_2.5-2.95 | 2.5 - 2.95 | _        | +             |                   |                       | <0.5    |                       |                  |              |                            |               |               |               |               |                 |               |               | <0.1         |             | < 0.5                         | <0.5                  | <0.5                          | <0.5                  | <0.5               |                     |                        | —                            |                     |
| VC01                       | 30/10/2019               | VC01_0.0-0.2  | 0.4 - 0.6  |          | +             |                   |                       |         |                       |                  |              |                            |               |               |               | <u> </u>      |                 |               |               |              |             | <u> </u>                      |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC01                       | 30/10/2019               | VC01_0.5-1.0  | 0.5 - 1.0  |          |               |                   |                       |         |                       |                  |              |                            | < 0.0050      | <0.0050       | <0.0050       | < 0.0050      | < 0.0050        | < 0.0050      | <0.0050       | <0.0050      | <0.5        |                               |                       |                               |                       |                    |                     | <0.5                   |                              | <0.5                |
| VC01                       | 30/10/2019               | VC01_1.0-1.1  | 1.0 - 1.1  | _        |               |                   |                       |         |                       |                  |              |                            | < 0.0050      | <0.0050       | <0.0050       | < 0.0050      | < 0.0050        | < 0.0050      | <0.0050       | <0.0050      |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC02<br>VC02               | 30/10/2019               | VC02_0.0-0.2  | 0.0 - 0.2  |          | +             |                   |                       |         |                       |                  |              |                            | <0.0050       | <0.0050       | <0.0050       | <0.0050       | <0.0050         | <0.0050       | <0.0050       | <0.0050      |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC02                       | 31/10/2019               | VC02_0.5-0.6  | 0.5 - 0.6  |          | +             |                   |                       |         |                       |                  |              |                            |               | 0.0000        |               | 0.0000        | 0.0000          | -0.0000       | 0.0000        |              |             | <u> </u>                      |                       |                               |                       |                    |                     |                        |                              |                     |
| VC02                       | 30/10/2019               | VC02_0.5-1.0  | 0.5 - 1.0  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC02                       | 30/10/2019               | VC02_1.0-1.2  | 1.0 - 1.2  | _        | +             |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC02                       | 30/10/2019               | VC02_1.0-1.5  | 1.5 - 1.6  |          | +             |                   |                       |         |                       |                  |              |                            | < 0.0050      | < 0.0050      | < 0.0050      | < 0.0050      | < 0.0050        | 0 < 0.0050    | <0.0050       | < 0.0050     |             | <u> </u>                      |                       |                               |                       |                    |                     |                        | -+                           |                     |
| VC03                       | 30/10/2019               | VC03_0.0-0.2  | 0.0 - 0.2  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        | $ \rightarrow $              |                     |
| VC03                       | 30/10/2019               | VC03_0.0-0.5  | 0.0 - 0.5  |          |               |                   |                       |         |                       |                  |              |                            | < 0.0050      | < 0.0050      | < 0.0050      | < 0.0050      | < 0.0050        | < 0.0050      | <0.0050       | < 0.0050     |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC03                       | 30/10/2019               | VC03_0.3-0.4  | 0.3 - 0.4  | _        | +             |                   | <0.5                  | < 0.5   | <0.5                  | < 0.5            | <5           | <5                         | < 0.0050      | <0.0050       | <0.0050       | < 0.0050      | < 0.0050        | < 0.0050      | <0.0050       | <0.0050      |             | <0.5                          | <0.5                  | <0.5                          | <0.5                  | <0.5               | <0.5                | <0.5                   | <0.5                         | <0.5                |
| VC03                       | 30/10/2019               | VC03_0.4-0.0  | 0.4 - 0.0  |          | +             |                   |                       |         |                       |                  |              |                            | +             | <u> </u>      |               | <u> </u>      |                 |               | <u> </u>      |              |             | <u> </u>                      |                       |                               |                       |                    |                     |                        | -+                           |                     |
| VC03                       | 30/10/2019               | VC03_0.6-0.7  | 0.6 - 0.7  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC03                       | 30/10/2019               | VC03_1.0-1.2  | 1.0 - 1.2  | _        |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC04                       | 30/10/2019               | VC04_0.0-0.1  | 0.0 - 0.1  | _        |               |                   |                       |         |                       |                  |              |                            | <0.0050       | <0.0050       | <0.0050       | <0.0050       | <0.0050         | <0.0050       | <0.0050       | <0.0050      |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC04                       | 31/10/2019               | VC04_0.5-0.6  | 0.5 - 0.6  |          |               |                   |                       |         |                       |                  |              |                            | <0.0050       | <0.0050       | <0.0050       | 0.0030        | 0.0030          | 0.0030        | <0.0050       | <0.0050      |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC04                       | 30/10/2019               | VC04_0.5-1.0  | 0.5 - 1.0  |          |               |                   |                       |         |                       |                  |              |                            | < 0.0062      | <0.0062       | <0.0062       | < 0.0062      | < < 0.0062      | 2 < 0.0062    | <0.0062       | <0.0062      | <0.6        |                               |                       |                               |                       |                    |                     | <0.6                   |                              | <0.6                |
| VC04                       | 31/10/2019               | VC04_0.7-0.8  | 0.7 - 0.8  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC04                       | 31/10/2019               | VC04_0.9-1.0  | 0.9 - 1.0  | _        |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               | <0.1         |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC05                       | 30/10/2019               | VC05_0.5-0.7  | 0.5 - 0.7  |          | +             |                   |                       |         |                       |                  |              |                            | +             | <u> </u>      |               | <u> </u>      | <u> </u>        |               |               | <u> </u>     |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC05                       | 30/10/2019               | VC05_0.5-0.9  | 0.5 - 0.9  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC05                       | 30/10/2019               | VC05_0.8-0.9  | 0.8 - 0.9  |          | _             |                   | <0.5                  | < 0.5   | <0.5                  | <0.5             | <5           | <5                         | < 0.0050      | <0.0050       | <0.0050       | < 0.0050      | < 0.0050        | < 0.0050      | <0.0050       | < 0.0050     |             | < 0.5                         | < 0.5                 | < 0.5                         | < 0.5                 | < 0.5              | <0.5                | <0.5                   | <0.5                         | <0.5                |
| VC06                       | 31/10/2019               | VC06_0.0-0.1  | 0.0 - 0.1  | _        |               |                   |                       | <0.5    |                       |                  |              |                            |               |               |               |               |                 |               |               | <0.1         |             | <0.5                          | <0.5                  | <0.5                          | <0.5                  | <0.5               |                     |                        | $\rightarrow$                |                     |
| VC06                       | 31/10/2019               | VC06_0.3-0.4  | 0.3 - 0.4  |          | +             |                   |                       |         |                       |                  |              |                            | -             | <u> </u>      |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC06                       | 31/10/2019               | VC06_0.5-0.6  | 0.5 - 0.6  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC06                       | 31/10/2019               | VC06_0.5-1.0  | 0.5 - 1.0  | _        |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC06                       | 31/10/2019               | VC06_0.7-0.8  | 0.7 - 0.8  | _        |               |                   |                       |         |                       |                  |              |                            |               |               |               | <u> </u>      |                 |               |               |              |             | <u> </u>                      |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC07                       | 30/10/2019               | VC07 0.0-0.2  | 0.0 - 0.2  |          | -             |                   | <0.5                  | <0.5    | < 0.5                 | <0.5             | <5           | <5                         | < 0.0050      | < 0.0050      | < 0.0050      | < 0.0050      | < 0.0050        | < 0.0050      | < 0.0050      | < 0.0050     |             | < 0.5                         | <0.5                  | <0.5                          | <0.5                  | < 0.5              | <0.5                | <0.5                   | <0.5                         | <0.5                |
| VC07                       | 30/10/2019               | VC07_0.0-0.5  | 0.0 - 0.5  |          |               |                   |                       |         |                       |                  |              |                            | < 0.0050      | <0.0050       | <0.0050       | < 0.0050      | < 0.0050        | 0.0677        | <0.0050       | 0.0677       | <0.5        |                               |                       |                               |                       |                    |                     | <0.5                   |                              | <0.5                |
| VC07                       | 30/10/2019               | VC07_0.2-0.4  | 0.2 - 0.4  | _        |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC07                       | 30/10/2019               | VC07_0.5-0.6  | 0.5 - 0.6  |          | +             |                   |                       |         |                       |                  |              |                            | +             |               |               |               |                 | -             |               | <0.1         |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC07                       | 30/10/2019               | VC07_0.7-0.8  | 0.7 - 0.8  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               | -0.1         |             |                               |                       |                               |                       |                    |                     |                        | -+                           |                     |
| VC07                       | 30/10/2019               | VC07_1.0-1.2  | 1.0 - 1.2  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC08                       | 31/10/2019               | VC08_0.0-0.1  | 0.0 - 0.1  | _        |               |                   |                       | <0.5    |                       |                  |              |                            |               |               |               |               |                 |               |               | <0.1         |             | <0.5                          | <0.5                  | <0.5                          | <0.5                  | <0.5               |                     |                        | $\rightarrow$                |                     |
| VC08                       | 31/10/2019               | VC08_0.0-0.5  | 0.0 - 0.5  |          | +             |                   |                       |         |                       |                  |              |                            | +             |               |               |               |                 |               |               | <0.1         |             |                               |                       |                               |                       |                    |                     |                        | -+                           |                     |
| VC08                       | 31/10/2019               | VC08 0.5-0.6  | 0.5 - 0.6  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               | -0.1         |             |                               |                       |                               |                       |                    |                     |                        | -+                           |                     |
| VC08                       | 31/10/2019               | VC08_0.5-1.0  | 0.5 - 1.0  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC08                       | 31/10/2019               | VC08_0.7-0.8  | 0.7 - 0.8  |          |               |                   |                       |         |                       |                  |              | <u> </u>                   |               |               |               | <b> </b>      |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC08                       | 31/10/2019               | VC08_1.0-1.1  | 1.0 - 1.1  |          | +             |                   |                       |         |                       |                  |              |                            | <0.0050       | <0.0050       | <0.0050       | <0.0050       | <0.0050         | <0.0050       | <0.0050       | <0.0050      | <0.5        |                               |                       |                               |                       |                    |                     | <0.5                   | $\rightarrow$                | <0.5                |
| VC08                       | 31/10/2019               | VC08_1.3-1.4  | 1.3 - 1.4  |          | 1             |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              | -0.0        |                               | <u> </u>              |                               |                       |                    |                     | -0.0                   | $\rightarrow$                | -0.0                |
| VC08                       | 31/10/2019               | VC08_1.5-1.6  | 1.5 - 1.6  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC09                       | 30/10/2019               | VC09_0.0-0.2  | 0.0 - 0.2  |          |               |                   |                       |         |                       |                  |              |                            | < 0.0050      | <0.0050       | <0.0050       | < 0.0050      | < 0.0050        | < 0.0050      | < 0.0050      | <0.0050      |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |
| VC09                       | 30/10/2019               | VC09_0.0-0.5  | 0.0 - 0.5  |          |               |                   |                       |         |                       |                  |              |                            | +             |               |               |               |                 | +             |               | <0.1         |             |                               |                       |                               |                       |                    |                     |                        | $\rightarrow$                |                     |
| VC09                       | 30/10/2019               | VC09_0.5-1.0  | 0.5 - 1.0  |          | +             |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               | -0.1         |             |                               |                       |                               |                       |                    |                     |                        | -+                           |                     |
| VC09                       | 30/10/2019               | VC09_0.7-0.8  | 0.7 - 0.8  |          |               |                   |                       |         |                       |                  |              |                            |               |               |               |               |                 |               |               |              |             |                               |                       |                               |                       |                    |                     |                        |                              |                     |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx

Maximum Concentration

#### Appendix C Table C3

#### Wastle Classification - solid waste guidelines analytical results

|                      |            |              |           |          |               |                   |                        | M       | AH                     |                  | Halog<br>Hydro | enated carbons              |               |               |               | P             | CBs           |               |               |              | Herbicides |
|----------------------|------------|--------------|-----------|----------|---------------|-------------------|------------------------|---------|------------------------|------------------|----------------|-----------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|------------|
|                      |            |              |           | Terbufos | Trichloronate | Tetrachlorvinphos | 1,2,4-trimethylbenzene | Styrene | 1,3,5-trimethylbenzene | lsopropylbenzene | Bromomethane   | Dichlorodifluoromethan<br>e | Arochlor 1016 | Arochlor 1221 | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | Arochlor 1260 | PCBs (Total) | Pronamide  |
|                      |            |              |           | mg/kg    | mg/kg         | mg/kg             | mg/kg                  | mg/kg   | mg/kg                  | mg/kg            | mg/kg          | mg/kg                       | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/kg        | mg/kg      |
| VC09                 | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | 1            |            |
| VC10                 | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC10                 | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |          |               |                   |                        |         |                        |                  |                |                             | < 0.0050      | < 0.0050      | < 0.0050      | < 0.0050      | <0.0050       | < 0.0050      | < 0.0050      | <0.0050      |            |
| VC10                 | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC10                 | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |          |               |                   |                        |         |                        |                  |                |                             | <0.0050       | <0.0050       | <0.0050       | <0.0050       | <0.0050       | < 0.0050      | <0.0050       | < 0.0050     |            |
| VC11                 | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | !            |            |
| VC11                 | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC11                 | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 |          |               |                   | < 0.5                  | < 0.5   | < 0.5                  | < 0.5            | <5             | <5                          | <0.0050       | <0.0050       | < 0.0050      | <0.0050       | <0.0050       | < 0.0050      | < 0.0050      | <0.0050      |            |
| VC11                 | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | /            |            |
| VC11                 | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC12                 | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 |          |               |                   |                        |         |                        |                  |                |                             | <0.0050       | < 0.0050      | < 0.0050      | <0.0050       | <0.0050       | 0.0346        | < 0.0050      | 0.0346       | <0.5       |
| VC12                 | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | <0.1         |            |
| VC12                 | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | <u> </u>     |            |
| VC12                 | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC12                 | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 |          |               |                   |                        | <0.5    |                        |                  |                |                             |               |               |               |               |               |               |               | <0.1         |            |
| VC13                 | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 |          |               |                   |                        | <0.5    |                        |                  |                |                             |               |               |               |               |               |               |               | <0.1         |            |
| VC13                 | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | !            |            |
| VC13                 | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC13                 | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC13                 | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC13                 | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | 1            |            |
| VC13                 | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC14                 | 31/10/2019 | VC14_0.0-0.1 | 0.0 - 0.1 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | 1            |            |
| VC14                 | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC14                 | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | 1            |            |
| VC14                 | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC14                 | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| VC14                 | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |          |               |                   |                        | <0.5    |                        |                  |                |                             |               |               |               |               |               |               |               | <0.1         |            |
| VC14                 | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               | , j          |            |
| VC14                 | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| Statistics           |            |              |           |          |               |                   |                        |         |                        |                  |                |                             |               |               |               |               |               |               |               |              |            |
| Number of Results    |            |              |           |          |               |                   |                        | 12      | 1                      | 1                | 1              | 1                           | 17            | 17            | 17            | 17            | 17            | 17            | 17            | 20           |            |
| Number of Detects    |            |              |           |          |               |                   |                        |         | 1 0                    |                  |                | 0                           | <u>۱</u>      | 0             |               |               | 0             | 2             |               |              | t i        |
| Minimum Concentratio | on         |              |           |          | 1             | <u> </u>          |                        | <0.5    | <0.5                   | <0.5             | <              | <5                          | <0.0050       | <0.0050       | <0.0050       | <0.0050       | <0.0050       | <0.005        |               | 2 <0.0050    | <0         |
| Maximum Concentratio | ion        |              |           | _        | -             |                   | <0.5                   | <0.0    | <0.5                   | <0.5             | 25             | <5                          | <0.0000       | <0.0000       | <0.0000       | <0.0000       | <0.0000       | 0.0677        | <0.0000       | <0.0000      | <0.        |
| Inaxinum Concentrati |            |              |           |          | 1             |                   | 1 -0.0                 | 1 -0.5  | 1 .0.0                 | 1 -0.5           | 'I `J          | 1 5                         | -0.000Z       | 1.0002        | -0.0002       | 1 \$0.0002    | 1 10.0002     | 0.0077        | 1 *0.0002     | 1 .0.1       | -0.,       |

| cides |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|-------|----------------------------------|-------------------------|--------------------------------|-----------------------|---------------------|----------------------|------------------------|---------------------------------|---------------------|
|       | 1, 1, 1, 2-<br>tetrachloroethane | 1, 1, 1-trichloroethane | 1, 1,2,2-<br>tetrachloroethane | 1,1,2-trichloroethane | 1, 1-dichloroethene | 1, 1-dichloropropene | 1,2,4-trichlorobenzene | 1,2-dibromo-3-<br>chloropropane | 1,2-dichlorobenzene |
| /kg   | mg/kg                            | mg/kg                   | mg/kg                          | mg/kg                 | mg/kg               | mg/kg                | mg/kg                  | mg/kg                           | mg/kg               |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       | <0.5                             | <0.5                    | <0.5                           | <0.5                  | <0.5                | <0.5                 | <0.5                   | <0.5                            | <0.5                |
|       | -0.0                             | -0.0                    | -0.0                           | -0.0                  | -0.0                | -0.0                 | -0.0                   | -0.0                            | -0.0                |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
| ).5   |                                  |                         |                                |                       |                     |                      | <0.5                   |                                 | <0.5                |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       | <0.5                             | <0.5                    | <0.5                           | <0.5                  | <0.5                |                      |                        |                                 |                     |
|       | <0.5                             | <0.5                    | <0.5                           | <0.5                  | <0.5                |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
|       | <0.5                             | <0.5                    | <0.5                           | <0.5                  | <0.5                |                      |                        |                                 |                     |
|       | ×0.3                             | ~0.3                    | ~0.3                           | ~0.3                  | ~0.3                |                      |                        |                                 |                     |
|       |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |
| -     |                                  |                         |                                |                       |                     |                      |                        |                                 |                     |

| 5    | 12   | 12   | 12   | 12   | 12   | 4    | 9    | 4    | 9    |
|------|------|------|------|------|------|------|------|------|------|
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
| <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.6 | <0.5 | <0.6 |

# Appendix C

#### Table C3

#### Wastle Classification - solid waste guidelines analytical results

|                    |                            |                     |            |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            | <b>—</b>                                         |                                                  |              |         |
|--------------------|----------------------------|---------------------|------------|----------|----------|---------|--------------|----------|--------|-------|----------|----------|------------|--------------|--------------|--------------|--------------|----------|-------|-------|-------|--------|-------|-------|-------|---------|---------------------------|------------|--------------------------------------------------|--------------------------------------------------|--------------|---------|
|                    |                            |                     |            |          |          | 011     |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       | - ·    |       |       |       |         |                           | Nitrosoami |                                                  |                                                  | DI 11        |         |
|                    |                            |                     |            |          |          | Chic    | rinated i    | Hydrocar | bons   |       |          | 1        |            |              |              |              |              |          | 1     |       |       | Explo  | sives |       | Niti  | roaroma | atics                     | nes        | ──                                               | <del>.                                    </del> | Phth         | alates  |
|                    |                            |                     |            |          | 1        |         |              |          |        |       |          |          |            | 1            |              |              | e l          |          | υ     |       | Ð     |        |       |       |       |         | ac                        |            |                                                  | te                                               |              |         |
|                    |                            |                     |            | ۵        | L e      | ue l    | l e          | e l      | e le   |       |          |          | de l       | 1            |              |              | l ē          | υ        | e l   |       | e     |        |       |       |       |         | e                         | ~~         |                                                  | 30                                               |              | Φ       |
|                    |                            |                     |            | aŭ       | ba       | ba      | J Ze         | pa       | ale    |       |          |          | <u> </u>   |              |              |              | et           | i i      | adi   |       | L Z L | ane l  | ne    |       |       | 5       | 8                         | λ.         | Ę                                                | Ę                                                | υ            | lat     |
|                    |                            |                     |            | j t      | 1 2      | 2       | l ja         | 2        | 뒫      | ane i | L R      | L a      | <u> </u> କ | l e          |              | Ē            | 2            | 을        | Ë     | ۵     | pe    | ne     | en    | ۵     |       | en      | [분 ]                      | he         | Ϋ́ς                                              | <u>م</u>                                         | lat          | ha      |
|                    |                            |                     |            | ĮŽ       | ĮĔ       | ĮĔ      | Ιž           | Ĕ        | de     | ne l  | j j      | μ<br>Σ   | tra        | ۲<br>۲       | 5            | Ê            | ļĔ           | U U      | 9     | ġ     | itro  | bo     | 털     | en    |       | hd      | ē                         | i di i     | Ę                                                | 5                                                | ha l         | , pt    |
|                    |                            |                     |            | <u> </u> | l ē      | l ē     | l ē          | <u>ē</u> | Ĕ      | bo    | 일        | l Pe     | te         | ۲. E         | 1 E          | Je l         | i∺           | l n      | 칠     | ē     | j.    | itro   | L2    | žu    | Le l  | iq      | 읃                         | yla        | te È                                             | L L                                              | F            | 5       |
|                    |                            |                     |            | <u>e</u> | <u>i</u> | i je    | l ⊇          | <u>i</u> | 5 I    | 50    | l 5      | ğ        | 5          | Ιž           | ē            | ΙÈ           | 4            | <b>₩</b> | 5     | 5     | Ē     | i      | Ē     | pe    | i iii | .ĕ      | <u></u>                   | en         | aaje                                             | ے ا                                              | 1            | ţ       |
|                    |                            |                     |            | 29       | 2        | 2       | 1 4          | 29       | 등      | 등     | 등        | ۱ E      | 1 5        | ΙĒ           | Ē            | l ē          | 7            | :<br>달   | Xe    | 2     | 3,5   | 4      | 2     | tro   | E E   | a       | l ĝ                       | iž d       | th %                                             | <u>F</u>                                         | et           | Ĕ       |
|                    |                            |                     |            |          | -        | ÷.      | -<br>-       | 5,2      | ,<br>, | 5-    | 4        | ä        | ő          | b            | δ            | <del>`</del> | Ci (i)       | ž        | Ξ     | 5     | 7     | ,<br>2 | 5,6   | ž     | 5-1   | 4       | Pe Pe                     | ż          | щe                                               | E E                                              | ā            | ē       |
|                    |                            |                     |            | mg/kg    | mg/kg    | g mg/kg | mg/kg        | mg/kg    | mg/kg  | mg/kg | mg/kg    | mg/kg    | mg/kg      | mg/kg        | mg/kg        | mg/kg        | mg/kg        | mg/kg    | mg/kg | mg/kg | mg/kg | mg/kg  | mg/kg | mg/kg | mg/kg | mg/kg   | mg/kg                     | mg/kg      | mg/kg                                            | mg/kg                                            | mg/kg        | _ mg/kg |
| EQL                |                            |                     |            | 0.5      | 0.5      | 0.5     | 0.5          | 0.5      | 0.5    | 0.5   | 0.5      | 0.5      | 0.5        | 0.5          | 0.5          | 5            | 0.5          | 0.5      | 0.5   | 4     | 0.5   | 1      | 1     | 0.5   | 0.5   | 0.5     | 0.5                       | 1          | 5                                                | 0.5                                              | 0.5          | 0.5     |
| NSW EPA (2014) Gei | neral Solid Waste CT1 (No  | o Leaching)         |            | 10       | 1        |         | 150          |          |        |       |          |          | 10         | 2,000        | 120          |              |              | 172      |       | 4     |       | 2.6    |       | 40    |       |         |                           |            |                                                  |                                                  |              |         |
| NSW EPA (2014) Res | stricted Solid Waste CT2 ( | (No Leaching)       |            | 40       |          |         | 600          |          |        |       |          |          | 40         | 8.000        | 480          |              |              | 688      |       | 16    |       | 10.4   |       | 160   |       |         |                           |            |                                                  |                                                  |              |         |
|                    |                            | (                   |            |          |          |         |              |          |        |       |          |          |            | ,            |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              | 4       |
| Location Code      | Data                       |                     | Donth      |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
|                    | 7/44/0040                  |                     |            | 1 -0 5   |          | 1       | 1            |          |        |       |          |          | 1 -0 5     | 1 40 5       | 1 -0 5       |              | -            | 1 -0 5   |       | - 11  |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| BH05               | 7/11/2019                  | BH05_4.6-4.7        | 4.6 - 4.7  | <0.5     |          |         |              |          |        |       |          |          | <0.5       | <0.5         | <0.5         | ļ            |              | <0.5     |       | <4    |       |        |       |       |       |         |                           |            | <u> </u>                                         | <u> </u>                                         | <u> </u>     | 4       |
| BH06               | 7/11/2019                  | BH06_1.2-1.45       | 1.2 - 1.45 | < 0.5    |          |         |              |          |        |       |          |          | < 0.5      | <0.5         | < 0.5        |              |              | < 0.5    |       | <4    |       |        |       |       |       |         |                           |            |                                                  | <u> </u>                                         | <u> </u>     |         |
| BH07               | 7/11/2019                  | BH07_2.5-2.95       | 2.5 - 2.95 | < 0.5    |          |         |              |          |        |       |          |          | <0.5       | <0.5         | < 0.5        |              |              | < 0.5    |       | <4    |       |        |       |       |       |         |                           |            |                                                  | <u> </u>                                         |              |         |
| VC01               | 30/10/2019                 | VC01_0.0-0.2        | 0.0 - 0.2  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC01               | 30/10/2019                 | VC01_0.4-0.6        | 0.4 - 0.6  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  | , , , , , , , , , , , , , , , , , , ,            |              |         |
| VC01               | 30/10/2019                 | VC01 0.5-1.0        | 0.5 - 1.0  |          |          |         | < 0.5        |          | < 0.5  |       |          |          |            |              |              |              |              |          | < 0.5 |       | < 0.5 | <1.0   | <1.0  | <0.5  | < 0.5 | < 0.5   | < 0.5                     | <1.0       | <5.0                                             | < 0.5                                            | < 0.5        | < 0.5   |
| VC01               | 30/10/2019                 | VC01 1.0-1.1        | 1.0 - 1.1  |          |          |         |              |          |        |       |          |          | 1          |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  | <u> </u>     |         |
| VC02               | 30/10/2019                 | VC02_0_0-0_2        | 0.0-0.2    |          | -        |         |              |          |        |       |          |          |            | -            |              |              |              |          |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         | <u> </u>                                         | <u> </u>     | -       |
| VC02               | 31/10/2010                 | VC02_0.0-0.2        | 0.0 0.5    |          | -        | -       | -            |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  | <u> </u> '                                       | <u> </u>     | -       |
| VC02               | 31/10/2019                 | VC02_0.0-0.3        | 0.0-0.3    |          |          | +       |              |          |        |       |          |          |            |              |              |              | -            | +        |       |       |       |        |       |       |       |         |                           |            | ╂────                                            | <b> </b> '                                       | <del> </del> | +       |
| VC02               | 31/10/2019                 |                     | 0.5 - 0.0  |          |          | +       |              |          |        |       |          |          |            |              | +            | <u> </u>     |              | +        |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         | <b> </b> '                                       | <del> </del> | +       |
| V-02               | 30/10/2019                 | VC02_0.5-1.0        | 0.5 - 1.0  |          | <u> </u> |         | <u> </u>     |          |        |       |          |          |            | <u> </u>     | <b>I</b>     | <u> </u>     | <u> </u>     |          |       |       |       |        |       |       |       |         | <u> </u>                  |            | <b> </b>                                         | <b> </b> '                                       | <b> </b>     | +       |
| VC02               | 30/10/2019                 | VC02_1.0-1.2        | 1.0 - 1.2  |          | I        |         |              |          |        |       |          |          | I          | I            | I            | L            | <u> </u>     |          |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         | <b> </b> '                                       | <u> </u>     | +       |
| VC02               | 30/10/2019                 | VC02_1.0-1.5        | 1.0 - 1.5  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         | <b></b> '                                        | <u> </u>     | $\perp$ |
| VC02               | 30/10/2019                 | VC02_1.5-1.6        | 1.5 - 1.6  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC03               | 30/10/2019                 | VC03_0.0-0.2        | 0.0 - 0.2  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  | , , , , , , , , , , , , , , , , , , ,            |              |         |
| VC03               | 30/10/2019                 | VC03 0.0-0.5        | 0.0 - 0.5  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC03               | 30/10/2019                 | VC03_0_3-0_4        | 0.3 - 0.4  | <0.5     | <0.5     | <0.5    | <0.5         | <0.5     |        | <0.5  | <0.5     | <0.5     | <0.5       | <0.5         | <0.5         | <5           | <0.5         |          | <0.5  | <5    |       |        |       |       |       |         |                           |            | <u> </u>                                         |                                                  | <u> </u>     |         |
| VC03               | 30/10/2019                 | VC03_0.4-0.6        | 04-06      |          |          |         |              | 0.0      |        | 0.0   | 0.0      |          |            |              |              | <u> </u>     |              |          | 0.0   | L     |       |        |       |       |       |         |                           |            | <u> </u>                                         | <u> </u>                                         | <u> </u>     |         |
| VC03               | 30/10/2010                 | VC03_0.5_1.0        | 0.4 1.0    |          |          | -       |              |          |        |       |          |          |            | <u> </u>     |              | <u> </u>     |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  | <u> </u> '                                       | <u> </u>     |         |
| VC03               | 30/10/2019                 | VC03_0.0-1.0        | 0.4 - 1.0  |          | -        | -       |              |          |        |       |          |          | -          |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  | <u> </u>                                         | —            |         |
| VC03               | 30/10/2019                 | VC03_0.6-0.7        | 0.6 - 0.7  |          | <u> </u> |         | <u> </u>     |          |        |       |          |          |            | <u> </u>     |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  | <b> </b> '                                       | <u> </u>     |         |
| VC03               | 30/10/2019                 | VC03_1.0-1.2        | 1.0 - 1.2  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  | <b></b> '                                        | <u> </u>     |         |
| VC04               | 30/10/2019                 | VC04_0.0-0.1        | 0.0 - 0.1  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  | <u> </u>                                         |              |         |
| VC04               | 30/10/2019                 | VC04_0.3-0.4        | 0.3 - 0.4  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC04               | 31/10/2019                 | VC04 0.5-0.6        | 0.5 - 0.6  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC04               | 30/10/2019                 | VC04 0.5-1.0        | 0.5 - 1.0  |          |          |         | < 0.6        |          | <0.6   |       |          |          |            |              |              |              |              |          | < 0.6 |       | <0.6  | <1.0   | <1.0  | <0.6  | < 0.6 | <0.6    | <0.6                      | <1.2       | <5.0                                             | <0.6                                             | <0.6         | <0.6    |
| VC04               | 31/10/2019                 | VC04_0.7-0.8        | 0.7 - 0.8  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC04               | 31/10/2019                 | VC04_0 9-1 0        | 0.9 - 1.0  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         |                                                  | <u> </u>     | -       |
| VC05               | 30/10/2010                 | VC05_0.0-0.1        | 0.0 - 0.1  |          | <u> </u> | +       | <u> </u>     |          |        |       |          | <u> </u> | <u> </u>   | <u> </u>     |              |              | <u> </u>     |          |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         | <u> </u>                                         | <u> </u>     |         |
| VC05               | 20/10/2019                 | VC05_0.0-0.1        | 0.0 - 0.1  |          | +        | +       |              |          |        |       |          |          |            |              |              | <u> </u>     |              |          |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         | <u> </u>                                         | ──           |         |
| VC05               | 30/10/2019                 | VC05_0.5-0.7        | 0.5 - 0.7  |          | <u> </u> |         | <u> </u>     |          |        |       |          | <u> </u> |            | <u> </u>     |              | <u> </u>     |              |          |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         | <u> </u>                                         | —            |         |
| VC05               | 30/10/2019                 | VC05_0.5-0.9        | 0.5 - 0.9  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  | <u> </u>                                         | <u> </u>     |         |
| VC05               | 30/10/2019                 | VC05_0.8-0.9        | 0.8 - 0.9  | < 0.5    | < 0.5    | < 0.5   | < 0.5        | < 0.5    |        | <0.5  | < 0.5    | <0.5     | < 0.5      | <0.5         | < 0.5        | <5           | <0.5         |          | < 0.5 | <5    |       |        |       |       |       |         |                           |            |                                                  | <u> </u>                                         | <u> </u>     |         |
| VC06               | 31/10/2019                 | VC06_0.0-0.1        | 0.0 - 0.1  | < 0.5    |          |         |              |          |        |       |          |          | < 0.5      | <0.5         | < 0.5        |              |              | < 0.5    |       | <4    |       |        |       |       |       |         |                           |            |                                                  | <u> </u>                                         |              |         |
| VC06               | 31/10/2019                 | VC06_0.0-0.5        | 0.0 - 0.5  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC06               | 31/10/2019                 | VC06_0.3-0.4        | 0.3 - 0.4  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC06               | 31/10/2019                 | VC06 0.5-0.6        | 0.5 - 0.6  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC06               | 31/10/2019                 | VC06 0.5-1.0        | 0.5 - 1.0  |          | 1        |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC06               | 31/10/2019                 | VC06 0.7-0.8        | 0.7 - 0.8  |          | 1        | 1       | 1            |          |        |       |          | 1        | 1          | 1            | 1            |              | 1            |          |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         |                                                  | <u> </u>     |         |
| VC06               | 31/10/2019                 | VC06_0.8-0.9        | 0.8-0.9    |          | 1        | 1       | 1            |          |        |       | 1        | 1        | 1          | 1            | 1            |              | 1            | 1        |       |       |       |        |       |       |       |         |                           |            | t                                                | <u> </u>                                         | <u> </u>     | ++      |
| VC07               | 30/10/2010                 | VC07_0_0_0_2        | 0.0-0.2    | <05      | <0.5     | <05     | <0.5         | <0.5     |        | <0.5  | <0.5     | <0.5     | <0.5       | <0.5         | <0.5         | <5           | <0.5         |          | <0.5  | <5    |       |        |       |       |       |         |                           |            | <u> </u>                                         | <u> </u>                                         | <u> </u>     | +       |
| VC07               | 30/10/2019                 | VC07_0.0.05         | 0.0-0.2    |          | + ~0.0   | - 0.0   | <0.5<br>Z0 5 | -0.0     | <0 F   | ~0.0  | - 0.0    | ~0.0     | + ~0.0     | ×0.0         | ~0.0         | <u> </u>     | - ~0.0       | +        | <0.5  |       | <05   | <10    | <1 A  | <05   | <05   | <05     | 205                       | <10        | <5 0                                             | <05                                              | -05          | -05     |
| VC07               | 20/10/2019                 |                     | 0.0-0.3    |          | <u> </u> | -       | ~0.0         |          | ~0.0   |       |          |          |            | <u> </u>     | <u> </u>     | <u> </u>     |              |          | ~0.0  |       | ~0.0  | ×1.0   | ×1.0  | ~U.U  | ~0.0  | ~0.0    | ~0.5                      | ×1.0       | ~3.0                                             | -0.5                                             |              | ~0.5    |
| VO07               | 30/10/2019                 | <u>vcu/_0.2-0.4</u> | 0.2 - 0.4  |          |          | +       |              |          |        |       |          | I        |            | <del> </del> | <del> </del> | I            |              | +        |       |       |       |        |       |       |       |         | ──┤                       |            | <b></b>                                          | <b> </b> '                                       | <del> </del> | +       |
| VC0/               | 30/10/2019                 | VC07_0.5-0.6        | 0.5 - 0.6  |          |          |         |              |          |        |       |          | I        |            | <b> </b>     | <b>I</b>     | I            |              |          |       |       |       |        |       |       |       |         | $ \downarrow  \downarrow$ |            | <b>I</b>                                         | <b> </b> '                                       | <b> </b>     | +       |
| VC07               | 30/10/2019                 | VC07_0.5-1.0        | 0.5 - 1.0  |          | L        |         |              |          |        |       |          |          |            | L            | L            |              | <u> </u>     |          |       |       |       |        |       |       |       |         |                           |            |                                                  | <b> </b> '                                       | <u> </u>     | $\perp$ |
| VC07               | 30/10/2019                 | VC07_0.7-0.8        | 0.7 - 0.8  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC07               | 30/10/2019                 | VC07_1.0-1.2        | 1.0 - 1.2  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC08               | 31/10/2019                 | VC08 0.0-0.1        | 0.0 - 0.1  | <0.5     |          |         |              |          |        |       |          |          | < 0.5      | <0.5         | < 0.5        |              |              | < 0.5    |       | <4    |       |        |       |       |       |         |                           |            | [                                                | []                                               | [            |         |
| VC08               | 31/10/2019                 | VC08 0.0-0.5        | 0.0 - 0.5  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC08               | 31/10/2019                 | VC08_0.3-0.4        | 0.3 - 0.4  |          | 1        | 1       |              |          |        |       |          |          | 1          | 1            | 1            |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  | $\square$    | +       |
| VC08               | 31/10/2010                 | VC08 0 5 0 6        | 0.5-0.6    |          | 1        | +       | <u> </u>     |          |        |       |          | 1        | 1          | <u> </u>     | <u> </u>     | <u> </u>     | 1            | 1        |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         | <u> </u>                                         | <u> </u>     | + +     |
| VC00               | 21/10/2019                 |                     | 0.5-0.0    |          | -        | -       |              |          |        |       |          |          |            |              |              |              | -            |          |       |       |       |        |       |       |       |         |                           |            | ╂────                                            | <b> </b> '                                       | <del> </del> | +       |
|                    | 31/10/2019                 | VC00_0.5-1.0        | 0.3 - 1.0  |          |          | +       |              |          |        |       |          |          |            |              | +            | <b> </b>     |              | +        |       |       |       |        |       |       |       |         |                           |            | <del>                                     </del> | <b> </b> '                                       | <del> </del> | +       |
|                    | 31/10/2019                 |                     | 0.7 - 0.8  |          | <b>I</b> |         | <b>I</b>     |          |        |       | <u> </u> |          |            | I            | I            | L            | <del> </del> |          |       |       |       |        |       |       |       |         | <b>⊢</b> −                |            | <b> </b>                                         | <b> </b> '                                       | <b>—</b>     | +       |
| 8000               | 31/10/2019                 | VC08_1.0-1.1        | 1.0 - 1.1  |          | <b>I</b> |         |              |          |        |       |          | I        |            | <b>I</b>     | <b>I</b>     | <b> </b>     |              |          |       |       |       |        |       | _     |       |         |                           |            | <b></b>                                          | <u> </u>                                         | <u> </u>     | +       |
| VC08               | 31/10/2019                 | VC08_1.0-1.5        | 1.0 - 1.5  |          | 1        |         | < 0.5        |          | <0.5   |       |          |          | 1          | I            | I            |              | 1            |          | <0.5  |       | <0.5  | <1.0   | <1.0  | <0.5  | <0.5  | <0.5    | <0.5                      | <1.0       | <5.0                                             | <0.5                                             | <0.5         | <0.5    |
| VC08               | 31/10/2019                 | VC08_1.3-1.4        | 1.3 - 1.4  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC08               | 31/10/2019                 | VC08_1.5-1.6        | 1.5 - 1.6  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC09               | 30/10/2019                 | VC09_0.0-0.2        | 0.0 - 0.2  |          |          |         |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC09               | 30/10/2019                 | VC09 0.0-0.5        | 0.0 - 0.5  | 1        | 1        | 1       |              |          |        |       |          |          |            |              |              |              |              |          |       |       |       |        |       |       |       |         |                           |            |                                                  |                                                  |              |         |
| VC09               | 30/10/2019                 | VC09 0.4-0.6        | 0.4 - 0.6  |          | 1        | 1       | 1            |          |        |       |          | 1        | 1          | 1            | 1            |              | 1            |          |       |       |       |        |       |       |       |         |                           |            | †                                                |                                                  | <u> </u>     |         |
| VC09               | 30/10/2019                 | VC09 0 5-1 0        | 0.5 - 1.0  |          | 1        | 1       | 1            |          |        |       |          | 1        | 1          | 1            | 1            |              | 1            |          |       |       |       |        |       |       |       |         |                           |            | t                                                | <u> </u>                                         | <u> </u>     | +       |
| VC09               | 30/10/2010                 | VC09 0 7-0 8        | 07-08      |          | <u> </u> | 1       | -            |          |        |       |          |          | -          | <u> </u>     | 1            | <u> </u>     | 1            |          |       |       |       |        |       |       |       |         |                           |            | <u> </u>                                         | <u> </u>                                         | +            | +       |
|                    | 00/10/2013                 | 1.003_0.1-0.0       | 0.0        |          | 1        | 1       | 1            |          |        |       | L        | 1        | 1          | 1            | 1            | 1            | 1            | 1        | 1     | 1     |       |        |       |       |       | L       |                           |            | 1                                                |                                                  |              | _       |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx



#### Appendix C Table C3

#### Wastle Classification - solid waste guidelines analytical results

|                       |            |              |            |                    |                      | Chlor                | inated I            | Hydroca             | bons                |                 |                 |              |                      |               |             |               |                        |                    |                     |                |                        | Expl               | osives             |       |
|-----------------------|------------|--------------|------------|--------------------|----------------------|----------------------|---------------------|---------------------|---------------------|-----------------|-----------------|--------------|----------------------|---------------|-------------|---------------|------------------------|--------------------|---------------------|----------------|------------------------|--------------------|--------------------|-------|
|                       |            |              |            | , 2-dichloroethane | I, 2-dichloropropane | l, 3-dichloropropane | I,4-dichlorobenzene | 2,2-dichloropropane | 2-chloronaphthalene | 2-chlorotoluene | 1-chlorotoluene | Bromobenzene | Carbon tetrachloride | Chlorobenzene | Chloroform  | Chloromethane | sis-1,2-dichloroethene | Methylene chloride | Hexachlorobutadiene | /inyl chloride | I, 3,5-Trinitrobenzene | 2,4-Dinitrotoluene | 2,6-dinitrotoluene |       |
|                       |            |              |            | ma/ka              | ma/ka                | ma/ka                | ma/ka               | ma/ka               | ma/ka               | ma/ka           | ma/ka           | ma/ka        | ma/ka                | ma/ka         | ma/ka       | ma/ka         | ma/ka                  | ma/ka              | ma/ka               | ma/ka          | ma/ka                  | ma/ka              |                    | 1 m   |
| VC09                  | 30/10/2019 | VC09 0.8-1.0 | 0.8 - 1.0  |                    | 1.1.3,.1.3           |                      |                     | 1.1.3.1.3           |                     |                 | 1               |              |                      | 1             |             | 1             | 1                      | 1.1.3.1.3          |                     |                | 1.1.3.1.3              | 1.13,113           | 1                  | 1     |
| VC10                  | 31/10/2019 | VC10 0.0-0.2 | 0.0 - 0.2  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     |                | <u> </u>               |                    | +                  | +     |
| VC10                  | 31/10/2019 | VC10 0.0-0.5 | 0.0 - 0.5  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     |                | <u> </u>               |                    | +                  | +     |
| VC10                  | 31/10/2019 | VC10 0.5-0.6 | 0.5 - 0.6  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     |                | <u> </u>               |                    | 1                  | +     |
| VC10                  | 30/10/2019 | VC10 0.7-0.8 | 0.7 - 0.8  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     |                | 1                      |                    | +                  | +     |
| VC11                  | 30/10/2019 | VC11 0.0-0.2 | 0.0 - 0.2  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     |                | <u> </u>               |                    | +                  | +     |
| VC11                  | 30/10/2019 | VC11 0.0-0.5 | 0.0 - 0.5  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     |                |                        | <u> </u>           | +                  | +     |
| VC11                  | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7  | <0.5               | <0.5                 | <0.5                 | <0.5                | <0.5                |                     | <0.5            | <0.5            | <0.5         | <0.5                 | <0.5          | <0.5        | <5            | <0.5                   |                    | <0.5                | <5             |                        | <u> </u>           | +                  | +     |
| VC11                  | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0  | 0.0                | 0.0                  | 0.0                  | 0.0                 | 0.0                 |                     | 0.0             | 0.0             | 0.0          | 0.0                  | 0.0           | 0.0         | L ů           | 0.0                    |                    | 0.0                 | <b>—</b>       |                        |                    | +                  | +     |
| VC11                  | 30/10/2019 | VC11_1.0-1.2 | 10-12      |                    |                      |                      |                     |                     |                     |                 | <u> </u>        |              |                      | <u> </u>      |             | <u> </u>      |                        |                    |                     |                | <u> </u>               | <u> </u>           | +                  | +     |
| VC12                  | 31/10/2019 | VC12_0.0-0.5 | 0.0-0.5    |                    |                      |                      | < 0.5               |                     | < 0.5               |                 |                 |              |                      |               |             |               |                        |                    | <0.5                |                | <0.5                   | <10                | <10                | $\pm$ |
| VC12                  | 31/10/2019 | VC12_0.0-0.0 | 0.3 - 0.4  |                    |                      |                      | -0.0                |                     | -0.0                |                 |                 |              |                      |               |             |               |                        |                    | -0.0                | <u> </u>       | -0.0                   |                    |                    | +     |
| VC12                  | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     |                | <u> </u>               | <u> </u>           | +                  | +     |
| VC12                  | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9  |                    | <u> </u>             |                      |                     | <u> </u>            |                     |                 | <u> </u>        |              |                      | <u> </u>      |             | <u> </u>      | <u> </u>               |                    |                     | <u> </u>       | <u> </u>               | <u> </u>           | +                  | +     |
| VC12                  | 31/10/2019 | VC12_0.0-0.0 | 10-11      | <0.5               | <u> </u>             |                      |                     | <u> </u>            |                     |                 | <u> </u>        |              | <0.5                 | <0.5          | <0.5        | <u> </u>      |                        | <0.5               |                     | <4             | <u> </u>               | <u> </u>           | +                  | ╋     |
| VC13                  | 31/10/2019 | VC13_0.0_01  | 0.0 - 0.1  | <0.5               |                      |                      |                     |                     |                     |                 |                 |              | <0.5                 | <0.5          | <0.5        |               |                        | <0.5               |                     | <1             | <u> </u>               | <u> </u>           | +                  | +     |
| VC13                  | 31/10/2019 | VC13_0.0-0.5 | 0.0-0.5    |                    |                      |                      |                     | <u> </u>            |                     |                 | <u> </u>        |              | -0.0                 | -0.0          | -0.0        | <u> </u>      |                        | -0.0               |                     |                | <u> </u>               | <u> </u>           | +                  | +     |
| VC13                  | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             | <u> </u>      |                        |                    |                     | $\vdash$       | <u> </u>               | <u> </u>           | +                  | +     |
| VC13                  | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.4  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      | <u> </u>      |             | <u> </u>      |                        |                    |                     | $\vdash$       | <u> </u>               | <u> </u>           | +                  | ╋     |
| VC13                  | 31/10/2019 | VC13_0.5-0.0 | 0.5 - 0.0  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     | <u> </u>       |                        | <u> </u>           | +                  | ┿     |
| VC13                  | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8  |                    | <u> </u>             |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     |                | <u> </u>               | <u> </u>           | +                  | +     |
| VC13                  | 31/10/2019 | VC13_1.0.1.1 | 10 11      |                    | <u> </u>             |                      |                     |                     |                     |                 | <u> </u>        |              |                      |               |             | <u> </u>      | <u> </u>               |                    |                     | <u> </u>       | <u> </u>               | <u> </u>           | +                  | ╋     |
| VC14                  | 31/10/2019 | VC13_1.0-1.1 | 0.0 0.1    |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     | <u> </u>       | <u> </u>               | <u> </u>           | +                  | ╋     |
| VC14                  | 31/10/2019 | VC14_0.0-0.1 | 0.0-0.1    |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     | <u> </u>       | <u> </u>               | <u> </u>           | +                  | ╋     |
| VC14                  | 21/10/2019 | VC14_0.0-0.3 | 0.0 - 0.3  |                    | <u> </u>             |                      |                     | <u> </u>            |                     |                 | <u> </u>        |              |                      | <u> </u>      |             | <u> </u>      | <u> </u>               |                    |                     | <u> </u>       | ──                     | ──                 | +                  | ╋     |
| VC14                  | 21/10/2019 | VC14_0.5-0.4 | 0.5 - 0.4  |                    | <u> </u>             |                      |                     | <u> </u>            |                     |                 | <u> </u>        |              |                      | <u> </u>      |             | <u> </u>      | <u> </u>               | <u> </u>           |                     | <u> </u>       | ──                     | ──                 | +                  | ╋     |
| VC14                  | 21/10/2019 | VC14_0.3-1.0 | 0.3 - 1.0  |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     | <u> </u>       | ──                     | <u> </u>           | +                  | ╋     |
| VC14                  | 21/10/2019 | VC14_0.7-0.0 | 0.7 - 0.8  | <0.5               |                      |                      |                     | <u> </u>            |                     |                 | <u> </u>        |              | <0.5                 | <0.5          | <0.5        | <u> </u>      | <u> </u>               | <0.5               |                     | -1             | <u> </u>               | <u> </u>           | +                  | ╋     |
| VC14                  | 21/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1  | <0.5               | <u> </u>             |                      |                     | <u> </u>            |                     |                 | <u> </u>        |              | NU.5                 | <b>NO.5</b>   | <b>NU.5</b> | <u> </u>      | <u> </u>               | <b>NU.5</b>        |                     | ~4             | <u> </u>               | <u> </u>           | +                  | ╋     |
| VC14                  | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4  |                    |                      |                      |                     | <u> </u>            |                     |                 | <u> </u>        |              |                      | <u> </u>      |             | <u> </u>      |                        |                    |                     | <u> </u>       | <u> </u>               | <u> </u>           | +                  | ╋     |
| VC 14                 | 31/10/2019 | 14-0.5-0.0   | 10.5 - 0.0 | I                  |                      |                      |                     | 1                   |                     |                 | 1               |              |                      | 1             |             |               |                        |                    |                     | <u> </u>       | <u> </u>               | L                  | <u> </u>           | 1     |
| Statistics            |            |              |            |                    |                      |                      |                     |                     |                     |                 |                 |              |                      |               |             |               |                        |                    |                     |                |                        |                    |                    |       |
| Number of Results     |            |              |            | 12                 | 4                    | 4                    | 9                   | 4                   | 5                   | 4               | 4               | 4            | 12                   | 12            | 12          | 4             | 4                      | 8                  | 9                   | 12             | 5                      | 5                  | ؛ ز                | از    |
| Number of Detects     |            |              |            | 0                  | 0                    | 0                    | 0                   | 0                   | 0                   | 0               | 0               | 0            | 0                    | 0             | 0           | 0             | 0                      | 0                  | 0                   | 0              | 0                      | 0                  | ) (                | )     |
| Minimum Concentration |            |              |            | <0.5               | < 0.5                | <0.5                 | < 0.5               | < 0.5               | <0.5                | < 0.5           | <0.5            | <0.5         | < 0.5                | < 0.5         | < 0.5       | <5            | <0.5                   | < 0.5              | < 0.5               | <4             | < 0.5                  | <1.0               | ) <1.(             | )     |
| Maximum Concentration | า          |              |            | <0.5               | <0.5                 | <0.5                 | <0.6                | <0.5                | <0.6                | <0 F            | <0 E            | <0 E         | <0 E                 | <0 E          | <0.5        | <u> </u>      | <0 F                   | <0.5               | <0.5                | < <u> 5</u>    | < <u> &lt;06</u>       | <10                | 1 < 1(             | JT.   |

|   |              |            |                                      |                       | Nitrosoami                             |                   |                        |                  |                    |
|---|--------------|------------|--------------------------------------|-----------------------|----------------------------------------|-------------------|------------------------|------------------|--------------------|
|   |              | Nitr       | oaroma                               | tics                  | nes                                    |                   |                        | Phtha            | alates             |
|   | Nitrobenzene | 2-Picoline | 4-aminobiphenyl                      | Pentachloronitrobenze | 8 N-Nitrosodiphenyl &<br>Diphenylamine | Bis(2-ethylhexyl) | Butyl benzyl phthalate | Diethylphthalate | Dimethyl phthalate |
| ] | mg/кg        | mg/кg      | mg/кg                                | mg/кg                 | mg/ĸg                                  | mg/кg             | mg/кg                  | mg/кg            | mg/кg              |
|   |              |            | ½ <u>+</u> <u>a</u><br>g/kg mg/kg mg |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
| _ |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   | <0.5         | <0.5       | <0.5                                 | <0.5                  | <10                                    | <5.0              | <0.5                   | <0.5             | <0.5               |
|   | -0.0         | -0.0       | -0.0                                 | -0.0                  | 41.0                                   | -0.0              | -0.0                   | -0.0             | -0.0               |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
| _ |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
| _ |              |            |                                      |                       |                                        |                   |                        |                  |                    |
| _ |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |
|   |              |            |                                      |                       |                                        |                   |                        |                  |                    |

| 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    |
|------|------|------|------|------|------|------|------|------|
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 |
| <0.6 | <0.6 | <0.6 | <0.6 | <1.2 | <0.6 | <0.6 | <0.6 | <0.6 |

Appendix C Table C3

Wastle Classification - solid waste guidelines analytical results

|                                                         | Di-n-butyl phthalate | Di-n-octyl phthalate |
|---------------------------------------------------------|----------------------|----------------------|
|                                                         | mg/kg                | mg/kg                |
| EQL                                                     | 0.5                  | 0.5                  |
| NSW EPA (2014) General Solid Waste CT1 (No Leaching)    |                      |                      |
| NSW EPA (2014) Restricted Solid Waste CT2 (No Leaching) |                      |                      |

| Location Code | Date        | Field ID      | Depth      |            |      |
|---------------|-------------|---------------|------------|------------|------|
| BH05          | 7/11/2019   | BH05 4.6-4.7  | 4.6 - 4.7  |            |      |
| BH06          | 7/11/2019   | BH06 1.2-1.45 | 1.2 - 1.45 |            |      |
| BH07          | 7/11/2019   | BH07 2.5-2.95 | 2.5 - 2.95 |            |      |
| VC01          | 30/10/2019  | VC01 0.0-0.2  | 0.0 - 0.2  |            |      |
| VC01          | 30/10/2019  | VC01 0.4-0.6  | 0.4 - 0.6  |            |      |
| VC01          | 30/10/2019  | VC01_0.5-1.0  | 0.5 - 1.0  | < 0.5      | <0.5 |
| VC01          | 30/10/2019  | VC01 1.0-1.1  | 1.0 - 1.1  |            |      |
| VC02          | 30/10/2019  | VC02 0.0-0.2  | 0.0 - 0.2  |            |      |
| VC02          | 31/10/2019  | VC02 0.0-0.5  | 0.0 - 0.5  |            |      |
| VC02          | 31/10/2019  | VC02 0.5-0.6  | 0.5 - 0.6  |            |      |
| VC02          | 30/10/2019  | VC02 0.5-1.0  | 0.5 - 1.0  |            |      |
| VC02          | 30/10/2019  | VC02 1.0-1.2  | 1.0 - 1.2  |            |      |
| VC02          | 30/10/2019  | VC02 1.0-1.5  | 1.0 - 1.5  |            |      |
| VC02          | 30/10/2019  | VC02 1.5-1.6  | 1.5 - 1.6  |            |      |
| VC03          | 30/10/2019  | VC03 0.0-0.2  | 0.0 - 0.2  |            |      |
| VC03          | 30/10/2019  | VC03 0.0-0.5  | 0.0 - 0.5  |            |      |
| VC03          | 30/10/2019  | VC03 0.3-0.4  | 0.3 - 0.4  |            |      |
| VC03          | 30/10/2019  | VC03 0.4-0.6  | 0.4 - 0.6  |            |      |
| VC03          | 30/10/2019  | VC03 0.5-1.0  | 0.4 - 1.0  |            |      |
| VC03          | 30/10/2019  | VC03 0.6-0.7  | 0.6 - 0.7  |            |      |
| VC03          | 30/10/2019  | VC03 1.0-1.2  | 1.0 - 1.2  |            | +    |
| VC04          | 30/10/2019  | VC04_0.0-0.1  | 0.0 - 0.1  |            |      |
| VC04          | 30/10/2019  | VC04 0.3-0.4  | 0.3 - 0.4  |            |      |
| VC04          | 31/10/2019  | VC04 0.5-0.6  | 0.5 - 0.6  |            | +    |
| VC04          | 30/10/2019  | VC04 0.5-1.0  | 0.5 - 1.0  | <0.6       | <0.6 |
| VC04          | 31/10/2019  | VC04 0.7-0.8  | 0.7 - 0.8  |            |      |
| VC04          | 31/10/2019  | VC04_0.9-1.0  | 0.9 - 1.0  |            |      |
| VC05          | 30/10/2019  | VC05_0.0-0.1  | 0.0 - 0.1  |            |      |
| VC05          | 30/10/2019  | VC05_0.5-0.7  | 0.5 - 0.7  |            |      |
| VC05          | 30/10/2019  | VC05_0.5-0.9  | 0.5 - 0.9  |            |      |
| VC05          | 30/10/2019  | VC05_0.8-0.9  | 0.8 - 0.9  |            |      |
| VC06          | 31/10/2019  | VC06_0.0-0.1  | 0.0 - 0.1  |            | +    |
| VC06          | 31/10/2019  | VC06_0.0-0.5  | 0.0-0.5    |            | +    |
| VC06          | 31/10/2019  | VC06_0.3-0.4  | 03-04      |            | +    |
| VC06          | 31/10/2019  | VC06_0.5-0.6  | 0.5 - 0.6  |            | +    |
| VC06          | 31/10/2019  | VC06_0.5-1.0  | 0.5 - 1.0  |            | +    |
| VC06          | 31/10/2019  | VC06_0.7-0.8  | 0.7 - 0.8  |            | +    |
| VC06          | 31/10/2019  | VC06_0.8-0.9  | 0.8 - 0.9  |            | +    |
| VC07          | 30/10/2019  | VC07_0_0_0_2  | 0.0 - 0.2  |            |      |
| VC07          | 30/10/2019  | VC07_0.0-0.2  | 0.0 - 0.5  | <0.5       | <0.5 |
| VC07          | 30/10/2019  | VC07_0.2-0.4  | 0.0 - 0.0  | 40.0       | -0.0 |
| VC07          | 30/10/2019  | VC07_0.5-0.6  | 0.5 - 0.6  |            |      |
| VC07          | 30/10/2019  | VC07_0.5-0.0  | 0.5 - 1.0  |            |      |
| VC07          | 30/10/2019  | VC07_0.7-0.8  | 0.7 - 0.8  |            |      |
| VC07          | 30/10/2019  | VC07_1.0.1.2  | 10.12      |            |      |
|               | 21/10/2010  | VC07_1.0-1.2  | 0.0 0.1    |            |      |
| VC08          | 31/10/2019  | VC08_0.0-0.5  | 0.0 - 0.5  |            |      |
|               | 31/10/2019  | VC08_0.3_0.4  | 0.0 - 0.3  |            | +    |
|               | 21/10/2019  | VC08_0.5-0.4  | 0.5 - 0.4  |            | +    |
|               | 21/10/2019  | VC08_0.5-0.0  | 0.5 - 0.6  |            |      |
| VC08          | 31/10/2019  |               | 0.5 - 1.0  |            |      |
| VC08          | 31/10/2019  | VC08 1 0 1 1  | 10.7-0.0   |            | +    |
| VC08          | 31/10/2019  | VC08 1 0 1 5  | 10 15      |            | <0.5 |
| VC08          | 31/10/2019  |               | 1.0 - 1.0  | < <u>.</u> | ~0.5 |
| VC08          | 31/10/2019  | VC00_1.3-1.4  | 1.5 1.4    |            |      |
|               | 30/10/2019  |               | 1.3 - 1.0  |            |      |
| VC00          | 20/10/2019  |               | 0.0 - 0.2  |            |      |
| VC09          | 20/10/2019  |               | 0.0 - 0.5  |            |      |
| VC09          | 30/10/2019  |               | 0.4 - 0.0  |            |      |
| VC00          | 20/10/2019  |               | 0.3 - 1.0  |            |      |
| V C U B       | 130/10/2019 | 10009 0.7-0.0 | 10.7 - 0.0 | 1 1        | I    |

G:\21\12517046\Tech\Results tables\Final tables\waste class\_rev c.xlsx

GHD

# **Circular Quay Investigation** Port Authority of NSW

21

## Appendix C Table C3

#### Wastle Classification - solid waste guidelines analytical results

|      |            |              |           | Di-n-butyl phthalate | Di-n-octyl phthalate |
|------|------------|--------------|-----------|----------------------|----------------------|
|      |            |              |           | ma/ka                | ma/ka                |
| VC09 | 30/10/2019 | VC09 0.8-1.0 | 0.8 - 1.0 |                      |                      |
| VC10 | 31/10/2019 | VC10 0.0-0.2 | 0.0 - 0.2 |                      |                      |
| VC10 | 31/10/2019 | VC10 0.0-0.5 | 0.0 - 0.5 |                      |                      |
| VC10 | 31/10/2019 | VC10 0.5-0.6 | 0.5 - 0.6 |                      |                      |
| VC10 | 30/10/2019 | VC10 0.7-0.8 | 0.7 - 0.8 |                      |                      |
| VC11 | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |                      |                      |
| VC11 | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |                      |                      |
| VC11 | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 |                      |                      |
| VC11 | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |                      |                      |
| VC11 | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |                      |                      |
| VC12 | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | < 0.5                | < 0.5                |
| VC12 | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |                      |                      |
| VC12 | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |                      |                      |
| VC12 | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |                      |                      |
| VC12 | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 |                      |                      |
| VC13 | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 |                      |                      |
| VC13 | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |                      |                      |
| VC13 | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |                      |                      |
| VC13 | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |                      |                      |
| VC13 | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |                      |                      |
| VC13 | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |                      |                      |
| VC13 | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |                      |                      |
| VC14 | 31/10/2019 | VC14_0.0-0.1 | 0.0 - 0.1 |                      |                      |
| VC14 | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |                      |                      |
| VC14 | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |                      |                      |
| VC14 | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |                      |                      |
| VC14 | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |                      |                      |
| VC14 | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |                      |                      |
| VC14 | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |                      |                      |
| VC14 | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                      |                      |

#### Statistics

| Number of Results     | 5     | 5     |
|-----------------------|-------|-------|
| Number of Detects     | 0     | 0     |
| Minimum Concentration | < 0.5 | < 0.5 |
| Maximum Concentration | <0.6  | <0.6  |

## **Circular Quay Investigation** Port Authority of NSW

22

|                             | Inor         | ganics             |           |          |         |         |                      |        |        | Met   | als   |           |         |        |          |        |          |       |
|-----------------------------|--------------|--------------------|-----------|----------|---------|---------|----------------------|--------|--------|-------|-------|-----------|---------|--------|----------|--------|----------|-------|
|                             | Moisture (%) | Cyanide<br>(Total) | Aluminium | Antimony | Arsenic | Cadmium | Chromium<br>(III+VI) | Cobalt | Copper | Iron  | Lead  | Manganese | Mercury | Nickel | Selenium | Silver | Vanadium | Zinc  |
|                             | %            | mg/kg              | mg/kg     | mg/kg    | mg/kg   | mg/kg   | mg/kg                | mg/kg  | mg/kg  | mg/kg | mg/kg | mg/kg     | mg/kg   | mg/kg  | mg/kg    | mg/kg  | mg/kg    | mg/kg |
| EQL                         | 0.1          | 1                  | 50        | 0.5      | 1       | 0.1     | 1                    | 0.5    | 1      | 50    | 1     | 10        | 0.01    | 1      | 0.1      | 0.1    | 2        | 1     |
| NAGD 2009 - SQG-High Values |              |                    |           | 25       | 70      | 10      | 370                  |        | 270    |       | 220   |           | 1       | 52     |          | 3.7    |          | 410   |
| NAGD 2009 - Screening Level |              |                    |           | 2        | 20      | 1.5     | 80                   |        | 65     |       | 50    |           | 0.15    | 21     |          | 1      |          | 200   |
| ANZG 2018 GV -High          |              |                    |           | 25       | 70      | 10      | 370                  |        | 270    |       | 220   |           | 1       | 52     |          | 4      |          | 410   |
| ANZG 2018 DGV               |              |                    |           | 2        | 20      | 1.5     | 80                   |        | 65     |       | 50    |           | 0.15    | 21     |          | 1      |          | 200   |
|                             |              |                    |           |          |         |         |                      |        |        |       |       |           |         |        |          |        |          |       |

| Location Code | Date       | Field ID     | Depth     |      |    |        |       |       |      |      |      |      |        |      |     |       |      |      |      |      |      |
|---------------|------------|--------------|-----------|------|----|--------|-------|-------|------|------|------|------|--------|------|-----|-------|------|------|------|------|------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | 13.5 | <1 | 3,870  | <0.50 | <1.00 | <0.1 | 3    | <0.5 | <1.0 | 1,470  | 1.4  | <10 | <0.01 | <1.0 | <0.1 | <0.1 | 3.8  | <1.0 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | 49.1 | <1 | 12,200 | <0.50 | 16.1  | 0.5  | 42   | 4.2  | 120  | 34,900 | 318  | 88  | 4.25  | 10.4 | 0.6  | 3.0  | 32.6 | 445  |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 | 13.1 | <1 | 11,300 | <0.50 | <1.00 | <0.1 | 10.7 | 0.5  | <1.0 | 1,290  | 33.6 | <10 | 0.05  | 2.0  | 0.1  | <0.1 | 5.5  | 16.7 |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | 64.3 | <1 | 14,600 | <0.50 | <1.00 | <0.1 | 12   | <0.5 | <1.0 | 3,080  | 4.9  | <10 | <0.01 | 1.6  | 0.1  | 0.3  | 8.9  | 2.3  |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | 31.3 | <1 | 5,550  | <0.50 | 9.04  | <0.1 | 16.6 | 2.4  | 189  | 15,600 | 110  | 37  | 1.61  | 4.4  | 0.3  | 1.5  | 16.2 | 158  |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | 17.5 | <1 | 7,220  | <0.50 | 3.11  | <0.1 | 10.8 | <0.5 | <1.0 | 3,460  | 14.6 | <10 | 0.05  | 1.2  | 0.3  | 0.2  | 21.3 | 3.2  |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | 15.4 | <1 | 9,760  | <0.50 | <1.00 | <0.1 | 6.9  | <0.5 | <1.0 | 1,360  | 4.6  | <10 | <0.01 | 1.3  | 0.1  | <0.1 | 6.3  | 2.1  |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | 24.2 | <1 | 4,790  | <0.50 | 2.2   | <0.1 | 6    | <0.5 | 4.5  | 4,290  | 10.6 | <10 | 0.12  | <1.0 | <0.1 | 0.2  | 13.5 | 14.4 |

#### Statistics

| Number of Results     | 8    | 8  | 8      | 8    | 8  | 8    | 8   | 8    | 8    | 8      | 8   | 8   | 8    | 8    | 8    | 8    | 8    | 8   |
|-----------------------|------|----|--------|------|----|------|-----|------|------|--------|-----|-----|------|------|------|------|------|-----|
| Number of Detects     | 8    | 0  | 8      | 0    | 4  | 1    | 8   | 3    | 3    | 8      | 8   | 2   | 5    | 6    | 6    | 5    | 8    | 7   |
| Minimum Concentration | 13.1 | <1 | 3,870  | <0.5 | <1 | <0.1 | 3.0 | <0.5 | <1.0 | 1,290  | 1.4 | <10 | 0.01 | <0.1 | <0.1 | <0.1 | 2.5  | <1  |
| Maximum Concentration | 64.3 | <1 | 14,600 | <0.5 | 16 | 0.5  | 42  | 4    | 189  | 34,900 | 318 | 88  | 4.25 | 10.4 | 0.6  | 3    | 32.6 | 445 |





|                   |                        |              |           | Т                       | OC                                                  | Organo              | Metals                            |         |         |              | BTEXN      |                |              |
|-------------------|------------------------|--------------|-----------|-------------------------|-----------------------------------------------------|---------------------|-----------------------------------|---------|---------|--------------|------------|----------------|--------------|
|                   |                        |              |           | Total Organic<br>Carbon | Total Organic<br>Carbon (used for<br>normalisation) | Tributyltin (as Sn) | Normalised<br>Tributyltin (as Sn) | Benzene | Toluene | Ethylbenzene | Xylene (o) | Xylene (m & p) | Xylene Total |
|                   |                        |              |           | %                       | %                                                   | mg/kg               | mg/kg                             | mg/kg   | mg/kg   | mg/kg        | mg/kg      | mg/kg          | mg/kg        |
| EQL               |                        |              |           | 0.02                    |                                                     | 0.0005              | 0.0005                            | 0.1     | 0.1     | 0.1          | 0.1        | 0.2            | 0.3          |
| NAGD 2009 - SQG-  | High Values            |              |           |                         |                                                     | 0.07                | 0.07                              |         |         |              |            |                |              |
| NAGD 2009 - Scree | ning Level             |              |           |                         |                                                     | 0.009               | 0.009                             |         |         |              |            |                |              |
| ANZAST 2018 GV-H  | ligh                   |              |           |                         |                                                     | 0.07                | 0.07                              |         |         |              |            |                |              |
| ANZAST 2018 DGV   |                        |              |           |                         |                                                     | 0.009               | 0.009                             |         |         |              |            |                |              |
| ANZECC 2000 - ISC | QG - High <sup>a</sup> |              |           |                         |                                                     |                     |                                   |         |         |              |            |                |              |
| ANECC 2000 - ISQC | G - Low <sup>a</sup>   |              |           |                         |                                                     |                     |                                   |         |         |              |            |                |              |
| Location Code     | Date                   | Field ID     | Depth     |                         |                                                     |                     |                                   |         |         |              |            |                |              |
| VC01              | 30/10/2019             | VC01_0.5-1.0 | 0.5 - 1.0 | 0.06                    | 1                                                   | < 0.0005            | < 0.0005                          | <0.2    | <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |
| VC02              | 31/10/2019             | VC02_0.0-0.5 | 0.0 - 0.5 | 2.82                    | 2.82                                                | 0.0028              | 0.0010                            | <0.2    | <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |
| VC03              | 30/10/2019             | VC03_0.0-0.5 | 0.0 - 0.5 | 0.15                    | 1                                                   | <0.0005             | < 0.0005                          | <0.2    | <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |
| VC04              | 30/10/2019             | VC04_0.5-1.0 | 0.5 - 1.0 | 0.05                    | 1                                                   | <0.0005             | <0.0005                           | <0.2    | <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |
| VC07              | 30/10/2019             | VC07_0.0-0.5 | 0.0 - 0.5 | 1.05                    | 1.05                                                | 0.0204              | 0.0194                            | <0.2    | <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |
| VC08              | 31/10/2019             | VC08_1.0-1.5 | 1.0 - 1.5 | 0.15                    | 1                                                   | <0.0005             | <0.0005                           | <0.2    | <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |
| VC10              | 31/10/2019             | VC10_0.0-0.5 | 0.0 - 0.5 | 0.06                    | 1                                                   | <0.0005             | <0.0005                           | <0.2    | <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |

| Date       | Field ID                                                                                                                                                                                                               | Depth                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 30/10/2019 | VC01_0.5-1.0                                                                                                                                                                                                           | 0.5 - 1.0                                                                                                                                                                                                                                                                                                                                                             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                         | < 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0005                                                      |                                                                                                                                        |
| 31/10/2019 | VC02_0.0-0.5                                                                                                                                                                                                           | 0.0 - 0.5                                                                                                                                                                                                                                                                                                                                                             | 2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.82                                                                                                                                                                                                                                                                                                      | 0.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0010                                                       |                                                                                                                                        |
| 30/10/2019 | VC03_0.0-0.5                                                                                                                                                                                                           | 0.0 - 0.5                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                         | < 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0005                                                      |                                                                                                                                        |
| 30/10/2019 | VC04_0.5-1.0                                                                                                                                                                                                           | 0.5 - 1.0                                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                         | <0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0005                                                      |                                                                                                                                        |
| 30/10/2019 | VC07_0.0-0.5                                                                                                                                                                                                           | 0.0 - 0.5                                                                                                                                                                                                                                                                                                                                                             | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.05                                                                                                                                                                                                                                                                                                      | 0.0204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0194                                                       | _                                                                                                                                      |
| 31/10/2019 | VC08_1.0-1.5                                                                                                                                                                                                           | 1.0 - 1.5                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                         | <0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0005                                                      |                                                                                                                                        |
| 31/10/2019 | VC10_0.0-0.5                                                                                                                                                                                                           | 0.0 - 0.5                                                                                                                                                                                                                                                                                                                                                             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                         | < 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.0005                                                      |                                                                                                                                        |
| 31/10/2019 | VC12_0.0-0.5                                                                                                                                                                                                           | 0.0 - 0.5                                                                                                                                                                                                                                                                                                                                                             | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.34                                                                                                                                                                                                                                                                                                      | 0.0069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0203                                                       |                                                                                                                                        |
|            | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019 | Date         Field ID           30/10/2019         VC01_0.5-1.0           31/10/2019         VC02_0.0-0.5           30/10/2019         VC03_0.0-0.5           30/10/2019         VC04_0.5-1.0           30/10/2019         VC07_0.0-0.5           31/10/2019         VC08_1.0-1.5           31/10/2019         VC10_0.0-0.5           31/10/2019         VC10_0.0-0.5 | Date         Field ID         Depth           30/10/2019         VC01_0.5-1.0         0.5 - 1.0           31/10/2019         VC02_0.0-0.5         0.0 - 0.5           30/10/2019         VC03_0.0-0.5         0.0 - 0.5           30/10/2019         VC04_0.5-1.0         0.5 - 1.0           30/10/2019         VC07_0.0-0.5         0.0 - 0.5           30/10/2019         VC07_0.0-0.5         0.0 - 0.5           31/10/2019         VC08_1.0-1.5         1.0 - 1.5           31/10/2019         VC10_0.0-0.5         0.0 - 0.5           31/10/2019         VC12_0.0-0.5         0.0 - 0.5 | DateField IDDepth30/10/2019VC01_0.5-1.00.5 - 1.00.0631/10/2019VC02_0.0-0.50.0 - 0.52.8230/10/2019VC03_0.0-0.50.0 - 0.50.1530/10/2019VC04_0.5-1.00.5 - 1.00.0530/10/2019VC07_0.0-0.50.0 - 0.51.0531/10/2019VC08_1.0-1.51.0 - 1.50.1531/10/2019VC10_0.0-0.50.0 - 0.50.0631/10/2019VC12_0.0-0.50.0 - 0.50.34 | Date         Field ID         Depth           30/10/2019         VC01_0.5-1.0         0.5 - 1.0         0.06         1           31/10/2019         VC02_0.0-0.5         0.0 - 0.5         2.82         2.82           30/10/2019         VC03_0.0-0.5         0.0 - 0.5         0.15         1           30/10/2019         VC04_0.5-1.0         0.5 - 1.0         0.05         1           30/10/2019         VC07_0.0-0.5         0.0 - 0.5         1.05         1           30/10/2019         VC07_0.0-0.5         0.0 - 0.5         1.05         1           31/10/2019         VC08_1.0-1.5         1.0 - 1.5         0.15         1           31/10/2019         VC10_0.0-0.5         0.0 - 0.5         0.06         1           31/10/2019         VC12_0.0-0.5         0.0 - 0.5         0.34         0.34 | DateField IDDepth30/10/2019VC01_0.5-1.00.5 - 1.00.061<0.0005 | Date         Field ID         Depth           30/10/2019         VC01_0.5-1.0         0.5 - 1.0         0.06         1         <0.0005 |

| Statistics            |      |      |         |         |      |      |      |      |      |      |
|-----------------------|------|------|---------|---------|------|------|------|------|------|------|
| Number of Results     | 8    | 8    | 8       | 8       | 8    | 8    | 8    | 8    | 8    | 8    |
| Number of Detects     | 8    | 8    | 3       | 3       | 0    | 0    | 0    | 0    | 0    | 0    |
| Minimum Concentration | 0.04 | 1.00 | <0.0005 | <0.0005 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.5 |
| Maximum Concentration | 2.82 | 2.82 | 0.0204  | 0.0194  | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.5 |

<0.2

<0.2

<0.2

<0.2

<0.2

<0.5

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is provided.



|                                        | -                                 |                           |                 | TF                                    | RH - NEPM 20      | )13 |
|----------------------------------------|-----------------------------------|---------------------------|-----------------|---------------------------------------|-------------------|-----|
|                                        | BTEX (Sum of<br>Total) - Lab Calc | F1 (C6-C10 minus<br>BTEX) | C6-C10 Fraction | F2 (>C10-C16<br>minus<br>Naphthalene) | >C10-C16 Fraction |     |
|                                        | mg/kg                             | mg/kg                     | mg/kg           | mg/kg                                 | mg/kg             |     |
| EQL                                    | 0.2                               | 3                         | 3               | 3                                     | 3                 |     |
| NAGD 2009 - SQG-High Values            |                                   |                           |                 |                                       |                   | Γ   |
| NAGD 2009 - Screening Level            |                                   |                           |                 |                                       |                   |     |
| ANZAST 2018 GV-High                    |                                   |                           |                 |                                       |                   | Г   |
| ANZAST 2018 DGV                        |                                   |                           |                 |                                       |                   |     |
| ANZECC 2000 - ISQG - High <sup>a</sup> |                                   |                           |                 |                                       |                   | Γ   |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |                                   |                           |                 |                                       |                   |     |

|                     |                        |              |           |                                   |                           |                 | TF                                    | RH - NEPM 20      | 13                        |                           |                            |                                                                                             |                  | TRH - NI         | EPM 1999         |
|---------------------|------------------------|--------------|-----------|-----------------------------------|---------------------------|-----------------|---------------------------------------|-------------------|---------------------------|---------------------------|----------------------------|---------------------------------------------------------------------------------------------|------------------|------------------|------------------|
|                     |                        |              |           | BTEX (Sum of<br>Total) - Lab Calc | F1 (C6-C10 minus<br>BTEX) | C6-C10 Fraction | F2 (>C10-C16<br>minus<br>Naphthalene) | >C10-C16 Fraction | F3 (>C16-C34<br>Fraction) | F4 (>C34-C40<br>Fraction) | >C10-C40 (Sum of<br>Total) | C6-C9 Fraction                                                                              | C10-C14 Fraction | C15-C28 Fraction | C29-C36 Fraction |
|                     |                        |              |           | mg/kg                             | mg/kg                     | mg/kg           | mg/kg                                 | mg/kg             | mg/kg                     | mg/kg                     | mg/kg                      | mg/kg                                                                                       | mg/kg            | mg/kg            | mg/kg            |
| EQL                 |                        |              |           | 0.2                               | 3                         | 3               | 3                                     | 3                 | 3                         | 5                         | 3                          | 3                                                                                           | 3                | 3                | 5                |
| NAGD 2009 - SQG-I   | High Values            |              |           |                                   |                           |                 |                                       |                   |                           |                           |                            |                                                                                             |                  |                  |                  |
| NAGD 2009 - Screen  | ning Level             |              |           |                                   |                           |                 |                                       |                   |                           |                           |                            |                                                                                             |                  |                  |                  |
| ANZAST 2018 GV-H    | ligh                   |              |           |                                   |                           |                 |                                       |                   |                           |                           |                            |                                                                                             |                  |                  |                  |
| ANZAST 2018 DGV     | 2                      |              |           |                                   |                           |                 |                                       |                   |                           |                           |                            |                                                                                             |                  |                  |                  |
| ANZECC 2000 - ISQ   | lG - High <sup>®</sup> |              |           |                                   |                           |                 |                                       |                   |                           |                           |                            |                                                                                             |                  |                  |                  |
| ANECC 2000 - ISQC   | G - Low <sup>a</sup>   |              |           |                                   |                           |                 |                                       |                   |                           |                           |                            |                                                                                             |                  |                  |                  |
| Location Code       | Date                   | Field ID     | Depth     |                                   |                           |                 |                                       |                   |                           |                           |                            |                                                                                             |                  |                  |                  |
| VC01                | 30/10/2019             | VC01_0.5-1.0 | 0.5 - 1.0 | <0.2                              | <3.0                      | <3              | <3                                    | <3                | <3                        | <5                        | <3                         | <3                                                                                          | <3               | <3               | <5               |
| VC02                | 31/10/2019             | VC02_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | 4                                     | 4                 | 78                        | 28                        | 110                        | <3                                                                                          | <3               | 48               | 46               |
| VC03                | 30/10/2019             | VC03_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | <3                                    | <3                | <3                        | <5                        | <3                         | <3                                                                                          | <3               | <3               | <5               |
| VC04                | 30/10/2019             | VC04_0.5-1.0 | 0.5 - 1.0 | <0.2                              | <3.0                      | <3              | <3                                    | <3                | 4                         | <5                        | 4                          | <3                                                                                          | <3               | 5                | <5               |
| VC07                | 30/10/2019             | VC07_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | 7                                     | 7                 | 176                       | 69                        | 252                        | <3                                                                                          | <3               | 101              | 111              |
| VC08                | 31/10/2019             | VC08_1.0-1.5 | 1.0 - 1.5 | <0.2                              | <3.0                      | <3              | <3                                    | <3                | 66                        | 48                        | 114                        | <3                                                                                          | <3               | 18               | 70               |
| VC10                | 31/10/2019             | VC10_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | <3                                    | <3                | <3                        | <5                        | <3                         | <3                                                                                          | <3               | <3               | <5               |
| VC12                | 31/10/2019             | VC12_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | <12                                   | <12               | 185                       | 72                        | 257                        | <3                                                                                          | <6               | 109              | 112              |
|                     |                        |              |           | -                                 |                           |                 |                                       |                   |                           |                           |                            |                                                                                             |                  |                  |                  |
| Statistics          |                        |              |           |                                   |                           |                 |                                       |                   |                           | 0                         |                            |                                                                                             |                  |                  |                  |
| Number of Results   |                        |              |           | 8                                 | 8                         | ð<br>O          | ð<br>2                                | ð<br>2            | 8<br>5                    | б<br>Б                    | ð<br>F                     | ð<br>O                                                                                      | ð<br>O           | ŏ<br>7           | 8<br>5           |
| Minimum Concentrat  | ion                    |              |           |                                   | 0                         | 0               | 2                                     | 2                 | 5                         | 5                         | 5                          | 0                                                                                           | 0                | 1                | 5                |
| Maximum Concentral  | tion                   |              |           | <0.2                              | < 3                       | < 3             | <3                                    | < 10              | 5<br>105                  | <0<br>70                  | < <u>5</u><br>050          | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | < 3              | < <u>5</u>       | 50<br>140        |
| iviaximum Concentra | uon                    |              |           | <0.2                              | <3                        | <3              | <12                                   | <12               | 185                       | 12                        | 252                        | <3                                                                                          | <20              | 109              | 112              |

|                      |             |              |           | . <u></u>                         |                           |                 | TF                                    | RH - NEPM 20           | )13                       |                           |                            |                |                  | TRH - NI         | EPM 1999         |
|----------------------|-------------|--------------|-----------|-----------------------------------|---------------------------|-----------------|---------------------------------------|------------------------|---------------------------|---------------------------|----------------------------|----------------|------------------|------------------|------------------|
|                      |             |              |           | BTEX (Sum of<br>Total) - Lab Calc | F1 (C6-C10 minus<br>BTEX) | C6-C10 Fraction | F2 (>C10-C16<br>minus<br>Naphthalene) | >C10-C16 Fraction      | F3 (>C16-C34<br>Fraction) | F4 (>C34-C40<br>Fraction) | >C10-C40 (Sum of<br>Total) | C6-C9 Fraction | C10-C14 Fraction | C15-C28 Fraction | C29-C36 Fraction |
|                      |             |              |           | mg/kg                             | mg/kg                     | mg/kg           | mg/kg                                 | mg/kg                  | mg/kg                     | mg/kg                     | mg/kg                      | mg/kg          | mg/kg            | mg/kg            | mg/kg            |
| EQL                  |             |              |           | 0.2                               | 3                         | 3               | 3                                     | 3                      | 3                         | 5                         | 3                          | 3              | 3                | 3                | 5                |
| NAGD 2009 - SQG-H    | High Values |              |           |                                   |                           |                 |                                       |                        |                           |                           |                            |                |                  |                  |                  |
| NAGD 2009 - Screer   | ning Level  |              |           |                                   |                           |                 |                                       |                        |                           |                           |                            |                |                  |                  |                  |
| ANZAST 2018 GV-H     | ligh        |              |           |                                   |                           |                 |                                       |                        |                           |                           |                            |                |                  |                  |                  |
| ANZAST 2018 DGV      | • ··· · à   |              |           |                                   |                           |                 |                                       |                        |                           |                           |                            |                |                  | 4                |                  |
| ANZECC 2000 - ISQ    | G - High"   |              |           |                                   |                           |                 |                                       |                        |                           |                           |                            |                |                  | <u> </u>         |                  |
| ANECC 2000 - ISQG    | 9 - LOW     |              |           |                                   |                           |                 |                                       |                        |                           |                           |                            |                |                  |                  |                  |
| Location Code        | Date        | Field ID     | Depth     |                                   |                           |                 |                                       |                        |                           |                           |                            |                |                  |                  |                  |
| VC01                 | 30/10/2019  | VC01_0.5-1.0 | 0.5 - 1.0 | <0.2                              | <3.0                      | <3              | <3                                    | <3                     | <3                        | <5                        | <3                         | <3             | <3               | <3               | <5               |
| VC02                 | 31/10/2019  | VC02_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | 4                                     | 4                      | 78                        | 28                        | 110                        | <3             | <3               | 48               | 46               |
| VC03                 | 30/10/2019  | VC03_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | <3                                    | <3                     | <3                        | <5                        | <3                         | <3             | <3               | <3               | <5               |
| VC04                 | 30/10/2019  | VC04_0.5-1.0 | 0.5 - 1.0 | <0.2                              | <3.0                      | <3              | <3                                    | <3                     | 4                         | <5                        | 4                          | <3             | <3               | 5                | <5               |
| VC07                 | 30/10/2019  | VC07_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | 7                                     | 7                      | 176                       | 69                        | 252                        | <3             | <3               | 101              | 111              |
| VC08                 | 31/10/2019  | VC08_1.0-1.5 | 1.0 - 1.5 | <0.2                              | <3.0                      | <3              | <3                                    | <3                     | 66                        | 48                        | 114                        | <3             | <3               | 18               | 70               |
| VC10                 | 31/10/2019  | VC10_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | <3                                    | <3                     | <3                        | <5                        | <3                         | <3             | <3               | <3               | <5               |
| VC12                 | 31/10/2019  | VC12_0.0-0.5 | 0.0 - 0.5 | <0.2                              | <3.0                      | <3              | <12                                   | <12                    | 185                       | 72                        | 257                        | <3             | <6               | 109              | 112              |
| Statistics           |             |              |           | 7                                 |                           |                 |                                       |                        |                           |                           |                            |                |                  |                  |                  |
|                      |             |              |           |                                   |                           |                 | 0                                     |                        |                           | 0                         | 0                          | 0              | 0                |                  | 0                |
| Number of Detects    |             |              |           | 8                                 | 8                         | ð<br>O          | 0<br>2                                | ð<br>2                 | ŏ<br>5                    | ŏ<br>5                    | ŏ<br>5                     | ŏ<br>O         | ŏ<br>0           | 7                | 0<br>5           |
| Minimum Concentrat   | ion         |              |           | -0.2                              | 0                         | 0               | 2                                     | 2<br>                  | 0<br>-2                   | )<br>-5                   | 0<br>-2                    | 0              | -2               | 1                | 5<br>-5          |
| Maximum Concentral   | tion        |              |           | <0.2                              |                           | ~>              |                                       | ~10                    | 105                       | 70                        | 250                        | ~3             | -3               | 100              | 110              |
| liviaximum Concentra |             |              |           | SU.2                              | <u>``</u>                 | <u>``</u>       | <u><u></u> <u></u></u>                | <u><u></u> <u></u></u> | C01                       | 12                        | 202                        | 5              | <u>^</u> 20      | 109              | 112              |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is



|                                        |                           |                                       |                | _            |                            |                |                              |            |                          |                   |                                       |                              |
|----------------------------------------|---------------------------|---------------------------------------|----------------|--------------|----------------------------|----------------|------------------------------|------------|--------------------------|-------------------|---------------------------------------|------------------------------|
|                                        | C10-C36 (Sum of<br>Total) | Normalised C10-<br>C36 (Sum of Total) | Benzo(e)pyrene | Acenaphthene | Normalised<br>Acenaphthene | Acenaphthylene | Normalised<br>Acenaphthylene | Anthracene | Normalised<br>Anthracene | Benz(a)anthracene | Normalised<br>Benz(a)anthracene       | Benzo(b+j+k)fluora<br>nthene |
|                                        | mg/kg                     | mg/kg                                 | mg/kg          | mg/kg        | mg/kg                      | mg/kg          | mg/kg                        | mg/kg      | mg/kg                    | mg/kg             | mg/kg                                 | mg/kg                        |
| EQL                                    |                           | 3                                     | 0.004          | 0.004        |                            | 0.004          |                              | 0.004      |                          | 0.004             | · · · · · ·                           | 1                            |
| NAGD 2009 - SQG-High Values            |                           |                                       |                |              |                            |                |                              |            |                          |                   | · · · · · · · · · · · · · · · · · · · |                              |
| NAGD 2009 - Screening Level            | 550                       | 550                                   |                |              |                            |                |                              |            |                          |                   |                                       |                              |
| ANZAST 2018 GV-High                    |                           |                                       |                |              |                            |                |                              |            |                          |                   | · · · · · · · · · · · · · · · · · · · |                              |
| ANZAST 2018 DGV                        |                           |                                       |                |              |                            |                |                              |            |                          |                   |                                       |                              |
| ANZECC 2000 - ISQG - High <sup>a</sup> |                           |                                       |                | 0.5          | 0.5                        | 0.64           | 0.64                         | 1.1        | 1.1                      | 1.6               | · · · · · · · · · · · · · · · · · · · |                              |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |                           |                                       |                | 0.016        | 0.016                      | 0.04           | 0.04                         | 0.09       | 0.085                    | 0.26              |                                       |                              |

Т

| Location Code | Date       | Field ID     | Depth     |     |        |        |         |         |         |        |         |        |        |        |    |
|---------------|------------|--------------|-----------|-----|--------|--------|---------|---------|---------|--------|---------|--------|--------|--------|----|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <3  | <3     | <0.004 | < 0.004 | <0.004  | < 0.004 | <0.004 | <0.004  | <0.004 | <0.004 | <0.004 | <1 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | 94  | 33.33  | 0.631  | 0.044   | 0.016   | 0.297   | 0.105  | 0.286   | 0.101  | 1.13   | 0.401  |    |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 | <3  | <3     | <0.004 | < 0.004 | 0.004   | < 0.004 | <0.004 | <0.004  | <0.004 | <0.004 | <0.004 |    |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | 5   | 5      | <0.005 | < 0.005 | 0.005   | < 0.005 | <0.005 | < 0.005 | <0.005 | <0.005 | <0.005 | <1 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | 212 | 201.90 | 0.373  | <0.025  | < 0.024 | 0.202   | 0.192  | 0.116   | 0.110  | 0.8    | 0.762  | 1  |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | 88  | 88     | <0.004 | < 0.004 | <0.004  | < 0.004 | <0.004 | <0.004  | <0.004 | 0.006  | 0.006  | <1 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | <3  | <3     | <0.004 | < 0.004 | < 0.004 | < 0.004 | <0.004 | < 0.004 | <0.004 | <0.004 | <0.004 |    |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | 221 | 650    | 0.117  | < 0.004 | <0.012  | 0.06    | 0.176  | 0.037   | 0.109  | 0.147  | 0.432  | <1 |

| Statistics            |     |     |        |        |        |        |        |        |        |        |        |    |
|-----------------------|-----|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|----|
| Number of Results     | 8   | 8   | 8      | 8      | 8      | 8      | 8      | 8      | 8      | 8      | 8      | 5  |
| Number of Detects     | 5   | 5   | 3      | 1      | 1      | 3      | 3      | 3      | 3      | 4      | 4      | 1  |
| Minimum Concentration | <3  | <3  | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <1 |
| Maximum Concentration | 221 | 221 | 0.631  | 0.044  | <0.024 | 0.297  | 0.192  | 0.8    | 0.110  | 1.13   | 0.8    | 1  |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is



|                                        |                 |                               |                            |                          |                          |          |                        | PAHs                      |                                         |              |                            |             |
|----------------------------------------|-----------------|-------------------------------|----------------------------|--------------------------|--------------------------|----------|------------------------|---------------------------|-----------------------------------------|--------------|----------------------------|-------------|
|                                        | Benzo(a) pyrene | Normalised<br>Benzo(a) pyrene | Benzo[b+j]fluoranth<br>ene | Benzo(k)fluoranthe<br>ne | Benzo(g,h,i)perylen<br>e | Chrysene | Normalised<br>Chrysene | Dibenz(a,h)anthrac<br>ene | Normalised<br>Dibenz(a,h)anthrac<br>ene | Fluoranthene | Normalised<br>Fluoranthene | Naphthalene |
|                                        | mg/kg           | mg/kg                         | mg/kg                      | mg/kg                    | mg/kg                    | mg/kg    | mg/kg                  | mg/kg                     | mg/kg                                   | mg/kg        | mg/kg                      | mg/kg       |
| EQL                                    | 0.004           |                               | 0.004                      | 0.004                    | 0.004                    | 0.004    |                        | 0.004                     |                                         | 0.004        |                            | 0.005       |
| NAGD 2009 - SQG-High Values            |                 |                               |                            |                          |                          |          |                        |                           |                                         |              |                            |             |
| NAGD 2009 - Screening Level            |                 |                               |                            |                          |                          |          |                        |                           |                                         |              |                            |             |
| ANZAST 2018 GV-High                    |                 |                               |                            |                          |                          |          |                        |                           |                                         |              |                            |             |
| ANZAST 2018 DGV                        |                 |                               |                            |                          |                          |          |                        |                           |                                         |              |                            |             |
| ANZECC 2000 - ISQG - High <sup>a</sup> | 1.6             |                               |                            |                          |                          | 2.8      |                        | 0.26                      |                                         | 5.1          |                            | 2.1         |
| ANECC 2000 - ISQG - Low <sup>a</sup>   | 0.43            |                               |                            |                          |                          | 0.384    |                        | 0.063                     |                                         | 0.6          |                            | 0.16        |

| Location Code | Date       | Field ID     | Depth     |         |            |        |         |         |        |         |        |         |         |        |         |
|---------------|------------|--------------|-----------|---------|------------|--------|---------|---------|--------|---------|--------|---------|---------|--------|---------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | < 0.004 | <0.004     | <0.004 | < 0.004 | < 0.004 | <0.004 | < 0.004 | <0.004 | 0.004   | < 0.004 | 0.004  | < 0.005 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | 1.57    | 0.55673759 | 1.49   | 0.661   | 1       | 0.997  | 0.354   | 0.219  | 0.078   | 1.89    | 0.670  | <0.2    |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 | < 0.004 | <0.004     | <0.004 | < 0.004 | < 0.004 | <0.004 | < 0.004 | <0.004 | < 0.004 | < 0.004 | <0.004 | < 0.005 |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | < 0.005 | < 0.005    | <0.005 | < 0.005 | < 0.005 | <0.005 | < 0.005 | <0.005 | < 0.005 | <0.005  | <0.005 | <0.005  |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | 0.872   | 0.83047619 | 0.799  | 0.375   | 0.663   | 0.7    | 0.667   | 0.127  | 0.121   | 1.5     | 1.429  | 0.06    |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | 0.01    | 0.01       | 0.009  | < 0.004 | 0.006   | 0.005  | 0.005   | <0.004 | 0.004   | 0.01    | 0.01   | < 0.005 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | < 0.004 | 0.004      | <0.004 | < 0.004 | < 0.004 | <0.004 | < 0.004 | <0.004 | < 0.004 | < 0.004 | <0.004 | <0.005  |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | 0.255   | 0.75       | 0.226  | 0.116   | 0.197   | 0.122  | 0.359   | 0.04   | 0.118   | 0.201   | 0.591  | 0.01    |

| Statistics            |       |        |        |        |        |        |        |        |        |        |        |        |
|-----------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Number of Results     | 8     | 8      | 8      | 8      | 8      | 8      | 8      | 8      | 8      | 8      | 8      | 8      |
| Number of Detects     | 4     | 5      | 19     | 12     | 16     | 17     | 4      | 4      | 4      | 21     | 5      | 4      |
| Minimum Concentration | 0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.005 |
| Maximum Concentration | 1.57  | 0.830  | 4.2    | 1.7    | 1.8    | 2.2    | 0.666  | <0.5   | 0.121  | 1.89   | 1.4    | <1     |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is



|                                        | Normalised<br>Naphthalene | Fluorene | Normalised<br>Fluorene | Indeno(1,2,3-<br>c,d)pyrene | Phenanthrene | Normalised<br>Phenanthrene | Pyrene | Normalised Pyrene | PAHs (Sum of<br>total) - Lab calc | Normalised PAHs<br>(Sum of total) - Lab<br>calc | Total 8 PAHs (as<br>BaP TEQ)(zero<br>LOR) - Lab Calc | Total 8 PAHs (as<br>BaP TEQ)(half<br>LOR) - Lab Calc |
|----------------------------------------|---------------------------|----------|------------------------|-----------------------------|--------------|----------------------------|--------|-------------------|-----------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                                        | mg/kg                     | mg/kg    | mg/kg                  | mg/kg                       | mg/kg        | mg/kg                      | mg/kg  | mg/kg             | mg/kg                             | mg/kg                                           | mg/kg                                                | mg/kg                                                |
| EQL                                    |                           | 0.004    |                        | 0.004                       | 0.004        |                            | 0.004  |                   | 0.004                             |                                                 | 0.5                                                  | 0.5                                                  |
| NAGD 2009 - SQG-High Values            |                           |          |                        |                             |              |                            |        |                   |                                   |                                                 |                                                      |                                                      |
| NAGD 2009 - Screening Level            |                           |          |                        |                             |              |                            |        |                   |                                   |                                                 |                                                      |                                                      |
| ANZAST 2018 GV-High                    |                           |          |                        |                             |              |                            |        |                   | 50                                | 50                                              |                                                      |                                                      |
| ANZAST 2018 DGV                        |                           |          |                        |                             |              |                            |        |                   | 10                                | 10                                              |                                                      |                                                      |
| ANZECC 2000 - ISQG - High <sup>a</sup> |                           | 0.54     |                        |                             | 1.5          |                            | 2.6    |                   |                                   |                                                 |                                                      |                                                      |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |                           | 0.019    |                        |                             | 0.24         |                            | 0.665  |                   |                                   |                                                 |                                                      |                                                      |

| Location Code | Date       | Field ID     | Depth     |            |        |        |         |         |        |         |        |        |         |      |     |
|---------------|------------|--------------|-----------|------------|--------|--------|---------|---------|--------|---------|--------|--------|---------|------|-----|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | < 0.005    | <0.004 | <0.004 | < 0.004 | < 0.004 | <0.004 | < 0.004 | <0.004 | <0.004 | < 0.004 | <0.5 | 0.6 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | 0.07092199 | 0.095  | 0.034  | 0.963   | 0.885   | 0.314  | 1.78    | 0.631  | 14.8   | 5.248   |      |     |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 | < 0.005    | <0.004 | <0.004 | < 0.004 | < 0.004 | <0.004 | < 0.004 | <0.004 | <0.004 | < 0.004 |      |     |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <0.005     | <0.005 | <0.005 | < 0.005 | < 0.005 | <0.005 | < 0.005 | <0.005 | <0.005 | < 0.005 | <0.5 | 0.7 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | 0.05714286 | 0.041  | 0.039  | 0.517   | 0.7     | 0.667  | 1.5     | 1.429  | 7.5    | 7.143   | 1.0  | 1.3 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | < 0.005    | <0.004 | <0.004 | 0.006   | 0.016   | 0.016  | 0.011   | 0.011  | 0.079  | 0.079   | <0.5 | 0.6 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | <0.005     | <0.004 | <0.004 | < 0.004 | < 0.004 | <0.004 | < 0.004 | <0.004 | <0.004 | < 0.004 |      |     |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | 0.029      | 0.008  | 0.024  | 0.155   | 0.096   | 0.282  | 0.217   | 0.638  | 2.18   | 6.412   | <0.5 | 0.6 |

| Statistics            |        |        |        |        |        |        |        |        |         |        |      |     |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|------|-----|
| Number of Results     | 8      | 8      | 8      | 8      | 8      | 8      | 8      | 8      | 8       | 8      | 5    | 5   |
| Number of Detects     | 3      | 3      | 3      | 4      | 4      | 4      | 4      | 4      | 4       | 4      | 1    | 5   |
| Minimum Concentration | <0.005 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 | < 0.004 | <0.004 | <0.5 | 0.6 |
| Maximum Concentration | 0.071  | 0.095  | 0.039  | 0.963  | 0.885  | 0.667  | 1.78   | 1.429  | 14.8    | 7.142  | 1    | 1.3 |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is


|                                        |                                                      |               |               |               |               | PCBs          |               |               |                  |                              | Herbicides |                                |
|----------------------------------------|------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|------------------|------------------------------|------------|--------------------------------|
|                                        | Total 8 PAHs (as<br>BaP TEQ)(full<br>LOR) - Lab Calc | Arochlor 1016 | Arochlor 1221 | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | Arochlor 1260 | Bay PCBs (Total) | B Normalised PCBs<br>(Total) | Pronamide  | 8 1,2,4-<br>5 trichlorobenzene |
| EQL                                    | 0.5                                                  | 0.005         | 0.005         | 0.005         | 0.005         | 0.005         | 0.005         | 0.005         | 0.005            | mg/ng                        | 0.5        | 0.5                            |
| NAGD 2009 - SQG-High Values            | 1 1                                                  |               |               |               |               |               |               |               |                  |                              |            |                                |
| NAGD 2009 - Screening Level            |                                                      |               |               |               |               |               |               |               |                  |                              |            |                                |
| ANZAST 2018 GV-High                    |                                                      |               |               |               |               |               |               |               | 0.28             | 0.28                         |            |                                |
| ANZAST 2018 DGV                        |                                                      |               |               |               |               |               |               |               | 0.034            | 0.034                        |            |                                |
| ANZECC 2000 - ISQG - High <sup>a</sup> |                                                      |               |               |               |               |               |               |               |                  |                              |            |                                |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |                                                      |               |               |               |               |               |               |               |                  |                              |            |                                |

| Location Code | Date       | Field ID     | Depth     |     |         |         |          |          |          |         |         |         |       |      |      |
|---------------|------------|--------------|-----------|-----|---------|---------|----------|----------|----------|---------|---------|---------|-------|------|------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | 1.2 | <0.0050 | <0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050 | <0.0050 | <0.0050 | 0.005 | <0.5 | <0.5 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 |     | <0.0050 | <0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050 | <0.0050 | <0.0050 | 0.002 |      |      |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 |     | <0.0050 | <0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050 | <0.0050 | <0.0050 | 0.005 |      |      |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | 1.4 | <0.0062 | <0.0062 | <0.0062  | < 0.0062 | < 0.0062 | <0.0062 | <0.0062 | <0.0062 | 0.006 | <0.6 | <0.6 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | 1.5 | <0.0050 | <0.0050 | <0.0050  | <0.0050  | <0.0050  | 0.0677  | <0.0050 | 0.0677  | 0.064 | <0.5 | <0.5 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | 1.2 | <0.0050 | <0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050 | <0.0050 | <0.0050 | 0.005 | <0.5 | <0.5 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |     | <0.0050 | <0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050 | <0.0050 | <0.0050 | 0.005 |      |      |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | 1.2 | <0.0050 | <0.0050 | < 0.0050 | < 0.0050 | <0.0050  | 0.0346  | <0.0050 | 0.0346  | 0.102 | <0.5 | <0.5 |

| Statistics            |     |         |         |         |         |         |        |         |        |         |      |      |
|-----------------------|-----|---------|---------|---------|---------|---------|--------|---------|--------|---------|------|------|
| Number of Results     | 5   | 8       | 8       | 8       | 8       | 8       | 8      | 8       | 8      | 8       | 5    | 5    |
| Number of Detects     | 5   | 0       | 0       | 0       | 0       | 0       | 2      | 0       | 2      | 2       | 0    | 0    |
| Minimum Concentration | 1.2 | < 0.005 | <0.005  | <0.005  | <0.005  | <0.005  | <0.005 | <0.0062 | <0.005 | <0.0018 | <0.5 | <0.5 |
| Maximum Concentration | 1.5 | <0.0062 | <0.0062 | <0.0062 | <0.0062 | <0.0062 | 0.0677 | <0.1    | 0.0677 | 0.0645  | <0.6 | <0.6 |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is

provided.



|                                        |                         |                         |                         |                         |                           |                    |                    |              |            |                 |                             | Nitrosoamin                          |
|----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|--------------------|--------------------|--------------|------------|-----------------|-----------------------------|--------------------------------------|
|                                        | Chlori                  | nated Hydroc            | arbons                  |                         |                           | Explo              | osives             |              |            | Nitroaromatics  | 5                           | es                                   |
|                                        | 1,2-<br>dichlorobenzene | 1,4-<br>dichlorobenzene | 2-<br>chloronaphthalene | Hexachlorobutadie<br>ne | 1,3,5-<br>Trinitrobenzene | 2,4-Dinitrotoluene | 2,6-dinitrotoluene | Nitrobenzene | 2-Picoline | 4-aminobiphenyl | Pentachloronitrobe<br>nzene | N-Nitrosodiphenyl<br>& Diphenylamine |
|                                        | mg/kg                   | mg/kg                   | mg/kg                   | mg/kg                   | mg/kg                     | mg/kg              | mg/kg              | mg/kg        | mg/kg      | mg/kg           | mg/kg                       | mg/kg                                |
| EQL                                    | 0.5                     | 0.5                     | 0.5                     | 0.5                     | 0.5                       | 1                  | 1                  | 0.5          | 0.5        | 0.5             | 0.5                         | 1                                    |
| NAGD 2009 - SQG-High Values            |                         |                         |                         |                         |                           |                    |                    |              |            |                 |                             |                                      |
| NAGD 2009 - Screening Level            |                         |                         |                         |                         |                           |                    |                    |              |            |                 |                             |                                      |
| ANZAST 2018 GV-High                    |                         |                         |                         |                         |                           |                    |                    |              |            |                 |                             |                                      |
| ANZAST 2018 DGV                        |                         |                         |                         |                         |                           |                    |                    |              |            |                 |                             |                                      |
| ANZECC 2000 - ISQG - High <sup>a</sup> |                         |                         |                         |                         |                           |                    |                    |              |            |                 |                             |                                      |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |                         |                         |                         |                         |                           |                    |                    |              |            |                 |                             |                                      |

| Location Code | Date       | Field ID     | Depth     |      |       |      |      |      |      |      |      |       |      |      |      |
|---------------|------------|--------------|-----------|------|-------|------|------|------|------|------|------|-------|------|------|------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <0.5 | <0.5  | <0.5 | <0.5 | <0.5 | <1.0 | <1.0 | <0.5 | <0.5  | <0.5 | <0.5 | <1.0 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 |      |       |      |      |      |      |      |      |       |      |      |      |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 |      |       |      |      |      |      |      |      |       |      |      |      |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <0.6 | <0.6  | <0.6 | <0.6 | <0.6 | <1.0 | <1.0 | <0.6 | <0.6  | <0.6 | <0.6 | <1.2 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <0.5 | <0.5  | <0.5 | <0.5 | <0.5 | <1.0 | <1.0 | <0.5 | <0.5  | <0.5 | <0.5 | <1.0 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <0.5 | <0.5  | <0.5 | <0.5 | <0.5 | <1.0 | <1.0 | <0.5 | <0.5  | <0.5 | <0.5 | <1.0 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |      |       |      |      |      |      |      |      |       |      |      |      |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.5 | < 0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <1.0 | <0.5 | < 0.5 | <0.5 | <0.5 | <1.0 |

| Statistics            |      |      |      |      |      |    |    |      |      |      |      |      |
|-----------------------|------|------|------|------|------|----|----|------|------|------|------|------|
| Number of Results     | 5    | 5    | 5    | 5    | 5    | 5  | 5  | 5    | 5    | 5    | 5    | 5    |
| Number of Detects     | 0    | 0    | 0    | 0    | 0    | 0  | 0  | 0    | 0    | 0    | 0    | 0    |
| Minimum Concentration | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1   |
| Maximum Concentration | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <1 | <1 | <0.6 | <0.6 | <0.6 | <0.6 | <1.2 |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is

provided.



|                                        |                                |                           | Phtha            | alates             |                         |                      |                                     |                                              |          |        |        |                   |        |
|----------------------------------------|--------------------------------|---------------------------|------------------|--------------------|-------------------------|----------------------|-------------------------------------|----------------------------------------------|----------|--------|--------|-------------------|--------|
|                                        | Bis(2-ethylhexyl)<br>phthalate | Butyl benzyl<br>phthalate | Diethylphthalate | Dimethyl phthalate | Di-n-butyl<br>phthalate | Di-n-octyl phthalate | Organochlorine<br>pesticides EPAVic | Other<br>organochlorine<br>pesticides EPAVic | 4,4'-DDE | a-BHC  | Aldrin | Aldrin + Dieldrin | b-BHC  |
|                                        | mg/kg                          | mg/kg                     | mg/kg            | mg/kg              | mg/kg                   | mg/kg                | mg/kg                               | mg/kg                                        | mg/kg    | mg/kg  | mg/kg  | mg/kg             | mg/kg  |
| EQL                                    | 5                              | 0.5                       | 0.5              | 0.5                | 0.5                     | 0.5                  | 0.1                                 | 0.1                                          | 0.0005   | 0.0005 | 0.0005 | 0.05              | 0.0005 |
| NAGD 2009 - SQG-High Values            |                                |                           |                  |                    |                         |                      |                                     |                                              | 0.027    |        |        |                   |        |
| NAGD 2009 - Screening Level            |                                |                           |                  |                    |                         |                      |                                     |                                              | 0.0022   |        |        |                   |        |
| ANZAST 2018 GV-High                    |                                |                           |                  |                    |                         |                      |                                     |                                              | 0.007    |        |        |                   |        |
| ANZAST 2018 DGV                        |                                |                           |                  |                    |                         |                      |                                     |                                              | 0.0014   |        |        |                   |        |
| ANZECC 2000 - ISQG - High <sup>a</sup> |                                |                           |                  |                    |                         |                      |                                     |                                              |          |        |        |                   |        |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |                                |                           |                  |                    |                         |                      |                                     |                                              |          |        |        |                   |        |

Г

| Location Code | Date       | Field ID     | Depth     |      |      |      |      |      |      |    |        |          |          |      |          |
|---------------|------------|--------------|-----------|------|------|------|------|------|------|----|--------|----------|----------|------|----------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <5.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <( | .00050 | <0.00050 | <0.00050 | <0.5 | <0.00050 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 |      |      |      |      |      |      | <( | .00050 | <0.00050 | <0.00050 | 1    | <0.00050 |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 |      |      |      |      |      |      | <( | .00050 | <0.00050 | <0.00050 | 1    | <0.00050 |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <5.0 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <( | .00050 | <0.00050 | <0.00050 | <0.5 | <0.00050 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <5.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <( | .00050 | <0.00050 | <0.00050 | <0.5 | <0.00050 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <5.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <( | .00050 | <0.00050 | <0.00050 | <0.5 | <0.00050 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |      |      |      |      |      |      | <( | .00050 | <0.00050 | <0.00050 | 1    | <0.00050 |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <5.0 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <( | .00050 | <0.00050 | <0.00050 | <0.5 | <0.00050 |

| Statistics            |    |      |      |      |      |      |  |          |          |          |      |          |
|-----------------------|----|------|------|------|------|------|--|----------|----------|----------|------|----------|
| Number of Results     | 5  | 5    | 5    | 5    | 5    | 5    |  | 8        | 8        | 8        | 5    | 8        |
| Number of Detects     | 0  | 0    | 0    | 0    | 0    | 0    |  | 0        | 0        | 0        | 0    | 0        |
| Minimum Concentration | <5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |  | <0.00050 | <0.00050 | <0.00050 | <0.5 | <0.00050 |
| Maximum Concentration | <5 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 |  | <0.00050 | <0.00050 | <0.00050 | <0.5 | <0.00050 |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is

provided.





|                                        |           |                 |                   |        |         |         | C                         | C Pesticide | s          |                         |                         |                    |        |                 |
|----------------------------------------|-----------|-----------------|-------------------|--------|---------|---------|---------------------------|-------------|------------|-------------------------|-------------------------|--------------------|--------|-----------------|
|                                        | Chlordane | Chlordane (cis) | Chlordane (trans) | d-BHC  | 4,4 DDD | 4,4 DDT | DDT+DDE+DDD -<br>Lab Calc | Dieldrin    | Endosulfan | Endosulfan I<br>(alpha) | Endosulfan II<br>(beta) | Endosulfan Sulfate | Endrin | Endrin aldehyde |
|                                        | mg/kg     | mg/kg           | mg/kg             | mg/kg  | mg/kg   | mg/kg   | mg/kg                     | mg/kg       | mg/kg      | mg/kg                   | mg/kg                   | mg/kg              | mg/kg  | mg/kg           |
| EQL                                    | 0.00025   | 0.00025         | 0.00025           | 0.0005 | 0.0005  | 0.0005  | 0.0005                    | 0.0005      | 0.0005     | 0.0005                  | 0.0005                  | 0.0005             | 0.0005 | 0.0005          |
| NAGD 2009 - SQG-High Values            | 0.006     |                 |                   |        | 0.02    | 0.046   |                           | 0.62        |            |                         |                         |                    | 0.22   |                 |
| NAGD 2009 - Screening Level            | 0.0005    |                 |                   |        | 0.002   | 0.0016  |                           | 0.28        |            |                         |                         |                    | 0.01   |                 |
| ANZAST 2018 GV-High                    | 0.009     |                 |                   |        | 0.02    | 0.046   | 0.005                     | 0.07        |            |                         |                         |                    | 0.06   | Í               |
| ANZAST 2018 DGV                        | 0.0045    |                 |                   |        | 0.002   | 0.0016  | 0.0012                    | 0.0028      |            |                         |                         |                    | 0.0027 |                 |
| ANZECC 2000 - ISQG - High <sup>a</sup> |           |                 |                   |        |         |         |                           |             |            |                         |                         |                    |        |                 |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |           |                 |                   |        |         |         |                           |             |            |                         |                         |                    |        |                 |

| Location Code | Date       | Field ID     | Depth     |          |          |          |          |          |          |          |          |          |          |           |          |          |          |
|---------------|------------|--------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050 |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050 |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050 |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | < 0.00050 | <0.00050 | <0.00050 | <0.00050 |

| Statistics            | ]        |          |          |          |          |          |          |          |          |          |          |          |          |          |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Number of Results     | 8        | 8        | 8        | 8        | 8        | 8        | 8        | 8        | 8        | 8        | 8        | 8        | 8        | 8        |
| Number of Detects     | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Minimum Concentration | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 |
| Maximum Concentration | <0.00025 | <0.00025 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 |

<sup>a</sup>Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is provided.





|                                        | Endrin ketone | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide | Hexachlorobenzen<br>e | Methoxychlor | Oxychlordane | Toxaphene | Tokuthion | Azinphos methyl | Bolstar (Sulprofos) | Bromophos-ethyl | Carbophenothion | Chlorfenvinphos |
|----------------------------------------|---------------|-----------------|------------|--------------------|-----------------------|--------------|--------------|-----------|-----------|-----------------|---------------------|-----------------|-----------------|-----------------|
|                                        | mg/kg         | mg/kg           | mg/kg      | mg/kg              | mg/kg                 | mg/kg        | mg/kg        | mg/kg     | mg/kg     | mg/kg           | mg/kg               | mg/kg           | mg/kg           | mg/kg           |
| EQL                                    | 0.0005        | 0.00025         | 0.0005     | 0.0005             | 0.0005                | 0.0005       | 0.0005       | 1         | 0.2       | 0.01            | 0.2                 | 0.01            | 0.01            | 0.2             |
| NAGD 2009 - SQG-High Values            |               | 0.001           |            |                    |                       |              |              |           |           |                 |                     |                 |                 |                 |
| NAGD 2009 - Screening Level            |               | 0.00032         |            |                    |                       |              |              |           |           |                 |                     |                 |                 |                 |
| ANZAST 2018 GV-High                    |               | 0.0014          |            |                    |                       |              |              |           |           |                 |                     |                 |                 |                 |
| ANZAST 2018 DGV                        |               | 0.0009          |            |                    |                       |              |              |           |           |                 |                     |                 |                 |                 |
| ANZECC 2000 - ISQG - High <sup>a</sup> |               |                 |            |                    |                       |              |              |           |           |                 |                     |                 |                 |                 |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |               |                 |            |                    |                       |              |              |           |           |                 |                     |                 |                 |                 |
|                                        |               | -               |            |                    |                       | -            |              |           | •         | •               | •                   |                 | -               |                 |

| Location Code | Date       | Field ID     | Depth     |          |          |          |          |          |          |          |       |       |       |      |
|---------------|------------|--------------|-----------|----------|----------|----------|----------|----------|----------|----------|-------|-------|-------|------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.01 | <0.01 | <0.01 | <0.5 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.01 | <0.01 | <0.01 |      |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.01 | <0.01 | <0.01 |      |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.01 | <0.01 | <0.01 | <0.6 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.01 | <0.01 | <0.01 | <0.5 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.01 | <0.01 | <0.01 | <0.5 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.01 | <0.01 | <0.01 |      |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.01 | <0.01 | <0.01 | <0.5 |

| Statistics            | ]        |          |          |          |          |          |          |  |       |       |       |      |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|--|-------|-------|-------|------|
| Number of Results     | 8        | 8        | 8        | 8        | 8        | 8        | 8        |  | 8     | 8     | 8     | 5    |
| Number of Detects     | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  | 0     | 0     | 0     | 0    |
| Minimum Concentration | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 |  | <0.01 | <0.01 | <0.01 | <0.5 |
| Maximum Concentration | <0.00050 | <0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050 | <0.00050 |  | <0.01 | <0.01 | <0.01 | <0.5 |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is provided.



|                                        | Chlorfenvinphos E | Chlorpyrifos | Chlorpyrifos-methyl | Coumaphos | Demeton-O | Demeton-S | Demeton-S-methyl | Diazinon | cis-<br>Chlorfenvinphos | Dichlorvos | Dimethoate | Disulfoton | N     | Ethion |
|----------------------------------------|-------------------|--------------|---------------------|-----------|-----------|-----------|------------------|----------|-------------------------|------------|------------|------------|-------|--------|
|                                        | mg/kg             | mg/kg        | mg/kg               | mg/kg     | mg/kg     | mg/kg     | mg/kg            | mg/kg    | mg/kg                   | mg/kg      | mg/kg      | mg/kg      | mg/kg | mg/kg  |
| EQL                                    | 0.01              | 0.01         | 0.01                | 2         | 0.2       | 0.2       | 0.01             | 0.01     | 0.01                    | 0.01       | 0.01       | 0.2        | 0.2   | 0.01   |
| NAGD 2009 - SQG-High Values            |                   |              |                     |           |           |           |                  |          |                         |            |            |            |       | 1      |
| NAGD 2009 - Screening Level            |                   |              |                     |           |           |           |                  |          |                         |            |            |            |       |        |
| ANZAST 2018 GV-High                    |                   |              |                     |           |           |           |                  |          |                         |            |            |            |       |        |
| ANZAST 2018 DGV                        |                   |              |                     |           |           |           |                  |          |                         |            |            |            |       |        |
| ANZECC 2000 - ISQG - High <sup>a</sup> |                   |              | -                   |           |           |           |                  |          |                         |            |            |            |       |        |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |                   |              |                     |           |           |           |                  |          |                         |            |            |            |       |        |
| Location Code Date Field ID Depth      |                   | -            |                     | -         |           | -         |                  |          |                         | -          | -          |            |       |        |

| Location Code | Date       | Field ID     | Depth     |         |       |       |  |       |       |        |       |       |  |       |
|---------------|------------|--------------|-----------|---------|-------|-------|--|-------|-------|--------|-------|-------|--|-------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01  | <0.01 | <0.01 |  | <0.01 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01  | <0.01 | <0.01 |  | <0.01 |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01  | <0.01 | <0.01 |  | <0.01 |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01  | <0.01 | <0.01 |  | <0.01 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01  | <0.01 | <0.01 |  | <0.01 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01  | <0.01 | <0.01 |  | <0.01 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01  | <0.01 | <0.01 |  | <0.01 |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | < 0.01 | <0.01 | <0.01 |  | <0.01 |

| Statistics            | ]       |       |       |  |       |       |       |       |       |  |       |
|-----------------------|---------|-------|-------|--|-------|-------|-------|-------|-------|--|-------|
| Number of Results     | 8       | 8     | 8     |  | 8     | 8     | 8     | 8     | 8     |  | 8     |
| Number of Detects     | 0       | 0     | 0     |  | 0     | 0     | 0     | 0     | 0     |  | 0     |
| Minimum Concentration | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |  | <0.01 |
| Maximum Concentration | <0.0100 | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |  | <0.01 |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is provided.



| ion<br>(Dibrom)<br>te<br>te<br>te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Phorai ath eath on occurrent of the sulf o | Phorate |
| mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g/kg    |
| EQL         0.2         0.01         0.2         0.01         0.01         0.2         0.01         0.2         0.01         0.2         0.01         0.2         0.01         0.2         0.01         0.2         0.01         0.2         0.01         0.2         0.01         0.2         0.01         0.2         2         0.01         0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).2     |
| NAGD 2009 - SQG-High Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| NAGD 2009 - Screening Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| ANZAST 2018 GV-High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| ANZAST 2018 DGV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| ANZECC 2000 - ISQG - High <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| ANECC 2000 - ISQG - Low <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| Location Code Date Field ID Denth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

| Location Code | Date       | Field ID     | Depth     |       |       |       |       |       |       |
|---------------|------------|--------------|-----------|-------|-------|-------|-------|-------|-------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |

| Statistics            |       |       |  |       |       |       |       |       |  |
|-----------------------|-------|-------|--|-------|-------|-------|-------|-------|--|
| Number of Results     | 8     | 8     |  | 8     | 8     | 8     | 8     | 8     |  |
| Number of Detects     | 0     | 0     |  | 0     | 0     | 0     | 0     | 0     |  |
| Minimum Concentration | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |  |
| Maximum Concentration | <0.01 | <0.01 |  | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |  |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is

provided.



|                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                       | Pirimphos-ethyl                                                      | Pirimiphos-methyl | Prothiofos                                                           | Pyrazophos | Ronnel | Terbufos | Trichloronate | Tetrachlorvinphos | 3,4-Methylphenol<br>(m,p-cresol)                       | 2,4,5-<br>trichlorophenol                                    | 2,4,6-<br>trichlorophenol                                    | 2,4-dichlorophenol                                           | 2,4-dimethylphenol                                           | 2,6-dichlorophenol                                           |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------|----------------------------------------------------------------------|------------|--------|----------|---------------|-------------------|--------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                       | mg/kg                                                                | mg/kg             | mg/kg                                                                | mg/kg      | mg/kg  | mg/kg    | mg/kg         | mg/kg             | mg/kg                                                  | mg/kg                                                        | mg/kg                                                        | mg/kg                                                        | mg/kg                                                        | mg/kg                                                        |
| EQL                                                                                                                    |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                       | 0.01                                                                 | 0.2               | 0.01                                                                 | 0.2        | 0.2    | 0.2      | 0.2           | 0.2               | 0.4                                                    | 0.5                                                          | 0.5                                                          | 0.5                                                          | 0.5                                                          | 0.5                                                          |
| NAGD 2009 - SQG-                                                                                                       | High Values                                                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                      |                   |                                                                      |            |        |          |               |                   |                                                        |                                                              |                                                              |                                                              |                                                              |                                                              |
| NAGD 2009 - Scree                                                                                                      | ning Level                                                                                                                                                                                                                                  |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                      |                   |                                                                      |            |        |          |               |                   |                                                        |                                                              |                                                              |                                                              |                                                              |                                                              |
| ANZAST 2018 GV-I                                                                                                       | High                                                                                                                                                                                                                                        |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                      |                   |                                                                      |            |        |          |               |                   |                                                        |                                                              |                                                              |                                                              |                                                              |                                                              |
| ANZAST 2018 DGV                                                                                                        | ,                                                                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                      |                   |                                                                      |            |        |          |               |                   |                                                        |                                                              |                                                              |                                                              |                                                              |                                                              |
| ANZECC 2000 - ISC                                                                                                      | QG - High <sup>a</sup>                                                                                                                                                                                                                      |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                      |                   |                                                                      |            |        |          |               |                   |                                                        |                                                              |                                                              |                                                              |                                                              |                                                              |
| ANECC 2000 - ISQ                                                                                                       | G-Low <sup>a</sup>                                                                                                                                                                                                                          |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                      |                   |                                                                      |            |        |          |               |                   |                                                        |                                                              |                                                              |                                                              |                                                              |                                                              |
| /#1200 2000 10 Q                                                                                                       | 0 - LOW                                                                                                                                                                                                                                     |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                      |                   |                                                                      |            |        |          |               |                   |                                                        |                                                              |                                                              |                                                              |                                                              |                                                              |
| Location Code                                                                                                          | Date                                                                                                                                                                                                                                        | Field ID                                                                                                                                                                                         | Depth                                                                                                                                                                 |                                                                      | •                 |                                                                      | L          |        |          |               |                   |                                                        |                                                              |                                                              |                                                              |                                                              |                                                              |
| Location Code                                                                                                          | Date<br>30/10/2019                                                                                                                                                                                                                          | Field ID<br>VC01_0.5-1.0                                                                                                                                                                         | <b>Depth</b><br>0.5 - 1.0                                                                                                                                             | <0.01                                                                |                   | <0.01                                                                |            |        |          |               |                   | <0.5                                                   | <0.5                                                         | <0.5                                                         | <0.5                                                         | <0.5                                                         | <0.5                                                         |
| Location Code<br>VC01<br>VC02                                                                                          | Date<br>30/10/2019<br>31/10/2019                                                                                                                                                                                                            | Field ID<br>VC01_0.5-1.0<br>VC02_0.0-0.5                                                                                                                                                         | <b>Depth</b><br>0.5 - 1.0<br>0.0 - 0.5                                                                                                                                | <0.01<br><0.01                                                       |                   | <0.01<br><0.01                                                       |            |        |          |               |                   | <0.5<br><1                                             | <0.5<br><0.5                                                 | <0.5<br><0.5                                                 | <0.5<br><0.5                                                 | <0.5<br><0.5                                                 | <0.5<br><0.5                                                 |
| Location Code<br>VC01<br>VC02<br>VC03                                                                                  | Date<br>30/10/2019<br>31/10/2019<br>30/10/2019                                                                                                                                                                                              | Field ID<br>VC01_0.5-1.0<br>VC02_0.0-0.5<br>VC03_0.0-0.5                                                                                                                                         | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5                                                                                                                          | <0.01<br><0.01<br><0.01                                              |                   | <0.01<br><0.01<br><0.01                                              |            |        |          |               |                   | <0.5<br><1<br><1                                       | <0.5<br><0.5<br><0.5                                         | <0.5<br><0.5<br><0.5                                         | <0.5<br><0.5<br><0.5                                         | <0.5<br><0.5<br><0.5                                         | <0.5<br><0.5<br><0.5                                         |
| Location Code           VC01           VC02           VC03           VC04                                              | Date<br>30/10/2019<br>31/10/2019<br>30/10/2019<br>30/10/2019                                                                                                                                                                                | Field ID<br>VC01_0.5-1.0<br>VC02_0.0-0.5<br>VC03_0.0-0.5<br>VC04_0.5-1.0                                                                                                                         | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5<br>0.5 - 1.0                                                                                                             | <0.01<br><0.01<br><0.01<br><0.01                                     |                   | <0.01<br><0.01<br><0.01<br><0.01                                     |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6                               | <0.5<br><0.5<br><0.5<br><0.6                                 | <0.5<br><0.5<br><0.5<br><0.6                                 | <0.5<br><0.5<br><0.5<br><0.6                                 | <0.5<br><0.5<br><0.5<br><0.6                                 | <0.5<br><0.5<br><0.5<br><0.6                                 |
| Location Code           VC01           VC02           VC03           VC04           VC07                               | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           30/10/2019                                                                                                          | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5                                                                      | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5<br>0.5 - 1.0<br>0.0 - 0.5                                                                                                | <0.01<br><0.01<br><0.01<br><0.01<br><0.01                            |                   | <0.01<br><0.01<br><0.01<br><0.01<br><0.01                            |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6<br><0.5                       | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                         |
| Location Code           VC01           VC02           VC03           VC04           VC07           VC08                | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019                                                                                     | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5                                               | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 0.5           1.0 - 1.5                     | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01          |                   | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                   |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6<br><0.5<br><0.5               | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5                 |
| Location Code           VC01           VC02           VC03           VC04           VC07           VC08           VC10 | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019                                           | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5                        | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5<br>0.5 - 1.0<br>0.0 - 0.5<br>1.0 - 1.5<br>0.0 - 0.5                                                                      | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01          |                   | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01          |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6<br><0.5<br><0.5<br><1         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5         | <0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5         |
| Location Code           VC01           VC02           VC03           VC04           VC07           VC08           VC10 | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019 | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5           VC12_0.0-0.5 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01 |                   | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01 |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6<br><0.5<br><0.5<br><1<br><0.5 | <0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.6<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5 |

|                                                                                                    |                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                                                                                       | Pirimphos-ethyl                                                                                                        | Pirimiphos-methyl | Prothiofos                                                           | Pyrazophos | Ronnel | Terbufos | Trichloronate | Tetrachlorvinphos | 3,4-Methylphenol<br>(m,p-cresol)                       | 2,4,5-<br>trichlorophenol                                            | 2,4,6-<br>trichlorophenol                                            | 2,4-dichlorophenol                                                   | 2,4-dimethylphenol                                                   | 2,6-dichlorophenol                                                   |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------|------------|--------|----------|---------------|-------------------|--------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                                    |                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                                                                                       | mg/kg                                                                                                                  | mg/kg             | mg/kg                                                                | mg/kg      | mg/kg  | mg/kg    | mg/kg         | mg/kg             | mg/kg                                                  | mg/kg                                                                | mg/kg                                                                | mg/kg                                                                | mg/kg                                                                | mg/kg                                                                |
| EQL                                                                                                |                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                                                                                       | 0.01                                                                                                                   | 0.2               | 0.01                                                                 | 0.2        | 0.2    | 0.2      | 0.2           | 0.2               | 0.4                                                    | 0.5                                                                  | 0.5                                                                  | 0.5                                                                  | 0.5                                                                  | 0.5                                                                  |
| NAGD 2009 - SQG-H                                                                                  | High Values                                                                                                                        |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                        |                   |                                                                      |            |        |          |               |                   |                                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| NAGD 2009 - Screen                                                                                 | ning Level                                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                        |                   |                                                                      |            |        |          |               |                   |                                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| ANZAST 2018 GV-H                                                                                   | ligh                                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                        |                   |                                                                      |            |        |          |               |                   |                                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| ANZAST 2018 DGV                                                                                    |                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                        |                   |                                                                      |            |        |          |               |                   |                                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| ANZECC 2000 - ISQ                                                                                  | )G - High <sup>a</sup>                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                        |                   |                                                                      |            |        |          |               |                   |                                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
|                                                                                                    | <b></b>                                                                                                                            |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                        |                   |                                                                      |            |        |          |               |                   |                                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| ANECC 2000 - ISQG                                                                                  | G - Low <sup>a</sup>                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                        |                   |                                                                      |            |        |          |               |                   |                                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| ANECC 2000 - ISQG                                                                                  | G - Low <sup>a</sup>                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                        |                   |                                                                      |            |        |          |               |                   |                                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| ANECC 2000 - ISQG                                                                                  | Date                                                                                                                               | Field ID                                                                                                                                                                                         | Depth                                                                                                                                                                 |                                                                                                                        |                   |                                                                      |            |        |          |               |                   |                                                        |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
| ANECC 2000 - ISQG<br>Location Code<br>VC01                                                         | Date<br>30/10/2019                                                                                                                 | Field ID<br>VC01_0.5-1.0                                                                                                                                                                         | <b>Depth</b><br>0.5 - 1.0                                                                                                                                             | <0.01                                                                                                                  |                   | <0.01                                                                |            |        |          |               |                   | <0.5                                                   | <0.5                                                                 | <0.5                                                                 | <0.5                                                                 | <0.5                                                                 | <0.5                                                                 |
| ANECC 2000 - ISQG<br>Location Code<br>VC01<br>VC02                                                 | Date<br>30/10/2019<br>31/10/2019                                                                                                   | Field ID<br>VC01_0.5-1.0<br>VC02_0.0-0.5                                                                                                                                                         | <b>Depth</b><br>0.5 - 1.0<br>0.0 - 0.5                                                                                                                                | <0.01                                                                                                                  |                   | <0.01<br><0.01                                                       |            |        |          |               |                   | <0.5<br><1                                             | <0.5<br><0.5                                                         | <0.5<br><0.5                                                         | <0.5<br><0.5                                                         | <0.5<br><0.5                                                         | <0.5<br><0.5                                                         |
| ANECC 2000 - ISQG<br>Location Code<br>VC01<br>VC02<br>VC03                                         | Date<br>30/10/2019<br>31/10/2019<br>30/10/2019                                                                                     | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5                                                                                                                    | <b>Depth</b><br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5                                                                                                                   | <0.01<br><0.01<br><0.01                                                                                                |                   | <0.01<br><0.01<br><0.01                                              |            |        |          |               |                   | <0.5<br><1<br><1                                       | <0.5<br><0.5<br><0.5                                                 | <0.5<br><0.5<br><0.5                                                 | <0.5<br><0.5<br><0.5                                                 | <0.5<br><0.5<br><0.5                                                 | <0.5<br><0.5<br><0.5                                                 |
| ANECC 2000 - ISQG<br>Location Code<br>VC01<br>VC02<br>VC03<br>VC04                                 | Date<br>30/10/2019<br>31/10/2019<br>30/10/2019<br>30/10/2019<br>30/10/2019                                                         | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0                                                                                             | <b>Depth</b><br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5<br>0.5 - 1.0                                                                                                      | <0.01<br><0.01<br><0.01<br><0.01                                                                                       |                   | <0.01<br><0.01<br><0.01<br><0.01                                     |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6                               | <0.5<br><0.5<br><0.5<br><0.6                                         | <0.5<br><0.5<br><0.5<br><0.6                                         | <0.5<br><0.5<br><0.5<br><0.6                                         | <0.5<br><0.5<br><0.5<br><0.6                                         | <0.5<br><0.5<br><0.5<br><0.6                                         |
| ANECC 2000 - ISQG<br>Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07                         | Date<br>30/10/2019<br>31/10/2019<br>30/10/2019<br>30/10/2019<br>30/10/2019<br>30/10/2019                                           | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5                                                                      | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5<br>0.5 - 1.0<br>0.0 - 0.5                                                                                                | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                     |                   | <0.01<br><0.01<br><0.01<br><0.01<br><0.01                            |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6<br><0.5                       | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5                                 |
| ANECC 2000 - ISQG<br>Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08                 | Date<br>30/10/2019<br>31/10/2019<br>30/10/2019<br>30/10/2019<br>30/10/2019<br>30/10/2019<br>31/10/2019                             | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5                                               | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5<br>0.5 - 1.0<br>0.0 - 0.5<br>1.0 - 1.5                                                                                   | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                     |                   | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                   |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6<br><0.5<br><0.5               | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5                 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5                 |
| ANECC 2000 - ISQG<br>Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10         | Date<br>30/10/2019<br>31/10/2019<br>30/10/2019<br>30/10/2019<br>30/10/2019<br>31/10/2019<br>31/10/2019<br>31/10/2019               | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5                        | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5<br>0.5 - 1.0<br>0.0 - 0.5<br>1.0 - 1.5<br>0.0 - 0.5                                                                      | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                            |                   | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01          |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6<br><0.5<br><0.5<br><1         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5         | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5         |
| ANECC 2000 - ISQG<br>Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC12 | Date<br>30/10/2019<br>31/10/2019<br>30/10/2019<br>30/10/2019<br>30/10/2019<br>31/10/2019<br>31/10/2019<br>31/10/2019<br>31/10/2019 | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5           VC12_0.0-0.5 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5 | <pre>&lt;0.01 &lt;0.01 &lt;0.01</pre> |                   | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01 |            |        |          |               |                   | <0.5<br><1<br><1<br><0.6<br><0.5<br><0.5<br><1<br><0.5 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <0.5<br><0.5<br><0.5<br><0.6<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 |

| Statistics            |       |       |  |  |       |      |      |      |      |      |
|-----------------------|-------|-------|--|--|-------|------|------|------|------|------|
| Number of Results     | 8     | 8     |  |  | 8     | 8    | 8    | 8    | 8    | 8    |
| Number of Detects     | 0     | 0     |  |  | 0     | 0    | 0    | 0    | 0    | 0    |
| Minimum Concentration | <0.01 | <0.01 |  |  | <0.05 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
| Maximum Concentration | <0.01 | <0.01 |  |  | <0.1  | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 |

<sup>a</sup>Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is provided.



|                    |                     |              |           |                | Phenols                 |                |               |                              |                             |              |                   |              |                    |                            |                                       |                   |                         |
|--------------------|---------------------|--------------|-----------|----------------|-------------------------|----------------|---------------|------------------------------|-----------------------------|--------------|-------------------|--------------|--------------------|----------------------------|---------------------------------------|-------------------|-------------------------|
|                    |                     |              |           | 2-chlorophenol | 2-<br>methylnaphthalene | 2-methylphenol | 2-nitrophenol | 3-<br>methylcholanthren<br>e | 4-chloro-3-<br>methylphenol | Acetophenone | Pentachlorophenol | Phenol       | 1,1-dichloroethane | 1,2,3-<br>trichlorobenzene | 1,2,3-<br>trichloropropane            | 1,2-dibromoethane | 1,3-<br>dichlorobenzene |
|                    |                     |              |           | mg/kg          | mg/kg                   | mg/kg          | mg/kg         | mg/kg                        | mg/kg                       | mg/kg        | mg/kg             | mg/kg        | mg/kg              | mg/kg                      | mg/kg                                 | mg/kg             | mg/kg                   |
| EQL                |                     |              |           | 0.5            | 0.005                   | 0.2            | 0.5           | 0.5                          | 0.5                         | 0.5          | 1                 | 0.5          | 0.5                | 0.5                        | 0.5                                   | 0.5               | 0.5                     |
| NAGD 2009 - SQG-   | High Values         |              |           |                |                         |                |               |                              |                             |              |                   |              |                    |                            |                                       |                   |                         |
| NAGD 2009 - Scree  | ning Level          |              |           |                |                         |                |               |                              |                             |              |                   |              |                    |                            | '                                     |                   |                         |
| ANZAST 2018 GV-F   | ligh                |              |           |                |                         |                |               |                              |                             |              |                   |              |                    |                            |                                       |                   |                         |
| ANZAST 2018 DGV    | C High <sup>a</sup> |              |           |                |                         |                |               |                              |                             |              |                   |              |                    |                            |                                       |                   |                         |
| ANECC 2000 - 150   | low <sup>a</sup>    |              |           |                |                         |                |               |                              |                             |              |                   |              |                    |                            |                                       |                   |                         |
| ANLOC 2000 - 13QC  | 5 - LOW             |              |           |                |                         |                |               |                              |                             |              |                   |              |                    |                            |                                       |                   |                         |
| Location Code      | Date                | Field ID     | Depth     |                |                         |                |               |                              |                             |              |                   |              |                    |                            |                                       |                   |                         |
| VC01               | 30/10/2019          | VC01_0.5-1.0 | 0.5 - 1.0 | <0.5           | <0.005                  | <0.5           | <0.5          | <0.5                         | <0.5                        | <0.5         | <1                | <0.5         |                    |                            | · · · · · · · · · · · · · · · · · · · |                   | <0.5                    |
| VC02               | 31/10/2019          | VC02_0.0-0.5 | 0.0 - 0.5 | <0.5           | 0.044                   | <0.5           | <0.5          |                              | <0.5                        |              | <2                | <0.5         |                    |                            |                                       |                   |                         |
| VC03               | 30/10/2019          | VC03_0.0-0.5 | 0.0 - 0.5 | <0.5           | <0.005                  | <0.5           | <0.5          |                              | <0.5                        |              | <2                | <0.5         |                    |                            |                                       |                   |                         |
| VC04               | 30/10/2019          | VC04_0.5-1.0 | 0.5 - 1.0 | <0.6           | <0.005                  | <0.6           | <0.6          | <0.6                         | <0.6                        | <0.6         | <1                | <0.6         |                    |                            |                                       |                   | <0.6                    |
| VC07               | 30/10/2019          | VC07_0.0-0.5 | 0.0 - 0.5 | <0.5           | <0.025                  | <0.5           | <0.5          | <0.5                         | <0.5                        | <0.5         | <1                | <0.5         |                    |                            |                                       |                   | <0.5                    |
| VC08               | 31/10/2019          | VC08_1.0-1.5 | 1.0 - 1.5 | <0.5           | <0.005                  | <0.5           | <0.5          | <0.5                         | <0.5                        | <0.5         | <1                | <0.5         |                    |                            |                                       |                   | <0.5                    |
| VC10               | 31/10/2019          | VC10_0.0-0.5 | 0.0 - 0.5 | <0.5           | <0.005                  | <0.5           | <0.5          |                              | <0.5                        |              | <2                | <0.5         |                    |                            |                                       |                   |                         |
| VC12               | 31/10/2019          | VC12_0.0-0.5 | 0.0 - 0.5 | <0.5           | <0.005                  | <0.5           | <0.5          | <0.5                         | <0.5                        | <0.5         | <1                | <0.5         |                    |                            |                                       |                   | <0.5                    |
|                    |                     |              |           |                |                         |                |               |                              |                             |              |                   |              |                    |                            |                                       |                   |                         |
|                    |                     |              |           |                |                         | 0              | 0             |                              | 0                           |              | 0                 | 0            |                    |                            |                                       |                   |                         |
| Number of Results  |                     |              |           | 8              | 8                       | 8              | × 0           | 5                            | × 0                         | 5            | 8                 | 8            |                    |                            | <u> </u>                              | <b> </b> '        | ŏ<br>0                  |
| Minimum Concentrat | tion                |              |           | <0.5           |                         | <0.5           | <0.5          | <0.5                         | <0.5                        | <0.5         |                   | <0.5         |                    |                            | <b> </b>                              | <u> </u> '        | <0.5                    |
| Maximum Concentra  | ation               |              |           | <0.5           | 0.005                   | <0.5           | <0.5          | <0.5                         | <0.5                        | <0.5         | <2                | <0.5         |                    |                            | <b> </b>                              | <b> </b>          | <0.5                    |
|                    |                     |              |           | ~0.0           | 0.044                   | <b>~</b> 0.0   | <b>~</b> 0.0  | <b>~</b> 0.0                 | <b>~</b> 0.0                | <b>~</b> 0.0 | <u>~</u>          | <b>~</b> 0.0 |                    |                            | 1                                     |                   | <b>~0.0</b>             |

| Location Code | Date       | Field ID     | Depth     |      |         |      |      |      |      |
|---------------|------------|--------------|-----------|------|---------|------|------|------|------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <0.5 | <0.005  | <0.5 | <0.5 | <0.5 | <0.5 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | <0.5 | 0.044   | <0.5 | <0.5 |      | <0.5 |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 | <0.5 | <0.005  | <0.5 | <0.5 |      | <0.5 |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <0.6 | <0.005  | <0.6 | <0.6 | <0.6 | <0.6 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <0.5 | <0.025  | <0.5 | <0.5 | <0.5 | <0.5 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <0.5 | <0.005  | <0.5 | <0.5 | <0.5 | <0.5 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | <0.5 | <0.005  | <0.5 | <0.5 |      | <0.5 |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.5 | < 0.005 | <0.5 | <0.5 | <0.5 | <0.5 |

| Statistics            |      |        |      |      |      |      |
|-----------------------|------|--------|------|------|------|------|
| Number of Results     | 8    | 8      | 8    | 8    | 5    | 8    |
| Number of Detects     | 0    | 0      | 0    | 0    | 0    | 0    |
| Minimum Concentration | <0.5 | <0.005 | <0.5 | <0.5 | <0.5 | <0.5 |
| Maximum Concentration | <0.6 | 0.044  | <0.6 | <0.6 | <0.6 | <0.6 |

<sup>a</sup>Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is

provided.



|                   |                        |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             | VC                            | DCs            |             |                                       |                 |
|-------------------|------------------------|--------------|-----------|------------------|------------------|---------------------------------|--------------------------|-----------|------------------|--------------------------|--------------|-----------------------------|-------------------------------|----------------|-------------|---------------------------------------|-----------------|
|                   |                        |              |           | 2-butanone (MEK) | 2-hexanone (MBK) | 4-methyl-2-<br>pentanone (MIBK) | Bromodichlorometh<br>ane | Bromoform | Carbon disulfide | Chlorodibromomet<br>hane | Chloroethane | cis-1,3-<br>dichloropropene | cis-1,4-Dichloro-2-<br>butene | Dibromomethane | lodomethane | n-butylbenzene                        | n-propylbenzene |
|                   |                        |              |           | mg/kg            | mg/kg            | mg/kg                           | mg/kg                    | mg/kg     | mg/kg            | mg/kg                    | mg/kg        | mg/kg                       | mg/kg                         | mg/kg          | mg/kg       | mg/kg                                 | mg/kg           |
| EQL               |                        |              |           | 5                | 5                | 5                               | 0.5                      | 0.5       | 0.5              | 0.5                      | 5            | 0.5                         | 0.5                           | 0.5            | 0.5         | 0.5                                   | 0.5             |
| NAGD 2009 - SQG-  | High Values            |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| NAGD 2009 - Scree | ening Level            |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| ANZAST 2018 GV-I  | High                   |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| ANZAST 2018 DGV   | 1                      |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| ANZECC 2000 - ISC | QG - High <sup>a</sup> |              |           |                  |                  |                                 |                          | -         | -                | -                        | -            | -                           |                               | -              |             |                                       | -               |
| ANECC 2000 - ISQ  | G - Low <sup>a</sup>   |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| Location Code     | Date                   | Field ID     | Depth     |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| VC01              | 30/10/2019             | VC01_0.5-1.0 | 0.5 - 1.0 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| VC02              | 31/10/2019             | VC02_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| VC03              | 30/10/2019             | VC03_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| VC04              | 30/10/2019             | VC04_0.5-1.0 | 0.5 - 1.0 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| VC07              | 30/10/2019             | VC07_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| VC08              | 31/10/2019             | VC08_1.0-1.5 | 1.0 - 1.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| VC10              | 31/10/2019             | VC10_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| VC12              | 31/10/2019             | VC12_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| Statistics        |                        |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| Number of Results |                        |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             | ,                                     |                 |
| Number of Detects |                        |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| Minimum Concentra | ition                  |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                                       |                 |
| Maximum Concentra | ation                  |              |           |                  |                  |                                 |                          |           | 1                |                          |              |                             | 1                             |                | 1           | · · · · · · · · · · · · · · · · · · · |                 |

|                     |                        |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             | VC                            | DCs            |             |                            | -               |
|---------------------|------------------------|--------------|-----------|------------------|------------------|---------------------------------|--------------------------|-----------|------------------|--------------------------|--------------|-----------------------------|-------------------------------|----------------|-------------|----------------------------|-----------------|
|                     |                        |              |           | 2-butanone (MEK) | 2-hexanone (MBK) | 4-methyl-2-<br>pentanone (MIBK) | Bromodichlorometh<br>ane | Bromoform | Carbon disulfide | Chlorodibromomet<br>hane | Chloroethane | cis-1,3-<br>dichloropropene | cis-1,4-Dichloro-2-<br>butene | Dibromomethane | lodomethane | n-butylbenzene             | n-propylbenzene |
|                     |                        |              |           | mg/kg            | mg/kg            | mg/kg                           | mg/kg                    | mg/kg     | mg/kg            | mg/kg                    | mg/kg        | mg/kg                       | mg/kg                         | mg/kg          | mg/kg       | mg/kg                      | mg/kg           |
| EQL                 |                        |              |           | 5                | 5                | 5                               | 0.5                      | 0.5       | 0.5              | 0.5                      | 5            | 0.5                         | 0.5                           | 0.5            | 0.5         | 0.5                        | 0.5             |
| NAGD 2009 - SQG-    | High Values            |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| NAGD 2009 - Scree   | ning Level             |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| ANZAST 2018 GV-H    | High                   |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| ANZAST 2018 DGV     |                        |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| ANZECC 2000 - ISC   | QG - High <sup>a</sup> |              |           |                  |                  | -                               | -                        | -         | -                | -                        | _            | -                           |                               |                |             |                            | -               |
| ANECC 2000 - ISQC   | G - Low <sup>a</sup>   |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| Location Code       | Date                   | Field ID     | Depth     |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| VC01                | 30/10/2019             | VC01_0.5-1.0 | 0.5 - 1.0 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| VC02                | 31/10/2019             | VC02_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| VC03                | 30/10/2019             | VC03_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| VC04                | 30/10/2019             | VC04_0.5-1.0 | 0.5 - 1.0 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| VC07                | 30/10/2019             | VC07_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| VC08                | 31/10/2019             | VC08_1.0-1.5 | 1.0 - 1.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| VC10                | 31/10/2019             | VC10_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| VC12                | 31/10/2019             | VC12_0.0-0.5 | 0.0 - 0.5 |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
|                     |                        |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             |                            |                 |
| Statistics          |                        |              |           |                  | Т                | 1                               | r                        | 1         | <u>г</u>         | 1                        | 1            | r                           | r                             | 1              | <del></del> |                            |                 |
| Number of Results   |                        |              |           |                  |                  |                                 |                          |           |                  |                          |              |                             |                               |                |             | <b>├</b> ────┘             |                 |
| Number of Detects   | 4:                     |              |           |                  | +                |                                 |                          |           |                  |                          |              |                             |                               |                | <b> </b>    | <b>├</b> ──── <sup>!</sup> |                 |
| Navinum Concentra   |                        |              |           |                  | +                |                                 |                          |           |                  |                          |              |                             |                               |                | <b> </b>    | ┟────┘                     |                 |
| uviaximum Concentra | ation                  |              |           |                  | 1                | 1                               | 1                        | 1         | 1                | 1                        | 1            | 1                           | 1                             | 1              | 1           | 1 '                        | 1               |

| Statistics            | ] |  |  |  |
|-----------------------|---|--|--|--|
| Number of Results     |   |  |  |  |
| Number of Detects     |   |  |  |  |
| Minimum Concentration |   |  |  |  |
| Maximum Concentration |   |  |  |  |

<sup>a</sup>Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is provided.



|                                                                                                                                                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                       | Pentachloroethane | p-isopropyltoluene | sec-butylbenzene | Trichloroethene | tert-butylbenzene | Tetrachloroethene | trans-1,3-<br>dichloropropene | trans-1,2-<br>dichloroethene | trans-1,4-Dichloro-<br>2-butene | Trichlorofluorometh<br>ane | Vinyl acetate | 1-naphthylamine                                        | 2-(acetylamino)<br>fluorene                            | 2-nitroaniline                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------------------|-----------------|-------------------|-------------------|-------------------------------|------------------------------|---------------------------------|----------------------------|---------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                       | mg/kg             | mg/kg              | mg/kg            | mg/kg           | mg/kg             | mg/kg             | mg/kg                         | mg/kg                        | mg/kg                           | mg/kg                      | mg/kg         | mg/kg                                                  | mg/kg                                                  | mg/kg                                                |
| EQL                                                                                                                                                                  |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                       | 0.5               | 0.5                | 0.5              | 0.5             | 0.5               | 0.5               | 0.5                           | 0.5                          | 0.5                             | 5                          | 5             | 0.5                                                    | 0.5                                                    | 1                                                    |
| NAGD 2009 - SQG-H                                                                                                                                                    | ligh Values                                                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                                                                                       |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| NAGD 2009 - Screen                                                                                                                                                   | ing Level                                                                                                                                                                                                                                   |                                                                                                                                                                                                  |                                                                                                                                                                       |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| ANZAST 2018 GV-H                                                                                                                                                     | igh                                                                                                                                                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                       |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| ANZAST 2018 DGV                                                                                                                                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                       |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| ANZECC 2000 - ISQ                                                                                                                                                    | G - High <sup>a</sup>                                                                                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                       |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| ANECC 2000 - ISQG                                                                                                                                                    | - Low <sup>a</sup>                                                                                                                                                                                                                          |                                                                                                                                                                                                  |                                                                                                                                                                       |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
|                                                                                                                                                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                       |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| Location Code                                                                                                                                                        | Date                                                                                                                                                                                                                                        | Field ID                                                                                                                                                                                         | Depth                                                                                                                                                                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| Location Code                                                                                                                                                        | <b>Date</b><br>30/10/2019                                                                                                                                                                                                                   | Field ID<br>VC01_0.5-1.0                                                                                                                                                                         | <b>Depth</b><br>0.5 - 1.0                                                                                                                                             |                   | 1                  |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5                                                   | <0.5                                                   | <1.0                                                 |
| Location Code<br>VC01<br>VC02                                                                                                                                        | Date<br>30/10/2019<br>31/10/2019                                                                                                                                                                                                            | Field ID<br>VC01_0.5-1.0<br>VC02_0.0-0.5                                                                                                                                                         | <b>Depth</b><br>0.5 - 1.0<br>0.0 - 0.5                                                                                                                                |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5                                                   | <0.5                                                   | <1.0                                                 |
| Location Code<br>VC01<br>VC02<br>VC03                                                                                                                                | Date           30/10/2019           31/10/2019           30/10/2019                                                                                                                                                                         | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5                                                                                                                    | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5                                                                                                                          |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5                                                   | <0.5                                                   | <1.0                                                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04                                                                                                                        | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019                                                                                                                               | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0                                                                                             | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0                                                                                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5                                                   | <0.5                                                   | <1.0                                                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07                                                                                                                | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           30/10/2019                                                                                                          | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5                                                                      | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5                                                             |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5                                   | <0.5<br><0.6<br><0.5                                   | <1.0<br><1.0<br><1.0                                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08                                                                                                        | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019                                                                                     | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5                                               | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5                                         |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5                           | <0.5<br><0.6<br><0.5<br><0.5                           | <1.0<br><1.0<br><1.0<br><1.0                         |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10                                                                                                | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019                                           | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5                        | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5                     |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5                           | <0.5<br><0.6<br><0.5<br><0.5                           | <1.0<br><1.0<br><1.0<br><1.0                         |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC12                                                                                        | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019 | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5           VC12_0.0-0.5 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <1.0<br><1.0<br><1.0<br><1.0<br><1.0                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC12<br>Statistics                                                                          | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019                      | Field ID         VC01_0.5-1.0         VC02_0.0-0.5         VC03_0.0-0.5         VC04_0.5-1.0         VC07_0.0-0.5         VC08_1.0-1.5         VC10_0.0-0.5         VC12_0.0-0.5                 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <1.0<br><1.0<br><1.0<br><1.0<br><1.0                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC10<br>VC12<br>Statistics<br>Number of Results                                             | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019                                           | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5           VC12_0.0-0.5 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <1.0<br><1.0<br><1.0<br><1.0<br><1.0                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC12<br>Statistics<br>Number of Results<br>Number of Detects                                | Date         30/10/2019         31/10/2019         30/10/2019         30/10/2019         30/10/2019         31/10/2019         31/10/2019         31/10/2019         31/10/2019                                                             | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5           VC12_0.0-0.5 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <1.0<br><1.0<br><1.0<br><1.0<br><1.0<br>5<br>0       |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC10<br>VC12<br>Statistics<br>Number of Results<br>Number of Detects<br>Minimum Concentrati | Date<br>30/10/2019<br>31/10/2019<br>30/10/2019<br>30/10/2019<br>31/10/2019<br>31/10/2019<br>31/10/2019<br>31/10/2019                                                                                                                        | Field ID         VC01_0.5-1.0         VC02_0.0-0.5         VC03_0.0-0.5         VC04_0.5-1.0         VC07_0.0-0.5         VC08_1.0-1.5         VC10_0.0-0.5         VC12_0.0-0.5                 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5<br>5<br>0<br><0.5 | <0.5<br><0.6<br><0.5<br><0.5<br><0.5<br>5<br>0<br><0.5 | <1.0<br><1.0<br><1.0<br><1.0<br><1.0<br>5<br>0<br><1 |

|                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                           | Pentachloroethane | p-isopropyltoluene | sec-butylbenzene | Trichloroethene | tert-butylbenzene | Tetrachloroethene | trans-1,3-<br>dichloropropene | trans-1,2-<br>dichloroethene | trans-1,4-Dichloro-<br>2-butene | Trichlorofluorometh<br>ane | Vinyl acetate | 1-naphthylamine                                        | 2-(acetylamino)<br>fluorene                            | 2-nitroaniline                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------------------|-----------------|-------------------|-------------------|-------------------------------|------------------------------|---------------------------------|----------------------------|---------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                           | mg/kg             | mg/kg              | mg/kg            | mg/kg           | mg/kg             | mg/kg             | mg/kg                         | mg/kg                        | mg/kg                           | mg/kg                      | mg/kg         | mg/kg                                                  | mg/kg                                                  | mg/kg                                                |
| EQL                                                                                                                                                                    |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                           | 0.5               | 0.5                | 0.5              | 0.5             | 0.5               | 0.5               | 0.5                           | 0.5                          | 0.5                             | 5                          | 5             | 0.5                                                    | 0.5                                                    | 1                                                    |
| NAGD 2009 - SQG-H                                                                                                                                                      | ligh Values                                                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                                                                                                           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| NAGD 2009 - Screen                                                                                                                                                     | ing Level                                                                                                                                                                                                                                   |                                                                                                                                                                                                  |                                                                                                                                                                                           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| ANZAST 2018 GV-Hi                                                                                                                                                      | igh                                                                                                                                                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| ANZAST 2018 DGV                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| ANZECC 2000 - ISQ                                                                                                                                                      | G - High <sup>a</sup>                                                                                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| ANECC 2000 - ISQG                                                                                                                                                      | - Low <sup>a</sup>                                                                                                                                                                                                                          |                                                                                                                                                                                                  |                                                                                                                                                                                           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
|                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                  |                                                                                                                                                                                           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                                                        |                                                        |                                                      |
| Location Code                                                                                                                                                          | Date                                                                                                                                                                                                                                        | Field ID                                                                                                                                                                                         | Depth                                                                                                                                                                                     |                   |                    |                  |                 |                   |                   |                               |                              | -                               |                            |               |                                                        |                                                        |                                                      |
| Location Code                                                                                                                                                          | Date<br>30/10/2019                                                                                                                                                                                                                          | Field ID<br>VC01_0.5-1.0                                                                                                                                                                         | <b>Depth</b><br>0.5 - 1.0                                                                                                                                                                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5                                                   | <0.5                                                   | <1.0                                                 |
| Location Code<br>VC01<br>VC02                                                                                                                                          | Date<br>30/10/2019<br>31/10/2019                                                                                                                                                                                                            | Field ID<br>VC01_0.5-1.0<br>VC02_0.0-0.5                                                                                                                                                         | Depth<br>0.5 - 1.0<br>0.0 - 0.5                                                                                                                                                           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5                                                   | <0.5                                                   | <1.0                                                 |
| Location Code<br>VC01<br>VC02<br>VC03                                                                                                                                  | Date           30/10/2019           31/10/2019           30/10/2019                                                                                                                                                                         | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5                                                                                                                    | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5                                                                                                                                              |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5                                                   | <0.5                                                   | <1.0                                                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04                                                                                                                          | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019                                                                                                                               | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0                                                                                             | Depth<br>0.5 - 1.0<br>0.0 - 0.5<br>0.0 - 0.5<br>0.5 - 1.0                                                                                                                                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5                                                   | <0.5                                                   | <1.0                                                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07                                                                                                                  | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           30/10/2019                                                                                                          | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5                                                                      | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5                                                                                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5                                   | <0.5<br><0.6<br><0.5                                   | <1.0<br><1.0<br><1.0                                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08                                                                                                          | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019                                                                                     | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5                                               | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5                                                             |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5                           | <0.5<br><0.6<br><0.5<br><0.5                           | <1.0<br><1.0<br><1.0<br><1.0<br><1.0                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10                                                                                                  | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019                                           | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5                        | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5                                         |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5                           | <0.5<br><0.6<br><0.5<br><0.5                           | <1.0<br><1.0<br><1.0<br><1.0                         |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC12                                                                                          | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019 | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5           VC12_0.0-0.5 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5           0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <1.0<br><1.0<br><1.0<br><1.0<br><1.0                 |
| Location Code           VC01           VC02           VC03           VC04           VC07           VC08           VC10           VC12                                  | Date         30/10/2019         31/10/2019         30/10/2019         30/10/2019         30/10/2019         31/10/2019         31/10/2019         31/10/2019         31/10/2019                                                             | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5           VC12_0.0-0.5 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5                     |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <1.0<br><1.0<br><1.0<br><1.0<br><1.0                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC10<br>VC12<br>Statistics<br>Number of Results                                               | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019                      | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC10_0.0-0.5           VC12_0.0-0.5 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5                     |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <1.0<br><1.0<br><1.0<br><1.0<br><1.0                 |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC10<br>VC12<br>Statistics<br>Number of Results<br>Number of Detects                          | Date         30/10/2019         31/10/2019         30/10/2019         30/10/2019         30/10/2019         31/10/2019         31/10/2019         31/10/2019         31/10/2019         31/10/2019                                          | Field ID         VC01_0.5-1.0         VC02_0.0-0.5         VC03_0.0-0.5         VC04_0.5-1.0         VC07_0.0-0.5         VC08_1.0-1.5         VC10_0.0-0.5         VC12_0.0-0.5                 | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5                     |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <0.5<br><0.6<br><0.5<br><0.5<br><0.5                   | <1.0<br><1.0<br><1.0<br><1.0<br><1.0<br>5<br>0       |
| Location Code<br>VC01<br>VC02<br>VC03<br>VC04<br>VC07<br>VC08<br>VC10<br>VC10<br>VC12<br>Statistics<br>Number of Results<br>Number of Detects<br>Minimum Concentration | Date           30/10/2019           31/10/2019           30/10/2019           30/10/2019           30/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019           31/10/2019 | Field ID           VC01_0.5-1.0           VC02_0.0-0.5           VC03_0.0-0.5           VC04_0.5-1.0           VC07_0.0-0.5           VC08_1.0-1.5           VC12_0.0-0.5                        | Depth           0.5 - 1.0           0.0 - 0.5           0.0 - 0.5           0.5 - 1.0           0.0 - 0.5           1.0 - 1.5           0.0 - 0.5           0.0 - 0.5                     |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5<br><0.6<br><0.5<br><0.5<br><0.5<br>5<br>0<br><0.5 | <0.5<br><0.6<br><0.5<br><0.5<br><0.5<br>5<br>0<br><0.5 | <1.0<br><1.0<br><1.0<br><1.0<br><1.0<br>5<br>0<br><1 |

|                     |                       |              |           | Pentachloroethane | p-isopropyltoluene | sec-butylbenzene | Trichloroethene | tert-butylbenzene | Tetrachloroethene | trans-1,3-<br>dichloropropene | trans-1,2-<br>dichloroethene | trans-1,4-Dichloro-<br>2-butene | Trichlorofluorometh<br>ane | Vinyl acetate | 1-naphthylamine | 2-(acetylamino)<br>fluorene | 2-nitroaniline |
|---------------------|-----------------------|--------------|-----------|-------------------|--------------------|------------------|-----------------|-------------------|-------------------|-------------------------------|------------------------------|---------------------------------|----------------------------|---------------|-----------------|-----------------------------|----------------|
|                     |                       |              |           | mg/kg             | mg/kg              | mg/kg            | mg/kg           | mg/kg             | mg/kg             | mg/kg                         | mg/kg                        | mg/kg                           | mg/kg                      | mg/kg         | mg/kg           | mg/kg                       | mg/kg          |
| EQL                 |                       |              |           | 0.5               | 0.5                | 0.5              | 0.5             | 0.5               | 0.5               | 0.5                           | 0.5                          | 0.5                             | 5                          | 5             | 0.5             | 0.5                         | 1              |
| NAGD 2009 - SQG-H   | ligh Values           |              |           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| NAGD 2009 - Screen  | ing Level             |              |           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| ANZAST 2018 GV-Hi   | igh                   |              |           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| ANZAST 2018 DGV     |                       |              |           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| ANZECC 2000 - ISQ   | G - High <sup>a</sup> |              |           |                   |                    |                  | -               |                   |                   |                               | -                            |                                 | -                          | _             |                 |                             |                |
| ANECC 2000 - ISQG   | - Low <sup>a</sup>    |              |           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| Location Code       | Date                  | Field ID     | Depth     |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| VC01                | 30/10/2019            | VC01_0.5-1.0 | 0.5 - 1.0 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5            | <0.5                        | <1.0           |
| VC02                | 31/10/2019            | VC02_0.0-0.5 | 0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| VC03                | 30/10/2019            | VC03_0.0-0.5 | 0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| VC04                | 30/10/2019            | VC04_0.5-1.0 | 0.5 - 1.0 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.6            | <0.6                        | <1.0           |
| VC07                | 30/10/2019            | VC07_0.0-0.5 | 0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5            | <0.5                        | <1.0           |
| VC08                | 31/10/2019            | VC08_1.0-1.5 | 1.0 - 1.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5            | <0.5                        | <1.0           |
| VC10                | 31/10/2019            | VC10_0.0-0.5 | 0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| VC12                | 31/10/2019            | VC12_0.0-0.5 | 0.0 - 0.5 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.5            | <0.5                        | <1.0           |
| Chatistics          |                       |              |           | _                 |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 |                             |                |
| Statistics          |                       |              |           |                   | 1                  | 1                | 1               | 1                 | 1                 | 1                             | 1                            |                                 |                            |               | F               | F                           | F              |
| Number of Detects   |                       |              |           | _                 |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | 5               | 5                           | 5              |
| Minimum Concentrati | on                    |              |           |                   | +                  |                  |                 |                   |                   |                               |                              |                                 |                            |               |                 | <0.5                        | U              |
|                     |                       |              |           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | NU.0            | <b>NU.U</b>                 |                |
| Maximum Concentrat  | ion                   |              |           |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |               | <0.6            | <0.6                        | <u>~1</u>      |

<sup>a</sup>Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is provided.



| EQL                |                       |              |           | 5.0 Dichlorobenzidine | mg/kg | G a 4-(dimethylamino)<br>G x azobenzene | G da 4-bromophenyl<br>G dy phenyl ether | mg/kg<br>5.0 | G a 4-chlorophenyl<br>G bhenyl ether | 5.0 gm/stroaniline | 0.0<br>by/builtroquinoline-N-<br>50<br>cxide | mg/kg<br>0.5 | ດ ສີ 7,12-<br>ດີ ອື່<br>Amethylbenz(a)ant<br>hracene | euiline<br>mg/kg<br>0.5 | euezene<br>mg/kg | o ଇ Bis(2-chloroethoxy)<br>ସ ଇ methane | G A Bis(2-<br>G A chloroethyl)ether |
|--------------------|-----------------------|--------------|-----------|-----------------------|-------|-----------------------------------------|-----------------------------------------|--------------|--------------------------------------|--------------------|----------------------------------------------|--------------|------------------------------------------------------|-------------------------|------------------|----------------------------------------|-------------------------------------|
| NAGD 2009 - SQG-I  | High Values           |              |           |                       |       |                                         |                                         |              |                                      |                    |                                              |              |                                                      |                         |                  |                                        |                                     |
| NAGD 2009 - Screer | ning Level            |              |           |                       |       |                                         |                                         |              |                                      |                    |                                              |              |                                                      |                         |                  |                                        |                                     |
| ANZAST 2018 GV-H   | ligh                  |              |           |                       |       |                                         |                                         |              |                                      |                    |                                              |              |                                                      |                         |                  |                                        |                                     |
| ANZAST 2018 DGV    |                       |              |           |                       |       |                                         |                                         |              |                                      |                    |                                              |              |                                                      |                         |                  |                                        |                                     |
| ANZECC 2000 - ISQ  | G - High <sup>a</sup> |              |           | _                     |       |                                         |                                         |              |                                      |                    |                                              |              |                                                      |                         |                  |                                        |                                     |
| ANECC 2000 - ISQG  | 6 - Low <sup>a</sup>  |              |           |                       |       |                                         |                                         |              |                                      |                    |                                              |              |                                                      |                         |                  |                                        |                                     |
| Location Code      | Date                  | Field ID     | Depth     |                       |       | -                                       |                                         |              |                                      |                    |                                              |              | _                                                    |                         |                  |                                        |                                     |
| VC01               | 30/10/2019            | VC01_0.5-1.0 | 0.5 - 1.0 | <0.5                  | <1.0  | <0.5                                    | <0.5                                    | <0.5         | <0.5                                 | <0.5               | <0.5                                         | <0.5         | <0.5                                                 | <0.5                    | <1               | <0.5                                   | <0.5                                |
| VC02               | 31/10/2019            | VC02_0.0-0.5 | 0.0 - 0.5 |                       |       |                                         |                                         |              |                                      |                    |                                              |              |                                                      |                         |                  |                                        |                                     |
| VC03               | 30/10/2019            | VC03_0.0-0.5 | 0.0 - 0.5 |                       |       |                                         |                                         |              |                                      |                    |                                              |              |                                                      |                         |                  |                                        |                                     |
| VC04               | 30/10/2019            | VC04_0.5-1.0 | 0.5 - 1.0 | <0.6                  | <1.0  | <0.6                                    | <0.6                                    | <0.6         | <0.6                                 | <0.6               | <0.6                                         | <0.6         | <0.6                                                 | <0.6                    | <1               | <0.6                                   | <0.6                                |
| VC07               | 30/10/2019            | VC07_0.0-0.5 | 0.0 - 0.5 | <0.5                  | <1.0  | <0.5                                    | <0.5                                    | <0.5         | <0.5                                 | <0.5               | <0.5                                         | <0.5         | <0.5                                                 | <0.5                    | <1               | <0.5                                   | <0.5                                |
| VC08               | 31/10/2019            | VC08_1.0-1.5 | 1.0 - 1.5 | <0.5                  | <1.0  | <0.5                                    | <0.5                                    | <0.5         | <0.5                                 | <0.5               | <0.5                                         | <0.5         | <0.5                                                 | <0.5                    | <1               | <0.5                                   | <0.5                                |
| VC10               | 31/10/2019            | VC10_0.0-0.5 | 0.0 - 0.5 |                       |       |                                         |                                         |              |                                      |                    |                                              |              |                                                      |                         |                  |                                        |                                     |
| VC12               | 31/10/2019            | VC12_0.0-0.5 | 0.0 - 0.5 | <0.5                  | <1.0  | <0.5                                    | <0.5                                    | <0.5         | <0.5                                 | <0.5               | <0.5                                         | <0.5         | <0.5                                                 | <0.5                    | <1               | <0.5                                   | <0.5                                |
| Statistics         |                       |              |           |                       |       |                                         |                                         |              |                                      |                    | -                                            |              |                                                      | -                       |                  | <u> </u>                               |                                     |
| Number of Results  |                       |              |           | 5                     | 5     | 5                                       | 5                                       | 5            | 5                                    | 5                  | 5                                            | 5            | 5                                                    | 5                       | 5                | 5                                      | 5                                   |
| Number of Detects  |                       |              |           | 0                     | 0     | 0                                       | 0                                       | 0            | 0                                    | 0                  | 0                                            | 0            | 0                                                    | 0                       | 0                | 0                                      | 0                                   |
| Minimum Concentrat | ion                   |              |           | <0.5                  | <1    | <0.5                                    | <0.5                                    | <0.5         | <0.5                                 | <0.5               | <0.5                                         | <0.5         | <0.5                                                 | <0.5                    | <1               | <0.5                                   | <0.5                                |
| Maximum Concentra  | tion                  |              |           | <0.6                  | <1    | <0.6                                    | <0.6                                    | <0.6         | <0.6                                 | <0.6               | <0.6                                         | <0.6         | <0.6                                                 | <0.6                    | <1               | <0.6                                   | <0.6                                |

| Location Code | Date       | Field ID     | Depth     |      |      |      |      |      |      |
|---------------|------------|--------------|-----------|------|------|------|------|------|------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 |      |      |      |      |      |      |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 |      |      |      |      |      |      |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <0.6 | <1.0 | <0.6 | <0.6 | <0.6 | <0.6 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |      |      |      |      |      |      |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | <0.5 |

| Statistics            | ]    |    |      |      |      |      |
|-----------------------|------|----|------|------|------|------|
| Number of Results     | 5    | 5  | 5    | 5    | 5    | 5    |
| Number of Detects     | 0    | 0  | 0    | 0    | 0    | 0    |
| Minimum Concentration | <0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 |
| Maximum Concentration | <0.6 | <1 | <0.6 | <0.6 | <0.6 | <0.6 |

<sup>a</sup>Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is

provided.



|                      |                       |              |           | SVOCs     |                 |          |                               |                  |                       |            |               |                           |                              |                               |                                   |                         |                     |
|----------------------|-----------------------|--------------|-----------|-----------|-----------------|----------|-------------------------------|------------------|-----------------------|------------|---------------|---------------------------|------------------------------|-------------------------------|-----------------------------------|-------------------------|---------------------|
|                      |                       |              |           | Carbazole | Chlorobenzilate | Coronene | Hexachlorocyclope<br>ntadiene | Hexachloroethane | Hexachloropropen<br>e | Isophorone | Methapyrilene | N-<br>nitrosodiethylamine | N-nitrosodi-n-<br>butylamine | N-nitrosodi-n-<br>propylamine | N-<br>Nitrosomethylethyl<br>amine | N-<br>nitrosomorpholine | N-nitrosopiperidine |
|                      |                       |              |           | mg/kg     | mg/kg           | mg/kg    | mg/kg                         | mg/kg            | mg/kg                 | mg/kg      | mg/kg         | mg/kg                     | mg/kg                        | mg/kg                         | mg/kg                             | mg/kg                   | mg/kg               |
| EQL                  |                       |              |           | 0.5       | 0.5             | 0.005    | 2.5                           | 0.5              | 0.5                   | 0.5        | 0.5           | 0.5                       | 0.5                          | 0.5                           | 0.5                               | 0.5                     | 0.5                 |
| NAGD 2009 - SQG-Hi   | gh Values             |              |           |           |                 |          |                               |                  |                       |            |               |                           |                              |                               |                                   |                         |                     |
| NAGD 2009 - Screenir | ng Level              |              |           |           |                 |          |                               |                  |                       |            |               |                           |                              |                               |                                   |                         |                     |
| ANZAST 2018 GV-Hig   | gh                    |              |           |           |                 |          |                               |                  |                       |            |               |                           |                              |                               |                                   |                         |                     |
| ANZAST 2018 DGV      |                       |              |           |           |                 |          |                               |                  |                       |            |               |                           |                              |                               |                                   |                         |                     |
| ANZECC 2000 - ISQG   | i - High <sup>a</sup> |              |           |           |                 |          |                               |                  |                       |            |               |                           |                              |                               |                                   |                         |                     |
| ANECC 2000 - ISQG -  | · Low <sup>a</sup>    |              |           |           |                 |          |                               |                  |                       |            |               |                           |                              |                               |                                   |                         |                     |
| Location Code        | Date                  | Field ID     | Depth     |           |                 |          |                               |                  |                       |            |               |                           |                              |                               |                                   |                         |                     |
| VC01                 | 30/10/2019            | VC01_0.5-1.0 | 0.5 - 1.0 | <0.5      | <0.5            | <0.005   | <2.5                          | <0.5             | <0.5                  | <0.5       | <0.5          | <0.5                      | <0.5                         | <0.5                          | <0.5                              | <0.5                    | <0.5                |
| VC02                 | 31/10/2019            | VC02_0.0-0.5 | 0.0 - 0.5 |           |                 | 0.375    |                               |                  |                       |            |               |                           |                              |                               |                                   |                         |                     |
| VC03                 | 30/10/2019            | VC03_0.0-0.5 | 0.0 - 0.5 |           |                 | <0.005   |                               |                  |                       |            |               |                           |                              |                               | 1                                 |                         |                     |
| VC04                 | 30/10/2019            | VC04_0.5-1.0 | 0.5 - 1.0 | <0.6      | <0.6            | <0.005   | <2.5                          | <0.6             | <0.6                  | <0.6       | <0.6          | <0.6                      | <0.6                         | <0.6                          | <0.6                              | <0.6                    | <0.6                |
| VC07                 | 30/10/2019            | VC07_0.0-0.5 | 0.0 - 0.5 | <0.5      | <0.5            | 0.25     | <2.5                          | <0.5             | <0.5                  | <0.5       | <0.5          | <0.5                      | <0.5                         | <0.5                          | <0.5                              | <0.5                    | <0.5                |
| VC08                 | 31/10/2019            | VC08_1.0-1.5 | 1.0 - 1.5 | <0.5      | <0.5            | <0.005   | <2.5                          | <0.5             | <0.5                  | <0.5       | <0.5          | <0.5                      | <0.5                         | <0.5                          | <0.5                              | <0.5                    | <0.5                |
| VC10                 | 21/10/2010            |              | 0.0 0.5   |           |                 | <0.005   |                               |                  |                       |            |               |                           |                              |                               | /                                 |                         |                     |

| Location Code | Date       | Field ID     | Depth     |       |      |         |      |      |      |
|---------------|------------|--------------|-----------|-------|------|---------|------|------|------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <0.5  | <0.5 | <0.005  | <2.5 | <0.5 | <0.5 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 |       |      | 0.375   |      |      |      |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 |       |      | <0.005  |      |      |      |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <0.6  | <0.6 | < 0.005 | <2.5 | <0.6 | <0.6 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <0.5  | <0.5 | 0.25    | <2.5 | <0.5 | <0.5 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <0.5  | <0.5 | <0.005  | <2.5 | <0.5 | <0.5 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |       |      | < 0.005 |      |      |      |
| VC12          | 31/10/2019 | VC12 0.0-0.5 | 0.0 - 0.5 | < 0.5 | <0.5 | 0.126   | <2.5 | <0.5 | <0.5 |

| Statistics            |      |      |        |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------|------|------|--------|------|------|------|------|------|------|------|------|------|------|------|
| Number of Results     | 5    | 5    | 8      | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    |
| Number of Detects     | 0    | 0    | 3      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Minimum Concentration | <0.5 | <0.5 | <0.005 | <2.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
| Maximum Concentration | <0.6 | <0.6 | 0.375  | <2.5 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 |

<0.5

<0.5

<0.5

<0.5

<0.5

<0.5

<sup>a</sup>Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is

provided.

<0.5

<0.5



|                                        | N-<br>nitrosopyrrolidine |
|----------------------------------------|--------------------------|
|                                        | mg/kg                    |
| EQL                                    | 1                        |
| NAGD 2009 - SQG-High Values            |                          |
| NAGD 2009 - Screening Level            |                          |
| ANZAST 2018 GV-High                    |                          |
| ANZAST 2018 DGV                        |                          |
| ANZECC 2000 - ISQG - High <sup>a</sup> |                          |
| ANECC 2000 - ISQG - Low <sup>a</sup>   |                          |

| Location Code | Date       | Field ID     | Depth     |      |      |        |      |
|---------------|------------|--------------|-----------|------|------|--------|------|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1.0 | <1.0 | <0.5 | <0.004 | <0.5 |
| VC02          | 31/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 |      |      | 0.329  |      |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0.0 - 0.5 |      |      | <0.004 |      |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1.0 | <1.0 | <0.6 | <0.005 | <0.6 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0.0 - 0.5 | <1.0 | <0.5 | 0.174  | <0.5 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1.0 - 1.5 | <1.0 | <0.5 | <0.004 | <0.5 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |      |      | <0.004 |      |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <1.0 | <0.5 | 0.055  | <0.5 |

| Statistics            |      |      |        |      |
|-----------------------|------|------|--------|------|
| Number of Results     | 5    | 5    | 8      | 5    |
| Number of Detects     | 0    | 0    | 3      | 0    |
| Minimum Concentration | <1.0 | <0.5 | <0.004 | <0.5 |
| Maximum Concentration | <1.0 | <0.6 | 0.329  | <0.6 |

<sup>a</sup> Criteria are only listed from the ANZECC (2000) where no updated criterion in the ANZAST (2018) is provided.





## Analytical results NAGD phase III analysis

|                  |            |              |           |              |                |            |                   |                 |                        |                      |                      |          |                       |             |             |         |                            |              |        |                                   |                                                      | Simulta   | neously    | Total Mercury | Total N | Aetals in |
|------------------|------------|--------------|-----------|--------------|----------------|------------|-------------------|-----------------|------------------------|----------------------|----------------------|----------|-----------------------|-------------|-------------|---------|----------------------------|--------------|--------|-----------------------------------|------------------------------------------------------|-----------|------------|---------------|---------|-----------|
|                  |            |              |           |              |                |            |                   |                 |                        |                      |                      |          |                       |             |             |         |                            |              |        |                                   |                                                      | Extractat | ole Metals | by FIMS - Low | Saline  | ∋ Water   |
|                  |            |              |           |              |                |            |                   |                 |                        |                      | PAH                  | Compo    | ounds ir              | n Water     |             |         |                            |              |        |                                   |                                                      | (SE       | EM)        | Level         | Suite A | by ORC-   |
|                  |            |              |           | Acenaphthene | Acenaphthylene | Anthracene | 3enz(a)anthracene | 3enzo(a) pyrene | 3enzo[b+j]fluoranthene | 3enzo(k)fluoranthene | 3enzo(g,h,i)perylene | Chrysene | Jibenz(a,h)anthracene | luoranthene | Vaphthalene | luorene | ndeno(1,2,3-<br>c,d)pyrene | ohenanthrene | yrene  | PAHs (Sum of total) -<br>_ab calc | fotal 8 PAHs (as BaP<br>FEQ)(zero LOR) - Lab<br>Calc | Copper    | Silver     | Mercury       | Copper  | Silver    |
|                  |            |              |           | µg/L         | µq/L           | µq/L       | µq/L              | µg/L            | µg/L                   | µq/L                 | µg/L                 | µq/L     | µg/L                  | µq/L        | µq/L        | µg/L    | µq/L                       | µg/L         | µq/L   | µq/L                              | µq/L                                                 | mmol/kg   | mmol/kg    | mg/L          | mg/L    | mg/L      |
| EQL              |            |              |           | 0.02         | 0.02           | 0.02       | 0.02              | 0.005           | 0.02                   | 0.02                 | 0.02                 | 0.02     | 0.02                  | 0.02        | 0.02        | 0.02    | 0.02                       | 0.02         | 0.02   | 0.005                             | 0.005                                                | Ŭ         | Ŭ          | 0.00004       | 0.001   | 0.0001    |
| ANZG 2018 MW 95% | )          |              |           |              |                |            |                   |                 |                        |                      |                      |          |                       |             | 70          |         |                            |              |        |                                   |                                                      |           |            | 0.0004        | 0.0013  |           |
| Location Code    | Date       | Field ID     | Depth     |              |                |            |                   |                 |                        |                      |                      | -        |                       |             |             |         | -                          |              |        |                                   |                                                      |           |            | -             |         |           |
|                  | 30/10/2019 | SALTWATER    |           | <0.02        | <0.02          | < 0.02     | < 0.02            | < 0.005         | < 0.02                 | <0.02                | < 0.02               | < 0.02   | < 0.02                | < 0.02      | < 0.02      | < 0.02  | <0.02                      | < 0.02       | <0.02  | < 0.005                           | < 0.005                                              |           |            | < 0.00004     | <0.001  | <0.0001   |
| VC02             | 30/10/2019 | VC02_0.0-0.5 | 0.0 - 0.5 | < 0.02       | <0.02          | < 0.02     | < 0.02            | < 0.005         | < 0.02                 | < 0.02               | < 0.02               | < 0.02   | < 0.02                | < 0.02      | < 0.02      | <0.02   | <0.02                      | < 0.02       | < 0.02 | < 0.005                           | <0.005                                               |           |            | < 0.00004     | < 0.001 | < 0.0001  |
| VC02             | 30/10/2019 | VC02_0.5-0.6 | 0.5 - 0.6 |              |                |            |                   |                 |                        |                      |                      |          |                       |             |             |         |                            |              |        |                                   |                                                      | 0.11      | < 0.01     |               |         |           |
| VC07             | 30/10/2019 | VC07_0.0-0.1 | 0.0 - 0.1 |              |                |            |                   |                 |                        |                      |                      |          |                       |             |             |         |                            |              |        |                                   |                                                      | 0.76      | < 0.01     |               |         |           |
| VC07             | 30/10/2019 | VC07 0.0-0.5 | 0.0 - 0.5 | < 0.02       | < 0.02         | < 0.02     | < 0.02            | < 0.005         | < 0.02                 | < 0.02               | < 0.02               | < 0.02   | < 0.02                | < 0.02      | < 0.02      | <0.02   | < 0.02                     | < 0.02       | < 0.02 | < 0.005                           | < 0.005                                              |           |            | < 0.00004     | < 0.001 | < 0.0001  |
| VC12             | 31/10/2019 | VC12 0.0-0.1 | 0.0 - 0.1 |              |                |            |                   |                 |                        |                      |                      |          |                       |             |             |         |                            |              |        |                                   |                                                      | 0.50      | <0.01      |               |         |           |
| VC12             | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | < 0.02       | <0.02          | < 0.02     | < 0.02            | < 0.005         | < 0.02                 | < 0.02               | < 0.02               | < 0.02   | < 0.02                | < 0.02      | < 0.02      | <0.02   | <0.02                      | < 0.02       | < 0.02 | < 0.005                           | < 0.005                                              | 1         |            | < 0.00004     | < 0.001 | < 0.0001  |
|                  | -          | •            | •         |              |                |            |                   |                 |                        |                      |                      |          |                       |             |             |         |                            |              |        |                                   |                                                      |           |            |               |         |           |

| Statistics            |       |       |        |        |         |        |        |        |        |        |        |        |        |        |        |        |         |        |      |       |           |        |          |
|-----------------------|-------|-------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|------|-------|-----------|--------|----------|
| Number of Results     | 4     | 4     | 4      | 4      | 4       | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4       | 4      | 3    | 3     | 4         | 4      | 4        |
| Number of Detects     | 0     | 0     | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 3    | 0     | 0         | 0      | 0        |
| Minimum Concentration | <0.02 | <0.02 | < 0.02 | < 0.02 | < 0.005 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.005 | <0.005 | 0.11 | <0.01 | < 0.00004 | <0.001 | < 0.0001 |
| Maximum Concentration | <0.02 | <0.02 | < 0.02 | < 0.02 | <0.005  | < 0.02 | < 0.02 | < 0.02 | <0.02  | < 0.02 | <0.02  | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.02 | < 0.005 | <0.005 | 0.76 | <0.01 | < 0.00004 | <0.001 | <0.0001  |



|                                            |                                      | Dioxins I-TEQ 0.5LOB         Dioxins I-TEQ 0.5LOB         Dioxins I-TEQ 0.5LOB         TEQ2 (0.5 LOR)         TEQ2 (0.5 LOR) |                |                                                  |                                           |                                                |                                                    |                                     |                                         |                                         |                                       |                                               |                                            |                                            |                                             |                                 |                                       |                                         |                                          |                           |                          |                                          |                          |                                        | Dio                                          | xins I-T                           | EQ 0xL(                               | JR                              |                                                                     |                                      |                                     |
|--------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|-------------------------------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|---------------------------|--------------------------|------------------------------------------|--------------------------|----------------------------------------|----------------------------------------------|------------------------------------|---------------------------------------|---------------------------------|---------------------------------------------------------------------|--------------------------------------|-------------------------------------|
| 다 정 1234678-HpCDD I-<br>당 쇼 TEQ2 (0.5 LOR) | тед2 (0.5 LOR)<br>скартед2 (0.5 LOR) | тед (0.5 LOR)<br>Сва ТЕД2 (0.5 LOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | тед2 (0.5 LOR) | ୁ ଅପ୍ଟ 123478-HxCDF I-<br>ମୁର୍ଦ୍ଧ TEQ2 (0.5 LOR) | тед 123678-НхСDD I-<br>С б ТЕQ2 (0.5 LOR) | ୁ ଅପ୍ଟ୍ରମେ୫-HxCDF I-<br>ମେନ୍ଦ୍ର TEQ2 (0.5 LOR) | ୁ ଅପ୍ଟ୍ର 123789-HxCDD I-<br>ମୁର୍ଦ୍ଧ TEQ2 (0.5 LOR) | тед (0.5 LOR)<br>С б ТЕД2 (0.5 LOR) | 다 명 12378-PeCDD I-TEQ2<br>당 여 (0.5 LOR) | 는 명 12378-PeCDF I-TEQ2<br>당 없 (0.5 LOR) | тед2 (0.5 LOR)<br>Скар ТЕД2 (0.5 LOR) | ା ଅଟି 23478-PeCDF I-TEQ2<br>ମୁର୍ଦ୍ଧ (0.5 LOR) | ୦ ଟ୍ର 2378-TCDD I-TEQ2<br>ମନ୍ଦ୍ର (0.5 LOR) | ୦ ଟ୍ର 2378-TCDF I-TEQ2<br>ମନ୍ଦ୍ର (0.5 LOR) | <sup>ය</sup> ස් OCDD I-TEQ2 (0.5<br>යි LOR) | လ တြ I-TEQ2 (0.5<br>ပြင်္က LOR) | ං ස් Total TEQ I-TEQ2 (0.5<br>ක් LOR) | 다 명 1234678-HpCDD I-<br>당 여 TEQ1 (zero) | ප ස 1234678-HpCDF I-<br>රික් TEQ1 (zero) | 는 정 1234789-HpCDF I-<br>당 | 다 정 123478-HxCDD I-<br>당 | ප හි 123478-HxCDF I-<br>රික් TEQ1 (zero) | 다 정 123678-HxCDD I-<br>당 | 다 명 123678-HxCDF I-<br>당 여 TEQ1 (zero) | ୮ ଟ୍ର 123789-HxCDD I-<br>ଟିର୍ଦ୍ଧ TEQ1 (zero) | 123789-HxCDF I-<br>5 b TEQ1 (zero) | 다 명 12378-PeCDD I-TEQ1<br>52 ᆆ (zero) | 12378-PeCDF I-TEQ1<br>52 (zero) | 1 234678-HxCDF I-<br>52 234678-HxCDF I-<br>57 25 15 234678-HxCDF I- | 1 23478-PeCDF I-TEQ1<br>52 b) (zero) | ල ප 2378-TCDD I-TEQ1<br>රිකි (zero) |
| 0.67                                       | 0.01                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12           | 0.12                                             | 0.12                                      | 0.12                                           | 0.12                                               | 0.12                                | 0.62                                    | 0.06                                    | 0.12                                  | 0.62                                          | 0.25                                       | 0.02                                       | 23.30                                       | 0.00                            | 26.46                                 | 0.67                                    | 0.00                                     | 0.00                      | 0.00                     | 0.00                                     | 0.00                     | 0.00                                   | 0.00                                         | 0.00                               | 0.00                                  | 0.00                            | 0.00                                                                | 0.00                                 | 0.00                                |
| 24.00                                      | 4.40                                 | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.51           | 3.68                                             | 12.80                                     | 1.79                                           | 9.30                                               | 0.12                                | 16.55                                   | 0.67                                    | 0.12                                  | 10.25                                         | 18.40                                      | 1.67                                       | 48.00                                       | 1.30                            | 156.94                                | 24.00                                   | 4.40                                     | 0.37                      | 3.51                     | 3.68                                     | 12.80                    | 1.79                                   | 9.30                                         | 0.00                               | 16.55                                 | 0.67                            | 0.00                                                                | 10.25                                | 18.40                               |
| 1.92                                       | 0.01                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12           | 0.12                                             | 0.12                                      | 0.12                                           | 0.61                                               | 0.12                                | 0.61                                    | 0.06                                    | 0.12                                  | 0.61                                          | 0.94                                       | 0.02                                       | 63.60                                       | 0.00                            | 69.14                                 | 1.92                                    | 0.00                                     | 0.00                      | 0.00                     | 0.00                                     | 0.00                     | 0.00                                   | 0.61                                         | 0.00                               | 0.00                                  | 0.00                            | 0.00                                                                | 0.00                                 | 0.94                                |
| 1.11                                       | 0.01                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12           | 0.12                                             | 0.12                                      | 0.12                                           | 0.53                                               | 0.12                                | 0.62                                    | 0.06                                    | 0.12                                  | 0.62                                          | 0.25                                       | 0.02                                       | 34.60                                       | 0.00                            | 38.61                                 | 1.11                                    | 0.00                                     | 0.00                      | 0.00                     | 0.00                                     | 0.00                     | 0.00                                   | 0.53                                         | 0.00                               | 0.00                                  | 0.00                            | 0.00                                                                | 0.00                                 | 0.00                                |
| 7.08                                       | 1.23                                 | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.88           | 1.12                                             | 3.10                                      | 0.56                                           | 2.97                                               | 0.12                                | 3.92                                    | 0.22                                    | 0.81                                  | 2.86                                          | 6.49                                       | 0.46                                       | 19.20                                       | 0.36                            | 51.46                                 | 7.08                                    | 1.23                                     | 0.09                      | 0.88                     | 1.12                                     | 3.10                     | 0.56                                   | 2.97                                         | 0.00                               | 3.92                                  | 0.22                            | 0.81                                                                | 2.86                                 | 6.49                                |
| <br>1.70                                   | 0.01                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.38           | 0.12                                             | 0.60                                      | 0.12                                           | 1.13                                               | 0.12                                | 1.52                                    | 0.06                                    | 0.12                                  | 0.62                                          | 0.25                                       | 0.02                                       | 19.10                                       | 0.00                            | 25.92                                 | 1.70                                    | 0.00                                     | 0.00                      | 0.38                     | 0.00                                     | 0.60                     | 0.00                                   | 1.13                                         | 0.00                               | 1.52                                  | 0.00                            | 0.00                                                                | 0.00                                 | 0.00                                |
| <br>2.83                                   | 0.01                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12           | 0.12                                             | 0.12                                      | 0.12                                           | 0.58                                               | 0.12                                | 0.62                                    | 0.06                                    | 0.12                                  | 0.62                                          | 0.25                                       | 0.02                                       | 73.50                                       | 0.00                            | 79.27                                 | 2.83                                    | 0.00                                     | 0.00                      | 0.00                     | 0.00                                     | 0.00                     | 0.00                                   | 0.58                                         | 0.00                               | 0.00                                  | 0.00                            | 0.00                                                                | 0.00                                 | 0.00                                |
| <br>3.01                                   | 0.48                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.44           | 0.39                                             | 1.31                                      | 0.13                                           | 1.34                                               | 0.13                                | 1./1                                    | 0.06                                    | 0.13                                  | 0.63                                          | 1.78                                       | 0.19                                       | 15.30                                       | 0.14                            | 27.16                                 | 3.01                                    | 0.48                                     | 0.03                      | 0.44                     | 0.39                                     | 1.31                     | 0.00                                   | 1.34                                         | 0.00                               | 1./1                                  | 0.00                            | 0.00                                                                | 0.00                                 | 1.78                                |
|                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                  |                                           |                                                |                                                    |                                     |                                         |                                         |                                       |                                               |                                            |                                            |                                             |                                 |                                       |                                         |                                          |                           |                          |                                          |                          |                                        |                                              |                                    |                                       |                                 |                                                                     |                                      |                                     |
| 8                                          | 8                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8              | 8                                                | 8                                         | 8                                              | 8                                                  | 8                                   | 8                                       | 8                                       | 8                                     | 8                                             | 8                                          | 8                                          | 8                                           | 8                               | 8                                     | 8                                       | 8                                        | 8                         | 8                        | 8                                        | 8                        | 8                                      | 8                                            | 8                                  | 8                                     | 8                               | 8                                                                   | 8                                    | 8                                   |
| 8                                          | 8                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8              | 8                                                | 8                                         | 8                                              | 8                                                  | 8                                   | 8                                       | 8                                       | 8                                     | 8                                             | 8                                          | 8                                          | 8                                           | 8                               | 8                                     | 8                                       | 8                                        | 8                         | 8                        | 8                                        | 8                        | 8                                      | 8                                            | 8                                  | 8                                     | 8                               | 8                                                                   | 8                                    | 8                                   |
| <br>0.67                                   | 0.01                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.12           | 0.12                                             | 0.12                                      | 0.12                                           | 0.12                                               | 0.12                                | 0.61                                    | 0.06                                    | 0.12                                  | 0.61                                          | 0.25                                       | 0.02                                       | 15.3                                        | 0                               | 25.92                                 | 0.67                                    | 0                                        | 0                         | 0                        | 0                                        | 0                        | 0                                      | 0                                            | 0                                  | 0                                     | 0                               | 0                                                                   | 0                                    | 0                                   |
| <br>24                                     | 4.4                                  | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.51           | 3.68                                             | 12.8                                      | 1.79                                           | 9.3                                                | 0.13                                | 16.55                                   | 0.67                                    | 0.81                                  | 10.25                                         | 18.4                                       | 1.67                                       | 73.5                                        | 1.3                             | 156.94                                | 24                                      | 4.4                                      | 0.37                      | 3.51                     | 3.68                                     | 12.8                     | 1.79                                   | 9.3                                          | 0                                  | 16.55                                 | 0.67                            | 0.81                                                                | 10.25                                | 18.4                                |
| 5.3                                        | 0.77                                 | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.71           | 0.72                                             | 2.3                                       | 0.39                                           | 2.1                                                | 0.12                                | 3.3                                     | 0.16                                    | 0.21                                  | 2.1                                           | 3.6                                        | 0.3                                        | 37                                          | 0.23                            | 59                                    | 5.3                                     | 0.76                                     | 0.061                     | 0.65                     | 0.65                                     | 2.2                      | 0.29                                   | 2.1                                          | 0                                  | 3                                     | 0.11                            | 0.1                                                                 | 1.6                                  | 3.5                                 |

|                   |            |              |         |                                    |                                    |                                    |                                   |                                   |                                   |                                   | Dio                               | xins I-TI                         | EQ 0.5>                         | LOR                             |                                   |                                 |                               |                               |                          |                          |                               |                                 |                                 |                                 |                                |                                |                                |                                | Di                             | oxins I-T                      | EQ 0xL                       | OR                           |                                |                              |                            |
|-------------------|------------|--------------|---------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|-------------------------------|-------------------------------|--------------------------|--------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------|------------------------------|----------------------------|
|                   |            |              |         | 1234678-HpCDD I-<br>TEQ2 (0.5 LOR) | 1234678-HpCDF I-<br>TEQ2 (0.5 LOR) | 1234789-HpCDF I-<br>TEQ2 (0.5 LOR) | 123478-HxCDD I-<br>TEQ2 (0.5 LOR) | 123478-HxCDF I-<br>TEQ2 (0.5 LOR) | 123678-HxCDD I-<br>TEQ2 (0.5 LOR) | 123678-HxCDF I-<br>TEQ2 (0.5 LOR) | 123789-HxCDD I-<br>TEQ2 (0.5 LOR) | 123789-HxCDF I-<br>TEQ2 (0.5 LOR) | 12378-PeCDD I-TEQ2<br>(0.5 LOR) | 12378-PeCDF I-TEQ2<br>(0.5 LOR) | 234678-HxCDF I-<br>TEQ2 (0.5 LOR) | 23478-PeCDF I-TEQ2<br>(0.5 LOR) | 2378-TCDD I-TEQ2<br>(0.5 LOR) | 2378-TCDF I-TEQ2<br>(0.5 LOR) | OCDD I-TEQ2 (0.5<br>LOR) | OCDF I-TEQ2 (0.5<br>LOR) | Total TEQ I-TEQ2 (0.5<br>LOR) | 1234678-HpCDD I-<br>TEQ1 (zero) | 1234678-HpCDF I-<br>TEQ1 (zero) | 1234789-HpCDF I-<br>TEQ1 (zero) | 123478-HxCDD I-<br>TEQ1 (zero) | 123478-HxCDF I-<br>TEQ1 (zero) | 123678-HxCDD I-<br>TEQ1 (zero) | 123678-HxCDF I-<br>TEQ1 (zero) | 123789-HxCDD I-<br>TEQ1 (zero) | 123789-HxCDF I-<br>TEQ1 (zero) | 12378-PeCDD I-TEQ1<br>(zero) | 12378-PeCDF I-TEQ1<br>(zero) | 234678-HxCDF I-<br>TEQ1 (zero) | 23478-PeCDF I-TEQ1<br>(zero) | 2378-TCDD I-TEQ1<br>(zero) |
|                   |            |              |         | pg/g                               | pg/g                               | pg/g                               | pg/g                              | pg/g                              | pg/g                              | pg/g                              | pg/g                              | pg/g                              | pg/g                            | pg/g                            | pg/g                              | pg/g                            | pg/g                          | pg/g                          | pg/g                     | pg/g                     | pg/g                          | pg/g                            | pg/g                            | pg/g                            | pg/g                           | pg/g                           | pg/g                           | pg/g                           | pg/g                           | pg/g                           | pg/g                         | pg/g                         | pg/g                           | pg/g                         | pg/g                       |
| EQL               |            |              |         | 1.25                               | 1.25                               | 1.25                               | 1.25                              | 1.25                              | 1.25                              | 1.25                              | 1.25                              | 1.25                              | 1.25                            | 1.25                            | 1.25                              | 1.25                            | 0.25                          | 0.25                          | 5                        | 2.5                      | 0                             | 1.25                            | 1.25                            | 1.25                            | 1.25                           | 1.25                           | 1.25                           | 1.25                           | 1.25                           | 1.25                           | 1.25                         | 1.25                         | 1.25                           | 1.25                         | 0.25                       |
| Location Code     | Date       | Field ID     | Depth   |                                    |                                    |                                    |                                   |                                   |                                   |                                   |                                   |                                   |                                 |                                 |                                   |                                 |                               |                               |                          |                          |                               |                                 |                                 |                                 |                                |                                |                                |                                |                                |                                |                              |                              |                                |                              |                            |
| VC01              | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1 | 0.67                               | 0.01                               | 0.01                               | 0.12                              | 0.12                              | 0.12                              | 0.12                              | 0.12                              | 0.12                              | 0.62                            | 0.06                            | 0.12                              | 0.62                            | 0.25                          | 0.02                          | 23.30                    | 0.00                     | 26.46                         | 0.67                            | 0.00                            | 0.00                            | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.00                         | 0.00                         | 0.00                           | 0.00                         | 0.00                       |
| VC02              | 30/10/2019 | VC02_0.5-1.0 | 0.5 - 1 | 24.00                              | 4.40                               | 0.37                               | 3.51                              | 3.68                              | 12.80                             | 1.79                              | 9.30                              | 0.13                              | 16.55                           | 0.67                            | 0.13                              | 10.25                           | 18.40                         | 1.67                          | 48.00                    | 1.30                     | 156.94                        | 24.00                           | 4.40                            | 0.37                            | 3.51                           | 3.68                           | 12.80                          | 0 1.79                         | 9.30                           | 0.00                           | 16.55                        | 0.67                         | 0.00                           | 10.25                        | 18.40                      |
| VC03              | 30/10/2019 | VC03_0.0-0.5 | 0 - 0.5 | 1.92                               | 0.01                               | 0.01                               | 0.12                              | 0.12                              | 0.12                              | 0.12                              | 0.61                              | 0.12                              | 0.61                            | 0.06                            | 0.12                              | 0.61                            | 0.94                          | 0.02                          | 63.60                    | 0.00                     | 69.14                         | 1.92                            | 0.00                            | 0.00                            | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.61                           | 0.00                           | 0.00                         | 0.00                         | 0.00                           | 0.00                         | 0.94                       |
| VC04              | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1 | 1.11                               | 0.01                               | 0.01                               | 0.12                              | 0.12                              | 0.12                              | 0.12                              | 0.53                              | 0.12                              | 0.62                            | 0.06                            | 0.12                              | 0.62                            | 0.25                          | 0.02                          | 34.60                    | 0.00                     | 38.61                         | 1.11                            | 0.00                            | 0.00                            | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.53                           | 0.00                           | 0.00                         | 0.00                         | 0.00                           | 0.00                         | 0.00                       |
| VC07              | 30/10/2019 | VC07_0.0-0.5 | 0 - 0.5 | 7.08                               | 1.23                               | 0.09                               | 0.88                              | 1.12                              | 3.10                              | 0.56                              | 2.97                              | 0.12                              | 3.92                            | 0.22                            | 0.81                              | 2.86                            | 6.49                          | 0.46                          | 19.20                    | 0.36                     | 51.46                         | 7.08                            | 1.23                            | 0.09                            | 0.88                           | 1.12                           | 3.10                           | 0.56                           | 2.97                           | 0.00                           | 3.92                         | 0.22                         | 0.81                           | 2.86                         | 6.49                       |
| VC08              | 31/10/2019 | VC08_1.0-1.5 | 1 - 1.5 | 1.70                               | 0.01                               | 0.01                               | 0.38                              | 0.12                              | 0.60                              | 0.12                              | 1.13                              | 0.12                              | 1.52                            | 0.06                            | 0.12                              | 0.62                            | 0.25                          | 0.02                          | 19.10                    | 0.00                     | 25.92                         | 1.70                            | 0.00                            | 0.00                            | 0.38                           | 0.00                           | 0.60                           | 0.00                           | 1.13                           | 0.00                           | 1.52                         | 0.00                         | 0.00                           | 0.00                         | 0.00                       |
| VC10              | 31/10/2019 | VC10_0.0-0.5 | 0 - 0.5 | 2.83                               | 0.01                               | 0.01                               | 0.12                              | 0.12                              | 0.12                              | 0.12                              | 0.58                              | 0.12                              | 0.62                            | 0.06                            | 0.12                              | 0.62                            | 0.25                          | 0.02                          | 73.50                    | 0.00                     | 79.27                         | 2.83                            | 0.00                            | 0.00                            | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.58                           | 0.00                           | 0.00                         | 0.00                         | 0.00                           | 0.00                         | 0.00                       |
| VC12              | 31/10/2019 | VC12_0.0-0.5 | 0 - 0.5 | 3.01                               | 0.48                               | 0.03                               | 0.44                              | 0.39                              | 1.31                              | 0.13                              | 1.34                              | 0.13                              | 1.71                            | 0.06                            | 0.13                              | 0.63                            | 1.78                          | 0.19                          | 15.30                    | 0.14                     | 27.16                         | 3.01                            | 0.48                            | 0.03                            | 0.44                           | 0.39                           | 1.31                           | 0.00                           | 1.34                           | 0.00                           | 1.71                         | 0.00                         | 0.00                           | 0.00                         | 1.78                       |
| Statistics        |            | •            |         | · · ·                              |                                    |                                    |                                   |                                   |                                   |                                   |                                   |                                   |                                 |                                 |                                   |                                 |                               |                               |                          |                          |                               |                                 |                                 |                                 |                                |                                |                                |                                | <u> </u>                       |                                |                              |                              |                                |                              |                            |
| Number of Results | -          |              |         | 8                                  | 8                                  | 8                                  | 8                                 | 8                                 | 8                                 | 8                                 | 8                                 | 8                                 | 8                               | 8                               | 8                                 | 8                               | 8                             | 8                             | 8                        | 8                        | 8                             | 8                               | 8                               | 8                               | 8                              | 8                              | 8                              | 8                              | 8                              | 8                              | 8                            | 8                            | 8                              | 8                            | 8                          |
| Number of Detects |            |              |         | 8                                  | 8                                  | 8                                  | 8                                 | 8                                 | 8                                 | 8                                 | 8                                 | 8                                 | 8                               | 8                               | 8                                 | 8                               | 8                             | 8                             | 8                        | 8                        | 8                             | 8                               | 8                               | 8                               | 8                              | 8                              | 8                              | 8                              | 8                              | 8                              | 8                            | 8                            | 8                              | 8                            | 8                          |

| Number of Results       | 8    | 8    | 8     | 8    | 8    | 8    | 8    | 8    | 8    | 8     |   |
|-------------------------|------|------|-------|------|------|------|------|------|------|-------|---|
| Number of Detects       | 8    | 8    | 8     | 8    | 8    | 8    | 8    | 8    | 8    | 8     | 1 |
| Minimum Concentration   | 0.67 | 0.01 | 0.01  | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.61  |   |
| Maximum Concentration   | 24   | 4.4  | 0.37  | 3.51 | 3.68 | 12.8 | 1.79 | 9.3  | 0.13 | 16.55 |   |
| Average Concentration * | 5.3  | 0.77 | 0.068 | 0.71 | 0.72 | 2.3  | 0.39 | 2.1  | 0.12 | 3.3   |   |



| Γ |                  |                    |                    |                            |                           |               |                   | Dioxin                        | s Total                    |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                    |                                    |                                     |                                    |                                  |                                  |                            |                            |                                  |
|---|------------------|--------------------|--------------------|----------------------------|---------------------------|---------------|-------------------|-------------------------------|----------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|----------------------------------|
|   |                  |                    |                    |                            | Dioxins I-TEQ 1xLOR       | Dioxins Total | Dioxins Total LOR | Pe                            | aks                        |                                     |                                     |                                     | -                                   |                                     |                                     | -                                   | Dioxin                              | s WHO                               | TEQ 0.                             | 5xLOR                              |                                     |                                    | -                                |                                  |                            |                            |                                  |
|   | (zero)<br>(zero) | OCDD I-TEQ1 (zero) | OCDF I-TEQ1 (zero) | Total TEQ I-TEQ1<br>(zero) | Total TEQ I-TEQ3<br>(LOR) | Octa-Furan    | Hepta-Dioxins LOR | Hepta-Dioxins No. of<br>Peaks | Octa-Furan No. of<br>Peaks | 1234678-HpCDD<br>WHO-TEQ2 (0.5 LOR) | 1234678-HpCDF<br>WHO-TEQ2 (0.5 LOR) | 1234789-HpCDF<br>WHO-TEQ2 (0.5 LOR) | 123478-HxCDD WHO-<br>TEQ2 (0.5 LOR) | 123478-HxCDF WHO-<br>TEQ2 (0.5 LOR) | 123678-HxCDD WHO-<br>TEQ2 (0.5 LOR) | 123678-HxCDF WHO-<br>TEQ2 (0.5 LOR) | 123789-HxCDD WHO-<br>TEQ2 (0.5 LOR) | 123789-HxCDF WHO-<br>TEQ2 (0.5 LOR) | 12378-PeCDD WHO-<br>TEQ2 (0.5 LOR) | 12378-PeCDF WHO-<br>TEQ2 (0.5 LOR) | 234678-HxCDF WHO-<br>TEQ2 (0.5 LOR) | 23478-PeCDF WHO-<br>TEQ2 (0.5 LOR) | 2378-TCDD WHO-<br>TEQ2 (0.5 LOR) | 2378-TCDF WHO-<br>TEQ2 (0.5 LOR) | OCDD WHO-TEQ2<br>(0.5 LOR) | OCDF WHO-TEQ2<br>(0.5 LOR) | Total TEQ WHO-<br>TEQ2 (0.5 LOR) |
|   | og/g             | pg/g               | pg/g               | pg/g                       | pg/g                      | ng/kg         | pg/g              | pg/g                          | pg/g                       | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                               | pg/g                               | pg/g                                | pg/g                               | pg/g                             | pg/g                             | pg/g                       | pg/g                       | pg/g                             |
| ( | 0.25             | 5                  | 2.5                | 0                          | 0                         | 2.5           | 1.25              | 1.25                          | 2.5                        | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                               | 1.25                               | 1.25                                | 1.25                               | 0.25                             | 0.25                             | 5                          | 2.5                        | 0                                |
|   |                  |                    |                    |                            |                           |               |                   |                               |                            |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                    |                                    |                                     |                                    |                                  |                                  |                            |                            |                                  |
| ( | 0.00             | 23.30              | 0.00               | 23.97                      | 28.95                     | <5.0          | 5.0               | 2                             | 1                          | 0.67                                | 0.01                                | 0.01                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 1.25                               | 0.04                               | 0.12                                | 0.37                               | 0.25                             | 0.02                             | 6.99                       | 0.00                       | 10.50                            |
|   | 1.67             | 48.00              | 1.30               | 156.69                     | 157.19                    | 1,300.0       | 5.0               | 2                             | 1                          | 24.00                               | 4.40                                | 0.37                                | 3.51                                | 3.68                                | 12.80                               | 1.79                                | 9.30                                | 0.13                                | 33.10                              | 0.40                               | 0.13                                | 6.15                               | 18.40                            | 1.67                             | 14.40                      | 0.39                       | 134.61                           |
| ( | 0.00             | 63.60              | 0.00               | 67.07                      | 71.22                     | <4.9          | 4.9               | 2                             | 1                          | 1.92                                | 0.01                                | 0.01                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.61                                | 0.12                                | 1.23                               | 0.04                               | 0.12                                | 0.37                               | 0.94                             | 0.02                             | 19.08                      | 0.00                       | 24.96                            |
| ( | 0.00             | 34.60              | 0.00               | 36.24                      | 40.97                     | <5.0          | 5.0               | 2                             | 1                          | 1.11                                | 0.01                                | 0.01                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.53                                | 0.12                                | 1.25                               | 0.04                               | 0.12                                | 0.37                               | 0.25                             | 0.02                             | 10.38                      | 0.00                       | 14.73                            |
| ( | 0.46             | 19.20              | 0.36               | 51.33                      | 51.58                     | 363.0         | 5.0               | 2                             | 1                          | 7.08                                | 1.23                                | 0.09                                | 0.88                                | 1.12                                | 3.10                                | 0.56                                | 2.97                                | 0.12                                | 7.83                               | 0.13                               | 0.81                                | 1.71                               | 6.49                             | 0.46                             | 5.76                       | 0.11                       | 40.45                            |
| ( | 0.00             | 19.10              | 0.00               | 24.43                      | 27.41                     | <5.0          | 5.0               | 2                             | 1                          | 1.70                                | 0.01                                | 0.01                                | 0.38                                | 0.12                                | 0.60                                | 0.12                                | 1.13                                | 0.12                                | 3.04                               | 0.04                               | 0.12                                | 0.37                               | 0.25                             | 0.02                             | 5.73                       | 0.00                       | 13.79                            |
| ( | 0.00             | 73.50              | 0.00               | 76.91                      | 81.62                     | <5.0          | 5.0               | 2                             | 1                          | 2.83                                | 0.01                                | 0.01                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.58                                | 0.12                                | 1.25                               | 0.04                               | 0.12                                | 0.37                               | 0.25                             | 0.02                             | 22.05                      | 0.00                       | 28.16                            |
| ( | 0.19             | 15.30              | 0.14               | 26.10                      | 28.23                     | 137.0         | 5.0               | 2                             | 1                          | 3.01                                | 0.48                                | 0.03                                | 0.44                                | 0.39                                | 1.31                                | 0.13                                | 1.34                                | 0.13                                | 3.42                               | 0.04                               | 0.13                                | 0.38                               | 1.78                             | 0.19                             | 4.59                       | 0.04                       | 17.79                            |
|   |                  |                    |                    |                            |                           |               |                   |                               |                            |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                    |                                    |                                     |                                    |                                  |                                  |                            |                            |                                  |
|   | 8                | 8                  | 8                  | 8                          | 8                         | 8             | 8                 | 8                             | 8                          | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                  | 8                                  | 8                                   | 8                                  | 8                                | 8                                | 8                          | 8                          | 8                                |
|   | 8                | 8                  | 8                  | 8                          | 8                         | 3             | 8                 | 8                             | 8                          | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                  | 8                                  | 8                                   | 8                                  | 8                                | 8                                | 8                          | 8                          | 8                                |
|   | 0                | 15.3               | 0                  | 23.97                      | 27.41                     | <4.9          | 4.9               | 2                             | 1                          | 0.67                                | 0.01                                | 0.01                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 1.23                               | 0.04                               | 0.12                                | 0.37                               | 0.25                             | 0.02                             | 4.59                       | 0                          | 10.5                             |
|   | 1.67             | 73.5               | 1.3                | 156.69                     | 157.19                    | 1,300         | 5                 | 2                             | 1                          | 24                                  | 4.4                                 | 0.37                                | 3.51                                | 3.68                                | 12.8                                | 1.79                                | 9.3                                 | 0.13                                | 33.1                               | 0.4                                | 0.81                                | 6.15                               | 18.4                             | 1.67                             | 22.05                      | 0.39                       | 134.61                           |
| ( | 0.29             | 37                 | 0.23               | 58                         | 61                        | 227           | 5                 | 2                             | 1                          | 5.3                                 | 0.77                                | 0.068                               | 0.71                                | 0.72                                | 2.3                                 | 0.39                                | 2.1                                 | 0.12                                | 6.5                                | 0.096                              | 0.21                                | 1.3                                | 3.6                              | 0.3                              | 11                         | 0.068                      | 36                               |

|                      |            |              |         |                            |                    |                    |                            |                           |               |                   | Dioxir                        | ns Total                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                    |                                    |                                     |                                    |                                  |                                  |         |                 |                                  |
|----------------------|------------|--------------|---------|----------------------------|--------------------|--------------------|----------------------------|---------------------------|---------------|-------------------|-------------------------------|----------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|----------------------------------|----------------------------------|---------|-----------------|----------------------------------|
|                      |            |              |         |                            | •                  |                    | •                          | Dioxins I-TEQ 1xLOR       | Dioxins Total | Dioxins Total LOR | Pe                            | eaks                       |                                     |                                     |                                     | -                                   |                                     | -                                   |                                     | Dioxi                               | <u>ns WH0</u>                       | <u> </u>                           | .5xLOR                             |                                     |                                    |                                  | <u> </u>                         |         |                 |                                  |
|                      |            |              |         | 2378-TCDF I-TEQ1<br>(zero) | OCDD I-TEQ1 (zero) | OCDF I-TEQ1 (zero) | Total TEQ I-TEQ1<br>(zero) | Total TEQ I-TEQ3<br>(LOR) | Octa-Furan    | Hepta-Dioxins LOR | Hepta-Dioxins No. of<br>Peaks | Octa-Furan No. of<br>Peaks | 1234678-HpCDD<br>WHO-TEQ2 (0.5 LOR) | 1234678-HpCDF<br>WHO-TEQ2 (0.5 LOR) | 1234789-HpCDF<br>WHO-TEQ2 (0.5 LOR) | 123478-H×CDD WHO-<br>TEQ2 (0.5 LOR) | 123478-H×CDF WHO-<br>TEQ2 (0.5 LOR) | 123678-HxCDD WHO-<br>TEQ2 (0.5 LOR) | 123678-HxCDF WHO-<br>TEQ2 (0.5 LOR) | 123789-HxCDD WHO-<br>TEQ2 (0.5 LOR) | 123789-HxCDF WHO-<br>TEQ2 (0.5 LOR) | 12378-PeCDD WHO-<br>TEQ2 (0.5 LOR) | 12378-PeCDF WHO-<br>TEQ2 (0.5 LOR) | 234678-HxCDF WHO-<br>TEQ2 (0.5 LOR) | 23478-PeCDF WHO-<br>TEQ2 (0.5 LOR) | 2378-TCDD WHO-<br>TEQ2 (0.5 LOR) | 2378-TCDF WHO-<br>TEQ2 (0.5 LOR) |         | 0.5 LOR)        | Total TEQ WHU-<br>TEQ2 (0.5 LOR) |
|                      |            |              |         | pg/g                       | pg/g               | pg/g               | pg/g                       | pg/g                      | ng/kg         | pg/g              | pg/g                          | pg/g                       | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                                | pg/g                               | pg/g                               | pg/g                                | pg/g                               | pg/g                             | pg/g                             | pg/g r  | bg/g            | pg/g                             |
| EQL                  |            |              |         | 0.25                       | 5                  | 2.5                | 0                          | 0                         | 2.5           | 1.25              | 1.25                          | 2.5                        | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                                | 1.25                               | 1.25                               | 1.25                                | 1.25                               | 0.25                             | 0.25                             | 5       | 2.5             | 0                                |
| Location Code        | Date       | Field ID     | Depth   |                            | _                  |                    |                            |                           |               |                   |                               |                            | -                                   |                                     |                                     |                                     |                                     | -                                   |                                     |                                     | -                                   |                                    |                                    |                                     |                                    |                                  |                                  |         | <u>_</u>        |                                  |
| VC01                 | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1 | 0.00                       | 23.30              | 0.00               | 23.97                      | 28.95                     | <5.0          | 5.0               | 2                             | 1                          | 0.67                                | 0.01                                | 0.01                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 1.25                               | 0.04                               | 0.12                                | 0.37                               | 0.25                             | 0.02                             | 6.99 (  | ).00 1          | 10.50                            |
| VC02                 | 30/10/2019 | VC02_0.5-1.0 | 0.5 - 1 | 1.67                       | 48.00              | 1.30               | 156.69                     | 9 157.19                  | 1,300.0       | 5.0               | 2                             | 1                          | 24.00                               | 4.40                                | 0.37                                | 3.51                                | 3.68                                | 12.80                               | 1.79                                | 9.30                                | 0.13                                | 33.10                              | 0.40                               | 0.13                                | 6.15                               | 18.40                            | 1.67                             | 14.40 ( | ).39 <u>1</u> ' | 34.61                            |
| VC03                 | 30/10/2019 | VC03_0.0-0.5 | 0 - 0.5 | 0.00                       | 63.60              | 0.00               | 67.07                      | 71.22                     | <4.9          | 4.9               | 2                             | 1                          | 1.92                                | 0.01                                | 0.01                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.61                                | 0.12                                | 1.23                               | 0.04                               | 0.12                                | 0.37                               | 0.94                             | 0.02                             | 19.08 ( | ).00 2          | 24.96                            |
| VC04                 | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1 | 0.00                       | 34.60              | 0.00               | 36.24                      | 40.97                     | <5.0          | 5.0               | 2                             | 1                          | 1.11                                | 0.01                                | 0.01                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.53                                | 0.12                                | 1.25                               | 0.04                               | 0.12                                | 0.37                               | 0.25                             | 0.02                             | 10.38 ( | ).00 1          | 14.73                            |
| VC07                 | 30/10/2019 | VC07_0.0-0.5 | 0 - 0.5 | 0.46                       | 19.20              | 0.36               | 51.33                      | 51.58                     | 363.0         | 5.0               | 2                             | 1                          | 7.08                                | 1.23                                | 0.09                                | 0.88                                | 1.12                                | 3.10                                | 0.56                                | 2.97                                | 0.12                                | 7.83                               | 0.13                               | 0.81                                | 1.71                               | 6.49                             | 0.46                             | 5.76 (  | ).11 4          | 10.45                            |
| VC08                 | 31/10/2019 | VC08_1.0-1.5 | 1 - 1.5 | 0.00                       | 19.10              | 0.00               | 24.43                      | 27.41                     | <5.0          | 5.0               | 2                             | 1                          | 1.70                                | 0.01                                | 0.01                                | 0.38                                | 0.12                                | 0.60                                | 0.12                                | 1.13                                | 0.12                                | 3.04                               | 0.04                               | 0.12                                | 0.37                               | 0.25                             | 0.02                             | 5.73 (  | ).00 1          | 13.79                            |
| VC10                 | 31/10/2019 | VC10_0.0-0.5 | 0 - 0.5 | 0.00                       | 73.50              | 0.00               | 76.91                      | 81.62                     | <5.0          | 5.0               | 2                             | 1                          | 2.83                                | 0.01                                | 0.01                                | 0.12                                | 0.12                                | 0.12                                | 0.12                                | 0.58                                | 0.12                                | 1.25                               | 0.04                               | 0.12                                | 0.37                               | 0.25                             | 0.02                             | 22.05 ( | ).00 2          | 28.16                            |
| VC12                 | 31/10/2019 | VC12_0.0-0.5 | 0 - 0.5 | 0.19                       | 15.30              | 0.14               | 26.10                      | 28.23                     | 137.0         | 5.0               | 2                             | 1                          | 3.01                                | 0.48                                | 0.03                                | 0.44                                | 0.39                                | 1.31                                | 0.13                                | 1.34                                | 0.13                                | 3.42                               | 0.04                               | 0.13                                | 0.38                               | 1.78                             | 0.19                             | 4.59 (  | ).04 1          | 17.79                            |
| Statistics           |            |              |         |                            |                    | -                  |                            |                           | -             | -                 |                               |                            | -                                   |                                     |                                     |                                     | - <u> </u>                          |                                     |                                     |                                     |                                     |                                    |                                    |                                     |                                    |                                  |                                  |         |                 |                                  |
| Number of Results    |            |              |         | 8                          | 8                  | 8                  | 8                          | 8                         | 8             | 8                 | 8                             | 8                          | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                  | 8                                  | 8                                   | 8                                  | 8                                | 8                                | 8       | 8               | 8                                |
| Number of Detects    |            |              |         | 8                          | 8                  | 8                  | 8                          | 8                         | 3             | 8                 | 8                             | 8                          | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                   | 8                                  | 8                                  | 8                                   | 8                                  | 8                                | 8                                | 8       | 8               | 8                                |
| Minimum Concentratio | n          |              |         | 0                          | 153                | 0                  | 23 97                      | 27 41                     | <4.9          | 4 9               | 2                             | 1                          | 0.67                                | 0.01                                | 0.01                                | 0 12                                | 0 12                                | 0 12                                | 0 12                                | 0 12                                | 0 12                                | 1 2 3                              | 0.04                               | 0.12                                | 0 37                               | 0.25                             | 0.02                             | 4 59    | 0               | 10 5                             |

| Number of Results       | 8    | 8    | 8    | 8      | 8      | 8     | 8   |
|-------------------------|------|------|------|--------|--------|-------|-----|
| Number of Detects       | 8    | 8    | 8    | 8      | 8      | 3     | 8   |
| Minimum Concentration   | 0    | 15.3 | 0    | 23.97  | 27.41  | <4.9  | 4.9 |
| Maximum Concentration   | 1.67 | 73.5 | 1.3  | 156.69 | 157.19 | 1,300 | 5   |
| Average Concentration * | 0.29 | 37   | 0.23 | 58     | 61     | 227   | 5   |
|                         | -    | -    | -    | -      |        | -     |     |



|   |                                  |                                  |                                  |                                  |                                 |                                 |                                  | Diovi                           | na WUC                          |                                 |                                 |                                  |                                 |                               |                               |                         |                         |                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 | Diovi                          | na \V/⊔C                        |                                |                                |                                 |                                |                              |
|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|-------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|------------------------------|
| ŀ |                                  |                                  | r                                | 1                                | 1                               | 1                               |                                  |                                 |                                 |                                 |                                 | 1                                |                                 |                               |                               |                         |                         |                               |                                 |                                 |                                 | 1                               |                                 | 1                               |                                 |                                |                                 |                                | XLUK                           |                                 | T                              |                              |
| _ | 1234678-HpCDD<br>WHO-TEQ1 (zero) | 1234678-HpCDF<br>WHO-TEQ1 (zero) | 1234789-HpCDF<br>WHO-TEQ1 (zero) | 123478-HxCDD WHO.<br>TEQ1 (zero) | 123478-HxCDF WHO<br>TEQ1 (zero) | 123678-HxCDD WHO<br>TEQ1 (zero) | 123678-HxCDF WHO.<br>TEQ1 (zero) | 123789-HxCDD WHO<br>TEQ1 (zero) | 123789-HxCDF WHO<br>TEQ1 (zero) | 12378-PeCDD WHO-<br>TEQ1 (zero) | 12378-PeCDF WHO-<br>TEQ1 (zero) | 234678-HxCDF WHO-<br>TEQ1 (zero) | 23478-PeCDF WHO-<br>TEQ1 (zero) | 2378-TCDD WHO-<br>TEQ1 (zero) | 2378-TCDF WHO-<br>TEQ1 (zero) | OCDD WHO-TEQ1<br>(zero) | OCDF WHO-TEQ1<br>(zero) | Total TEQ WHO-<br>TEQ1 (zero) | 1234678-НрСDD<br>WHO-ТЕQ3 (LOR) | 1234678-HpCDF<br>WHO-TEQ3 (LOR) | 1234789-НрСDF<br>WHO-ТЕQ3 (LOR) | 123478-HxCDD WHO.<br>TEQ3 (LOR) | 123478-HxCDF WHO-<br>TEQ3 (LOR) | 123678-НхСDD WHO.<br>ТЕQ3 (LOR) | 123678-НхСDF WHO-<br>ТЕQ3 (LOR) | 123789-Н×СDD WHO<br>ТЕQ3 (LOR) | 123789-HxCDF WHO.<br>TEQ3 (LOR) | 12378-PeCDD WHO-<br>TEQ3 (LOR) | 12378-PeCDF WHO-<br>TEQ3 (LOR) | 234678-HxCDF WHO-<br>TEQ3 (LOR) | 23478-PeCDF WHO-<br>TEQ3 (LOR) | 2378-TCDD WHO-<br>TEQ3 (LOR) |
|   | pg/g                             | pg/g                             | pg/g                             | pg/g                             | pg/g                            | pg/g                            | pg/g                             | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                             | pg/g                            | pg/g                          | pg/g                          | pg/g                    | pg/g                    | pg/g                          | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                           | pg/g                            | pg/g                           | pg/g                           | pg/g                            | pg/g                           | pg/g                         |
|   | 1.25                             | 1.25                             | 1.25                             | 1.25                             | 1.25                            | 1.25                            | 1.25                             | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                             | 1.25                            | 0.25                          | 0.25                          | 5                       | 2.5                     | 0                             | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                           | 1.25                            | 1.25                           | 1.25                           | 1.25                            | 1.25                           | 0.25                         |
|   |                                  |                                  |                                  |                                  |                                 |                                 |                                  |                                 |                                 |                                 |                                 |                                  |                                 |                               |                               |                         |                         |                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                |                                 |                                |                                |                                 |                                |                              |
|   | 0.67                             | 0.00                             | 0.00                             | 0.00                             | 0.00                            | 0.00                            | 0.00                             | 0.00                            | 0.00                            | 0.00                            | 0.00                            | 0.00                             | 0.00                            | 0.00                          | 0.00                          | 6.99                    | 0.00                    | 7.66                          | 0.67                            | 0.02                            | 0.02                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.25                           | 0.25                            | 2.50                           | 0.07                           | 0.25                            | 0.75                           | 0.50                         |
|   | 24.00                            | 4.40                             | 0.37                             | 3.51                             | 3.68                            | 12.80                           | 1.79                             | 9.30                            | 0.00                            | 33.10                           | 0.40                            | 0.00                             | 6.15                            | 18.40                         | 1.67                          | 14.40                   | 0.39                    | 134.36                        | 24.00                           | 4.40                            | 0.37                            | 3.51                            | 3.68                            | 12.80                           | 1.79                            | 9.30                           | 0.25                            | 33.10                          | 0.40                           | 0.25                            | 6.15                           | 18.40                        |
|   | 1.92                             | 0.00                             | 0.00                             | 0.00                             | 0.00                            | 0.00                            | 0.00                             | 0.61                            | 0.00                            | 0.00                            | 0.00                            | 0.00                             | 0.00                            | 0.94                          | 0.00                          | 19.08                   | 0.00                    | 22.55                         | 1.92                            | 0.02                            | 0.02                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.61                           | 0.25                            | 2.45                           | 0.07                           | 0.25                            | 0.74                           | 0.94                         |
|   | 1.11                             | 0.00                             | 0.00                             | 0.00                             | 0.00                            | 0.00                            | 0.00                             | 0.53                            | 0.00                            | 0.00                            | 0.00                            | 0.00                             | 0.00                            | 0.00                          | 0.00                          | 10.38                   | 0.00                    | 12.02                         | 1.11                            | 0.02                            | 0.02                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.53                           | 0.25                            | 2.50                           | 0.07                           | 0.25                            | 0.75                           | 0.50                         |
|   | 7.08                             | 1.23                             | 0.09                             | 0.88                             | 1.12                            | 3.10                            | 0.56                             | 2.97                            | 0.00                            | 7.83                            | 0.13                            | 0.81                             | 1.71                            | 6.49                          | 0.46                          | 5.76                    | 0.11                    | 40.32                         | 7.08                            | 1.23                            | 0.09                            | 0.88                            | 1.12                            | 3.10                            | 0.56                            | 2.97                           | 0.25                            | 7.83                           | 0.13                           | 0.81                            | 1.71                           | 6.49                         |
|   | 1.70                             | 0.00                             | 0.00                             | 0.38                             | 0.00                            | 0.60                            | 0.00                             | 1.13                            | 0.00                            | 3.04                            | 0.00                            | 0.00                             | 0.00                            | 0.00                          | 0.00                          | 5.73                    | 0.00                    | 12.58                         | 1.70                            | 0.02                            | 0.02                            | 0.38                            | 0.25                            | 0.60                            | 0.25                            | 1.13                           | 0.25                            | 3.04                           | 0.07                           | 0.25                            | 0.75                           | 0.50                         |
|   | 2.83                             | 0.00                             | 0.00                             | 0.00                             | 0.00                            | 0.00                            | 0.00                             | 0.58                            | 0.00                            | 0.00                            | 0.00                            | 0.00                             | 0.00                            | 0.00                          | 0.00                          | 22.05                   | 0.00                    | 25.46                         | 2.83                            | 0.02                            | 0.02                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.58                           | 0.25                            | 2.49                           | 0.07                           | 0.25                            | 0.75                           | 0.50                         |
|   | 3.01                             | 0.48                             | 0.03                             | 0.44                             | 0.39                            | 1.31                            | 0.00                             | 1.34                            | 0.00                            | 3.42                            | 0.00                            | 0.00                             | 0.00                            | 1.78                          | 0.19                          | 4.59                    | 0.04                    | 17.01                         | 3.01                            | 0.48                            | 0.03                            | 0.44                            | 0.39                            | 1.31                            | 0.25                            | 1.34                           | 0.25                            | 3.42                           | 0.08                           | 0.25                            | 0.75                           | 1.78                         |
|   |                                  |                                  |                                  |                                  |                                 |                                 |                                  |                                 |                                 |                                 |                                 |                                  |                                 |                               |                               |                         |                         |                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                |                                 |                                |                                |                                 |                                |                              |
|   | 8                                | 8                                | 8                                | 8                                | 8                               | 8                               | 8                                | 8                               | 8                               | 8                               | 8                               | 8                                | 8                               | 8                             | 8                             | 8                       | 8                       | 8                             | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                              | 8                               | 8                              | 8                              | 8                               | 8                              | 8                            |
|   | 8                                | 8                                | 8                                | 8                                | 8                               | 8                               | 8                                | 8                               | 8                               | 8                               | 8                               | 8                                | 8                               | 8                             | 8                             | 8                       | 8                       | 8                             | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                              | 8                               | 8                              | 8                              | 8                               | 8                              | 8                            |
|   | 0.67                             | 0                                | 0                                | 0                                | 0                               | 0                               | 0                                | 0                               | 0                               | 0                               | 0                               | 0                                | 0                               | 0                             | 0                             | 4.59                    | 0                       | 7.66                          | 0.67                            | 0.02                            | 0.02                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.25                           | 0.25                            | 2.45                           | 0.07                           | 0.25                            | 0.74                           | 0.5                          |
|   | 24                               | 4.4                              | 0.37                             | 3.51                             | 3.68                            | 12.8                            | 1.79                             | 9.3                             | 0                               | 33.1                            | 0.4                             | 0.81                             | 6.15                            | 18.4                          | 1.67                          | 22.05                   | 0.39                    | 134.36                        | 24                              | 4.4                             | 0.37                            | 3.51                            | 3.68                            | 12.8                            | 1.79                            | 9.3                            | 0.25                            | 33.1                           | 0.4                            | 0.81                            | 6.15                           | 18.4                         |
|   | 5.3                              | 0.76                             | 0.061                            | 0.65                             | 0.65                            | 2.2                             | 0.29                             | 2.1                             | 0                               | 5.9                             | 0.066                           | 0.1                              | 0.98                            | 3.5                           | 0.29                          | 11                      | 0.068                   | 34                            | 5.3                             | 0.78                            | 0.074                           | 0.78                            | 0.8                             | 2.4                             | 0.48                            | 2.1                            | 0.25                            | 7.2                            | 0.12                           | 0.32                            | 1.5                            | 3.7                          |

|                   |            |              |         |                                  |                                  |                                  |                                  |                                  |                                  |                                  | Dioxi                            | ins WH0                          | D-TEQ (                         | 0xLOR                           |                                  |                                 |                               |                               |                         |                         |                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 | Dioxii                          | ns WHO                          | -TEQ 1                         | xLOR                           |                                 |                                |                              |
|-------------------|------------|--------------|---------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|-------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|------------------------------|
|                   |            |              |         | 1234678-HpCDD<br>WHO-TEQ1 (zero) | 1234678-HpCDF<br>WHO-TEQ1 (zero) | 1234789-HpCDF<br>WHO-TEQ1 (zero) | 123478-HxCDD WHO-<br>TEQ1 (zero) | 123478-HxCDF WHO-<br>TEQ1 (zero) | 123678-HxCDD WHO-<br>TEQ1 (zero) | 123678-HxCDF WHO-<br>TEQ1 (zero) | 123789-HxCDD WHO-<br>TEQ1 (zero) | 123789-HxCDF WHO-<br>TEQ1 (zero) | 12378-PeCDD WHO-<br>TEQ1 (zero) | 12378-PeCDF WHO-<br>TEQ1 (zero) | 234678-HxCDF WHO-<br>TEQ1 (zero) | 23478-PeCDF WHO-<br>TEQ1 (zero) | 2378-TCDD WHO-<br>TEQ1 (zero) | 2378-TCDF WHO-<br>TEQ1 (zero) | OCDD WHO-TEQ1<br>(zero) | OCDF WHO-TEQ1<br>(zero) | Total TEQ WHO-<br>TEQ1 (zero) | 1234678-HpCDD<br>WHO-TEQ3 (LOR) | 1234678-HpCDF<br>WHO-TEQ3 (LOR) | 1234789-HpCDF<br>WHO-TEQ3 (LOR) | 123478-HxCDD WHO-<br>TEQ3 (LOR) | 123478-HxCDF WHO-<br>TEQ3 (LOR) | 123678-HxCDD WHO-<br>TEQ3 (LOR) | 123678-HxCDF WHO-<br>TEQ3 (LOR) | 123789-НхСDD WHO-<br>ТЕQ3 (LOR) | 123789-HxCDF WHO-<br>TEQ3 (LOR) | 12378-PeCDD WHO-<br>TEQ3 (LOR) | 12378-PeCDF WHO-<br>TEQ3 (LOR) | 234678-HxCDF WHO-<br>TEQ3 (LOR) | 23478-PeCDF WHO-<br>TEQ3 (LOR) | 2378-ТСDD WHO-<br>ТЕQ3 (LOR) |
|                   |            |              |         | pg/g                             | pg/g                            | pg/g                            | pg/g                             | pg/g                            | pg/g                          | pg/g                          | pg/g                    | pg/g                    | pg/g                          | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                            | pg/g                           | pg/g                           | pg/g                            | pg/g                           | pg/g                         |
|                   |            |              |         | 1.25                             | 1.25                             | 1.25                             | 1.20                             | 1.25                             | 1.20                             | 1.25                             | 1.20                             | 1.25                             | 1.25                            | 1.25                            | 1.20                             | 1.20                            | 0.25                          | 0.25                          | 5                       | 2.5                     | 0                             | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                            | 1.25                           | 1.25                           | 1.25                            | 1.25                           | 0.25                         |
| Location Code     | Date       | Field ID     | Depth   |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                 |                                 |                                  |                                 |                               |                               |                         |                         |                               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                |                                |                                 |                                |                              |
| VC01              | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1 | 0.67                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                            | 0.00                            | 0.00                             | 0.00                            | 0.00                          | 0.00                          | 6.99                    | 0.00                    | 7.66                          | 0.67                            | 0.02                            | 0.02                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 2.50                           | 0.07                           | 0.25                            | 0.75                           | 0.50                         |
| VC02              | 30/10/2019 | VC02_0.5-1.0 | 0.5 - 1 | 24.00                            | 4.40                             | 0.37                             | 3.51                             | 3.68                             | 12.80                            | 1.79                             | 9.30                             | 0.00                             | 33.10                           | 0.40                            | 0.00                             | 6.15                            | 18.40                         | 1.67                          | 14.40                   | 0.39                    | 134.36                        | 24.00                           | 4.40                            | 0.37                            | 3.51                            | 3.68                            | 12.80                           | 1.79                            | 9.30                            | 0.25                            | 33.10                          | 0.40                           | 0.25                            | 6.15                           | 18.40                        |
| VC03              | 30/10/2019 | VC03_0.0-0.5 | 0 - 0.5 | 1.92                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.61                             | 0.00                             | 0.00                            | 0.00                            | 0.00                             | 0.00                            | 0.94                          | 0.00                          | 19.08                   | 0.00                    | 22.55                         | 1.92                            | 0.02                            | 0.02                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.61                            | 0.25                            | 2.45                           | 0.07                           | 0.25                            | 0.74                           | 0.94                         |
| VC04              | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1 | 1.11                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.53                             | 0.00                             | 0.00                            | 0.00                            | 0.00                             | 0.00                            | 0.00                          | 0.00                          | 10.38                   | 0.00                    | 12.02                         | 1.11                            | 0.02                            | 0.02                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.53                            | 0.25                            | 2.50                           | 0.07                           | 0.25                            | 0.75                           | 0.50                         |
| VC07              | 30/10/2019 | VC07_0.0-0.5 | 0 - 0.5 | 7.08                             | 1.23                             | 0.09                             | 0.88                             | 1.12                             | 3.10                             | 0.56                             | 2.97                             | 0.00                             | 7.83                            | 0.13                            | 0.81                             | 1.71                            | 6.49                          | 0.46                          | 5.76                    | 0.11                    | 40.32                         | 7.08                            | 1.23                            | 0.09                            | 0.88                            | 1.12                            | 3.10                            | 0.56                            | 2.97                            | 0.25                            | 7.83                           | 0.13                           | 0.81                            | 1.71                           | 6.49                         |
| VC08              | 31/10/2019 | VC08_1.0-1.5 | 1 - 1.5 | 1.70                             | 0.00                             | 0.00                             | 0.38                             | 0.00                             | 0.60                             | 0.00                             | 1.13                             | 0.00                             | 3.04                            | 0.00                            | 0.00                             | 0.00                            | 0.00                          | 0.00                          | 5.73                    | 0.00                    | 12.58                         | 1.70                            | 0.02                            | 0.02                            | 0.38                            | 0.25                            | 0.60                            | 0.25                            | 1.13                            | 0.25                            | 3.04                           | 0.07                           | 0.25                            | 0.75                           | 0.50                         |
| VC10              | 31/10/2019 | VC10_0.0-0.5 | 0 - 0.5 | 2.83                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.58                             | 0.00                             | 0.00                            | 0.00                            | 0.00                             | 0.00                            | 0.00                          | 0.00                          | 22.05                   | 0.00                    | 25.46                         | 2.83                            | 0.02                            | 0.02                            | 0.25                            | 0.25                            | 0.25                            | 0.25                            | 0.58                            | 0.25                            | 2.49                           | 0.07                           | 0.25                            | 0.75                           | 0.50                         |
| VC12              | 31/10/2019 | VC12_0.0-0.5 | 0 - 0.5 | 3.01                             | 0.48                             | 0.03                             | 0.44                             | 0.39                             | 1.31                             | 0.00                             | 1.34                             | 0.00                             | 3.42                            | 0.00                            | 0.00                             | 0.00                            | 1.78                          | 0.19                          | 4.59                    | 0.04                    | 17.01                         | 3.01                            | 0.48                            | 0.03                            | 0.44                            | 0.39                            | 1.31                            | 0.25                            | 1.34                            | 0.25                            | 3.42                           | 0.08                           | 0.25                            | 0.75                           | 1.78                         |
| Statistics        |            | -            |         |                                  |                                  |                                  |                                  |                                  |                                  |                                  |                                  | -                                |                                 |                                 |                                  |                                 |                               |                               |                         |                         |                               |                                 |                                 |                                 |                                 |                                 |                                 | -                               |                                 |                                 |                                |                                |                                 |                                |                              |
| Number of Results |            |              |         | 8                                | 8                                | 8                                | 8                                | 8                                | 8                                | 8                                | 8                                | 8                                | 8                               | 8                               | 8                                | 8                               | 8                             | 8                             | 8                       | 8                       | 8                             | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                              | 8                              | 8                               | 8                              | 8                            |
| Number of Detects |            |              |         | 8                                | 8                                | 8                                | 8                                | 8                                | 8                                | 8                                | 8                                | 8                                | 8                               | 8                               | 8                                | 8                               | 8                             | 8                             | 8                       | 8                       | 8                             | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                               | 8                              | 8                              | 8                               | 8                              | 8                            |

|      |                             |                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|-----------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8    | 8                           | 8                                                                                                              | 8                                                                                                                                                                       | 8                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8    | 8                           | 8                                                                                                              | 8                                                                                                                                                                       | 8                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.67 | 0                           | 0                                                                                                              | 0                                                                                                                                                                       | 0                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24   | 4.4                         | 0.37                                                                                                           | 3.51                                                                                                                                                                    | 3.68                                                                                                                                                                                                                            | 12.8                                                                                                                                                                                                                                                                                    | 1.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.3  | 0.76                        | 0.061                                                                                                          | 0.65                                                                                                                                                                    | 0.65                                                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                     | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 8<br>8<br>0.67<br>24<br>5.3 | 8         8           8         8           0.67         0           24         4.4           5.3         0.76 | 8         8         8           8         8         8           0.67         0         0           24         4.4         0.37           5.3         0.76         0.061 | 8         8         8         8           8         8         8         8           0.67         0         0         0           24         4.4         0.37         3.51           5.3         0.76         0.061         0.65 | 8         8         8         8         8           8         8         8         8         8           0.67         0         0         0         0           24         4.4         0.37         3.51         3.68           5.3         0.76         0.061         0.65         0.65 | 8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         9         0.67         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         1         0         0</th0<> | 8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         9         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         9         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         9         9         10         10         10         10         10         10         10         10         10         10 <th10< th=""> <th10< th=""> <th< td=""><td>8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         9         9         9         9         9         9         9         3         0         33.1         1         3         3         3         3</td></th<></th10<></th10<> | 8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         9         9         9         9         9         9         9         3         0         33.1         1         3         3         3         3 |



| r |                              |                        |                        |                              | 1                         |                       |                         |                           |                              |                           |                              |                          |                             |                          |                             |                            |                               |                           |                              |                            |                               |                           |                              |                          |                       |                      |                      |                      |                       |                      |                     |
|---|------------------------------|------------------------|------------------------|------------------------------|---------------------------|-----------------------|-------------------------|---------------------------|------------------------------|---------------------------|------------------------------|--------------------------|-----------------------------|--------------------------|-----------------------------|----------------------------|-------------------------------|---------------------------|------------------------------|----------------------------|-------------------------------|---------------------------|------------------------------|--------------------------|-----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|---------------------|
|   |                              |                        |                        |                              |                           |                       |                         |                           |                              |                           |                              |                          |                             |                          |                             |                            |                               |                           |                              |                            |                               |                           |                              |                          | C                     | )ioxins 8            | & Furan              | s                    |                       |                      |                     |
|   | 2378-TCDF WHO-<br>TEQ3 (LOR) | OCDD WHO-TEQ3<br>(LOR) | OCDF WHO-TEQ3<br>(LOR) | Total TEQ WHO-<br>TEQ3 (LOR) | , Hepta-Dioxins           | , Tetra-Dioxins       | , Hepta-Furans          | Hepta-Furans LOR4<br>pg/g | Hepta-Furans No. of<br>Peaks | Hexa-Dioxins LOR4<br>pg/g | Hexa-Dioxins No. of<br>Peaks | Hexa-Furans LOR4<br>pg/g | Hexa-Furans No. of<br>Peaks | Octa-Dioxin LOR4<br>pg/g | Octa-Dioxin No. of<br>Peaks | Penta-Dioxins LOR4<br>pg/g | Penta-Dioxins No. of<br>Peaks | Penta-Furans LOR4<br>pg/g | Penta-Furans No. of<br>Peaks | Tetra-Dioxins LOR4<br>pg/g | Tetra-Dioxins No. of<br>Peaks | Tetra-Furans LOR4<br>pg/g | Tetra-Furans No. of<br>Peaks | ,1234678-HpCDD           | ,1234678-HpCDF        | ,1234789-HpCDF       | ,123478-HxCDD        | ,123478-HxCDF        | ,123678-HxCDD         | 123678-HxCDF         | 123789-HxCDD        |
|   | pg/g                         | pg/g                   | pg/g                   | pg/g                         | ng/kg                     | ng/kg                 | ng/kg                   | pg/g                      | pg/g                         | pg/g                      | pg/g                         | pg/g                     | pg/g                        | pg/g                     | pg/g                        | pg/g                       | pg/g                          | pg/g                      | pg/g                         | pg/g                       | pg/g                          | pg/g                      | pg/g                         | ng/kg                    | ng/kg                 | ng/kg                | ng/kg                | ng/kg                | ng/kg                 | ng/kg                | ng/kg               |
|   | 0.25                         | 5                      | 2.5                    | 0                            | 1.25                      | 0.25                  | 1.25                    | 1.25                      | 1.25                         | 1.25                      | 1.25                         | 1.25                     | 1.25                        | 5                        | 5                           | 1.25                       | 1.25                          | 1.25                      | 1.25                         | 0.25                       | 0.25                          | 0.25                      | 0.25                         | 1.25                     | 1.25                  | 1.25                 | 1.25                 | 1.25                 | 1.25                  | 1.25                 | 1.25                |
|   | 0.05<br>1.67<br>0.05         | 6.99<br>14.40<br>19.08 | 0.00<br>0.39<br>0.00   | 13.33<br>134.86<br>27.38     | 144.0<br>7,140.0<br>525.0 | <6.5<br>343.0<br>71.0 | <2.5<br>1,350.0<br><2.5 | 2.5<br>10.0<br>2.5        | 1<br>4<br>1                  | 7.5<br>17.5<br>12.3       | 3<br>7<br>5                  | 2.5<br>25.0<br>2.5       | 1<br>10<br>1                | 10.0<br>10.0<br>9.8      | 1<br>1<br>1                 | 15.0<br>25.0<br>14.7       | 6<br>10<br>6                  | 2.5<br>30.0<br>2.5        | 1<br>12<br>1                 | 6.5<br>5.5<br>2.0          | 13<br>11<br>4                 | 0.5<br>9.0<br>0.5         | 1<br>18<br>1                 | 67.0<br>2,400.0<br>192.0 | <2.5<br>440.0<br><2.5 | <2.5<br>37.0<br><2.5 | <2.5<br>35.1<br><2.5 | <2.5<br>36.8<br><2.5 | <2.5<br>128.0<br><2.5 | <2.5<br>17.9<br><2.5 | <2.5<br>93.0<br>6.1 |
|   | 0.05                         | 10.38                  | 0.00                   | 17.44                        | 252.0                     | 27.4                  | <2.5                    | 2.5                       | 1                            | 15.0                      | 6                            | 2.5                      | 1                           | 10.0                     | 1                           | 17.5                       | 7                             | 2.5                       | 1                            | 3.0                        | 6                             | 0.5                       | 1                            | 111.0                    | <2.5                  | <2.5                 | <2.5                 | <2.5                 | <2.5                  | <2.5                 | 5.3                 |
|   | 0.46                         | 5.76                   | 0.11                   | 40.57                        | 2.230.0                   | 118.0                 | 344.0                   | 10.0                      | 4                            | 17.5                      | 7                            | 27.5                     | 11                          | 10.0                     | 1                           | 20.0                       | 8                             | 27.5                      | 11                           | 6.5                        | 13                            | 9.0                       | 18                           | 708.0                    | 123.0                 | 8.8                  | 8.8                  | 11.2                 | 31.0                  | 5.6                  | 29.7                |
|   | 0.05                         | 5.73                   | 0.00                   | 15.01                        | 1.160.0                   | 474.0                 | <7.5                    | 7.5                       | 3                            | 17.5                      | 7                            | 2.5                      | 1                           | 10.0                     | 1                           | 15.0                       | 6                             | 2.5                       | 1                            | 1.5                        | 3                             | 0.5                       | 1                            | 170.0                    | <2.5                  | <2.5                 | 3.8                  | <2.5                 | 6.0                   | <2.5                 | 11.3                |
|   | 0.05                         | 22.05                  | 0.00                   | 30.87                        | 1.090.0                   | 269.0                 | <2.5                    | 2.5                       | 1                            | 17.4                      | 7                            | 2.5                      | 1                           | 10.0                     | 1                           | 12.5                       | 5                             | 2.5                       | 1                            | 1.5                        | 3                             | 0.5                       | 1                            | 283.0                    | <2.5                  | <2.5                 | <2.5                 | <2.5                 | <2.5                  | <2.5                 | 5.8                 |
|   | 0.19                         | 4.59                   | 0.04                   | 18.58                        | 894.0                     | 95.8                  | 128.0                   | 10.0                      | 4                            | 17.5                      | 7                            | 27.5                     | 11                          | 10.0                     | 1                           | 20.0                       | 8                             | 25.0                      | 10                           | 6.5                        | 13                            | 9.0                       | 18                           | 301.0                    | 47.5                  | 2.8                  | 4.4                  | 3.9                  | 13.1                  | <2.5                 | 13.4                |
|   |                              |                        |                        |                              |                           |                       |                         |                           |                              |                           |                              |                          | _                           |                          |                             |                            |                               |                           |                              |                            |                               |                           |                              |                          |                       |                      |                      |                      |                       |                      |                     |
|   | 8                            | 8                      | 8                      | 8                            | 8                         | 8                     | 8                       | 8                         | 8                            | 8                         | 8                            | 8                        | 8                           | 8                        | 8                           | 8                          | 8                             | 8                         | 8                            | 8                          | 8                             | 8                         | 8                            | 8                        | 8                     | 8                    | 8                    | 8                    | 8                     | 8                    | 8                   |
|   | 8                            | 8                      | 8                      | 8                            | 8                         | 7                     | 3                       | 8                         | 8                            | 8                         | 8                            | 8                        | 8                           | 8                        | 8                           | 8                          | 8                             | 8                         | 8                            | 8                          | 8                             | 8                         | 8                            | 8                        | 3                     | 3                    | 4                    | 3                    | 4                     | 2                    | 7                   |
|   | 0.05                         | 4.59                   | 0                      | 13.33                        | 144                       | <6.5                  | <2.5                    | 2.5                       | 1                            | 7.5                       | 3                            | 2.5                      | 1                           | 9.8                      | 1                           | 12.5                       | 5                             | 2.5                       | 1                            | 1.5                        | 3                             | 0.5                       | 1                            | 67                       | <2.5                  | <2.5                 | <2.5                 | <2.5                 | <2.5                  | <2.5                 | <2.5                |
|   | 1.67                         | 22.05                  | 0.39                   | 134.86                       | 7,140                     | 474                   | 1,350                   | 10                        | 4                            | 17.5                      | 7                            | 27.5                     | 11                          | 10                       | 1                           | 25                         | 10                            | 30                        | 12                           | 6.5                        | 13                            | 9                         | 18                           | 2,400                    | 440                   | 37                   | 35.1                 | 36.8                 | 128                   | 17.9                 | 93                  |
|   | 0.32                         | 11                     | 0.068                  | 37                           | 1,679                     | 175                   | 229                     | 5.9                       | 2.4                          | 15                        | 6.1                          | 12                       | 4.6                         | 10                       | 1                           | 17                         | 7                             | 12                        | 4.8                          | 4.1                        | 8.2                           | 3.7                       | 7.4                          | 529                      | 77                    | 6.9                  | 7.1                  | 7.3                  | 23                    | 3.9                  | 21                  |

|                       |            |              |         |                              |                        |                        |                              |               |               |              |                           |                              |                           |                              |                          |                             |                          |                             |                            |                               |                           |                              |                            |                               |                           |                              |               | <u> </u>      | Dioxins &     | & Furan      | S            |              |              |              |
|-----------------------|------------|--------------|---------|------------------------------|------------------------|------------------------|------------------------------|---------------|---------------|--------------|---------------------------|------------------------------|---------------------------|------------------------------|--------------------------|-----------------------------|--------------------------|-----------------------------|----------------------------|-------------------------------|---------------------------|------------------------------|----------------------------|-------------------------------|---------------------------|------------------------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|
|                       |            |              |         | 2378-TCDF WHO-<br>TEQ3 (LOR) | OCDD WHO-TEQ3<br>(LOR) | OCDF WHO-TEQ3<br>(LOR) | Total TEQ WHO-<br>TEQ3 (LOR) | Hepta-Dioxins | Tetra-Dioxins | Hepta-Furans | Hepta-Furans LOR4<br>pg/g | Hepta-Furans No. of<br>Peaks | Hexa-Dioxins LOR4<br>pg/g | Hexa-Dioxins No. of<br>Peaks | Hexa-Furans LOR4<br>pg/g | Hexa-Furans No. of<br>Peaks | Octa-Dioxin LOR4<br>pg/g | Octa-Dioxin No. of<br>Peaks | Penta-Dioxins LOR4<br>pg/g | Penta-Dioxins No. of<br>Peaks | Penta-Furans LOR4<br>pg/g | Penta-Furans No. of<br>Peaks | Tetra-Dioxins LOR4<br>pg/g | Tetra-Dioxins No. of<br>Peaks | Tetra-Furans LOR4<br>pg/g | Tetra-Furans No. of<br>Peaks | 1234678-HpCDD | 1234678-HpCDF | 1234789-HpCDF | 123478-HxCDD | 123478-HxCDF | 123678-HxCDD | 123678-HxCDF | 123789-HxCDD |
|                       |            |              |         | pg/g                         | pg/g                   | pg/g                   | pg/g                         | ng/kg         | ng/kg         | ng/kg        | pg/g                      | pg/g                         | pg/g                      | pg/g                         | pg/g                     | pg/g                        | pg/g                     | pg/g                        | pg/g                       | pg/g                          | pg/g                      | pg/g                         | pg/g                       | pg/g                          | pg/g                      | pg/g                         | ng/kg         | ng/kg         | ng/kg         | ng/kg        | ng/kg        | ng/kg        | ng/kg        | ng/kg        |
| EQL                   |            |              |         | 0.25                         | 5                      | 2.5                    | 0                            | 1.25          | 0.25          | 1.25         | 1.25                      | 1.25                         | 1.25                      | 1.25                         | 1.25                     | 1.25                        | 5                        | 5                           | 1.25                       | 1.25                          | 1.25                      | 1.25                         | 0.25                       | 0.25                          | 0.25                      | 0.25                         | 1.25          | 1.25          | 1.25          | 1.25         | 1.25         | 1.25         | 1.25         | 1.25         |
| Location Code         | Date       | Field ID     | Depth   | 0.05                         | 6.00                   |                        | 12 22                        |               | -6 F          | <25          | 25                        | 1 1                          | 7.5                       | 2                            | 25                       | 1                           | 10.0                     | 1                           | 15.0                       |                               | 25                        | 4                            | 6.5                        | 12                            | 0.5                       | 1                            | 67.0          | <2 F          | <2.5          | <2.5         | <25          | <25          | <2.5         | <25          |
|                       | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1 | 0.05                         | 0.99                   | 0.00                   | 13.33                        |               | < 0.5         | <2.5         | 2.5                       | 1                            | 1.5                       | 3                            | 2.5                      | 1                           | 10.0                     |                             | 15.0                       | 0                             | 2.5                       | 1                            | 0.5                        | 13                            | 0.5                       | 1                            | 07.0          | <2.5          | <2.5          | <2.5         | <2.5         | <2.5         | <2.5         | <2.5         |
| VC02                  | 30/10/2019 | VC02_0.5-1.0 | 0.5 - 1 | 1.67                         | 14.40                  | 0.39                   | 134.86                       | 57,140.0      | 343.0         | 1,350.0      | ) 10.0                    | 4                            | 17.5                      | /                            | 25.0                     | 10                          | 10.0                     | 1                           | 25.0                       | 10                            | 30.0                      | 12                           | 5.5                        | 11                            | 9.0                       | 18                           | 2,400.0       | 440.0         | 37.0          | 35.1         | 36.8         | 128.0        | 17.9         | 93.0         |
| VC03                  | 30/10/2019 | VC03_0.0-0.5 | 0 - 0.5 | 0.05                         | 19.08                  | 0.00                   | 27.38                        | 525.0         | /1.0          | <2.5         | 2.5                       | 1                            | 12.3                      | 5                            | 2.5                      | 1                           | 9.8                      | 1                           | 14.7                       | 6                             | 2.5                       | 1                            | 2.0                        | 4                             | 0.5                       | 1                            | 192.0         | <2.5          | <2.5          | <2.5         | <2.5         | <2.5         | <2.5         | 6.1          |
| VC04                  | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1 | 0.05                         | 10.38                  | 0.00                   | 17.44                        | 252.0         | 27.4          | <2.5         | 2.5                       | 1                            | 15.0                      | 6                            | 2.5                      | 1                           | 10.0                     | 1                           | 17.5                       | /                             | 2.5                       | 1                            | 3.0                        | 6                             | 0.5                       | 1                            | 111.0         | <2.5          | <2.5          | <2.5         | <2.5         | <2.5         | <2.5         | 5.3          |
| VC07                  | 30/10/2019 | VC07_0.0-0.5 | 0 - 0.5 | 0.46                         | 5.76                   | 0.11                   | 40.57                        | 2,230.0       | ) 118.0       | 344.0        | 10.0                      | 4                            | 17.5                      | 1                            | 27.5                     | 11                          | 10.0                     | 1                           | 20.0                       | 8                             | 27.5                      | 11                           | 6.5                        | 13                            | 9.0                       | 18                           | /08.0         | 123.0         | 8.8           | 8.8          | 11.2         | 31.0         | 5.6          | 29.7         |
| VC08                  | 31/10/2019 | VC08_1.0-1.5 | 1 - 1.5 | 0.05                         | 5.73                   | 0.00                   | 15.01                        | 1,160.0       | ) 474.0       | <7.5         | 7.5                       | 3                            | 17.5                      | 7                            | 2.5                      | 1                           | 10.0                     | 1                           | 15.0                       | 6                             | 2.5                       | 1                            | 1.5                        | 3                             | 0.5                       | 1                            | 170.0         | <2.5          | <2.5          | 3.8          | <2.5         | 6.0          | <2.5         | 11.3         |
| VC10                  | 31/10/2019 | VC10_0.0-0.5 | 0 - 0.5 | 0.05                         | 22.05                  | 0.00                   | 30.87                        | 1,090.0       | 269.0         | <2.5         | 2.5                       | 1                            | 17.4                      | 7                            | 2.5                      | 1                           | 10.0                     | 1                           | 12.5                       | 5                             | 2.5                       | 1                            | 1.5                        | 3                             | 0.5                       | 1                            | 283.0         | <2.5          | <2.5          | <2.5         | <2.5         | <2.5         | <2.5         | 5.8          |
| VC12                  | 31/10/2019 | VC12_0.0-0.5 | 0 - 0.5 | 0.19                         | 4.59                   | 0.04                   | 18.58                        | 8 894.0       | 95.8          | 128.0        | 10.0                      | 4                            | 17.5                      | 7                            | 27.5                     | 11                          | 10.0                     | 1                           | 20.0                       | 8                             | 25.0                      | 10                           | 6.5                        | 13                            | 9.0                       | 18                           | 301.0         | 47.5          | 2.8           | 4.4          | 3.9          | 13.1         | <2.5         | 13.4         |
| Statistics            |            |              |         |                              | _                      |                        |                              |               |               |              | -                         | -                            |                           |                              |                          |                             |                          |                             |                            |                               |                           | -                            |                            | -                             |                           |                              |               |               |               |              |              |              |              | -            |
| Number of Results     |            |              |         | 8                            | 8                      | 8                      | 8                            | 8             | 8             | 8            | 8                         | 8                            | 8                         | 8                            | 8                        | 8                           | 8                        | 8                           | 8                          | 8                             | 8                         | 8                            | 8                          | 8                             | 8                         | 8                            | 8             | 8             | 8             | 8            | 8            | 8            | 8            | 8            |
| Number of Detects     |            |              |         | 8                            | 8                      | 8                      | 8                            | 8             | 7             | 3            | 8                         | 8                            | 8                         | 8                            | 8                        | 8                           | 8                        | 8                           | 8                          | 8                             | 8                         | 8                            | 8                          | 8                             | 8                         | 8                            | 8             | 3             | 3             | 4            | 3            | 4            | 2            | 7            |
| Minimum Concentration | n          |              |         | 0.05                         | 4 59                   | 0                      | 13.33                        | 144           | < 6.5         | <2.5         | 2.5                       | 1                            | 75                        | 3                            | 2.5                      | 1                           | 9.8                      | 1                           | 12.5                       | 5                             | 2.5                       | 1                            | 15                         | 3                             | 0.5                       | 1                            | 67            | <2.5          | <2.5          | <2.5         | <2.5         | <2.5         | <2.5         | <2.5         |

| Number of Results       | 8    | 8     | 8     | 8      | 8     | 8    | 8     | 8   | 8   | 8    |
|-------------------------|------|-------|-------|--------|-------|------|-------|-----|-----|------|
| Number of Detects       | 8    | 8     | 8     | 8      | 8     | 7    | 3     | 8   | 8   | 8    |
| Minimum Concentration   | 0.05 | 4.59  | 0     | 13.33  | 144   | <6.5 | <2.5  | 2.5 | 1   | 7.5  |
| Maximum Concentration   | 1.67 | 22.05 | 0.39  | 134.86 | 7,140 | 474  | 1,350 | 10  | 4   | 17.5 |
| Average Concentration * | 0.32 | 11    | 0.068 | 37     | 1,679 | 175  | 229   | 5.9 | 2.4 | 15   |
|                         |      |       |       | -      |       |      |       |     |     |      |



|                |           |             |             |              |             |           |                |             |             |                          |               |                |          |         |           |                |                           |                           |                           |                          |                          |                          | Dic                      | oxins &                  | Furans                   | (LOR)                   |                         |                          |                         |                    |
|----------------|-----------|-------------|-------------|--------------|-------------|-----------|----------------|-------------|-------------|--------------------------|---------------|----------------|----------|---------|-----------|----------------|---------------------------|---------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|--------------------------|-------------------------|--------------------|
| , 123789-HxCDF | 2378-TCDD | 12378-PeCDD | 12378-PeCDF | 234678-HxCDF | 23478-PeCDF | 2378-TCDF | , Hexa-Dioxins | Hexa-Furans | octa-Dioxin | Octa-Furan LOR4<br>`pg/g | Penta-Dioxins | . Penta-Furans | OCDD     | OCDF    | Total TEQ | , Tetra-Furans | 1234678-HpCDD LOR<br>pg/g | 1234678-HpCDF LOR<br>pg/g | 1234789-HpCDF LOR<br>pg/g | 123478-HxCDD LOR<br>pg/g | 123478-HxCDF LOR<br>pg/g | 123678-HxCDD LOR<br>pg/g | 123678-HxCDF LOR<br>pg/g | 123789-HxCDD LOR<br>pg/g | 123789-HxCDF LOR<br>pg/g | 12378-PeCDD LOR<br>pg/g | 12378-PeCDF LOR<br>pg/g | 234678-HxCDF LOR<br>pg/g | 23478-PeCDF LOR<br>pg/g | 2378-TCDD LOR pg/g |
| ng/kg          | ng/kg     | ng/kg       | ng/kg       | ng/kg        | ng/kg       | ng/kg     | ng/kg          | ng/kg       | ng/kg       | pg/g                     | ng/kg         | ng/kg          | ng/kg    | ng/kg   | -         | ng/kg          | pg/g                      | pg/g                      | pg/g                      | pg/g                     | pg/g                     | pg/g                     | pg/g                     | pg/g                     | <u>pg/g</u>              | pg/g                    | pg/g                    | pg/g                     | pg/g                    | pg/g               |
| <br>1.25       | 0.25      | 1.25        | 1.25        | 1.25         | 1.25        | 0.25      | 1.25           | 1.25        | 5           | 2.5                      | 1.25          | 1.25           | 5        | 2.5     |           | 0.25           | 1.25                      | 1.25                      | 1.25                      | 1.25                     | 1.25                     | 1.25                     | 1.25                     | 1.25                     | 1.25                     | 1.25                    | 1.25                    | 1.25                     | 1.25                    | 0.25               |
|                |           |             |             |              |             |           |                |             |             |                          |               |                |          |         |           |                |                           |                           |                           |                          |                          |                          |                          |                          |                          |                         |                         |                          |                         |                    |
| <2.5           | <0.5      | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 19.7           | <2.5        | 23,300.0    | 5.0                      | <15.0         | <2.5           | 23,300.0 | <5.0    | 1         | <0.5           | 2.5                       | 2.5                       | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| <2.5           | 18.4      | 33.1        | 13.4        | <2.5         | 20.5        | 16.7      | 3,030.0        | 509.0       | 48,000.0    | 5.0                      | 627.0         | 258.0          | 48,000.0 | 1,300.0 | 1         | 234.0          | 2.5                       | 2.5                       | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| <2.5           | 0.9       | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 388.0          | <2.5        | 63,600.0    | 4.9                      | 67.7          | <2.5           | 63,600.0 | <4.9    | 1         | <0.5           | 2.5                       | 2.5                       | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| <2.5           | <0.5      | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 115.0          | <2.5        | 34,600.0    | 5.0                      | <17.5         | <2.5           | 34,600.0 | <5.0    | 1         | <0.5           | 2.5                       | 2.5                       | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| <2.5           | 6.5       | 7.8         | 4.4         | 8.1          | 5.7         | 4.6       | 1,240.0        | 151.0       | 19,200.0    | 5.0                      | 208.0         | 75.9           | 19,200.0 | 363.0   | 1         | 68.5           | 2.5                       | 2.5                       | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| <2.5           | <0.5      | 3.0         | <2.5        | <2.5         | <2.5        | <0.5      | 708.0          | <2.5        | 19,100.0    | 5.0                      | 129.0         | <2.5           | 19,100.0 | <5.0    | 1         | <0.5           | 2.5                       | 2.5                       | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| <2.5           | <0.5      | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 518.0          | <2.5        | 73,500.0    | 5.0                      | 85.1          | <2.5           | 73,500.0 | <5.0    | 1         | <0.5           | 2.5                       | 2.5                       | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| <2.5           | 1.8       | 3.4         | <2.5        | <2.5         | <2.5        | 1.9       | 459.0          | 54.1        | 15,300.0    | 5.0                      | 96.5          | <25.0          | 15,300.0 | 137.0   | 1         | 18.7           | 2.5                       | 2.5                       | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
|                |           |             |             |              |             |           |                |             |             |                          |               |                |          |         |           |                |                           |                           |                           |                          |                          |                          |                          |                          |                          |                         |                         |                          |                         |                    |
| <br>8          | 8         | 8           | 8           | 8            | 8           | 8         | 8              | 8           | 8           | 8                        | 8             | 8              | 8        | 8       | 8         | 8              | 8                         | 8                         | 8                         | 8                        | 8                        | 8                        | 8                        | 8                        | 8                        | 8                       | 8                       | 8                        | 8                       | 8                  |
| <br>0          | 4         | 4           | 2           | 1            | 2           | 3         | 8              | 3           | 8           | 8                        | 6             | 2              | 8        | 3       | 8         | 3              | 8                         | 8                         | 8                         | 8                        | 8                        | 8                        | 8                        | 8                        | 8                        | 8                       | 8                       | 8                        | 8                       | 8                  |
| <2.5           | <0.5      | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 19.7           | <2.5        | 15,300      | 4.9                      | <15           | <2.5           | 15,300   | <4.9    | 1         | <0.5           | 2.5                       | 2.5                       | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| <br><0 E       | 10 /      | 22.4        | 12 /        | 01           | 20 E        | 167       | 2 0 2 0        | E00         | 72 500      | E                        | 607           | 250            | 72 500   | 1 200   | 1         | 004            | 25                        | 2 5                       | 2 5                       | 2 5                      | <u> </u>                 | 25                       | 25                       | 2 5                      | 2 5                      | 25                      | 25                      | 25                       | 25                      |                    |

|                      |            |              |         |              |           |             |             |              |             |           |              |             |             |                         |               |              |          |         |           |              |                                                 |          |                           |                          |                          |                          | Dio                      | xins & F                 | <sup>-</sup> urans (     | LOR)                    |                         |                          |                         |                    |
|----------------------|------------|--------------|---------|--------------|-----------|-------------|-------------|--------------|-------------|-----------|--------------|-------------|-------------|-------------------------|---------------|--------------|----------|---------|-----------|--------------|-------------------------------------------------|----------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|--------------------------|-------------------------|--------------------|
|                      |            |              |         | 123789-HxCDF | 2378-TCDD | 12378-PeCDD | 12378-PeCDF | 234678-HxCDF | 23478-PeCDF | 2378-TCDF | Hexa-Dioxins | Hexa-Furans | Octa-Dioxin | Octa-Furan LOR4<br>pg/g | Penta-Dioxins | Penta-Furans | осрр     | OCDF    | Total TEQ | Tetra-Furans | 12346/8-прсии LUR<br>pg/g<br>1221678 цъспе I СВ | pg/g     | 1234/89-HPCUF LUK<br>pg/g | 123478-HxCDD LOR<br>pg/g | 123478-HxCDF LOR<br>pg/g | 123678-HxCDD LOR<br>pg/g | 123678-HxCDF LOR<br>pg/g | 123789-HxCDD LOR<br>pg/g | 123789-HxCDF LOR<br>pg/g | 12378-PeCDD LOR<br>pg/g | 12378-PeCDF LOR<br>pg/g | 234678-HxCDF LOR<br>pg/g | 23478-PeCDF LOR<br>pg/g | 2378-TCDD LOR pg/g |
|                      |            |              |         | ng/kg        | ng/kg     | ng/kg       | ng/kg       | ng/kg        | ng/kg       | ng/kg     | ng/kg        | ng/kg       | ng/kg       | pg/g                    | ng/kg         | ng/kg        | ng/kg    | ng/kg   | - n       | g/kg         | pg/g p                                          | og/g     | pg/g                      | pg/g                     | pg/g                     | pg/g                     | pg/g                     | pg/g                     | pg/g                     | pg/g                    | pg/g                    | pg/g                     | pg/g                    | pg/g               |
| EQL                  |            |              |         | 1.25         | 0.25      | 1.25        | 1.25        | 1.25         | 1.25        | 0.25      | 1.25         | 1.25        | 5           | 2.5                     | 1.25          | 1.25         | 5        | 2.5     | (         | .25          | 1.25                                            | 1.25     | 1.25                      | 1.25                     | 1.25                     | 1.25                     | 1.25                     | 1.25                     | 1.25                     | 1.25                    | 1.25                    | 1.25                     | 1.25                    | 0.25               |
| Location Code        | Date       | Field ID     | Depth   |              |           |             |             |              |             |           |              |             |             |                         |               |              |          |         |           |              |                                                 |          |                           |                          |                          |                          |                          |                          |                          |                         |                         |                          |                         |                    |
| VC01                 | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1 | <2.5         | <0.5      | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 19.7         | <2.5        | 23,300.0    | 0 5.0                   | <15.0         | <2.5         | 23,300.0 | <5.0    | 1 <       | :0.5         | 2.5                                             | 2.5      | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| VC02                 | 30/10/2019 | VC02_0.5-1.0 | 0.5 - 1 | <2.5         | 18.4      | 33.1        | 13.4        | <2.5         | 20.5        | 16.7      | 3,030.0      | 509.0       | 48,000.0    | 0 5.0                   | 627.0         | 258.0        | 48,000.0 | 1,300.0 | 1 2       | 34.0         | 2.5                                             | 2.5      | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| VC03                 | 30/10/2019 | VC03_0.0-0.5 | 0 - 0.5 | <2.5         | 0.9       | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 388.0        | <2.5        | 63,600.0    | 0 4.9                   | 67.7          | <2.5         | 63,600.0 | <4.9    | 1 <       | :0.5         | 2.5                                             | 2.5      | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| VC04                 | 30/10/2019 | VC04 0.5-1.0 | 0.5 - 1 | <2.5         | <0.5      | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 115.0        | <2.5        | 34,600.0    | 0 5.0                   | <17.5         | <2.5         | 34,600.0 | <5.0    | 1 <       | :0.5         | 2.5                                             | 2.5      | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| VC07                 | 30/10/2019 | VC07 0.0-0.5 | 0 - 0.5 | <2.5         | 6.5       | 7.8         | 4.4         | 8.1          | 5.7         | 4.6       | 1,240.0      | 151.0       | 19,200.0    | 0 5.0                   | 208.0         | 75.9         | 19,200.0 | 363.0   | 1 6       | 8.5          | 2.5                                             | 2.5      | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| VC08                 | 31/10/2019 | VC08 1.0-1.5 | 1 - 1.5 | <2.5         | <0.5      | 3.0         | <2.5        | <2.5         | <2.5        | <0.5      | 708.0        | <2.5        | 19,100.0    | 0 5.0                   | 129.0         | <2.5         | 19,100.0 | <5.0    | 1 <       | :0.5         | 2.5                                             | 2.5      | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| VC10                 | 31/10/2019 | VC10_0.0-0.5 | 0 - 0.5 | <2.5         | <0.5      | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 518.0        | <2.5        | 73,500.0    | 0 5.0                   | 85.1          | <2.5         | 73,500.0 | <5.0    | 1 <       | :0.5         | 2.5                                             | 2.5      | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| VC12                 | 31/10/2019 | VC12_0.0-0.5 | 0 - 0.5 | <2.5         | 1.8       | 3.4         | <2.5        | <2.5         | <2.5        | 1.9       | 459.0        | 54.1        | 15,300.0    | 0 5.0                   | 96.5          | <25.0        | 15,300.0 | 137.0   | 1 1       | 8.7          | 2.5                                             | 2.5      | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| Statistics           |            | •            |         |              |           | -           | -           |              |             |           | -            | -           |             |                         |               | -            |          |         |           |              |                                                 | <u>.</u> |                           |                          |                          |                          |                          |                          |                          |                         |                         |                          |                         |                    |
| Number of Results    |            |              |         | 8            | 8         | 8           | 8           | 8            | 8           | 8         | 8            | 8           | 8           | 8                       | 8             | 8            | 8        | 8       | 8         | 8            | 8                                               | 8        | 8                         | 8                        | 8                        | 8                        | 8                        | 8                        | 8                        | 8                       | 8                       | 8                        | 8                       | 8                  |
| Number of Detects    |            |              |         | 0            | 4         | 4           | 2           | 1            | 2           | 3         | 8            | 3           | 8           | 8                       | 6             | 2            | 8        | 3       | 8         | 3            | 8                                               | 8        | 8                         | 8                        | 8                        | 8                        | 8                        | 8                        | 8                        | 8                       | 8                       | 8                        | 8                       | 8                  |
| Minimum Concentratio | n          |              |         | <2.5         | < 0.5     | <2.5        | <2.5        | <2.5         | <2.5        | <0.5      | 19.7         | <2.5        | 15,300      | 4.9                     | <15           | <2.5         | 15,300   | <4.9    | 1 <       | :0.5         | 2.5                                             | 2.5      | 2.5                       | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                      | 2.5                     | 2.5                     | 2.5                      | 2.5                     | 0.5                |
| Maximum Canaantratic |            |              |         | <0 F         | 10 /      | 22.4        | 10 /        | 0.1          | 20 E        | 167       | 2 0 2 0      | E00         | 72 500      | F                       | 607           | 250          | 72 500   | 1 200   | 1 4       | 124          | 25                                              | 2 5      | 2 E                       | 25                       | 25                       | 2 5                      | 25                       | 25                       | 25                       | 25                      | 25                      | 25                       | 25                      | 0.5                |

|                         |            |              |         |                    |                       |                         |                            |                            |                      |                    |                    |                |                     |                               |               |                             |                                                                                             |                      |             |                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                |                                    |                               |                               |                                |              |                               | -                             |                              | -                           |                       |
|-------------------------|------------|--------------|---------|--------------------|-----------------------|-------------------------|----------------------------|----------------------------|----------------------|--------------------|--------------------|----------------|---------------------|-------------------------------|---------------|-----------------------------|---------------------------------------------------------------------------------------------|----------------------|-------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|------------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|-----------------------|
|                         |            |              |         |                    |                       |                         |                            |                            |                      |                    |                    |                |                     |                               |               |                             |                                                                                             |                      |             |                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                |                                    |                               | Dio                           | xins & F                       | -<br>urans ( | LOR)                          |                               |                              |                             |                       |
|                         |            |              |         | ба<br>123789-НхСDF | ල්<br>කි<br>2378-TCDD | da<br>dy<br>12378-PeCDD | d<br>A<br>A<br>12378-PeCDF | G<br>S<br>S<br>34678-HxCDF | а<br>3478-РеСDF<br>б | д<br>378-ТСDF<br>б | 6a<br>Mexa-Dioxins | by/Kexa-Furans | 6<br>by/Octa-Dioxin | තු Octa-Furan LOR4<br>ක් pg/g | benta-Dioxins | 65<br>Xy/ Penta-Furans<br>6 | D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | L<br>D<br>D<br>ng/kg | - Total TEQ | C Tetra-Furans<br>م<br>1 1024678-HnCDD 1 DD | а I 2340/0-ПРОЛИ ГОЛ<br>Ф рg/g<br>Н 1234678-НиСПЕ I ОВ | able polyton room reaction for the room room reaction rea | ದ್ದ 1234789-HpCDF LOR<br>ಹ pg/g | සු 123478-HxCDD LOR<br>ශ් pg/g | ଜ୍ଜୁ 123478-HxCDF LOR<br>ଜ୍ରୁ pg/g | ස් 123678-HxCDD LOR<br>ම pg/g | ස් 123678-HxCDF LOR<br>ම pg/g | සු 123789-HxCDD LOR<br>යි pg/g | д<br>ф рg/g  | ස් 12378-PeCDD LOR<br>සි pg/g | සු 12378-PeCDF LOR<br>යි pg/g | а 234678-HxCDF LOR<br>а рg/g | ୟ 23478-PeCDF LOR<br>ଭ pg/g | ස් 2378-TCDD LOR pg/g |
| EQL                     |            |              |         | 1.25               | 0.25                  | 1.25                    | 1.25                       | 1.25                       | 1.25                 | 0.25               | 1.25               | 1.25           | 5                   | 2.5                           | 1.25          | 1.25                        | 5                                                                                           | 2.5                  | C           | ).25 1                                      | 1.25 1                                                 | .25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.25                            | 1.25                           | 1.25                               | 1.25                          | 1.25                          | 1.25                           | 1.25         | 1.25                          | 1.25                          | 1.25                         | 1.25                        | 0.25                  |
| Location Code           | Date       | Field ID     | Depth   |                    |                       |                         |                            |                            |                      |                    |                    |                |                     |                               |               |                             |                                                                                             |                      |             |                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                |                                    |                               |                               |                                |              |                               |                               |                              |                             |                       |
| VC01                    | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1 | <2.5               | <0.5                  | <2.5                    | <2.5                       | <2.5                       | <2.5                 | <0.5               | 19.7               | <2.5           | 23,300.0            | 5.0                           | <15.0         | <2.5                        | 23,300.0                                                                                    | <5.0                 | 1 <         | <0.5                                        | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| VC02                    | 30/10/2019 | VC02_0.5-1.0 | 0.5 - 1 | <2.5               | 18.4                  | 33.1                    | 13.4                       | <2.5                       | 20.5                 | 16.7               | 3,030.0            | 509.0          | 48,000.0            | ) 5.0                         | 627.0         | 258.0                       | 48,000.0                                                                                    | 1,300.0              | 1 2         | 34.0                                        | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| VC03                    | 30/10/2019 | VC03_0.0-0.5 | 0 - 0.5 | <2.5               | 0.9                   | <2.5                    | <2.5                       | <2.5                       | <2.5                 | <0.5               | 388.0              | <2.5           | 63,600.0            | ) 4.9                         | 67.7          | <2.5                        | 63,600.0                                                                                    | <4.9                 | 1 <         | <0.5                                        | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| VC04                    | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1 | <2.5               | <0.5                  | <2.5                    | <2.5                       | <2.5                       | <2.5                 | <0.5               | 115.0              | <2.5           | 34,600.0            | ) 5.0                         | <17.5         | <2.5                        | 34,600.0                                                                                    | <5.0                 | 1 <         | <0.5                                        | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| VC07                    | 30/10/2019 | VC07_0.0-0.5 | 0 - 0.5 | <2.5               | 6.5                   | 7.8                     | 4.4                        | 8.1                        | 5.7                  | 4.6                | 1,240.0            | 151.0          | 19,200.0            | ) 5.0                         | 208.0         | 75.9                        | 19,200.0                                                                                    | 363.0                | 16          | 68.5                                        | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| VC08                    | 31/10/2019 | VC08_1.0-1.5 | 1 - 1.5 | <2.5               | <0.5                  | 3.0                     | <2.5                       | <2.5                       | <2.5                 | <0.5               | 708.0              | <2.5           | 19,100.0            | ) 5.0                         | 129.0         | <2.5                        | 19,100.0                                                                                    | <5.0                 | 1 <         | <0.5                                        | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| VC10                    | 31/10/2019 | VC10_0.0-0.5 | 0 - 0.5 | <2.5               | <0.5                  | <2.5                    | <2.5                       | <2.5                       | <2.5                 | <0.5               | 518.0              | <2.5           | 73,500.0            | ) 5.0                         | 85.1          | <2.5                        | 73,500.0                                                                                    | <5.0                 | 1 <         | <0.5                                        | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| VC12                    | 31/10/2019 | VC12_0.0-0.5 | 0 - 0.5 | <2.5               | 1.8                   | 3.4                     | <2.5                       | <2.5                       | <2.5                 | 1.9                | 459.0              | 54.1           | 15,300.0            | ) 5.0                         | 96.5          | <25.0                       | 15,300.0                                                                                    | 137.0                | 1 1         | 8.7                                         | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| Statistics              |            |              |         |                    |                       |                         |                            |                            |                      |                    |                    |                |                     |                               |               |                             |                                                                                             |                      |             |                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                |                                    |                               |                               |                                |              |                               |                               |                              |                             |                       |
| Number of Results       |            |              |         | 8                  | 8                     | 8                       | 8                          | 8                          | 8                    | 8                  | 8                  | 8              | 8                   | 8                             | 8             | 8                           | 8                                                                                           | 8                    | 8           | 8                                           | 8                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                               | 8                              | 8                                  | 8                             | 8                             | 8                              | 8            | 8                             | 8                             | 8                            | 8                           | 8                     |
| Number of Detects       |            |              |         | 0                  | 4                     | 4                       | 2                          | 1                          | 2                    | 3                  | 8                  | 3              | 8                   | 8                             | 6             | 2                           | 8                                                                                           | 3                    | 8           | 3                                           | 8                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                               | 8                              | 8                                  | 8                             | 8                             | 8                              | 8            | 8                             | 8                             | 8                            | 8                           | 8                     |
| Minimum Concentration   |            |              |         | <2.5               | <0.5                  | <2.5                    | <2.5                       | <2.5                       | <2.5                 | <0.5               | 19.7               | <2.5           | 15,300              | 4.9                           | <15           | <2.5                        | 15,300                                                                                      | <4.9                 | 1 <         | <0.5                                        | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| Maximum Concentration   | 1          |              |         | <2.5               | 18.4                  | 33.1                    | 13.4                       | 8.1                        | 20.5                 | 16.7               | 3,030              | 509            | 73,500              | 5                             | 627           | 258                         | 73,500                                                                                      | 1,300                | 1 2         | 234                                         | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |
| Average Concentration * | *          |              |         | 1.2                | 3.6                   | 6.5                     | 3.2                        | 2.1                        | 4.2                  | 3.1                | 810                | 90             | 37,075              | 5                             | 154           | 44                          | 37,075                                                                                      | 227                  | 1           | 40                                          | 2.5                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                             | 2.5                            | 2.5                                | 2.5                           | 2.5                           | 2.5                            | 2.5          | 2.5                           | 2.5                           | 2.5                          | 2.5                         | 0.5                   |



| 0.5<br>0.5<br>0.5                                  | 0.5                                       | 0.5                              |                         | 0.5            | 0.5   | 0.5       | 0.5   | 0.5   | 0.25 | 0.25             | p/pg                | 8-TCDF LOR pg/g           |          |
|----------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------|----------------|-------|-----------|-------|-------|------|------------------|---------------------|---------------------------|----------|
| 10.0<br>10.0<br>10.0<br>10.0<br>10.0               | 10.0<br>10.0<br>10.0<br>10.0              | 10.0<br>10.0<br>10.0             | 10.0                    | 10.0           | 100   | 9.8       | 10.0  | 10.0  | 5    | 5                |                     | DD LOR pg/g               |          |
| 5.0<br>5.0<br>5.0<br>5.0<br>5.0                    | 5.0<br>5.0<br>5.0<br>5.0                  | 5.0<br>5.0<br>5.0                | 5.0<br>5.0              | 5.0            | = 0   | 4.9       | 5.0   | 5.0   | 2.5  | 25               |                     | DF LOR pg/g               |          |
| 1.11       7.08       1.70       2.83       3.01   | 1.02<br>1.11<br>7.08<br>1.70<br>2.83      | 1.02<br>1.11<br>7.08<br>1.70     | 1.11<br>7.08            | 1.11           | 1.02  | 1 4.7     | 24.00 | 0.67  | 1.25 | 1 25             | 5<br>2 123<br>2 ТЕ( | 4678-HpCDD I-<br>23 (LOR) |          |
| 0.02<br>0.02<br>1.23<br>0.02<br>0.02<br>0.48       | 0.02<br>0.02<br>1.23<br>0.02<br>0.02      | 0.02<br>0.02<br>1.23<br>0.02     | 0.02                    | 0.02           | 0.02  | 1 1 1 2 1 | 4.40  | 0.02  | 1.25 | 1 25             | д 123<br>2 ТЕ(      | 4678-HpCDF I-<br>33 (LOR) |          |
| 0.02<br>0.09<br>0.02<br>0.02<br>0.02<br>0.03       | 0.02<br>0.09<br>0.02<br>0.02<br>0.02      | 0.02<br>0.09<br>0.02             | 0.02                    | 0.02           | 0.02  |           | 0.37  | 0.02  | 1.25 | 1 25             | 2 123<br>D TE(      | 4789-HpCDF I-<br>33 (LOR) |          |
| 0.25<br>0.25<br>0.88<br>0.38<br>0.25<br>0.44       | 0.25<br>0.88<br>0.38<br>0.25              | 0.25<br>0.25<br>0.88<br>0.38     | 0.25                    | 0.25           | 0.25  | 111.11    | 3.51  | 0.25  | 1.25 | 1 25             | 123<br>TE(          | 478-HxCDD I-<br>33 (LOR)  |          |
| 0.25<br>0.25<br>1.12<br>0.25<br>0.25<br>0.39       | 0.25<br>0.25<br>1.12<br>0.25<br>0.25      | 0.25<br>0.25<br>1.12<br>0.25     | 0.25                    | 0.25           | 0.25  |           | 3.68  | 0.25  | 1.25 | 1 25             | 5 123<br>5 ТЕ(      | 478-HxCDF I-<br>33 (LOR)  |          |
| 0.25<br>0.25<br>3.10<br>0.60<br>0.25<br>1.31       | 0.25<br>0.25<br>3.10<br>0.60<br>0.25      | 0.25<br>0.25<br>3.10<br>0.60     | 0.25                    | 0.25           | 0.25  |           | 12.80 | 0.25  | 1.25 | 1 25             | д 123<br>2 ТЕ(      | 678-HxCDD I-<br>D3 (LOR)  |          |
| 0.25<br>0.25<br>0.56<br>0.25<br>0.25<br>0.25       | 0.25<br>0.25<br>0.56<br>0.25<br>0.25      | 0.25<br>0.25<br>0.56<br>0.25     | 0.25<br>0.25<br>0.56    | 0.25           | 0.25  |           | 1.79  | 0.25  | 1.25 | 1 25             | 5<br>2 123<br>2 ТЕ( | 678-HxCDF I-<br>33 (LOR)  | Dioxi    |
| 0.61<br>0.53<br>2.97<br>1.13<br>0.58<br>1.34       | 0.61<br>0.53<br>2.97<br>1.13<br>0.58      | 0.61<br>0.53<br>2.97<br>1.13     | 0.61<br>0.53<br>2.97    | 0.61           | 0.61  |           | 9.30  | 0.25  | 1.25 | 1 25             | 2 123<br>2 TE(      | 789-HxCDD I-              | าร & Fu  |
| 0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25       | 0.25<br>0.25<br>0.25<br>0.25<br>0.25      | 0.25<br>0.25<br>0.25<br>0.25     | 0.25<br>0.25<br>0.25    | 0.25           | 0.25  |           | 0.25  | 0.25  | 1.25 | 1 25             | 2 123<br>D TE(      | 789-HxCDF I-<br>23 (LOR)  | rans I T |
| 1.23<br>1.25<br>3.92<br>1.52<br>1.25<br>1.71       | 1.23<br>1.25<br>3.92<br>1.52<br>1.25      | 1.23<br>1.25<br>3.92<br>1.52     | 1.23<br>1.25<br>3.92    | 1.23           | 1.23  |           | 16.55 | 1.25  | 1.25 | 1 25             | 5 123<br>5 (LO      | 78-PeCDD I-TEQ3           | EQ3 (L   |
| 0.12<br>0.12<br>0.22<br>0.12<br>0.12<br>0.13       | 0.12<br>0.12<br>0.22<br>0.12<br>0.12      | 0.12<br>0.12<br>0.22<br>0.12     | 0.12<br>0.12<br>0.22    | 0.12           | 0.12  |           | 0.67  | 0.12  | 1.25 | 1 25             | 2 123<br>D (LO      | .78-PeCDF I-TEQ3          | OR)      |
| 0.25<br>0.25<br>0.81<br>0.25<br>0.25<br>0.25       | 0.25<br>0.25<br>0.81<br>0.25<br>0.25      | 0.25<br>0.25<br>0.81<br>0.25     | 0.25<br>0.25<br>0.81    | 0.25           | 0.25  | 0 0 5     | 0.25  | 0.25  | 1.20 | 1 25             | 234<br>D 234        | 678-HxCDF I-<br>33 (LOR)  |          |
| 1.23<br>1.25<br>2.86<br>1.25<br>1.25<br>1.25       | 1.23<br>1.25<br>2.86<br>1.25<br>1.25      | 1.23<br>1.25<br>2.86<br>1.25     | 1.23<br>1.25<br>2.86    | 1.23<br>1.25   | 1.23  | 4 00      | 10.25 | 1.25  | 1.20 | 1 25             | 234<br>(LO          | 78-PeCDF I-TEQ3<br>IR)    |          |
| 0.94<br>0.50<br>6.49<br>0.50<br>0.50<br>1.78       | 0.94<br>0.50<br>6.49<br>0.50<br>0.50      | 0.94<br>0.50<br>6.49<br>0.50     | 0.94<br>0.50<br>6.49    | 0.94           | 0.94  | 0.07      | 18.40 | 0.50  | 0.25 | 0.25             | 237<br>5 (LO        | 8-TCDD I-TEQ3<br>IR)      |          |
| 0.05<br>0.05<br>0.46<br>0.05<br>0.05<br>0.19       | 0.05<br>0.05<br>0.46<br>0.05<br>0.05      | 0.05<br>0.05<br>0.46<br>0.05     | 0.05<br>0.05<br>0.46    | 0.05           | 0.05  | 0.05      | 1.67  | 0.05  | 0.25 | 0.25             | 237<br>5 (LO        | 8-TCDF I-TEQ3<br>IR)      |          |
| 63.60<br>34.60<br>19.20<br>19.10<br>73.50<br>15.30 | 63.60<br>34.60<br>19.20<br>19.10<br>73.50 | 63.60<br>34.60<br>19.20<br>19.10 | 63.60<br>34.60<br>19.20 | 63.60<br>34.60 | 63.60 | 00.00     | 48.00 | 23.30 | 5    | <u>P9'9</u><br>5 |                     | DD I-TEQ3 (LOR)           |          |
| 0.00<br>0.00<br>0.36<br>0.00<br>0.00<br>0.14       | 0.00<br>0.00<br>0.36<br>0.00<br>0.00      | 0.00<br>0.00<br>0.36<br>0.00     | 0.00<br>0.00<br>0.36    | 0.00           | 0.00  | 0.00      | 1.30  | 0.00  | 2.5  | 25               |                     | DF I-TEQ3 (LOR)           |          |
| 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01       | 0.01<br>0.01<br>0.01<br>0.01<br>0.01      | 0.01<br>0.01<br>0.01<br>0.01     | 0.01<br>0.01<br>0.01    | 0.01           | 0.01  | 0.04      | 0.01  | 0.01  | 1.20 | 1 25             | о<br>123<br>ТЕР     | 4678-HpCDD I-<br>=        |          |
| 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01       | 0.01<br>0.01<br>0.01<br>0.01<br>0.01      | 0.01<br>0.01<br>0.01<br>0.01     | 0.01<br>0.01<br>0.01    | 0.01           | 0.01  | 0.04      | 0.01  | 0.01  | 1.25 | 1 25             | 0/123<br>WH         | 4678-HpCDD<br>IO-TEF      |          |
| 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01       | 0.01<br>0.01<br>0.01<br>0.01<br>0.01      | 0.01<br>0.01<br>0.01<br>0.01     | 0.01<br>0.01<br>0.01    | 0.01           | 0.01  | 0.04      | 0.01  | 0.01  | 1.25 | 1 25             | 2<br>2<br>7<br>123  | 4678-HpCDF I-<br>=        |          |
| 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01       | 0.01<br>0.01<br>0.01<br>0.01<br>0.01      | 0.01<br>0.01<br>0.01<br>0.01     | 0.01<br>0.01<br>0.01    | 0.01           | 0.01  | 0.04      | 0.01  | 0.01  | 1.25 | 1 25             | 00/0<br>WH          | 4678-HpCDF<br>0-TEF       |          |
| 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01       | 0.01<br>0.01<br>0.01<br>0.01<br>0.01      | 0.01<br>0.01<br>0.01<br>0.01     | 0.01<br>0.01<br>0.01    | 0.01           | 0.01  |           | 0.01  | 0.01  | 1.25 | 1 25             | 2 123<br>Д ТЕР      | .4789-HpCDF I-<br>=       |          |
| 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01       | 0.01<br>0.01<br>0.01<br>0.01<br>0.01      | 0.01<br>0.01<br>0.01<br>0.01     | 0.01<br>0.01<br>0.01    | 0.01           | 0.01  | ~ ~ 4     | 0.01  | 0.01  | 1.25 | 1 25             | 2<br>2<br>WH        | 4789-HpCDF<br>O-TEF       |          |
| 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1             | 0.1<br>0.1<br>0.1<br>0.1<br>0.1           | 0.1<br>0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1       | 0.1            | 0.1   |           | 0.1   | 0.1   | 1.25 | 1 25             | 123                 | 478-HxCDD I-TEF           |          |
| 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1             | 0.1<br>0.1<br>0.1<br>0.1<br>0.1           | 0.1<br>0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1       | 0.1            | 0.1   | ~ 4       | 0.1   | 0.1   | 1.25 | 1 25             | 123<br>TEF          | 478-HxCDD WHO-            |          |
| 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1             | 0.1<br>0.1<br>0.1<br>0.1<br>0.1           | 0.1<br>0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1       | 0.1            | 0.1   |           | 0.1   | 0.1   | 1.20 | 1 25             | 123                 | 478-HxCDF I-TEF           |          |
| 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1             | 0.1<br>0.1<br>0.1<br>0.1<br>0.1           | 0.1<br>0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1       | 0.1            | 0.1   | /\ A      | 0.1   | 0.1   | 1.25 | 1 25             | 0<br>123<br>TEF     | 478-HxCDF WHO-            |          |
| 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1             | 0.1<br>0.1<br>0.1<br>0.1<br>0.1           | 0.1<br>0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1       | 0.1            | 0.1   |           | 0.1   | 0.1   | 1.25 | 1 25             | b/a<br>123          | 678-HxCDD I-TEF           |          |
| 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1      | 0.1<br>0.1<br>0.1<br>0.1<br>0.1           | 0.1<br>0.1<br>0.1<br>0.1         | 0.1 0.1 0.1             | 0.1            | 0.1   |           | 0.1   | 0.1   | 1.25 | 1 25             | 0/123               | 678-HxCDD WHO-            |          |
| 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1             | 0.1<br>0.1<br>0.1<br>0.1<br>0.1           | 0.1<br>0.1<br>0.1<br>0.1         | 0.1                     | 0.1            | 0.1   |           | 0.1   | 0.1   | 1.25 | 1 25             | 123                 | 678-HxCDF I-TEF           |          |

|               |            |              |         |                    |                                |                                |                                |                                                   |                               |                                                      | Dioxi                         | ins & Fu                      | rans I T                      | EQ3 (LC                     | <u>)</u> R)                 |                               |                             |                           |                           |                   |                   |                         |                          |                         |                          |                         |                          |                    |                          | <u> </u>           |                          |                    |                                                |                     |
|---------------|------------|--------------|---------|--------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------------------------|-------------------------------|------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------|-----------------------------|---------------------------|---------------------------|-------------------|-------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|------------------------------------------------|---------------------|
|               |            |              |         | 2378-TCDF LOR pg/g | OCDD LOR pg/g<br>OCDF LOR pg/g | 1234678-HpCDD I-<br>TEQ3 (LOR) | 1234678-HpCDF I-<br>TEQ3 (LOR) | 1234/89-HpCDF I-<br>TEQ3 (LOR)<br>123478-HxCDD I- | TEQ3 (LOR)<br>123478-HxCDF I- | I Е С ( L ОК )<br>123678-НхСDD I-<br>TE С 3 ( L OR ) | 123678-H×CDF I-<br>TEQ3 (LOR) | 123789-H×CDD I-<br>TEQ3 (LOR) | 123789-HxCDF I-<br>TEQ3 (LOR) | 12378-PeCDD I-TEQ3<br>(LOR) | 12378-PeCDF I-TEQ3<br>(LOR) | 234678-HxCDF I-<br>TEQ3 (LOR) | 23478-PeCDF I-TEQ3<br>(LOR) | 2378-TCDD I-TEQ3<br>(LOR) | 2378-TCDF I-TEQ3<br>(LOR) | OCDD I-TEQ3 (LOR) | OCDF I-TEQ3 (LOR) | 1234678-HpCDD I-<br>TEF | 1234678-HpCDD<br>WHO-TEF | 1234678-HpCDF I-<br>TEF | 1234678-HpCDF<br>WHO-TEF | 1234789-HpCDF I-<br>TEF | 1234789-HpCDF<br>WHO-TEF | 123478-HxCDD I-TEF | 123478-HxCDD WHO-<br>TEF | 123478-HxCDF I-TEF | 123478-HxCDF WHO-<br>TEF | 123678-H×CDD I-TEF | 123678-НхСИИ WHU-<br>TEF<br>123678-НхСDF I-TEF | 1230/ס-חגטער וייובי |
|               |            |              |         |                    | a/a pa/a                       | pa/a                           | pa/a                           | pa/a p                                            | , pa                          | a pa/a                                               | pa/a                          | pa/a                          | pa/a                          | pa/a                        | pa/a                        | pa/a                          | pa/a                        | pa/a                      | pa/a                      | pa/a              | pa/a              | pa/a                    | pa/a                     | pa/a                    | pa/a                     | pa/a                    | pa/a                     | pa/a               | pa/a                     | pa/a               | pa/a                     | pa/a               | pa/a pa                                        | a/a                 |
| EQL           |            |              |         | 0.25               | 5 2.5                          | 1.25                           | 1.25                           | 1.25 1.                                           | .25 1.2                       | 5 1.25                                               | 1.25                          | 1.25                          | 1.25                          | 1.25                        | 1.25                        | 1.25                          | 1.25                        | 0.25                      | 0.25                      | 5                 | 2.5               | 1.25                    | 1.25                     | 1.25                    | 1.25                     | 1.25                    | 1.25                     | 1.25               | 1.25                     | 1.25               | 1.25                     | 1.25               | 1.25 1.2                                       | 25                  |
| Location Code | Date       | Field ID     | Depth   |                    |                                |                                |                                |                                                   |                               |                                                      |                               |                               |                               |                             |                             |                               |                             |                           |                           |                   |                   |                         |                          |                         |                          |                         |                          |                    |                          |                    |                          |                    |                                                |                     |
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1 | 0.5 1              | 0.0 5.0                        | 0.67                           | 0.02                           | 0.02 0.                                           | .25 0.2                       | 0.25                                                 | 0.25                          | 0.25                          | 0.25                          | 1.25                        | 0.12                        | 0.25                          | 1.25                        | 0.50                      | 0.05                      | 23.30             | 0.00              | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1 0.1                                        | .1                  |
| VC02          | 30/10/2019 | VC02_0.5-1.0 | 0.5 - 1 | 0.5 1              | 0.0 5.0                        | 24.00                          | 4.40                           | 0.37 3.                                           | .51 3.6                       | 8 12.80                                              | 1.79                          | 9.30                          | 0.25                          | 16.55                       | 0.67                        | 0.25                          | 10.25                       | 18.40                     | 1.67                      | 48.00             | 1.30              | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1 0.                                         | .1                  |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0 - 0.5 | 0.5                | 9.8 4.9                        | 1.92                           | 0.02                           | 0.02 0.                                           | .25 0.2                       | 0.25                                                 | 0.25                          | 0.61                          | 0.25                          | 1.23                        | 0.12                        | 0.25                          | 1.23                        | 0.94                      | 0.05                      | 63.60             | 0.00              | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1 0.                                         | .1                  |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1 | 0.5 1              | 0.0 5.0                        | 1.11                           | 0.02                           | 0.02 0.                                           | .25 0.2                       | 0.25                                                 | 0.25                          | 0.53                          | 0.25                          | 1.25                        | 0.12                        | 0.25                          | 1.25                        | 0.50                      | 0.05                      | 34.60             | 0.00              | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1 0.                                         | .1                  |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0 - 0.5 | 0.5 1              | 0.0 5.0                        | 7.08                           | 1.23                           | 0.09 0.                                           | .88 1.1                       | 2 3.10                                               | 0.56                          | 2.97                          | 0.25                          | 3.92                        | 0.22                        | 0.81                          | 2.86                        | 6.49                      | 0.46                      | 19.20             | 0.36              | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1 0.1                                        | .1                  |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1 - 1.5 | 0.5 1              | 0.0 5.0                        | 1.70                           | 0.02                           | 0.02 0.                                           | .38 0.2                       | 0.60                                                 | 0.25                          | 1.13                          | 0.25                          | 1.52                        | 0.12                        | 0.25                          | 1.25                        | 0.50                      | 0.05                      | 19.10             | 0.00              | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1 0.1                                        | .1                  |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0 - 0.5 | 0.5 1              | 0.0 5.0                        | 2.83                           | 0.02                           | 0.02 0.                                           | .25 0.2                       | 0.25                                                 | 0.25                          | 0.58                          | 0.25                          | 1.25                        | 0.12                        | 0.25                          | 1.25                        | 0.50                      | 0.05                      | 73.50             | 0.00              | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1 0.1                                        | .1                  |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0 - 0.5 | 0.5 1              | 0.0 5.0                        | 3.01                           | 0.48                           | 0.03 0.                                           | .44 0.3                       | 9 1.31                                               | 0.25                          | 1.34                          | 0.25                          | 1.71                        | 0.13                        | 0.25                          | 1.25                        | 1.78                      | 0.19                      | 15.30             | 0.14              | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.01                    | 0.01                     | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1 0.                                         | .1                  |
| Statistics    |            |              |         |                    | 8 8                            | 8                              | 8                              | 8                                                 | 8 8                           | 8                                                    | 8                             | 8                             | 8                             | 8                           | 8                           | 8                             | 8                           | 8                         | 8                         | 8                 | 8                 | 8                       | 8                        | 8                       | 8                        | 8                       | 8                        |                    | 8                        |                    | 8                        | 8                  | 8 8                                            | 8                   |

| Number of Results       | 8   | 8   | 8   | 8    | 8    | 8     | 8    | 8    | 8    | 8    | 8    | 8    | 8     | 8    | 8    | 8     | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8   | 8   | 8   | 8   | 8   | 8   | 8   |
|-------------------------|-----|-----|-----|------|------|-------|------|------|------|------|------|------|-------|------|------|-------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|
| Number of Detects       | 8   | 8   | 8   | 8    | 8    | 8     | 8    | 8    | 8    | 8    | 8    | 8    | 8     | 8    | 8    | 8     | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8   | 8   | 8   | 8   | 8   | 8   | 8   |
| Minimum Concentration   | 0.5 | 9.8 | 4.9 | 0.67 | 0.02 | 0.02  | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 1.23  | 0.12 | 0.25 | 1.23  | 0.5  | 0.05 | 15.3 | 0    | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| Maximum Concentration   | 0.5 | 10  | 5   | 24   | 4.4  | 0.37  | 3.51 | 3.68 | 12.8 | 1.79 | 9.3  | 0.25 | 16.55 | 0.67 | 0.81 | 10.25 | 18.4 | 1.67 | 73.5 | 1.3  | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| Average Concentration * | 0.5 | 10  | 5   | 5.3  | 0.78 | 0.074 | 0.78 | 0.8  | 2.4  | 0.48 | 2.1  | 0.25 | 3.6   | 0.2  | 0.32 | 2.6   | 3.7  | 0.32 | 37   | 0.23 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
|                         |     |     |     |      |      |       |      |      |      |      |      |      |       |      |      |       |      |      |      |      |      | -    | -    |      |      | -    |     |     |     |     |     |     |     |



|                          |                    | Dic                      | oxins &            | Furans                   | 5 TEF             |                         |                   |                         |                    |                          |                   |                         |                 |                       |                 |                       |            |              |            |              |
|--------------------------|--------------------|--------------------------|--------------------|--------------------------|-------------------|-------------------------|-------------------|-------------------------|--------------------|--------------------------|-------------------|-------------------------|-----------------|-----------------------|-----------------|-----------------------|------------|--------------|------------|--------------|
| 123678-HxCDF WHO-<br>TEF | 123789-HxCDD I-TEF | 123789-HxCDD WHO-<br>TEF | 123789-HxCDF I-TEF | 123789-HxCDF WHO-<br>TEF | 12378-PeCDD I-TEF | 12378-PeCDD WHO-<br>TEF | 12378-PeCDF I-TEF | 12378-PeCDF WHO-<br>TEF | 234678-HxCDF I-TEF | 234678-HxCDF WHO-<br>TEF | 23478-PeCDF I-TEF | 23478-PeCDF WHO-<br>TEF | 2378-TCDD I-TEF | 2378-TCDD WHO-<br>TEF | 2378-TCDF I-TEF | 2378-TCDF WHO-<br>TEF | OCDD I-TEF | OCDD WHO-TEF | OCDF I-TEF | OCDF WHO-TEF |
| pg/g                     | pg/g               | pg/g                     | pg/g               | pg/g                     | pg/g              | pg/g                    | pg/g              | pg/g                    | pg/g               | pg/g                     | pg/g              | pg/g                    | pg/g            | pg/g                  | pg/g            | pg/g                  | pg/g       | pg/g         | pg/g       | pg/g         |
| 1.25                     | 1.25               | 1.25                     | 1.25               | 1.25                     | 1.25              | 1.25                    | 1.25              | 1.25                    | 1.25               | 1.25                     | 1.25              | 1.25                    | 0.25            | 0.25                  | 0.25            | 0.25                  | 5          | 5            | 2.5        | 2.5          |
|                          |                    |                          |                    |                          |                   |                         |                   |                         |                    |                          |                   |                         |                 |                       |                 |                       |            |              |            |              |
| 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.5               | 1                       | 0.05              | 0.03                    | 0.1                | 0.1                      | 0.5               | 0.3                     | 1               | 1                     | 0.1             | 0.1                   | 0.001      | 0.0003       | 0.001      | 0.0003       |
| 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.5               | 1                       | 0.05              | 0.03                    | 0.1                | 0.1                      | 0.5               | 0.3                     | 1               | 1                     | 0.1             | 0.1                   | 0.001      | 0.0003       | 0.001      | 0.0003       |
| 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.5               | 1                       | 0.05              | 0.03                    | 0.1                | 0.1                      | 0.5               | 0.3                     | 1               | 1                     | 0.1             | 0.1                   | 0.001      | 0.0003       | 0.001      | 0.0003       |
| 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.5               | 1                       | 0.05              | 0.03                    | 0.1                | 0.1                      | 0.5               | 0.3                     | 1               | 1                     | 0.1             | 0.1                   | 0.001      | 0.0003       | 0.001      | 0.0003       |
| 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.5               | 1                       | 0.05              | 0.03                    | 0.1                | 0.1                      | 0.5               | 0.3                     | 1               | 1                     | 0.1             | 0.1                   | 0.001      | 0.0003       | 0.001      | 0.0003       |
| 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.5               | 1                       | 0.05              | 0.03                    | 0.1                | 0.1                      | 0.5               | 0.3                     | 1               | 1                     | 0.1             | 0.1                   | 0.001      | 0.0003       | 0.001      | 0.0003       |
| 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.5               | 1                       | 0.05              | 0.03                    | 0.1                | 0.1                      | 0.5               | 0.3                     | 1               | 1                     | 0.1             | 0.1                   | 0.001      | 0.0003       | 0.001      | 0.0003       |
| 0.1                      | 0.1                | 0.1                      | 0.1                | 0.1                      | 0.5               | 1                       | 0.05              | 0.03                    | 0.1                | 0.1                      | 0.5               | 0.3                     | 1               | 1                     | 0.1             | 0.1                   | 0.001      | 0.0003       | 0.001      | 0.0003       |
|                          |                    |                          |                    |                          |                   |                         |                   |                         |                    |                          |                   |                         |                 |                       |                 |                       |            |              |            |              |
| 8                        | 8                  | 8                        | 8                  | 8                        | 8                 | 8                       | 8                 | 8                       | 8                  | 8                        | 8                 | 8                       | 8               | 8                     | 8               | 8                     | 8          | 8            | 8          | 8            |
| 8                        | 8                  | 8                        | 8                  | 8                        | 8                 | 8                       | 8                 | 8                       | 8                  | 8                        | 8                 | 8                       | 8               | 8                     | 8               | 8                     | 8          | 8            | 8          | 8            |

| Location Code | Date       | Field ID     | Depth   |     |     |     |     |     |     |   |      |      |     |     |
|---------------|------------|--------------|---------|-----|-----|-----|-----|-----|-----|---|------|------|-----|-----|
| VC01          | 30/10/2019 | VC01_0.5-1.0 | 0.5 - 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 1 | 0.05 | 0.03 | 0.1 | 0.1 |
| VC02          | 30/10/2019 | VC02_0.5-1.0 | 0.5 - 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 1 | 0.05 | 0.03 | 0.1 | 0.1 |
| VC03          | 30/10/2019 | VC03_0.0-0.5 | 0 - 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 1 | 0.05 | 0.03 | 0.1 | 0.1 |
| VC04          | 30/10/2019 | VC04_0.5-1.0 | 0.5 - 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 1 | 0.05 | 0.03 | 0.1 | 0.1 |
| VC07          | 30/10/2019 | VC07_0.0-0.5 | 0 - 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 1 | 0.05 | 0.03 | 0.1 | 0.1 |
| VC08          | 31/10/2019 | VC08_1.0-1.5 | 1 - 1.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 1 | 0.05 | 0.03 | 0.1 | 0.1 |
| VC10          | 31/10/2019 | VC10_0.0-0.5 | 0 - 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 1 | 0.05 | 0.03 | 0.1 | 0.1 |
| VC12          | 31/10/2019 | VC12_0.0-0.5 | 0 - 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 1 | 0.05 | 0.03 | 0.1 | 0.1 |
|               | -          | -            | -       | -   | -   |     | -   | -   | -   | - | -    |      | -   |     |

# Statistics Number of Results Number of Detects Minimum Concentration Maximum Concentration Average Concentration \* \* A Non Detect Multiplier of 0.5 has been applied. 0.1 0.1 0.1 0.1 0.1 0.5 1 0.05 0.03 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001 0.0003 0.001



EQL

## Appendix C Table C9

#### **Relative Percentage Differences**

| In           | orga                 | nics            | TOC                  |           |          |         |         |                   |        |        | Met   | als   |           |         |        | -        |        |          |       |         |
|--------------|----------------------|-----------------|----------------------|-----------|----------|---------|---------|-------------------|--------|--------|-------|-------|-----------|---------|--------|----------|--------|----------|-------|---------|
| Moisture (%) | Moisture Content (%) | Cyanide (Total) | Total Organic Carbon | Aluminium | Antimony | Arsenic | Cadmium | Chromium (III+VI) | Cobalt | Copper | Iron  | Lead  | Manganese | Mercury | Nickel | Selenium | Silver | Vanadium | Zinc  | Benzene |
| %            | %                    | mg/kg           | %                    | mg/kg     | mg/kg    | mg/kg   | mg/kg   | mg/kg             | mg/kg  | mg/kg  | mg/kg | mg/kg | mg/kg     | mg/kg   | mg/kg  | mg/kg    | mg/kg  | mg/kg    | mg/kg | mg/kg   |
| 1            | 1                    | 1               | 0.02                 | 50        | 0.5      | 1       | 01      | 1                 | 0.5    | 1      | 50    | 1     | 10        | 0.01    | 1      | 01       | 01     | 2        | 1     | 01      |

| Date       | Field ID     | Lab Report Number | Smple Type          |      |    |    |      |        |        |       |      |      |       |      |        |      |     |        |     |     |      |      |      |      |
|------------|--------------|-------------------|---------------------|------|----|----|------|--------|--------|-------|------|------|-------|------|--------|------|-----|--------|-----|-----|------|------|------|------|
| 30/10/2019 | VC09_0.0-0.2 | ES1936029 (ALS)   | Parent              | 34.5 |    | <1 | 0.08 | 8,120  | <0.50  | 1.74  | <0.1 | 10.3 | 0.8   | <1.0 | 4,720  | 10.7 | 20  | 0.02   | 1.8 | 0.2 | 0.1  | 15.4 | 2.9  | <0.2 |
| 30/10/2019 | FD02         | 685895 (Eurofins) | Inter-Lab Duplicate |      | 15 | <5 | <0.1 |        |        |       |      |      |       |      |        |      |     |        |     |     |      |      |      | <0.1 |
| RPD        |              |                   |                     |      |    | 0  | 0    |        |        |       |      |      |       |      |        |      |     |        |     |     |      |      |      | 0    |
|            |              |                   |                     |      |    |    |      |        |        |       |      |      |       |      |        |      |     |        |     | -   | -    | -    |      | -    |
| 30/10/2019 | VC11_0.5-0.7 | ES1936029 (ALS)   | Parent              | 28.4 |    | <1 | 0.53 | 6,760  | <0.50  | 8.73  | <0.1 | 12.2 | 1.4   | 3.2  | 17,800 | 7.0  | 28  | 0.03   | 4.3 | 0.4 | 0.4  | 13.6 | 14.0 | <0.2 |
| 30/10/2019 | FD01         | ES1936029 (ALS)   | Intra-Lab Duplicate | 28.8 |    | <1 | 0.39 | 6,720  | <0.50  | 7.74  | <0.1 | 11.4 | 1.3   | 2.1  | 17,000 | 5.7  | 27  | 0.02   | 3.8 | 0.3 | 0.5  | 14.2 | 11.8 | <0.2 |
| RPD        |              |                   |                     | 1    |    | 0  | 30   | 1      | 0      | 12    | 0    | 7    | 7     | 42   | 5      | 20   | 4   | 40     | 12  | 29  | 22   | 4    | 17   | 0    |
|            |              |                   |                     |      |    |    |      |        |        |       |      |      |       |      |        |      |     |        |     |     |      |      |      |      |
| 31/10/2019 | VC10_0.0-0.5 | ES1936029 (ALS)   | Parent              | 15.4 |    | <1 | 0.06 | 9,760  | <0.50  | <1.00 | <0.1 | 6.9  | <0.5  | <1.0 | 1,360  | 4.6  | <10 | < 0.01 | 1.3 | 0.1 | <0.1 | 6.3  | 2.1  | <0.2 |
| 31/10/2019 | FD05         | ES1936029 (ALS)   | Intra-Lab Duplicate | 15.1 |    | <1 | 0.09 | 10,700 | < 0.50 | <1.00 | <0.1 | 7.6  | < 0.5 | <1.0 | 2,060  | 3.0  | <10 | < 0.01 | 1.9 | 0.1 | 0.2  | 13.4 | 2.9  | <0.2 |
| RPD        |              |                   |                     | 2    |    | 0  | 40   | 9      | 0      | 0     | 0    | 10   | 0     | 0    | 41     | 42   | 0   | 0      | 37  | 0   | 67   | 72   | 32   | 0    |

\*RPDs have only been considered where a concentration is greater than 10 times the EQL.

\*\*Elevated RPDs are highlighted. Acceptable RPDs are: No limit (1 - 10 x EQL); 50 (organics); 30 (inorganics)

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

|         |              | BTE        | XN             |              |                     |                                   |                           |                 |
|---------|--------------|------------|----------------|--------------|---------------------|-----------------------------------|---------------------------|-----------------|
| Toluene | Ethylbenzene | Xylene (o) | Xylene (m & p) | Xylene Total | Naphthalene (BTEXN) | BTEX (Sum of Total) -<br>Lab Calc | F1 (C6-C10 minus<br>BTEX) | C6-C10 Fraction |
| mg/kg   | mg/kg        | mg/kg      | mg/kg          | mg/kg        | mg/kg               | mg/kg                             | mg/kg                     | mg/kg           |
| 0.1     | 0.1          | 0.1        | 0.2            | 0.3          | 0.5                 | 0.2                               | 3                         | 3               |
|         |              |            |                |              |                     |                                   |                           |                 |
| <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |                     | <0.2                              | <3.0                      | <3              |
| <0.1    | <0.1         | <0.1       | <0.2           | < 0.3        | <0.5                |                                   | <20                       | <20             |
| 0       | 0            | 0          | 0              | 0            |                     |                                   | 0                         | 0               |
|         |              |            |                |              |                     |                                   |                           |                 |
| <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |                     | <0.2                              | <3.0                      | <3              |
| <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |                     | <0.2                              | <3.0                      | <3              |
| 0       | 0            | 0          | 0              | 0            |                     | 0                                 | 0                         | 0               |
|         |              |            |                |              |                     |                                   |                           |                 |
| <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |                     | <0.2                              | <3.0                      | <3              |
| <0.2    | <0.2         | <0.2       | <0.2           | <0.5         |                     | <0.2                              | <3.0                      | <3              |
| 0       | 0            | 0          | 0              | 0            |                     | 0                                 | 0                         | 0               |



#### **Relative Percentage Differences**

| PAHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anthracene<br>Benz(a)anthracene<br>Benzo(a) pyrene<br>Benzo(b+i)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(g,h,i)perylene<br>Chrysene<br>Chrysene<br>Dibenz(a,h)anthracene<br>Fluoranthene<br>Fluoranthene<br>Sighpyrene<br>Fluorene<br>Pyrene<br>Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.004 0.05 0.004 0.004 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0. |
| <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004         <0.004<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

\*RPDs have only been considered where a concentration is greater than 10 times the EQL.

\*\*Elevated RPDs are highlighted. Acceptable RPDs are: No limit (1 - 10 x EQL); 50 (organics); 30 (inorganics)

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any me



#### Relative Percentage Differences

| Г |                                   |                                                      |                                                      |                                                      |                                   |                       |                       |                    |                    |                   |                    |                |                     | Phe            | nols          |                                |                                    |                             |               |                   |        |                    |                                |                                    | SV       | Cs       |                                     |                                           |
|---|-----------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------|-----------------------|-----------------------|--------------------|--------------------|-------------------|--------------------|----------------|---------------------|----------------|---------------|--------------------------------|------------------------------------|-----------------------------|---------------|-------------------|--------|--------------------|--------------------------------|------------------------------------|----------|----------|-------------------------------------|-------------------------------------------|
|   | PAHs (Sum of total) -<br>Lab calc | Total 8 PAHs (as BaP<br>TEQ)(zero LOR) - Lab<br>Calc | Total 8 PAHs (as BaP<br>TEQ)(half LOR) - Lab<br>Calc | Total 8 PAHs (as BaP<br>TEQ)(full LOR) - Lab<br>Calc | 3,4-Methylphenol (m,p-<br>cresol) | 2,4,5-trichlorophenol | 2,4,6-trichlorophenol | 2,4-dichlorophenol | 2,4-dimethylphenol | 2,4-dinitrophenol | 2,6-dichlorophenol | 2-chlorophenol | 2-methylnaphthalene | 2-methylphenol | 2-nitrophenol | 4,6-Dinitro-2-<br>methylphenol | 4,6-Dinitro-o-cyclohexyl<br>phenol | 4-chloro-3-<br>methylphenol | 4-nitrophenol | Pentachlorophenol | Phenol | tetrachlorophenols | Phenols (Total<br>Halogenated) | Phenols (Total Non<br>Halogenated) | Coronene | Perylene | Organochlorine<br>pesticides EPAVic | Other organochlorine<br>pesticides EPAVic |
|   | mg/kg                             | mg/kg                                                | mg/kg                                                | mg/kg                                                | mg/kg                             | mg/kg                 | mg/kg                 | mg/kg              | mg/kg              | mg/kg             | mg/kg              | mg/kg          | mg/kg               | mg/kg          | mg/kg         | mg/kg                          | mg/kg                              | mg/kg                       | mg/kg         | mg/kg             | mg/kg  | mg/kg              | mg/kg                          | mg/kg                              | mg/kg    | mg/kg    | mg/kg                               | mg/kg                                     |
| Т | 0.004                             | 0.5                                                  | 0.5                                                  | 0.5                                                  | 0.4                               | 0.5                   | 0.5                   | 0.5                | 0.5                | 5                 | 0.5                | 0.5            | 0.005               | 0.2            | 0.5           | 5                              | 20                                 | 0.5                         | 5             | 1                 | 0.5    | 10                 | 1                              | 20                                 | 0.005    | 0.004    | 0.1                                 | 0.1                                       |
|   |                                   |                                                      |                                                      |                                                      |                                   |                       |                       |                    |                    |                   |                    |                |                     |                |               |                                |                                    |                             |               |                   |        |                    |                                |                                    |          |          |                                     |                                           |
| Τ | < 0.004                           |                                                      |                                                      |                                                      | <1                                | < 0.5                 | < 0.5                 | < 0.5              | < 0.5              |                   | < 0.5              | < 0.5          | < 0.005             | < 0.5          | < 0.5         |                                |                                    | < 0.5                       |               | <2                | < 0.5  |                    |                                |                                    | <0.005   | < 0.004  |                                     |                                           |
| Т | <0.5                              | < 0.5                                                | 0.6                                                  | 1.2                                                  | < 0.4                             | <1                    | <1                    | < 0.5              | < 0.5              | <5                | <0.5               | <0.5           |                     | <0.2           | <1            | <5                             | <20                                | <1                          | <5            | <1                | < 0.5  | <10                | <1                             | <20                                |          |          | <0.1                                | <0.1                                      |
|   | 0                                 |                                                      |                                                      | 1                                                    | 0                                 | 0                     | 0                     | 0                  | 0                  |                   | 0                  | 0              |                     | 0              | 0             |                                | 1                                  | 0                           |               | 0                 | 0      |                    |                                |                                    |          |          |                                     |                                           |

EQL

| Date       | Field ID     | Lab Report Number | Smple Type          |         |      |     |     |       |       |       |       |       |    |       |      |         |      |      |    |     |      |    |    |       |     |    |     |         |         |      |        |
|------------|--------------|-------------------|---------------------|---------|------|-----|-----|-------|-------|-------|-------|-------|----|-------|------|---------|------|------|----|-----|------|----|----|-------|-----|----|-----|---------|---------|------|--------|
| 30/10/2019 | VC09_0.0-0.2 | ES1936029 (ALS)   | Parent              | < 0.004 |      |     |     | <1    | < 0.5 | <0.5  | <0.5  | <0.5  |    | <0.5  | <0.5 | < 0.005 | <0.5 | <0.5 |    |     | <0.5 |    | <2 | <0.5  |     |    |     | < 0.005 | < 0.004 | 1    |        |
| 30/10/2019 | FD02         | 685895 (Eurofins) | Inter-Lab Duplicate | < 0.5   | <0.5 | 0.6 | 1.2 | < 0.4 | <1    | <1    | < 0.5 | < 0.5 | <5 | < 0.5 | <0.5 |         | <0.2 | <1   | <5 | <20 | <1   | <5 | <1 | <0.5  | <10 | <1 | <20 |         |         | <0.1 | i <0.1 |
| RPD        |              |                   |                     | 0       |      |     |     | 0     | 0     | 0     | 0     | 0     |    | 0     | 0    |         | 0    | 0    |    |     | 0    |    | 0  | 0     |     |    |     |         |         |      |        |
|            |              |                   |                     |         |      |     |     |       |       |       |       |       |    |       |      |         |      |      |    |     |      |    |    |       |     |    |     |         |         |      |        |
| 30/10/2019 | VC11_0.5-0.7 | ES1936029 (ALS)   | Parent              | < 0.004 |      |     |     | <1    | < 0.5 | <0.5  | < 0.5 | < 0.5 |    | < 0.5 | <0.5 | <0.005  | <0.5 | <0.5 |    |     | <0.5 |    | <2 | < 0.5 |     |    |     | < 0.005 | < 0.004 | 1    |        |
| 30/10/2019 | FD01         | ES1936029 (ALS)   | Intra-Lab Duplicate | < 0.004 |      |     |     | <1    | < 0.5 | < 0.5 | < 0.5 | < 0.5 |    | < 0.5 | <0.5 | < 0.005 | <0.5 | <0.5 |    |     | <0.5 |    | <2 | <0.5  |     |    |     | < 0.005 | < 0.004 | 1    |        |
| RPD        | •            | · · ·             |                     | 0       |      |     |     | 0     | 0     | 0     | 0     | 0     |    | 0     | 0    | 0       | 0    | 0    |    |     | 0    |    | 0  | 0     |     |    |     | 0       | 0       |      |        |
|            |              |                   |                     |         |      |     |     |       |       |       |       |       |    |       |      |         |      |      |    |     |      |    |    |       |     |    |     |         |         |      |        |
| 31/10/2019 | VC10_0.0-0.5 | ES1936029 (ALS)   | Parent              | < 0.004 |      |     |     | <1    | < 0.5 | <0.5  | < 0.5 | < 0.5 |    | < 0.5 | <0.5 | < 0.005 | <0.5 | <0.5 |    |     | <0.5 |    | <2 | <0.5  |     |    |     | < 0.005 | < 0.004 | 1    |        |
| 31/10/2019 | FD05         | ES1936029 (ALS)   | Intra-Lab Duplicate | 0.009   |      |     |     | <1    | < 0.5 | < 0.5 | < 0.5 | < 0.5 |    | < 0.5 | <0.5 | < 0.005 | <0.5 | <0.5 |    |     | <0.5 |    | <2 | <0.5  |     |    |     | < 0.005 | < 0.004 | 1    |        |
| RPD        |              |                   |                     | 77      |      |     |     | 0     | 0     | 0     | 0     | 0     |    | 0     | 0    | 0       | 0    | 0    |    |     | 0    |    | 0  | 0     |     |    |     | 0       | 0       |      |        |

\*RPDs have only been considered where a concentration is greater than 10 times the EQL.

\*\*Elevated RPDs are highlighted. Acceptable RPDs are: No limit (1 - 10 x EQL); 50 (organics); 30 (inorganics)

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any me



#### **Relative Percentage Differences**

| ļ |          |        |        |                   |        |           |                 |                   |        |         |         |                           | OC Pesti | cides      |                      | -                    | -                  |        |                 |               |                 |
|---|----------|--------|--------|-------------------|--------|-----------|-----------------|-------------------|--------|---------|---------|---------------------------|----------|------------|----------------------|----------------------|--------------------|--------|-----------------|---------------|-----------------|
|   | 4,4'-DDE | a-BHC  | Aldrin | Aldrin + Dieldrin | b-BHC  | Chlordane | Chlordane (cis) | Chlordane (trans) | d-BHC  | 4,4 DDD | 4,4 DDT | DDT+DDE+DDD - Lab<br>Calc | Dieldrin | Endosulfan | Endosulfan I (alpha) | Endosulfan II (beta) | Endosulfan Sulfate | Endrin | Endrin aldehyde | Endrin ketone | g-BHC (Lindane) |
|   | mg/kg    | mg/kg  | mg/kg  | mg/kg             | mg/kg  | mg/kg     | mg/kg           | mg/kg             | mg/kg  | mg/kg   | mg/kg   | mg/kg                     | mg/kg    | mg/kg      | mg/kg                | mg/kg                | mg/kg              | mg/kg  | mg/kg           | mg/kg         | mg/kg           |
|   | 0.0005   | 0.0005 | 0.0005 | 0.05              | 0.0005 | 0.00025   | 0.00025         | 0.00025           | 0.0005 | 0.0005  | 0.0005  | 0.0005                    | 0.0005   | 0.0005     | 0.0005               | 0.0005               | 0.0005             | 0.0005 | 0.0005          | 0.0005        | 0.00025         |

EQL

| Date       | Field ID     | Lab Report Number | Smple Type          |           |           |           |        |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|------------|--------------|-------------------|---------------------|-----------|-----------|-----------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 30/10/2019 | VC09_0.0-0.2 | ES1936029 (ALS)   | Parent              | < 0.00050 | < 0.00050 | < 0.00050 |        | < 0.00050 | < 0.00025 | <0.00025  | < 0.00025 | < 0.00050 | < 0.00050 | <0.00050  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 |
| 30/10/2019 | FD02         | 685895 (Eurofins) | Inter-Lab Duplicate | < 0.05    | < 0.05    | <0.05     | < 0.05 | <0.05     | <0.1      |           |           | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    |           | < 0.05    | < 0.05    | < 0.05    | < 0.05    | <0.05     | <0.05     | < 0.05    |
| RPD        |              |                   |                     | 0         | 0         | 0         |        | 0         | 0         |           |           | 0         | 0         | 0         | 0         | 0         |           | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
|            |              |                   |                     |           |           |           |        |           | -         |           |           |           |           |           | -         |           |           |           |           | -         |           |           |           | -         |
| 30/10/2019 | VC11_0.5-0.7 | ES1936029 (ALS)   | Parent              | < 0.00050 | <0.00050  | < 0.00050 |        | < 0.00050 | < 0.00025 | <0.00025  | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00050  | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00050  | < 0.00050 | < 0.00025 |
| 30/10/2019 | FD01         | ES1936029 (ALS)   | Intra-Lab Duplicate | < 0.00050 | < 0.00050 | < 0.00050 |        | < 0.00050 | < 0.00025 | < 0.00025 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 |
| RPD        | -            |                   |                     | 0         | 0         | 0         |        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
|            |              |                   |                     |           |           |           |        |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| 31/10/2019 | VC10_0.0-0.5 | ES1936029 (ALS)   | Parent              | < 0.00050 | < 0.00050 | < 0.00050 |        | < 0.00050 | < 0.00025 | < 0.00025 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | <0.00025  |
| 31/10/2019 | FD05         | ES1936029 (ALS)   | Intra-Lab Duplicate | < 0.00050 | < 0.00050 | < 0.00050 |        | < 0.00050 | < 0.00025 | < 0.00025 | < 0.00025 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00025 |
| RPD        |              |                   |                     | 0         | 0         | 0         |        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |

\*RPDs have only been considered where a concentration is greater than 10 times the EQL.

\*\*Elevated RPDs are highlighted. Acceptable RPDs are: No limit (1 - 10 x EQL); 50 (organics); 30 (inorganics)

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any me



## **Relative Percentage Differences**

|            |                    |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           | _ |
|------------|--------------------|-------------------|--------------|--------------|-----------|-----------|-----------------|---------------------|-----------------|-----------------|-----------------|-------------------|--------------|---------------------|-----------|-----------|-----------|---|
|            |                    |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |   |
| Heptachlor | Heptachlor epoxide | Hexachlorobenzene | Methoxychlor | Oxychlordane | Toxaphene | Tokuthion | Azinphos methyl | Bolstar (Sulprofos) | Bromophos-ethyl | Carbophenothion | Chlorfenvinphos | Chlorfenvinphos E | Chlorpyrifos | Chlorpyrifos-methyl | Coumaphos | Demeton-O | Demeton-S |   |
| mg/kg      | mg/kg              | mg/kg             | mg/kg        | mg/kg        | mg/kg     | mg/kg     | mg/kg           | mg/kg               | mg/kg           | mg/kg           | mg/kg           | mg/kg             | mg/kg        | mg/kg               | mg/kg     | mg/kg     | mg/kg     |   |
| 0.0005     | 0.0005             | 0.0005            | 0.0005       | 0.0005       | 1         | 0.2       | 0.01            | 0.2                 | 0.01            | 0.01            | 0.2             | 0.01              | 0.01         | 0.01                | 2         | 0.2       | 0.2       | Ī |

EQL

| Date       | Field ID     | Lab Report Number | Smple Type          |           |           |           |           |           |    |      |        |      |       |        |      |          |       |        |    |      |      |   |
|------------|--------------|-------------------|---------------------|-----------|-----------|-----------|-----------|-----------|----|------|--------|------|-------|--------|------|----------|-------|--------|----|------|------|---|
| 30/10/2019 | VC09_0.0-0.2 | ES1936029 (ALS)   | Parent              | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |    |      | < 0.01 |      | <0.01 | < 0.01 |      | < 0.0100 | <0.01 | <0.01  |    |      | Τ    | Т |
| 30/10/2019 | FD02         | 685895 (Eurofins) | Inter-Lab Duplicate | < 0.05    | < 0.05    | < 0.05    | < 0.05    |           | <1 | <0.2 | <0.2   | <0.2 |       |        | <0.2 |          | <0.2  | <0.2   | <2 | <0.2 | <0.2 | T |
| RPD        |              |                   |                     | 0         | 0         | 0         | 0         |           |    |      | 0      |      |       |        |      |          | 0     | 0      |    |      |      | Τ |
|            |              |                   |                     |           | -         | -         | -         |           |    |      |        |      |       |        |      |          | -     |        |    |      |      |   |
| 30/10/2019 | VC11_0.5-0.7 | ES1936029 (ALS)   | Parent              | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |    |      | <0.01  |      | <0.01 | <0.01  |      | <0.0100  | <0.01 | <0.01  |    |      |      | Т |
| 30/10/2019 | FD01         | ES1936029 (ALS)   | Intra-Lab Duplicate | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |    |      | <0.01  |      | <0.01 | <0.01  |      | <0.0100  | <0.01 | <0.01  |    |      |      | Τ |
| RPD        |              |                   |                     | 0         | 0         | 0         | 0         | 0         |    |      | 0      |      | 0     | 0      |      | 0        | 0     | 0      |    |      |      | Т |
|            |              |                   |                     |           |           |           |           |           |    |      |        |      |       |        |      |          |       |        |    |      | -    | _ |
| 31/10/2019 | VC10_0.0-0.5 | ES1936029 (ALS)   | Parent              | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |    |      | <0.01  |      | <0.01 | <0.01  |      | <0.0100  | <0.01 | <0.01  |    |      |      | Т |
| 31/10/2019 | FD05         | ES1936029 (ALS)   | Intra-Lab Duplicate | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 | < 0.00050 |    |      | < 0.01 |      | <0.01 | < 0.01 |      | <0.0100  | <0.01 | < 0.01 |    |      |      | T |
| RPD        |              |                   |                     | 0         | 0         | 0         | 0         | 0         |    |      | 0      |      | 0     | 0      |      | 0        | 0     | 0      |    |      |      | Γ |

\*RPDs have only been considered where a concentration is greater than 10 times the EQL.

\*\*Elevated RPDs are highlighted. Acceptable RPDs are: No limit (1 - 10 x EQL); 50 (organics); 30 (inorganics)

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any me

|                  |          |                     |            |            |            |       |        | OP Pesi  |
|------------------|----------|---------------------|------------|------------|------------|-------|--------|----------|
| Demeton-S-methyl | Diazinon | cis-Chlorfenvinphos | Dichlorvos | Dimethoate | Disulfoton | EPN   | Ethion | Ethoprop |
| mg/kg            | mg/kg    | mg/kg               | mg/kg      | mg/kg      | mg/kg      | mg/kg | mg/kg  | mg/kg    |
| 0.01             | 0.01     | 0.01                | 0.01       | 0.01       | 0.2        | 0.2   | 0.01   | 0.2      |
|                  |          |                     |            |            |            |       |        |          |
| <0.01            | <0.01    | <0.01               | <0.01      | <0.01      |            |       | <0.01  |          |
|                  | <0.2     |                     | <0.2       | <0.2       | <0.2       | <0.2  | <0.2   | <0.2     |
|                  | 0        |                     | 0          | 0          |            |       | 0      |          |
|                  |          |                     |            |            |            |       |        |          |
| <0.01            | <0.01    | <0.01               | <0.01      | <0.01      |            |       | <0.01  |          |
| < 0.01           | <0.01    | < 0.01              | <0.01      | <0.01      |            |       | <0.01  |          |
| 0                | 0        | 0                   | 0          | 0          |            |       | 0      |          |
|                  |          |                     |            |            |            |       |        |          |
| < 0.01           | < 0.01   | < 0.01              | < 0.01     | < 0.01     |            |       | < 0.01 |          |
| < 0.01           | < 0.01   | < 0.01              | < 0.01     | < 0.01     |            |       | < 0.01 |          |
| 0                | 0        | 0                   | 0          | 0          |            |       | 0      |          |



#### **Relative Percentage Differences**

| icides     |              | _             |          |           |         |                  |                      |               |                |           |           |         |                 |                   |            |            |        |          |               |                   | Halog        | enated                      |               |               |               | PC            | Bs            |
|------------|--------------|---------------|----------|-----------|---------|------------------|----------------------|---------------|----------------|-----------|-----------|---------|-----------------|-------------------|------------|------------|--------|----------|---------------|-------------------|--------------|-----------------------------|---------------|---------------|---------------|---------------|---------------|
| Fenamiphos | Fenitrothion | Fensulfothion | Fenthion | Malathion | Merphos | Methyl parathion | Mevinphos (Phosdrin) | Monocrotophos | Naled (Dibrom) | Omethoate | Parathion | Phorate | Pirimphos-ethyl | Pirimiphos-methyl | Prothiofos | Pyrazophos | Ronnel | Terbufos | Trichloronate | Tetrachlorvinphos | Bromomethane | Dichlorodifluoromethan<br>e | Arochlor 1016 | Arochlor 1221 | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 |
| mg/kg      | mg/kg        | mg/kg         | mg/kg    | mg/kg     | mg/kg   | mg/kg            | mg/kg                | mg/kg         | mg/kg          | mg/kg     | mg/kg     | mg/kg   | mg/kg           | mg/kg             | mg/kg      | mg/kg      | mg/kg  | mg/kg    | mg/kg         | mg/kg             | mg/kg        | mg/kg                       | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/k          |
| 0.01       | 0.2          | 0.2           | 0.01     | 0.01      | 0.2     | 0.01             | 0.2                  | 0.01          | 0.2            | 2         | 0.01      | 0.2     | 0.01            | 0.2               | 0.01       | 0.2        | 0.2    | 0.2      | 0.2           | 0.2               | 5            | 5                           | 0.005         | 0.005         | 0.005         | 0.005         | 0.00          |

EQL

| Date       | Field ID     | Lab Report Number | Smple Type          |        |      |      |        |        |      |        |      |        |      |    |        |      |        |      |       |      |      |      |      |      |    |    |          |          |          |          |            |
|------------|--------------|-------------------|---------------------|--------|------|------|--------|--------|------|--------|------|--------|------|----|--------|------|--------|------|-------|------|------|------|------|------|----|----|----------|----------|----------|----------|------------|
| 30/10/2019 | VC09_0.0-0.2 | ES1936029 (ALS)   | Parent              | < 0.01 |      |      | < 0.01 | <0.01  |      | < 0.01 |      | < 0.01 |      |    | < 0.01 |      | <0.01  |      | <0.01 |      |      |      |      |      |    |    | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | 0 < 0.0050 |
| 30/10/2019 | FD02         | 685895 (Eurofins) | Inter-Lab Duplicate |        | <0.2 | <0.2 | <0.2   | <0.2   | <0.2 | <0.2   | <0.2 | <2     | <0.2 | <2 | <0.2   | <0.2 |        | <0.2 |       | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 |    |    | <0.1     | <0.1     | <0.1     | <0.1     | <0.1       |
| RPD        | •            | • • •             | • •                 |        |      |      | 0      | 0      |      | 0      |      | 0      |      |    | 0      |      |        |      |       |      |      |      |      |      |    |    | 0        | 0        | 0        | 0        | 0          |
|            |              |                   |                     |        |      |      |        |        |      |        |      |        |      |    |        |      |        |      |       |      |      |      |      |      |    |    |          |          |          |          |            |
| 30/10/2019 | VC11_0.5-0.7 | ES1936029 (ALS)   | Parent              | < 0.01 |      |      | <0.01  | <0.01  |      | < 0.01 |      | < 0.01 |      |    | <0.01  |      | <0.01  |      | <0.01 |      |      |      |      |      | <5 | <5 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | 0 <0.0050  |
| 30/10/2019 | FD01         | ES1936029 (ALS)   | Intra-Lab Duplicate | < 0.01 |      |      | < 0.01 | <0.01  |      | < 0.01 |      | < 0.01 |      |    | < 0.01 |      | < 0.01 |      | <0.01 |      |      |      |      |      |    |    | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | 0 < 0.0050 |
| RPD        | •            |                   | • •                 | 0      |      |      | 0      | 0      |      | 0      |      | 0      |      |    | 0      |      | 0      |      | 0     |      |      |      |      |      |    |    | 0        | 0        | 0        | 0        | 0          |
|            |              |                   |                     |        |      |      |        |        |      |        |      |        |      |    |        |      |        |      |       |      |      |      |      |      |    |    |          |          |          |          |            |
| 31/10/2019 | VC10_0.0-0.5 | ES1936029 (ALS)   | Parent              | < 0.01 |      |      | < 0.01 | <0.01  |      | < 0.01 |      | < 0.01 |      |    | < 0.01 |      | < 0.01 |      | <0.01 |      |      |      |      |      |    |    | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | 0 < 0.0050 |
| 31/10/2019 | FD05         | ES1936029 (ALS)   | Intra-Lab Duplicate | <0.01  |      |      | < 0.01 | < 0.01 |      | < 0.01 |      | < 0.01 |      |    | < 0.01 |      | < 0.01 |      | <0.01 |      |      |      |      |      |    |    | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | 0 < 0.0050 |
| RPD        |              | -                 | ·                   | 0      |      |      | 0      | 0      |      | 0      |      | 0      |      |    | 0      |      | 0      |      | 0     |      |      |      |      |      |    |    | 0        | 0        | 0        | 0        | 0          |

\*RPDs have only been considered where a concentration is greater than 10 times the EQL.

\*\*Elevated RPDs are highlighted. Acceptable RPDs are: No limit (1 - 10 x EQL); 50 (organics); 30 (inorganics)

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any me



## Appendix C Table C9 Relative Percentage Differences

|               |               |              | Herbicides |
|---------------|---------------|--------------|------------|
| Arochlor 1254 | Arochlor 1260 | PCBs (Total) | Dinoseb    |
| mg/kg         | mg/kg         | mg/kg        | mg/kg      |
| 0.005         | 0.005         | 0.005        | 20         |
|               |               |              |            |

| FOL |
|-----|
|     |

| Date       | Field ID     | Lab Report Number | Smple Type          |          |          |          |     |
|------------|--------------|-------------------|---------------------|----------|----------|----------|-----|
| 30/10/2019 | VC09_0.0-0.2 | ES1936029 (ALS)   | Parent              | < 0.0050 | < 0.0050 | < 0.0050 |     |
| 30/10/2019 | FD02         | 685895 (Eurofins) | Inter-Lab Duplicate | <0.1     | <0.1     | <0.1     | <20 |
| RPD        |              |                   |                     | 0        | 0        | 0        |     |
|            |              |                   |                     |          |          |          |     |
| 30/10/2019 | VC11_0.5-0.7 | ES1936029 (ALS)   | Parent              | < 0.0050 | < 0.0050 | < 0.0050 |     |
| 30/10/2019 | FD01         | ES1936029 (ALS)   | Intra-Lab Duplicate | < 0.0050 | < 0.0050 | < 0.0050 |     |
| RPD        |              |                   |                     | 0        | 0        | 0        |     |
|            |              |                   |                     |          |          |          |     |
| 31/10/2019 | VC10_0.0-0.5 | ES1936029 (ALS)   | Parent              | < 0.0050 | < 0.0050 | < 0.0050 |     |
| 31/10/2019 | FD05         | ES1936029 (ALS)   | Intra-Lab Duplicate | < 0.0050 | < 0.0050 | < 0.0050 |     |
| RPD        |              |                   |                     | 0        | 0        | 0        |     |

\*RPDs have only been considered where a concentration is greater than 10 times the EQL.

\*\*Elevated RPDs are highlighted. Acceptable RPDs are: No limit (1 - 10 x EQL); 50 (organics); 30 (inorganics)

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any me



EQL

|         |         |              | BTEXN      |                |              |                                | TRH - 201                 | NEPM            | TRH - NEPM     | ΡΔΗς        |
|---------|---------|--------------|------------|----------------|--------------|--------------------------------|---------------------------|-----------------|----------------|-------------|
|         |         |              |            |                |              | -                              | 20                        | 15              | 1999           |             |
| Benzene | Toluene | Ethylbenzene | Xylene (o) | Xylene (m & p) | Xylene Total | BTEX (Sum of Total<br>Lab Calc | F1 (C6-C10 minus<br>BTEX) | C6-C10 Fraction | C6-C9 Fraction | Naphthalene |
| mg/kg   | mg/kg   | mg/kg        | mg/kg      | mg/kg          | mg/kg        | mg/kg                          | mg/kg                     | mg/kg           | mg/kg          | mg/kg       |
| 0.2     | 0.5     | 0.5          | 0.5        | 0.5            | 0.5          | 0.2                            | 10                        | 10              | 10             | 1           |

| Date       | Field ID   | Sample Type | Matrix Type |      |      |      |      |      |      |      |     |     |     |    |
|------------|------------|-------------|-------------|------|------|------|------|------|------|------|-----|-----|-----|----|
| 30/10/2019 | TB1        | Trip Blank  | soil        | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.2 | <10 | <10 | <10 | <1 |
| 31/10/2019 | TB2        | Trip Blank  | soil        | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.2 | <10 | <10 | <10 | <1 |
| 7/11/2019  | Trip blank | Trip Blank  | soil        | <0.2 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.2 | <10 | <10 | <10 | <1 |

|                                       |         |          |                   | Me      | etals   |          |         |         |         |         | BTEX         | N          |                                |              |                                                |                 | TRH -                                 | NEPM                 | 2013                      |                           |                            | -              | rrh - Ne                             | PM 199           | 9                         |                                               |              |                |                 |                       |                            |                          | PAHs                     |                              |                       |
|---------------------------------------|---------|----------|-------------------|---------|---------|----------|---------|---------|---------|---------|--------------|------------|--------------------------------|--------------|------------------------------------------------|-----------------|---------------------------------------|----------------------|---------------------------|---------------------------|----------------------------|----------------|--------------------------------------|------------------|---------------------------|-----------------------------------------------|--------------|----------------|-----------------|-----------------------|----------------------------|--------------------------|--------------------------|------------------------------|-----------------------|
|                                       | Arsenic | Cadmium  | Chromium (III+VI) | Copper  | Lead    | Mercury  | Nickel  | Zinc    | Benzene | Toluene | Ethylbenzene | Xylene (o) | Xylene (m & p)<br>Vylana Tatal | BTEX (Sum of | 10(al) - Lab Calc<br>F1 (C6-C10<br>minus BTEX) | C6-C10 Fraction | F2 (>C10-C16<br>minus<br>Naphthalene) | >C10-C16<br>Fraction | F3 (>C16-C34<br>Fraction) | F4 (>C34-C40<br>Fraction) | >C10-C40 (Sum<br>of Total) | C6-C9 Fraction | C10-C14 Fraction<br>C15-C28 Fraction | C29-C36 Fraction | C10-C36 (Sum of<br>Total) | Sum of polycyclic<br>aromatic<br>hydrocarbons | Acenaphthene | Acenaphthylene | Benz(a)anthrace | ne<br>Benzo(a) pyrene | Benzo[b+j]fluoran<br>thene | Benzo(k)fluoranth<br>ene | Benzo(g,h,i)peryl<br>ene | Chrysene<br>Dibenz(a,h)anthr | acene<br>Fluoranthene |
|                                       | mg/L    | mg/L     | mg/L              | mg/L    | mg/L    | mg/L     | mg/L    | mg/L    | µg/L    | µg/L    | µg/L         | µg/L       | μg/L μg                        | J/L μg/      | L µg/L                                         | . µg/L          | µg/L                                  | µg/L                 | µg/L                      | µg/L                      | µg/L                       | μg/L μ         | g/L µg/                              | L µg/L           | . µg/L                    | mg/L                                          | µg/L         | μg/L μg        | J/L μg/         | L µg/L                | µg/L                       | µg/L                     | µg/L                     | μg/L μ                       | J/L µg/L              |
| EQL                                   | 0.001   | 0.0001   | 0.001             | 0.001   | 0.001   | 0.0001   | 0.001   | 0.005   | 1       | 2       | 2            | 2          | 2 2                            | 2 1          | 20                                             | 20              | 100                                   | 100                  | 100                       | 100                       | 100                        | 20             | 50 10                                | ) 50             | 50                        | 0.0005                                        | 1            | 1 1            | 1               | 0.5                   | 1                          | 1                        | 1                        | 1                            | 1 1                   |
| Date Field ID Sample Type Matrix Type |         |          |                   |         |         |          |         |         |         |         |              |            |                                |              |                                                |                 |                                       |                      |                           |                           |                            |                |                                      |                  |                           |                                               |              |                |                 |                       | -                          |                          |                          |                              |                       |
| 30/10/2019 RIN_01 Rinsate Blank water | <0.001  | <0.0001  | <0.001            | <0.001  | <0.001  | <0.0001  | <0.001  | <0.005  | <1      | <2      | <2           | <2         | <2 <                           | 2 <1         | <20                                            | <20             | <100                                  | <100                 | <100                      | <100                      | <100                       | <20 <          | 50 <10                               | 0 <50            | <50                       | <0.0005                                       | <1.0         | <1.0 <1        | .0 <1.          | 0 <0.5                | <1.0                       | <1.0                     | <1.0                     | <1.0 <                       | 1.0 <1.0              |
| 31/10/2019 RIN_02 Rinsate Blank water | <0.001  | < 0.0001 | <0.001            | <0.001  | <0.001  | < 0.0001 | < 0.001 | < 0.005 | <1      | <2      | <2           | <2         | <2 <                           | 2 <1         | <20                                            | <20             | <100                                  | <100                 | <100                      | <100                      | <100                       | <20 <          | 50 <10                               | 0 <50            | <50                       | < 0.0005                                      | <1.0         | <1.0 <1        | .0 <1.          | 0 < 0.5               | <1.0                       | <1.0                     | <1.0                     | <1.0 <                       | 1.0 <1.0              |
| 7/11/2019 RB Rinsate Blank water      | <0.001  | < 0.0001 | <0.001            | < 0.001 | < 0.001 | < 0.0001 | < 0.001 | < 0.005 |         |         |              |            |                                |              |                                                |                 |                                       |                      |                           |                           |                            |                |                                      |                  |                           | < 0.0005                                      | <1.0         | <1.0 <1        | .0 <1.          | 0 < 0.5               | <1.0                       | <1.0                     | <1.0                     | <1.0 <                       | 1.0 <1.0              |
| 7/11/2019 RIN_03 Rinsate Blank water  |         |          |                   |         |         |          |         |         |         |         |              |            |                                |              |                                                |                 |                                       |                      |                           |                           |                            |                |                                      |                  |                           | < 0.0005                                      | <1.0         | <1.0 <1        | .0 <1.          | 0 < 0.5               | <1.0                       | <1.0                     | <1.0                     | <1.0 <                       | 1.0 <1.0              |

| Date       | Field ID | Sample Type   | Matrix Type |         |          |        |        |         |          |         |         |    |    |    |    |    |    |    |     |
|------------|----------|---------------|-------------|---------|----------|--------|--------|---------|----------|---------|---------|----|----|----|----|----|----|----|-----|
| 30/10/2019 | RIN_01   | Rinsate Blank | water       | <0.001  | < 0.0001 | <0.001 | <0.001 | <0.001  | <0.0001  | <0.001  | < 0.005 | <1 | <2 | <2 | <2 | <2 | <2 | <1 | <20 |
| 31/10/2019 | RIN_02   | Rinsate Blank | water       | < 0.001 | < 0.0001 | <0.001 | <0.001 | <0.001  | < 0.0001 | < 0.001 | < 0.005 | <1 | <2 | <2 | <2 | <2 | <2 | <1 | <20 |
| 7/11/2019  | RB       | Rinsate Blank | water       | < 0.001 | < 0.0001 | <0.001 | <0.001 | < 0.001 | < 0.0001 | < 0.001 | < 0.005 |    |    |    |    |    |    |    |     |
| 7/11/2019  | RIN 03   | Rinsate Blank | water       |         |          |        |        |         |          |         |         |    |    |    |    |    |    |    |     |



EQL

| Naphthalene | Fluorene | Indeno(1,2,3-<br>c,d)pyrene | Phenanthrene | Pyrene | Total 8 PAHs (as<br>BaP TEQ)(zero<br>LOR) - Lab Calc |
|-------------|----------|-----------------------------|--------------|--------|------------------------------------------------------|
| µg/L        | µg/L     | µg/L                        | µg/L         | µg/L   | µg/L                                                 |
| 1           | 1        | 1                           | 1            | 1      | 0.5                                                  |

| Date       | Field ID | Sample Type   | Matrix Type |      |      |      |      |      |      |
|------------|----------|---------------|-------------|------|------|------|------|------|------|
| 30/10/2019 | RIN_01   | Rinsate Blank | water       | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <0.5 |
| 31/10/2019 | RIN_02   | Rinsate Blank | water       | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <0.5 |
| 7/11/2019  | RB       | Rinsate Blank | water       | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <0.5 |
| 7/11/2019  | RIN_03   | Rinsate Blank | water       | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <0.5 |



|                                                        | Cyanides      | Inorg        | ganics          |              | Leach          | ate        |            | Major lons | TOC                  |           |          |         |           |         |                   |                          |        |        |       | Metals |                 |
|--------------------------------------------------------|---------------|--------------|-----------------|--------------|----------------|------------|------------|------------|----------------------|-----------|----------|---------|-----------|---------|-------------------|--------------------------|--------|--------|-------|--------|-----------------|
|                                                        | Cyanide (WAD) | Moisture (%) | Cyanide (Total) | pH (Initial) | pH (after HCL) | pH (Final) | TCLP Fluid | Fluoride   | Total Organic Carbon | Aluminium | Antimony | Arsenic | Beryllium | Cadmium | Chromium (III+VI) | Chromium<br>(hexavalent) | Cobalt | Copper | Iron  | Lead   | Lead (filtered) |
|                                                        | mg/kg         | %            | mg/kg           | pH Units     | pH Units       | pH Units   | mg/kg      | mg/kg      | %                    | mg/kg     | mg/kg    | mg/kg   | mg/kg     | mg/kg   | mg/kg             | mg/kg                    | mg/kg  | mg/kg  | mg/kg | mg/kg  | mg/L            |
| EQL                                                    | 1             | 0.1          | 1               | 0.1          | 0.1            | 0.1        | 1          | 40         | 0.02                 | 50        | 0.5      | 1       | 1         | 0.1     | 1                 | 0.5                      | 0.5    | 1      | 50    | 1      | 0.1             |
| NSW EPA (2014) General Solid Waste SCC1 (with TCLP)    |               |              | 5,900           |              |                |            |            | 10,000     |                      |           |          | 500     | 100       | 100     | 1,900             | 1,900                    |        |        |       | 1,500  |                 |
| NSW EPA (2014) General Solid Waste TCLP1               |               |              |                 |              |                |            |            |            |                      |           |          |         |           |         |                   |                          |        |        |       |        | 5               |
| NSW EPA (2014) Restricted Solid Waste SCC2 (with TCLP) |               |              | 23,600          |              |                |            |            | 40,000     |                      |           |          | 2,000   | 400       | 400     | 7,600             | 7,600                    |        |        |       | 6,000  |                 |
| NSW EPA (2014) Restricted Solid Waste TCLP2            |               |              |                 |              |                |            |            |            |                      |           |          |         |           |         |                   |                          |        |        |       |        | 20              |

| Location Code | Date       | Field ID      | Depth      |    |        |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               |                 |          |
|---------------|------------|---------------|------------|----|--------|----|-----|-----|-----|---|-----|------|-------|-------|-------|----|------|------|------|---------|---------------|-----------------|----------|
| BH05          | 7/11/2019  | BH05_4.6-4.7  | 4.6 - 4.7  | <' | 1 47   | <1 | 9.2 | 5.4 | 6.3 | 2 | 160 |      |       |       | 10    | <1 | <1   |      | <0.5 |         |               | 127             | 7 <0.1   |
| BH06          | 7/11/2019  | BH06_1.2-1.45 | 1.2 - 1.45 | <' | 1 23.7 | <1 | 9.2 | 5.2 | 5.8 | 2 | 170 |      |       |       | 6     | <1 | <1   |      | <0.5 |         |               | 36              | 3        |
| BH07          | 7/11/2019  | BH07_2.5-2.95 | 2.5 - 2.95 | <' | 1 18.2 | <1 | 5.4 | 1.4 | 5.1 | 1 | 40  |      |       |       | <5    | <1 | <1   |      | <0.5 |         |               | <;              | 5        |
| VC01          | 30/10/2019 | vc01_0.4-0.6  | 0.4 - 0.6  |    | 13.8   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | <;              | 5        |
| VC01          | 30/10/2019 | VC01_0.0-0.2  | 0.0 - 0.2  |    | 29     |    | 9   | 4.1 | 6.4 | 1 |     |      |       |       |       |    |      |      |      |         |               | 156             | 3 <0.1   |
| VC01          | 30/10/2019 | VC01_0.5-1.0  | 0.5 - 1.0  |    | 13.5   | <1 |     |     |     |   |     | 0.06 | 3870  | <0.50 | <1.00 |    | <0.1 | 3    | <0   | .5 <1.0 | J 147(        | ) <u>1.</u> 2   | 4        |
| VC01          | 30/10/2019 | VC01_1.0-1.1  | 1.0 - 1.1  |    | 14.5   | <1 |     |     |     |   |     | 0.04 | 2820  | <0.50 | <1.00 |    | <0.1 | 2.5  | <0   | 5 <1.0  | J 1020        | J 1.1           | 1        |
| VC02          | 30/10/2019 | VC02_0.0-0.2  | 0.0 - 0.2  |    | 43.8   |    | 8.8 | 5.5 | 5.7 | 2 |     |      |       |       |       |    |      |      |      |         |               | 223             | 3 0.2    |
| VC02          | 30/10/2019 | VC02_0.5-0.6  | 0.5 - 0.6  |    | 22.4   |    | 8.1 | 1.4 | 5.1 | 1 |     |      |       |       |       |    |      |      |      |         |               | 6F              | 3        |
| VC02          | 30/10/2019 | VC02_0.5-1.0  | 0.5 - 1.0  |    | 21.4   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | F               | 3        |
| VC02          | 30/10/2019 | VC02_1.0-1.2  | 1.0 - 1.2  |    | 20.7   |    | 8.6 | 1.4 | 4.9 | 1 |     |      |       |       |       |    |      |      |      |         |               | 13              | 3 <0.1   |
| VC02          | 30/10/2019 | VC02_1.0-1.5  | 1.0 - 1.5  |    | 17.6   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 3               | 3        |
| VC02          | 30/10/2019 | VC02_1.5-1.6  | 1.5 - 1.6  |    | 13     | <1 |     |     |     |   |     | 0.07 | 8610  | <0.50 | 1.22  |    | <0.1 | 8.9  | <0   | 5 <1.0  | 5400          | <u>ງ</u> 3.1    | 1        |
| VC02          | 31/10/2019 | VC02_0.0-0.5  | 0.0 - 0.5  |    | 49.1   | <1 | 9.1 | 5.2 | 4.8 | 2 |     | 2.82 | 12200 | <0.50 | 16.1  |    | 0.5  | 42   | 4    | 2 120   | 34900         | ) 318           | 3        |
| VC03          | 30/10/2019 | VC03_0.0-0.2  | 0.0 - 0.2  |    | 20.4   |    | 8.8 | 1.6 | 5   | 1 |     |      |       |       |       |    |      |      |      |         |               | 14              | 4 0.7    |
| VC03          | 30/10/2019 | VC03_0.0-0.5  | 0.0 - 0.5  |    | 13.1   | <1 |     |     |     |   |     | 0.15 | 11300 | <0.50 | <1.00 |    | <0.1 | 10.7 | 0    | 5 <1.0  | J 1290        | J 33.f          | 3        |
| VC03          | 30/10/2019 | VC03_0.3-0.4  | 0.3 - 0.4  |    | 12.1   | <1 |     |     |     |   | 40  | 0.16 | 11800 | <0.50 | <1.00 |    | <0.1 | 12.5 | <0   | .5 <1.0 | ) 124(        | J 13.5          | 5        |
| VC03          | 30/10/2019 | VC03_0.4-0.6  | 0.4 - 0.6  |    | 20.2   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 29              | Э        |
| VC03          | 30/10/2019 | VC03_0.5-1.0  | 0.5 - 1.0  |    | 18.5   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | </td <td>5</td> | 5        |
| VC03          | 30/10/2019 | VC03_0.6-0.7  | 0.6 - 0.7  |    | 19.3   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | Ę               | 5        |
| VC03          | 30/10/2019 | VC03_1.0-1.2  | 1.0 - 1.2  |    | 17.3   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | <;              | 5        |
| VC04          | 30/10/2019 | VC04_0.0-0.1  | 0.0 - 0.1  |    | 24     |    | 6.7 | 1.4 | 5   | 1 |     |      |       |       |       |    |      |      |      |         |               | 16              | ડે <0.1  |
| VC04          | 30/10/2019 | VC04_0.3-0.4  | 0.3 - 0.4  |    | 17.1   | <1 |     |     |     |   |     | 0.1  | 14800 | <0.50 | <1.00 |    | <0.1 | 13.2 | <0   | .5 <1.0 | ) 2510        | ) 28            | 3        |
| VC04          | 30/10/2019 | VC04_0.5-1.0  | 0.5 - 1.0  |    | 64.3   | <1 |     |     |     |   |     | 0.05 | 14600 | <0.50 | <1.00 |    | <0.1 | 12   | <0   | .5 <1.0 | ) 3080        | ) 4.የ           | Э        |
| VC04          | 31/10/2019 | VC04_0.5-0.6  | 0.5 - 0.6  |    | 15.9   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 7               | 7        |
| VC04          | 31/10/2019 | VC04_0.7-0.8  | 0.7 - 0.8  |    | 19.2   |    | 6.7 | 1.3 | 4.9 | 1 |     |      |       |       |       |    |      |      |      |         |               | <;              | 5 <0.1   |
| VC04          | 31/10/2019 | VC04_0.9-1.0  | 0.9 - 1.0  |    | 20.1   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | </td <td>5</td> | 5        |
| VC05          | 30/10/2019 | VC05_0.0-0.1  | 0.0 - 0.1  |    | 23.5   |    | 9.2 | 2   | 6.5 | 1 |     |      |       |       |       |    |      |      |      |         |               | 5f              | ડે <0.1  |
| VC05          | 30/10/2019 | VC05_0.5-0.7  | 0.5 - 0.7  |    | 17.8   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | </td <td>5</td> | 5        |
| VC05          | 30/10/2019 | VC05_0.5-0.9  | 0.5 - 0.9  |    | 14.7   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | Ę               | 5        |
| VC05          | 30/10/2019 | VC05_0.8-0.9  | 0.8 - 0.9  |    | 4.3    | <1 |     |     |     |   | <40 | 0.11 | 4150  | <0.50 | 3.22  |    | <0.1 | 4.3  | <0   | 5 <1.0  | ) 3840        | ጋ 1.6           | 3        |
| VC06          | 31/10/2019 | VC06_0.0-0.1  | 0.0 - 0.1  | <' | 1 48.2 | <1 | 9.1 | 5.4 | 5.2 | 2 | 90  | 2.05 |       |       | 18    | <1 | <1   |      | <0.5 |         |               | 224             | 4 0.8    |
| VC06          | 31/10/2019 | VC06_0.0-0.5  | 0.0 - 0.5  |    | 20     |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 11              | 1        |
| VC06          | 31/10/2019 | VC06_0.3-0.4  | 0.3 - 0.4  |    | 18.1   |    | 8   | 1.4 | 5.1 | 1 |     |      |       |       |       |    |      |      |      |         |               | 3               | 3        |
| VC06          | 31/10/2019 | VC06_0.5-0.6  | 0.5 - 0.6  |    | 18.9   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 11              | 1        |
| VC06          | 31/10/2019 | VC06_0.5-1.0  | 0.5 - 1.0  |    | 21.4   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 30              | J        |
| VC06          | 31/10/2019 | VC06_0.7-0.8  | 0.7 - 0.8  |    | 22.1   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 36              | 3        |
| VC06          | 31/10/2019 | VC06_0.8-0.9  | 0.8 - 0.9  |    | 21.6   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 18              | 3        |
| VC07          | 30/10/2019 | VC07_0.0-0.2  | 0.0 - 0.2  |    | 1.5    | <1 |     |     |     |   | 80  | 1.28 | 3930  | <0.50 | 6.28  |    | <0.1 | 12.5 | 1    | 4 38.2  | 11800         | <u>) 67.7</u>   | 1        |
| VC07          | 30/10/2019 | VC07_0.0-0.5  | 0.0 - 0.5  |    | 31.3   | <1 | 8.9 | 5.2 | 6   | 2 |     | 1.05 | 5550  | <0.50 | 9.04  |    | <0.1 | 16.6 | 2    | 4 189   | 15600         | <u>) 11(</u>    | J 0.1    |
| VC07          | 30/10/2019 | VC07_0.2-0.4  | 0.2 - 0.4  |    | 32.7   |    | 9.2 | 5.2 | 6.1 | 2 |     |      |       |       |       |    |      |      |      |         |               | <u> </u>        | Э        |
| VC07          | 30/10/2019 | VC07_0.5-0.6  | 0.5 - 0.6  |    | 19     |    | 8.7 | 1.4 | 5.1 | 1 |     |      |       |       |       |    |      |      |      |         |               | 10              | )        |
| VC07          | 30/10/2019 | VC07_0.5-1.0  | 0.5 - 1.0  |    | 22.3   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 7               | 7        |
| VC07          | 30/10/2019 | VC07_0.7-0.8  | 0.7 - 0.7  |    | 20.6   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 6               | )        |
| VC07          | 30/10/2019 | VC07_1.0-1.2  | 1.0 - 1.2  |    | 17.4   |    | 8.5 | 1.4 | 5.1 | 1 |     |      |       |       |       |    |      |      |      |         |               | 198             | 3        |
| VC08          | 31/10/2019 | VC08_0.0-0.1  | 0.0 - 0.1  | <' | 1 31.1 | <1 |     |     |     |   | 120 | 1.2  |       |       | 14    | <1 | <1   |      | <0.5 |         |               | 117             | / <0.1   |
| VC08          | 31/10/2019 | VC08_0.3-0.4  | 0.3 - 0.4  |    | 46     |    | 9.2 | 5.2 | 6.1 | 2 |     |      |       |       |       |    |      |      |      |         |               | 216             | 3        |
| VC08          | 31/10/2019 | VC08_0.0-0.5  | 0.0-0.5    |    | 36.7   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 111             |          |
| VC08          | 31/10/2019 | VC08_0.5-0.6  | 0.5 - 0.6  |    | 31.3   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 19              | J        |
| VC08          | 31/10/2019 | VC08_0.5-1.0  | 0.5 - 1.0  |    | 27.3   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | 7               | 1        |
| VC08          | 31/10/2019 | VC08_0.7-0.8  | 0.7 - 0.8  |    | 27.1   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         |               | F               | 3        |
| VC08          | 31/10/2019 | VC08_1.0-1.1  | 1.0 - 1.1  |    | 18.6   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         | <u> </u>      | F               | <u>ن</u> |
| VC08          | 31/10/2019 | VC08_1.0-1.5  | 1.0 - 1.5  |    | 17.5   | <1 |     |     |     |   |     | 0.15 | 7220  | <0.50 | 3.11  |    | <0.1 | 10.8 | <0   | 5 <1.0  | <u>) 3460</u> | <u>) 14.</u> €  | 3        |
| VC08          | 31/10/2019 | VC08_1.3-1.4  | 1.3 - 1.4  |    | 18.7   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         | <u> </u>      | ć               | )<br>J   |
| VC08          | 31/10/2019 | VC08_1.5-1.6  | 1.5 - 1.6  |    | 15.4   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         | <u> </u>      | 1               | <u> </u> |
| VC09          | 30/10/2019 | VC09_0.0-0.2  | 0.0 - 0.2  |    | 34.5   | <1 |     |     |     |   |     | 0.08 | 8120  | <0.50 | 1.74  |    | <0.1 | 10.3 | 0    | 8 <1.0  | <u>, 4720</u> | <u>) 10.7</u>   | /        |
| VC09          | 30/10/2019 | VC09_0.0-0.5  | 0.0 - 0.5  |    | 14.5   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         | <u> </u>      | <u> &lt;</u> Ę  | ذ        |
| VC09          | 30/10/2019 | VC09_0.4-0.6  | 0.4 - 0.6  |    | 16.3   |    |     |     |     |   |     |      |       |       |       |    |      |      |      |         | <u> </u>      | 17              | /        |
| VC09          | 30/10/2019 | VC09_0.5-1.0  | 0.5 - 1.0  |    | 17.8   |    |     |     |     |   |     |      |       |       |       |    |      |      |      | <b></b> | <b>_</b>      | 22              | 2        |
| VC09          | 30/10/2019 | VC09_0.7-0.8  | 0.7 - 0.8  |    | 17.2   |    | 8.2 | 1.7 | 5   | 1 |     |      |       |       |       |    |      |      |      |         |               | 10              | ) <0.1   |



# Appendix C Table C4 Analytical results - Waste classification TCLP

|                    |            |              |           | Cyanides      | Inor           | ganics          |              | Leach          | ate          |            | Major lons | TOC                    |           |          |         |           |         |                   |                          |        |        |        | Metals      |                 |
|--------------------|------------|--------------|-----------|---------------|----------------|-----------------|--------------|----------------|--------------|------------|------------|------------------------|-----------|----------|---------|-----------|---------|-------------------|--------------------------|--------|--------|--------|-------------|-----------------|
|                    |            |              |           | Cyanide (WAD) | e Moisture (%) | Cyanide (Total) | PH (Initial) | PH (after HCL) | E pH (Final) | TCLP Fluid | Fluoride   | R Total Organic Carbon | Aluminium | Antimony | Arsenic | Beryllium | Cadmium | Chromium (III+VI) | Chromium<br>(hexavalent) | Cobalt | Copper | lon    | Lead        | Lead (filtered) |
|                    | 30/10/2019 |              | 0.8 - 1.0 | піў/ку        | 70<br>15.6     | під/ку          |              |                |              | шу/ку      | під/ку     | 70                     | піў/ку    | тту/ку   | шу/ку   | тіу/ку    | під/ку  | тту/ку            | під/ку                   | піў/ку | тіу/ку | піў/ку | nig/kg<br>5 | mg/L            |
| VC10               | 30/10/2019 | VC10_0.7-0.8 | 0.0 - 1.0 |               | 18.8           | <1              | 1            |                |              |            |            | 0.12                   | 14600     | <0.50    | <1.00   |           | <0.1    | 11 (              | 9                        | <0.5   | <1.0   | 1230   | 24.5        |                 |
| VC10               | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |               | 10.0           |                 | ,<br>,       | 17             | 5.1          | 1          |            | 0.12                   | 14000     | -0.00    | 1.00    |           |         | 11.               |                          | -0.0   | 1.0    | 1200   | 29          | <0.1            |
| VC10               | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |               | 15.4           | <1              |              |                | 0.1          | •          |            | 0.06                   | 9760      | < 0.50   | <1.00   |           | < 0.1   | 6.9               | 9                        | < 0.5  | <1.0   | 1360   | 4.6         |                 |
| VC10               | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |               | 20.4           |                 |              |                |              |            |            | 0.00                   | 0.00      | 0.00     |         |           | 0.1     | 0.0               |                          | 0.0    | 1.0    |        | 9           |                 |
| VC11               | 30/10/2019 | VC11 0.0-0.2 | 0.0 - 0.2 |               | 28.6           |                 | 9.2          | 5.3            | 6.1          | 2          |            |                        |           |          |         |           |         |                   |                          |        |        | ,      | 55          | <0.1            |
| VC11               | 30/10/2019 | VC11 0.0-0.5 | 0.0 - 0.5 |               | 28.4           |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,      | 5           |                 |
| VC11               | 30/10/2019 | VC11 0.5-0.7 | 0.5 - 0.7 |               | 28.4           | <1              |              |                |              |            | 150        | 0.53                   | 6760      | <0.50    | 8.73    |           | <0.1    | 12.2              | 2                        | 1.4    | 3.2    | 17800  | 7           |                 |
| VC11               | 30/10/2019 | VC11 0.5-1.0 | 0.5 - 1.0 |               | 29             |                 |              | 1              |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,,     | 9           |                 |
| VC11               | 30/10/2019 | VC11 1.0-1.2 | 1.0 - 1.2 |               | 27.7           |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,,     | 6           |                 |
| VC12               | 31/10/2019 | VC12 0.0-0.5 | 0.0 - 0.5 |               | 24.2           | <1              |              | 1              |              |            |            | 0.34                   | 4790      | < 0.50   | 2.2     |           | <0.1    | 6                 | 6                        | < 0.5  | 4.5    | 4290   | 10.6        |                 |
| VC12               | 31/10/2019 | VC12 0.3-0.4 | 0.3 - 0.4 |               | 19.3           |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,,     | <5          |                 |
| VC12               | 31/10/2019 | VC12 0.5-0.6 | 0.5 - 0.6 |               | 19.6           |                 |              | 1              |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,,     | <5          |                 |
| VC12               | 31/10/2019 | VC12 0.8-0.9 | 0.8 - 0.9 |               | 16.6           |                 | 8.2          | 1.6            | 4.9          | 1          |            |                        |           |          |         |           |         |                   |                          |        |        | ,,     | <5          | <0.1            |
| VC12               | 31/10/2019 | VC12 1.0-1.1 | 1.0 - 1.1 | <1            | 19.9           | <1              | I            | 1              |              |            | 80         | 0.13                   |           |          | <5      | <1        | <1      |                   | <0.5                     |        |        | ,,     | 42          |                 |
| VC13               | 31/10/2019 | VC13 0.0-0.1 | 0.0 - 0.1 | <1            | 32.2           | <1              | 9            | 5.4            | 6            | 2          | 180        | 1.45                   |           |          | 13      | <1        | <1      |                   | <0.5                     |        |        |        | 154         | <0.1            |
| VC13               | 31/10/2019 | VC13 0.0-0.5 | 0.0 - 0.5 |               | 30             |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        |        | 84          |                 |
| VC13               | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |               | 30.5           |                 | 9.3          | 5.1            | 5.8          | 2          |            |                        |           |          |         |           |         |                   |                          |        |        | ·      | 18          |                 |
| VC13               | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |               | 15.4           |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ·      | 6           |                 |
| VC13               | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |               | 15             |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,<br>, | 9           |                 |
| VC13               | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |               | 14.8           |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,<br>, | 16          |                 |
| VC13               | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |               | 13.6           |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,<br>, | 7           |                 |
| VC14               | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |               | 35.7           |                 | 9.3          | 5.2            | 6            | 2          |            |                        |           |          |         |           |         |                   |                          |        |        |        | 57          | <0.1            |
| VC14               | 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 |               | 38             |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        |        | 14          |                 |
| VC14               | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |               | 34             |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,<br>, | 20          |                 |
| VC14               | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |               | 31.7           |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,<br>, | 6           |                 |
| VC14               | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |               | 26.1           |                 | 9.4          | 5.3            | 6            | 2          |            |                        |           |          |         |           |         |                   |                          |        |        | ,<br>, | <5          | <0.1            |
| VC14               | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 | <1            | 24.9           | <1              |              |                |              |            | 70         | 0.29                   |           |          | 9       | <1        | <1      |                   | <0.5                     |        |        | ,<br>, | <5          |                 |
| VC14               | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |               | 17.9           |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ,<br>, | 8           |                 |
| VC14               | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |               | 30.8           |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        | ·;     | 6           |                 |
| Statistics         |            |              |           |               |                |                 |              |                |              |            |            |                        |           |          |         |           |         |                   |                          |        |        |        |             |                 |
| Number of Results  |            |              |           | 8             | 90             | 25              | 5 27         | 27             | 27           | 27         | 12         | 2 22                   | 17        | 17       | 25      | 8         | 25      | 17                | 7 8                      | 17     | 17     | 17     | 90          | 18              |
| Number of Detects  |            |              |           | <br>          | 90             |                 | ) 27         | 27             | 27           | 27         | 11         | 22                     | 17        | 0        | 15      | 0         | 1       | 17                | 7 0                      | 6      |        | 17     | 77          |                 |
| Minimum Concentrat | tion       |              |           | <1            | 1.5            | <1              | 54           | 13             | 4.8          | 1          | <40        | 0.04                   | 2820      | <0.50    | <1      | <1        | <0.1    | 2 !               | 5 < 0.5                  | <0.5   | <1.0   | 1020   | <5          | <0.1            |
| Maximum Concentra  | ition      |              |           | <1            | 64.3           | <1              | 9.4          | 5.5            | 6.5          | 2          | 180        | 2.82                   | 14800     | <0.50    | 18      | <1        | 0.5     | 42                | 2 <0.5                   | 4.2    | 189    | 34900  | 318         | 0.8             |
|                    |            |              |           | I             | 00             |                 | 5.           | . 0.0          | 0.0          | -          | .00        |                        |           | 0.00     |         |           | 0.0     |                   |                          |        |        |        |             |                 |



|                   |                               |               |            |             |                         |          |          |         | -            |            | 1     | Organo Metals   |          |            |          | BIEXN      |            |          |                            |                                               |                   | <u> </u>                                             | NEPM             |
|-------------------|-------------------------------|---------------|------------|-------------|-------------------------|----------|----------|---------|--------------|------------|-------|-----------------|----------|------------|----------|------------|------------|----------|----------------------------|-----------------------------------------------|-------------------|------------------------------------------------------|------------------|
|                   |                               |               |            | ganese      | sury<br>sury (filtered) | bdenum   | a        | nium    | -            | adium      |       | ıtyltin (as Sn) | zene     | ene        | lbenzene | ne (o)     | ne (m & p) | ne Total | X (Sum of Total) -<br>Calc | C6-C10 minus<br>X)                            | C10 Fraction      | <ul> <li>C10-C16 minus</li> <li>nthalene)</li> </ul> | 0-C16 Fraction   |
|                   |                               |               |            | 1an         | Aero                    |          |          | ele     | silve        | an;        | linc  | ribu            | eni      | olu        | ithy     | ýle        | (yle       | (yle     | ab<br>ab                   | 1 (C                                          | 9.0               | lapl                                                 | õ                |
|                   |                               |               |            | <br>ma/ka   | <u> </u>                | /l ma/   | ka ma/ka |         | ma/ka        | ><br>ma/ka | na/ka | <br>            | ma/ka    | ⊢<br>ma/ka | ma/ka    | ×<br>ma/ka | ×<br>ma/ka | <u> </u> |                            |                                               |                   | <u>⊥∠</u><br>ma/ka ⊥r                                | <u></u><br>ma/ka |
| EQL               |                               |               |            | 10          | 0.01 0.00               | <u> </u> | 1        | 0.1     | 0.1          | 2          | 1     | 0.0005          | 0.1      | 0.1        | 0.1      | 0.1        | 0.2        | 0.3      | 0.2                        | 3                                             | 3                 | 3                                                    | 3                |
| NSW EPA (2014) Ge | eneral Solid Waste SCC1 (with | th TCLP)      |            |             | 50                      | 1,0      | 00 1,050 | 50      | 180          |            |       |                 | 18       | 518        | 1,080    |            |            | 1,800    |                            |                                               |                   |                                                      |                  |
| NSW EPA (2014) Ge | eneral Solid Waste TCLP1      |               |            |             | 0.2                     | 2        |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| NSW EPA (2014) Re | estricted Solid Waste SCC2 (v | with TCLP)    |            |             | 200                     | 4,0      | 00 4,200 | 200     | 720          |            |       |                 | 72       | 2,073      | 4,320    |            |            | 7,200    |                            | $\square$                                     |                   |                                                      |                  |
| NSW EPA (2014) Re | estricted Solid Waste ICLP2   |               |            |             | 0.8                     | 3        |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| Location Code     | Date                          | Field ID      | Denth      |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| BH05              | 7/11/2019                     | BH05 4.6-4.7  | 4.6 - 4.7  |             | 1.1                     |          | <2       | 5 <5    | 5 <2         | 2          |       |                 | <0.2     | <0.5       | <0.5     | <0.5       | <0.5       |          |                            | ,                                             | <10               | — — — — — — — — — — — — — — — — — — —                |                  |
| BH06              | 7/11/2019                     | BH06_1.2-1.45 | 1.2 - 1.45 |             | 0.2                     |          | <2       | 2 <5    | 5 <2         | 2          |       |                 | < 0.2    | < 0.5      | < 0.5    | < 0.5      | < 0.5      |          |                            | <b> </b>                                      | <10               |                                                      |                  |
| BH07              | 7/11/2019                     | BH07_2.5-2.95 | 2.5 - 2.95 |             | <0.1                    |          | <2       | 5 <5    | 5 <2         | 2          |       |                 | <0.2     | <0.5       | <0.5     | <0.5       | <0.5       |          |                            |                                               | <10               |                                                      |                  |
| VC01              | 30/10/2019                    | vc01_0.4-0.6  | 0.4 - 0.6  |             |                         | 0.4.0    |          | _       |              |            |       |                 |          |            |          |            |            |          |                            | <b>↓</b> !                                    | <b>⊢</b>          |                                                      |                  |
| VC01              | 30/10/2019                    | VC01_0.0-0.2  | 0.0 - 0.2  | ~1(         | 1.9 < 0.0               | 010      |          | 0 < 0 1 | 1 <01        | 20         | <10   | <0.0005         | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <20                                           | <2                | <u></u>                                              |                  |
| VC01              | 30/10/2019                    | VC01_0.3-1.0  | 10-11      | <10         | 0.01                    |          | <1       | 0 <0.   | 1 <0.1       | 2.5        | <1.0  | 0.0003          | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <3.0                                          | <3                | <3                                                   | <3               |
| VC02              | 30/10/2019                    | VC02 0.0-0.2  | 0.0 - 0.2  |             | 0.01                    |          |          |         | . 0.1        | 2.0        |       |                 | 0.2      | 0.2        | 0.2      | 0.2        | 0.2        | 0.0      | 0.2                        | 0.0                                           |                   |                                                      |                  |
| VC02              | 30/10/2019                    | VC02_0.5-0.6  | 0.5 - 0.6  |             | 0.9 <0.0                | 010      |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| VC02              | 30/10/2019                    | VC02_0.5-1.0  | 0.5 - 1.0  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            | L                                             |                   |                                                      |                  |
| VC02              | 30/10/2019                    | VC02_1.0-1.2  | 1.0 - 1.2  |             | <0.1 <0.0               | 010      |          |         |              |            |       |                 |          | ┝──┤       |          |            |            | ļ        |                            | ──┘                                           | <b>┌───┤</b>      | <u> </u>                                             |                  |
| VC02              | 30/10/2019                    | VC02_1.0-1.5  | 1.0 - 1.0  | <i>ح</i> 10 | ) <0.01                 |          |          | 1 0 3   | 2 <01        | 1/1 8      | 1 0   |                 | <0.2     | <0.2       | <0.2     | <0.2       | <0.0       | <0.5     | <0.0                       | <20                                           | < 2               | < 2                                                  |                  |
| VC02              | 31/10/2019                    | VC02_1.3-1.0  | 0.0 - 0.5  | 88          | 3 4.25 <0.0             | 010      | 10       | 4 0.6   | 5 3          | 32.6       | 445   | 0.0028          | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <3.0                                          | <3                | 4                                                    | 4                |
| VC03              | 30/10/2019                    | VC03_0.0-0.2  | 0.0 - 0.2  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| VC03              | 30/10/2019                    | VC03_0.0-0.5  | 0.0 - 0.5  | <1(         | 0.05                    |          |          | 2 0.1   | 1 <0.1       | 5.5        | 16.7  | < 0.0005        | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <3.0                                          | <3                | <3                                                   | <3               |
| VC03              | 30/10/2019                    | VC03_0.3-0.4  | 0.3 - 0.4  | <1(         | 0.04                    |          | 1        | .9 <0.1 | 1 0.1        | 5.1        | 6.2   |                 | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <3.0                                          | <3                | <3                                                   | <3               |
| VC03              | 30/10/2019                    | VC03_0.4-0.6  | 0.4 - 0.6  |             |                         |          |          | -       |              |            |       |                 |          |            |          |            |            |          |                            | ───┘                                          | ┌───┼─            |                                                      |                  |
| VC03              | 30/10/2019                    | VC03_0.5-1.0  | 0.5 - 1.0  |             | +                       |          |          | -       |              |            |       |                 |          |            |          |            |            |          |                            | ┢───┦                                         | /─── <del> </del> |                                                      |                  |
| VC03              | 30/10/2019                    | VC03 1.0-1.2  | 1.0 - 1.2  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            | <b>├</b> ──┤                                  |                   |                                                      |                  |
| VC04              | 30/10/2019                    | VC04_0.0-0.1  | 0.0 - 0.1  |             | <0.1 <0.0               | 010      |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               | (                 |                                                      |                  |
| VC04              | 30/10/2019                    | VC04_0.3-0.4  | 0.3 - 0.4  | <1(         | 0 <0.01                 |          |          | 2 0.2   | 2 0.1        | 10.4       | 3.4   |                 | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <3.0                                          | <3                | <3                                                   | <3               |
| VC04              | 30/10/2019                    | VC04_0.5-1.0  | 0.5 - 1.0  | <1(         | 0 <0.01                 |          | 1        | .6 0.1  | 1 0.3        | 8.9        | 2.3   | < 0.0005        | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <3.0                                          | <3                | <3                                                   | <3               |
| VC04              | 31/10/2019                    | VC04_0.5-0.6  | 0.5 - 0.6  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            | ────┦                                         | ·                 |                                                      |                  |
| VC04              | 31/10/2019                    | VC04_0.7-0.8  | 0.7 - 0.8  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            | <b>├</b> ───┦                                 |                   |                                                      |                  |
| VC05              | 30/10/2019                    | VC05 0.0-0.1  | 0.0 - 0.1  |             | 0.6 < 0.0               | 010      |          |         |              |            |       |                 |          |            |          |            |            |          |                            | <b>├</b> ──┤                                  |                   |                                                      |                  |
| VC05              | 30/10/2019                    | VC05_0.5-0.7  | 0.5 - 0.7  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| VC05              | 30/10/2019                    | VC05_0.5-0.9  | 0.5 - 0.9  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| VC05              | 30/10/2019                    | VC05_0.8-0.9  | 0.8 - 0.9  | <1(         | 0 < 0.01                |          | <1       | .0 <0.1 | 1 0.1        | 15.6       | 1.5   | 5               | < 0.2    | < 0.2      | <0.2     | <0.2       | < 0.2      | <0.5     | < 0.2                      | <3.0                                          | <3                | <3                                                   | <3               |
| VC06              | 31/10/2019                    |               | 0.0 - 0.5  |             | 3.4                     |          | <2       | 0 <:    | o <2         | 2          |       |                 | <0.2     | <0.5       | <0.5     | <0.5       | <0.5       |          |                            | ┢───┦                                         | < 10              |                                                      |                  |
| VC06              | 31/10/2019                    | VC06_0.3-0.4  | 0.3 - 0.4  |             | <0.1 <0.0               | 010      |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| VC06              | 31/10/2019                    | VC06_0.5-0.6  | 0.5 - 0.6  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               | (                 |                                                      |                  |
| VC06              | 31/10/2019                    | VC06_0.5-1.0  | 0.5 - 1.0  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| VC06              | 31/10/2019                    | VC06_0.7-0.8  | 0.7 - 0.8  |             | + $+$                   |          |          |         |              |            |       | <b> </b>        |          | <b> </b>   |          |            |            |          |                            | <b>└──</b> ┘                                  | <b>┌───</b> ┼     |                                                      |                  |
|                   | 31/10/2019                    |               | 0.8 - 0.9  | 3/          | 1 0.84                  |          |          | 3 0.3   | 2 03         | 110        | 06.6  | <u> </u>        | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <30                                           | <u> </u>          |                                                      |                  |
| VC07              | 30/10/2019                    | VC07_0.0-0.5  | 0.0 - 0.5  | 37          | 7 1.61                  |          | 4        | 4 0.2   | <u> </u>     | 5 16.2     | 158   | 0 0204          | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <3.0                                          | <3                |                                                      | <u> </u>         |
| VC07              | 30/10/2019                    | VC07 0.2-0.4  | 0.2 - 0.4  |             | 1 <0.0                  | 010      |          |         |              |            |       |                 | 0.2      | 0.2        |          | 0.2        |            | 0.0      | 0.2                        |                                               |                   |                                                      |                  |
| VC07              | 30/10/2019                    | VC07_0.5-0.6  | 0.5 - 0.6  |             | <0.1 <0.0               | 010      |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| VC07              | 30/10/2019                    | VC07_0.5-1.0  | 0.5 - 1.0  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            | <u>ا</u> ــــــــــــــــــــــــــــــــــــ |                   |                                                      |                  |
| VC07              | 30/10/2019                    | VC07_0.7-0.8  | 0.7 - 0.7  |             | <01 <0.0                | 010      |          | -       |              |            |       |                 |          |            |          |            |            |          |                            | ───┘                                          | ┌───┼─            |                                                      |                  |
| VC07              | 31/10/2019                    | VC07_1.0-1.2  | 0.0 - 0.1  |             |                         | 010      | <2       | 6 <     | 5 <2         | >          |       |                 | <0.2     | <0.5       | <0.5     | <0.5       | <0.5       |          |                            | ┢───┦                                         | <10               |                                                      |                  |
| VC08              | 31/10/2019                    | VC08_0.3-0.4  | 0.3 - 0.4  |             | 2.5 < 0.0               | 010      | ~2       |         | , <u>~</u> 2 | -          |       |                 | ×0.2     | ×0.5       | -0.5     | ×0.0       | -0.0       |          |                            |                                               |                   |                                                      |                  |
| VC08              | 31/10/2019                    | VC08_0.0-0.5  | 0.0-0.5    |             |                         |          |          |         | 1            |            |       |                 |          |            |          |            |            |          |                            |                                               |                   | †                                                    |                  |
| VC08              | 31/10/2019                    | VC08_0.5-0.6  | 0.5 - 0.6  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| VC08              | 31/10/2019                    | VC08_0.5-1.0  | 0.5 - 1.0  |             | <b>↓</b>                |          |          | _       |              |            |       |                 |          | [          |          |            |            |          |                            | <b>└──</b> <sup>7</sup>                       | <b>⊢−−−</b>       |                                                      |                  |
|                   | 31/10/2019                    |               | 0.7 - 0.8  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            | ───┘                                          | <b>┌───</b> ┼─    |                                                      |                  |
| VC08              | 31/10/2019                    |               | 1.0 - 1.1  | <11         | 0.05                    |          | 1        | 2 03    | 3 0.2        | 0 21 2     | 3.0   | <0 0005         | <0.2     | <0.2       | <0.2     | <0.2       | <0.0       | <0 5     | <0.0                       | <30                                           | < 2               | < 2                                                  |                  |
| VC08              | 31/10/2019                    | VC08 1.3-1.4  | 1.3 - 1.4  |             | 0.00                    |          | <u> </u> |         | 0.2          |            | 0.2   | -0.0000         | -0.2     | -0.2       | -0.2     | -0.2       | -0.2       | -0.0     | -0.2                       | -0.0                                          |                   |                                                      |                  |
| VC08              | 31/10/2019                    | VC08_1.5-1.6  | 1.5 - 1.6  |             |                         |          |          |         |              |            |       |                 |          |            |          |            |            |          |                            |                                               |                   |                                                      |                  |
| VC09              | 30/10/2019                    | VC09_0.0-0.2  | 0.0 - 0.2  | 20          | 0.02                    |          | 1        | .8 0.2  | 2 0.1        | 15.4       | 2.9   | )               | <0.2     | <0.2       | <0.2     | <0.2       | <0.2       | <0.5     | <0.2                       | <3.0                                          | <3                | <3                                                   | <3               |
| VC09              | 30/10/2019                    | VC09_0.0-0.5  | 0.0 - 0.5  |             | + $+$                   |          |          |         |              |            |       |                 |          | ┝───┼      |          |            |            |          |                            | ───┘                                          | <b>┌───┼</b>      | $\longrightarrow$                                    |                  |
| VC09              | 30/10/2019                    |               | 0.4 - 0.0  |             | + $+$                   |          |          | +       |              |            |       | <u> </u>        |          |            |          |            |            |          | <u> </u>                   | ┢────┘                                        | +                 | $\longrightarrow$                                    |                  |
| VC09              | 30/10/2019                    | VC09_0.7-0.8  | 0.7 - 0.8  |             | +                       |          |          | +       |              |            |       | <u> </u>        | <u> </u> |            |          |            |            |          | <u> </u>                   | <b>├───</b> ┤                                 |                   | -+                                                   |                  |
|                   | 33/10/2010                    |               |            |             | 1                       |          |          | 1       | 1            | 1          | 1     | 1               | 1        |            |          |            |            |          | 1                          |                                               | L                 |                                                      |                  |

|                    |                             |               |            |       | 1                |          |          |          |          |           |       |             | Organo Metals                           |              |              |              | BIEXN        |                                         |       |             |              |               | <u> IRH - N</u> | <b>IE</b> PM        |
|--------------------|-----------------------------|---------------|------------|-------|------------------|----------|----------|----------|----------|-----------|-------|-------------|-----------------------------------------|--------------|--------------|--------------|--------------|-----------------------------------------|-------|-------------|--------------|---------------|-----------------|---------------------|
|                    |                             |               |            |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       | -           |              | ,             | S               |                     |
|                    |                             |               |            |       |                  |          |          |          |          |           |       |             | -                                       |              |              |              |              |                                         |       | ltal        | S            | Ī             |                 | Ę                   |
|                    |                             |               |            |       |                  | (p       |          |          |          |           |       |             | Sn)                                     |              |              |              |              | _                                       |       | Ĕ           | nu           | E i           | Ē               | otic                |
|                    |                             |               |            |       |                  | ere      | _        |          |          |           |       |             | ŝ                                       |              |              | e            |              | (d                                      | _     | of          | Ē            | t otic        | 2               | La(                 |
|                    |                             |               |            | Se    |                  | filte    | un       |          |          |           | _     |             | (a                                      |              |              | en           |              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ota   | Ę           | 9            | ) <u>a</u>    | ר ב             | ш                   |
|                    |                             |               |            | Ŭ     | >                | .)<br>Х  | en       |          | Ę        |           | μn    |             | ltin                                    | e            | Ø            | ZUŚ          | 0            | <u>ل</u>                                | Ĕ     | ပ်ပါ        | Ý            |               |                 | 2                   |
|                    |                             |               |            | ga    | L L              | nr       | þq       | <u>e</u> | , Dic    | 5         | adi   |             | lty                                     | zer          | eu           | lle          | ne           | ne                                      | ne    | ы с<br>С Х  | άx           | 500           | ¢<br>₽<br>2     | 4                   |
|                    |                             |               |            | an    | erc              | erc      | <u>v</u> | Š        | <u>e</u> | <u>Ve</u> | ana   | ЦС          | ibu                                     | EU e         | nlo          | Ş            | /le          | /le                                     | /e    | Щġ          | ЭШ           | 0-0-2         |                 | 5                   |
|                    |                             |               |            | Σ     | Š                | Ň        | Š        | ž        | Ň        | <u>i</u>  | Š     | Ņ           | Ľ                                       | ă            | Ĕ            | Ш            | Ń            | - X                                     | - X   | <u>Ľ ď</u>  | <u>ш</u> р   | <u> </u>      | <u>l z _</u>    | Ň                   |
|                    |                             |               |            | mg/kg | mg/kg            | mg/L     | mg/kg    | mg/kg n  | ng/kg m  | ig/kg m   | ng/kg | mg/kg       | mg/kg                                   | mg/kg        | mg/kg        | mg/kg        | mg/kg        | mg/kg                                   | mg/kg | mg/kg       | mg/kg        | mg/kg m       | ıg/kg m         | ıg/kg               |
| EQL                |                             |               |            | 10    | 0.01             | 0.001    | 2        | 1        | 0.1      | 0.1       | 2     | 1           | 0.0005                                  | 0.1          | 0.1          | 0.1          | 0.1          | 0.2                                     | 0.3   | 0.2         | 3            | 3             | 3               | 3                   |
| NSW EPA (2014) Gen | eral Solid Waste SCC1 (wit  | h TCLP)       |            |       | 50               |          | 1,000    | 1,050    | 50 ´     | 180       |       |             |                                         | 18           | 518          | 1,080        |              |                                         | 1,800 |             |              |               |                 |                     |
| NSW EPA (2014) Gen | eral Solid Waste TCLP1      | ,             |            |       |                  | 0.2      |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| NSW FPA (2014) Res | tricted Solid Waste SCC2 (v | with TCLP)    |            |       | 200              |          | 4 000    | 4 200    | 200 7    | 720       |       |             |                                         | 72           | 2 073        | 4 320        |              |                                         | 7 200 |             |              |               |                 |                     |
| NSW EPA (2014) Res | tricted Solid Waste TCLP2   |               |            |       | 200              | 0.8      | 1,000    | 1,200    |          | 0         |       |             |                                         |              | 2,010        | 1,020        |              |                                         | .,200 |             |              |               |                 |                     |
|                    |                             |               |            |       |                  | 0.0      |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| Leastion Code      | Data                        | Field ID      | Donth      |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
|                    |                             |               |            |       | 1 4 4            | 1        |          |          |          |           |       |             |                                         |              | 0.5          | - 0 E        | .0.5         |                                         | 1     | 1           | -            |               |                 |                     |
| BH05               | 7/11/2019                   | BH05_4.6-4.7  | 4.6 - 4.7  |       | 1.1              |          | <2       | 5        | <5       | <2        |       |             |                                         | <0.2         | <0.5         | <0.5         | <0.5         | <0.5                                    |       |             |              | <10           |                 |                     |
| BH06               | 7/11/2019                   | BH06_1.2-1.45 | 1.2 - 1.45 |       | 0.2              |          | <2       | 2        | <5       | <2        |       |             |                                         | <0.2         | <0.5         | <0.5         | <0.5         | <0.5                                    |       |             |              | <10           |                 |                     |
| BH07               | 7/11/2019                   | BH07_2.5-2.95 | 2.5 - 2.95 |       | <0.1             |          | <2       | 5        | <5       | <2        |       |             |                                         | <0.2         | <0.5         | <0.5         | <0.5         | <0.5                                    |       |             |              | <10           |                 |                     |
| VC01               | 30/10/2019                  | vc01_0.4-0.6  | 0.4 - 0.6  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC01               | 30/10/2019                  | VC01_0.0-0.2  | 0.0 - 0.2  |       | 1.9              | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC01               | 30/10/2019                  | VC01_0.5-1.0  | 0.5 - 1.0  | <10   | <0.01            |          |          | <1.0     | <0.1     | <0.1      | 3.8   | <1.0        | <0.0005                                 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2                                    | <0.5  | <0.2        | <3.0         | <3            | <3              | <3                  |
| VC01               | 30/10/2019                  | VC01 1.0-1.1  | 1.0 - 1.1  | <10   | <0.01            |          |          | <1.0     | <0.1     | <0.1      | 2.5   | <1.0        |                                         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2                                    | <0.5  | <0.2        | <3.0         | <3            | <3              | <3                  |
| VC02               | 30/10/2019                  | VC02 0.0-0.2  | 0.0 - 0.2  |       |                  |          |          |          |          |           |       | -           |                                         |              |              |              |              | 1                                       |       |             |              |               |                 |                     |
| VC02               | 30/10/2019                  | VC02 0 5-0 6  | 0.5 - 0.6  |       | 0.9              | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              | 1                                       |       |             |              | <u> </u>      | -+              |                     |
| VC02               | 30/10/2019                  | VC02_0.5-10   | 0.5 - 1.0  |       | 1 3.0            | 0.0010   | ├        |          |          |           |       |             |                                         |              |              |              |              | 1                                       |       |             |              | $\rightarrow$ | -+              | $ \longrightarrow $ |
| VC02               | 30/10/2010                  | VC02_0.0-1.0  | 10-12      |       | <∩ 1             | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               | -+              |                     |
| VC02               | 30/10/2019                  |               | 1.0 1.2    |       | <u>\</u> .1      | ~U.UU IU |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             | ┝───┤        | —             | <u> </u>        |                     |
| VC02               | 30/10/2019                  | VC02_1.0-1.5  | 1.0 - 1.5  | - 110 | 10.01            |          |          | 4        | 0.0      | 10.4      | 44.0  | 1.0         |                                         | 10.0         | -0.0         | -0.0         |              |                                         | -0 F  | -0.0        | -0.0         |               |                 | 2                   |
| VC02               | 30/10/2019                  | VC02_1.5-1.6  | 1.5 - 1.6  | <10   | < 0.01           | 0.00/0   |          | 1        | 0.2      | <0.1      | 14.8  | 1.9         |                                         | <0.2         | <0.2         | <0.2         | <0.2         | < 0.2                                   | <0.5  | < 0.2       | <3.0         | <3            | <3              | <3                  |
| VC02               | 31/10/2019                  | VC02_0.0-0.5  | 0.0 - 0.5  | 88    | 4.25             | <0.0010  |          | 10.4     | 0.6      | 3         | 32.6  | 445         | 0.0028                                  | <0.2         | <0.2         | <0.2         | <0.2         | <0.2                                    | <0.5  | <0.2        | <3.0         | <3            | 4               | 4                   |
| VC03               | 30/10/2019                  | VC03_0.0-0.2  | 0.0 - 0.2  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC03               | 30/10/2019                  | VC03_0.0-0.5  | 0.0 - 0.5  | <10   | 0.05             |          |          | 2        | 0.1      | <0.1      | 5.5   | 16.7        | <0.0005                                 | <0.2         | <0.2         | <0.2         | <0.2         | < 0.2                                   | <0.5  | <0.2        | <3.0         | <3            | <3              | <3                  |
| VC03               | 30/10/2019                  | VC03_0.3-0.4  | 0.3 - 0.4  | <10   | 0.04             |          |          | 1.9      | <0.1     | 0.1       | 5.1   | 6.2         |                                         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2                                    | < 0.5 | <0.2        | <3.0         | <3            | <3              | <3                  |
| VC03               | 30/10/2019                  | VC03_0.4-0.6  | 0.4 - 0.6  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC03               | 30/10/2019                  | VC03 0.5-1.0  | 0.5 - 1.0  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC03               | 30/10/2019                  | VC03_0.6-0.7  | 0.6 - 0.7  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC03               | 30/10/2019                  | VC03 1.0-1.2  | 1.0 - 1.2  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC04               | 30/10/2019                  | VC04_0.0-0.1  | 0.0 - 0.1  |       | <0.1             | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC04               | 30/10/2019                  |               | 0.3 - 0.4  | <10   | <0.1             | 30.0010  |          | 2        | 0.2      | 0.1       | 10.4  | 31          |                                         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2                                    | <0.5  | <0.2        | <30          | < 3           | < 3             | < 3                 |
| VC04               | 30/10/2019                  | VC04_0.5-0.4  | 0.5 1.0    | <10   | <0.01            |          |          | 1.6      | 0.2      | 0.1       | 0.4   | 0.4         | <0.0005                                 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2                                    | <0.5  | <0.2        | <3.0         | <             | -2              | -3                  |
| VC04               | 30/10/2019                  |               | 0.5 - 1.0  | <10   | <u> &lt;0.01</u> |          |          | 1.0      | 0.1      | 0.3       | 0.9   | 2.3         | <0.0005                                 | <0.Z         | <0.Z         | <0.Z         | <0.Z         | <0.2                                    | <0.5  | <0.2        | <3.0         | <u> </u>      | <u> </u>        | <3                  |
| VC04               | 31/10/2019                  | VC04_0.5-0.6  | 0.5 - 0.6  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC04               | 31/10/2019                  | VC04_0.7-0.8  | 0.7 - 0.8  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC04               | 31/10/2019                  | VC04_0.9-1.0  | 0.9 - 1.0  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC05               | 30/10/2019                  | VC05_0.0-0.1  | 0.0 - 0.1  |       | 0.6              | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC05               | 30/10/2019                  | VC05_0.5-0.7  | 0.5 - 0.7  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC05               | 30/10/2019                  | VC05_0.5-0.9  | 0.5 - 0.9  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC05               | 30/10/2019                  | VC05_0.8-0.9  | 0.8 - 0.9  | <10   | <0.01            |          |          | <1.0     | <0.1     | 0.1       | 15.6  | 1.5         |                                         | <0.2         | <0.2         | <0.2         | <0.2         | < 0.2                                   | < 0.5 | <0.2        | <3.0         | <3            | <3              | <3                  |
| VC06               | 31/10/2019                  | VC06_0.0-0.1  | 0.0 - 0.1  |       | 3.4              |          | <2       | 10       | <5       | <2        |       |             |                                         | <0.2         | <0.5         | <0.5         | <0.5         | <0.5                                    |       |             |              | <10           |                 |                     |
| VC06               | 31/10/2019                  | VC06 0.0-0.5  | 0.0 - 0.5  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC06               | 31/10/2019                  | VC06_0.3-0.4  | 0.3 - 0.4  |       | < 0.1            | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC06               | 31/10/2019                  | VC06_0.5-0.6  | 0.5 - 0.6  |       | _                |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC06               | 31/10/2019                  | VC06_0.5-1.0  | 0.5 - 1.0  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC06               | 31/10/2019                  | VC06 0 7-0 8  | 07-08      |       | 1                | <u>├</u> | ├        |          |          |           |       |             |                                         |              |              |              |              | 1                                       |       |             |              | -+            | -+              | $ \longrightarrow $ |
| VC06               | 31/10/2019                  |               | 0.8 - 0.9  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC07               | 30/10/2010                  |               | 0.0 - 0.0  | 01    | 0.04             | <u> </u> |          | 3        | 0.2      | 03        | 11 0  | 96.6        |                                         | د ۲۵         | <0.0         | <0.0         | <u>~</u> 0 0 | -0.0                                    | ~0 F  | ~n o        | ~2 O         | ~2            |                 | 1                   |
| VC07               | 30/10/2019                  |               | 0.0 - 0.2  | 27    | 1 61             |          |          | 1 1      | 0.2      | 1.5       | 16.2  | 90.0<br>150 | 0.0204                                  | <0.2         | <0.2         | <0.2         | <0.2         | <0.2                                    | <0.5  | <0.2        | <3.0         | <             |                 | - 4                 |
|                    | 20/10/2019                  |               |            |       | 1.01             | <0.0040  |          | 4.4      | 0.3      | 1.5       | 10.2  | 100         | 0.0204                                  | <b>~</b> 0.∠ | <u></u> ∼0.2 | <u></u> ∼∪.∠ | <b>~</b> 0.2 | <u>~0.2</u>                             | c.u>  | <u>~0.2</u> | <u>∽</u> 3.0 | <u> </u>      |                 |                     |
| VC07               | 30/10/2019                  | VC07_0.2-0.4  | 0.2 - 0.4  |       | 1 10 1           | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC07               | 30/10/2019                  | VC07_0.5-0.6  | 0.5 - 0.6  |       | <0.1             | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC07               | 30/10/2019                  | VC07_0.5-1.0  | 0.5 - 1.0  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC07               | 30/10/2019                  | VC07_0.7-0.8  | 0.7 - 0.7  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC07               | 30/10/2019                  | VC07_1.0-1.2  | 1.0 - 1.2  |       | <0.1             | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC08               | 31/10/2019                  | VC08_0.0-0.1  | 0.0 - 0.1  |       | 1.8              |          | <2       | 6        | <5       | <2        |       |             |                                         | <0.2         | <0.5         | <0.5         | <0.5         | < 0.5                                   |       |             |              | <10           |                 |                     |
| VC08               | 31/10/2019                  | VC08_0.3-0.4  | 0.3 - 0.4  |       | 2.5              | <0.0010  |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC08               | 31/10/2019                  | VC08 0.0-0.5  | 0.0-0.5    |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC08               | 31/10/2019                  | VC08 0.5-0.6  | 0.5 - 0.6  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC08               | 31/10/2019                  | VC08 0 5-1 0  | 0.5 - 1.0  |       | 1                |          |          |          |          |           |       |             |                                         |              |              |              |              | 1                                       |       |             |              |               |                 |                     |
| VC08               | 31/10/2019                  | VC08 07-08    | 07-08      |       | 1                | <u>├</u> | ├        |          |          |           |       |             |                                         |              |              |              |              | 1                                       |       |             |              | -+            | -+              | $\rightarrow$       |
| VC08               | 31/10/2010                  | <u> </u>      | 10-11      |       |                  | <u> </u> | <u>├</u> |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              | <u> </u>      | -+              | $ \longrightarrow $ |
| VC08               | 21/10/2010                  |               |            |       | 0.05             | <u> </u> |          | 1.0      | 0.2      | 0.0       | 01.0  | 2.0         | ~0.0005                                 | ~0.0         | ~^ ^         | -0.0         | ~^ ^         | -0.0                                    | -0 F  | -0.0        | ~2.0         |               |                 |                     |
| VC00               | 21/10/2019                  |               |            | <10   | 0.05             |          | ┝───┤    | 1.2      | 0.3      | 0.2       | 21.3  | <u>ی</u> .2 | <u><u></u> <u.0005< u=""></u.0005<></u> | <b>~</b> 0.∠ | <u></u> ∼0.2 | <u></u> ∼∪.∠ | <u>~0.2</u>  | <u>~0.2</u>                             | <0.5  | <u>~0.2</u> | <u>∽</u> 3.0 | <u> </u>      | <u> ~&gt;</u>   | <u></u> ~3          |
| VU08               | 31/10/2019                  |               | 1.3 - 1.4  |       | <b> </b>         | <u> </u> | ┞───┤    |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             | ļļ           |               |                 |                     |
| VC08               | 31/10/2019                  | VC08_1.5-1.6  | 1.5 - 1.6  |       |                  | ļ        |          |          |          |           |       |             |                                         |              |              |              | =            |                                         | -     |             |              |               |                 |                     |
| VC09               | 30/10/2019                  | VC09_0.0-0.2  | 0.0 - 0.2  | 20    | 0.02             |          |          | 1.8      | 0.2      | 0.1       | 15.4  | 2.9         |                                         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2                                    | <0.5  | <0.2        | <3.0         | <3            | <3              | <3                  |
| VC09               | 30/10/2019                  | VC09_0.0-0.5  | 0.0 - 0.5  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC09               | 30/10/2019                  | VC09_0.4-0.6  | 0.4 - 0.6  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 | ]                   |
| VC09               | 30/10/2019                  | VC09_0.5-1.0  | 0.5 - 1.0  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
| VC09               | 30/10/2019                  | VC09_0.7-0.8  | 0.7 - 0.8  |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              |               |                 |                     |
|                    |                             |               |            |       |                  |          |          |          |          |           |       |             |                                         |              |              |              |              |                                         |       |             |              | <u>.</u>      |                 |                     |



|                       |            |              |           |           | _       |                    |            |        |          |              |          |       | Organo Metals       |              |          |              | BTEXN       |                |              |                                   |                           |                 | TRH -                              | NEPM              |
|-----------------------|------------|--------------|-----------|-----------|---------|--------------------|------------|--------|----------|--------------|----------|-------|---------------------|--------------|----------|--------------|-------------|----------------|--------------|-----------------------------------|---------------------------|-----------------|------------------------------------|-------------------|
|                       |            |              |           | Manganese | Mercury | Mercury (filtered) | Molybdenum | Nickel | Selenium | Silver       | Vanadium | Zinc  | Tributyltin (as Sn) | Benzene      | Toluene  | Ethylbenzene | Xylene (o)  | Xylene (m & p) | Xylene Total | BTEX (Sum of Total) -<br>Lab Calc | F1 (C6-C10 minus<br>BTEX) | C6-C10 Fraction | F2 (>C10-C16 minus<br>Naphthalene) | >C10-C16 Fraction |
| 1/000                 | 20/40/0040 |              |           | mg/kg     | mg/kg   | mg/L               | mg/kg      | mg/kg  | mg/kg    | mg/kg        | mg/kg    | mg/kg | mg/kg               | mg/kg        | mg/kg    | mg/kg        | mg/kg       | mg/kg          | mg/kg        | mg/kg                             | mg/kg                     | mg/kg           | mg/kg                              | mg/kg             |
|                       | 30/10/2019 |              | 0.8 - 1.0 | <10       | 0.01    | 1                  |            |        | <0.1     | -0.1         | 47       | 4.0   |                     | <0.0         | <0.2     | <0.2         | <0.2        | <0.0           | <0 F         | <0.2                              | <2.0                      |                 |                                    |                   |
|                       | 30/10/2019 |              | 0.7 - 0.8 | <((       |         |                    |            | 2      | <0.1     | <0.1         | 4.7      | 4.2   |                     | <0.Z         | <0.Z     | <0.Z         | <0.Z        | <0.Z           | <0.5         | <0.Z                              | <3.0                      | <3              | <3                                 | <3                |
|                       | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 | <10       | 0.1     |                    |            | 1.0    | 0.1      | <0.1         | 6.2      | 0.1   | <0.0005             | <0.0         | <0.2     | <0.2         | <0.0        | <0.0           | <0 F         | <0.2                              | <2.0                      |                 |                                    | - 2               |
| VC10                  | 31/10/2019 | VC10_0.0-0.3 | 0.0 - 0.5 |           |         | 1                  |            | 1.3    | 0.1      | <b>~</b> 0.1 | 0.3      | Z. I  | <0.0005             | <b>~</b> 0.2 | <u> </u> | <b>NU.Z</b>  | <b>\U.Z</b> | <0.Z           | <b>NU.5</b>  | <b>~</b> 0.2                      | <b>~</b> 3.0              |                 |                                    |                   |
| VC10                  | 30/10/2019 | VC10_0.0-0.0 | 0.0 0.2   |           | 0.8     | 2 <0.0010          |            |        |          |              |          |       |                     |              | +        |              |             |                |              |                                   |                           |                 | +                                  |                   |
| VC11                  | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |           | 0.0     | 5 \0.0010          |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC11                  | 30/10/2019 | VC11_0.0-0.3 | 0.0 - 0.3 | 28        | 0.03    | 2                  |            | 13     | 0.4      | 0.4          | 13.6     | 1/    |                     | <0.2         | <0.2     | <0.2         | <0.2        | <0.2           | <0.5         | <0.2                              | < 3.0                     | < 3             | < 3                                | < 3               |
| VC11                  | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 0.7 | 20        | 0.00    | ,<br>              |            | 4.0    | 0.4      | 0.4          | 15.0     | 14    |                     | <b>~0.2</b>  | ~0.Z     | <b>~0.2</b>  | <b>~0.2</b> | <b>NO.2</b>    | -0.5         | <b>~0.2</b>                       | <b>N</b> 0.0              |                 |                                    |                   |
| VC11                  | 30/10/2019 | VC11_0.0-1.0 | 10-12     |           |         |                    |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 | +                                  |                   |
| VC12                  | 31/10/2019 | VC12 0 0-0 5 | 0.0 - 0.5 | <1(       | 0 12    |                    |            | <1.0   | <0.1     | 0.2          | 13.5     | 14 4  | 0.0069              | <0.2         | <0.2     | <0.2         | <0.2        | <0.2           | <0.5         | <0.2                              | <3.0                      | <3              | <12                                | <12               |
| VC12                  | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |           | 0.12    | -                  |            | \$1.0  |          | 0.2          | 10.0     | 17.7  | 0.0000              | ×0.2         | NO.2     | NO.2         | ×0.2        | ×0.2           | -0.0         | ۰U.Z                              | ×0.0                      |                 |                                    |                   |
| VC12                  | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |           |         |                    |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 | +                                  |                   |
| VC12                  | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |           |         |                    |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 | +                                  |                   |
| VC12                  | 31/10/2019 | VC12_1.0-1.1 | 10-11     |           | <0.1    | 1                  | <2         | 2 4    | <5       | <2           |          |       |                     | <0.2         | < 0.5    | <0.5         | <0.5        | <0.5           |              |                                   |                           | <10             |                                    |                   |
| VC13                  | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 |           | 2.2     | 2                  | <2         | 2 7    | <5       | <2           |          |       |                     | < 0.2        | < 0.5    | < 0.5        | < 0.5       | < 0.5          |              |                                   |                           | <10             |                                    |                   |
| VC13                  | 31/10/2019 | VC13 0.0-0.5 | 0.0 - 0.5 |           |         | -                  |            |        |          |              |          |       |                     | 0.2          |          | 0.0          | 0.0         | 0.0            |              |                                   |                           |                 |                                    |                   |
| VC13                  | 31/10/2019 | VC13 0.3-0.4 | 0.3 - 0.4 |           | 0.3     | 3 < 0.0010         |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 | +                                  |                   |
| VC13                  | 31/10/2019 | VC13 0.5-0.6 | 0.5 - 0.6 |           |         |                    |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC13                  | 31/10/2019 | VC13 0.5-1.0 | 0.5 - 1.0 |           |         |                    |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC13                  | 31/10/2019 | VC13 0.7-0.8 | 0.7 - 0.8 |           |         |                    |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC13                  | 31/10/2019 | VC13 1.0-1.1 | 1.0 - 1.1 |           |         |                    |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC14                  | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |           | 0.7     | 7 <0.0010          |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC14                  | 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 |           |         | 1                  |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC14                  | 31/10/2019 | VC14 0.3-0.4 | 0.3 - 0.4 |           |         | 1                  |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC14                  | 31/10/2019 | VC14 0.5-1.0 | 0.5 - 1.0 |           |         | 1                  |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC14                  | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |           | <0.1    | 1 < 0.0010         |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC14                  | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |           | <0.1    | 1                  | <2         | 2 3    | <5       | <2           |          |       |                     | <0.2         | < 0.5    | <0.5         | <0.5        | <0.5           |              |                                   |                           | <10             |                                    |                   |
| VC14                  | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |           |         |                    |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| VC14                  | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |           |         |                    |            |        |          |              |          |       |                     |              |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| Statistics            |            |              |           |           | -       |                    |            | -      |          |              |          |       |                     | -            |          |              |             |                |              |                                   |                           |                 |                                    |                   |
| Number of Results     |            |              |           | 17        | 40      | 0 16               | 8          | 3 25   | 25       | 25           | 17       | 17    | 8                   | 25           | 25       | 25           | 25          | 25             | 17           | 17                                | 17                        | 25              | 17                                 | 17                |
| Number of Detects     |            |              |           | 5         | 5 24    | 4 0                | C          | ) 21   | 11       | 11           | 17       | 15    | 3                   | 0            | 0        | 0            | 0           | 0              | 0            | 0                                 | 0                         | 0               | 3                                  | 3                 |
| Minimum Concentration | วท         |              |           | <1(       | ) <0.01 | 1 <0.0010          | <2         | 2 <1.0 | <0.1     | <0.1         | 2.5      | <1.0  | < 0.0005            | <0.2         | <0.2     | <0.2         | <0.2        | <0.2           | <0.5         | <0.2                              | <3.0                      | <3.0            | <3.0                               | <3.0              |
| Maximum Concentrati   | on         |              |           | 88        | 3 4.25  | 5 <0.0010          | <2         | 2 10.4 | 0.6      | 3            | 32.6     | 445   | 0.0204              | <0.2         | <0.5     | <0.5         | <0.5        | <0.5           | <0.5         | <0.2                              | <3.0                      | <10             | 7                                  | 7                 |



|                   |                               |               |            | 2013              | 8                              |                                                     | TRH -                    | - NEPM 20                   | 013 - SG                   | Cleanup                          |       | TRF                 | H - NEPM               | 1999                  |                           | TRH -                 | NEPM 1                | 999 - SG              | Cleanup                          |                                                 |                     |              |                     |                   |                     |
|-------------------|-------------------------------|---------------|------------|-------------------|--------------------------------|-----------------------------------------------------|--------------------------|-----------------------------|----------------------------|----------------------------------|-------|---------------------|------------------------|-----------------------|---------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|-------------------------------------------------|---------------------|--------------|---------------------|-------------------|---------------------|
|                   |                               |               |            | B<br>F3 (>C16-C34 | BX/Fraction)<br>B F4 (>C34-C40 | AY Fraction)<br>■<br>■ >C10-C40 (Sum of<br>★ Total) | a >C10-C16 SG<br>Cleanup | a >C16-C34 SG<br>by/Cleanup | 물 >C34-C40 SG<br>장 Cleanup | 3 >C10-C40 (sum) SG<br>장 Cleanup | ma/ba | by/c10-C14 Fraction | gy<br>C15-C28 Fraction | a<br>C29-C36 Fraction | BX C10-C36 (Sum of Total) | by/c10-C14 SG Cleanup | by/c15-C28 SG Cleanup | by/c29-C36 SG Cleanup | B<br>C10-C36 (sum) SG<br>Cleanup | B<br>Sum of polycyclic<br>aromatic hydrocarbons | a<br>Benzo(e)pyrene | ay/ba        | a<br>Acenaphthylene | ax/<br>Anthracene | Benz(a)anthracene   |
| EQL               |                               |               |            |                   | 3 5                            | 5 3                                                 | 50                       | 100                         | 100                        | 50                               | 3     | 3                   | 3                      | 5                     | 3                         | 50                    | 100                   | 100                   | 50                               | 0.5                                             | 0.004               | 0.004        | 0.004               | 0.004             | 0.004               |
| NSW EPA (2014) Ge | eneral Solid Waste SCC1 (with | n TCLP)       |            |                   |                                |                                                     |                          |                             |                            | _                                | 650   |                     |                        |                       | 10,000                    |                       |                       |                       | 10,000                           |                                                 |                     |              |                     |                   |                     |
| NSW EPA (2014) G  | eneral Solid Waste TCLP1      |               |            |                   |                                |                                                     |                          |                             |                            |                                  | 2,600 |                     |                        |                       | 40.000                    |                       |                       |                       | 40.000                           |                                                 |                     |              |                     |                   | 4                   |
| NSW EPA (2014) Re | estricted Solid Waste TCLP2   | in reer)      |            |                   |                                |                                                     |                          |                             |                            |                                  | 2,000 |                     |                        |                       | 40,000                    |                       |                       |                       | 40,000                           |                                                 |                     |              |                     |                   |                     |
|                   |                               |               |            |                   | •                              |                                                     |                          | •                           |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       | •                                |                                                 |                     |              |                     |                   |                     |
| Location Code     | Date                          | Field ID      | Depth      |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  |                                                 |                     |              |                     | . <u> </u>        | <del></del>         |
| BH05<br>BH06      | 7/11/2019                     | BH05_4.6-4.7  | 4.6 - 4.7  |                   |                                |                                                     | <5                       | 0 320                       | $\frac{1}{100}$            |                                  | (-10) |                     |                        |                       |                           | <50                   | 220                   | 140                   | 360                              | 30.9                                            |                     | < 0.5        | 0.5                 |                   | <u>j 2.4</u>        |
| BH07              | 7/11/2019                     | BH07_2.5-2.95 | 2.5 - 2.95 |                   |                                |                                                     | <5                       | 50 <u>850</u><br>50 <100    | ) <10                      | 0 <50                            | ) <10 |                     |                        |                       |                           | <50                   | <100                  | 400<br><100           | <50                              | <0.5                                            | 5                   | <0.5         | <0.5                | <0.5              | 5 < 0.5             |
| VC01              | 30/10/2019                    | vc01_0.4-0.6  | 0.4 - 0.6  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | 6                   | < 0.5        | < 0.5               | <0.5              | 5 < 0.5             |
| VC01              | 30/10/2019                    | VC01_0.0-0.2  | 0.0 - 0.2  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | 13                                              | 6                   | <0.5         | <0.5                | <0.5              | 5 1.2               |
| VC01              | 30/10/2019                    | VC01_0.5-1.0  | 0.5 - 1.0  |                   | <3                             | <5 <                                                | <3                       |                             |                            |                                  | <3    | <3                  | <3                     | <5                    | <3                        |                       |                       |                       |                                  |                                                 | < 0.004             | < 0.004      | < 0.004             | < 0.004           | 4 < 0.004           |
| VC01              | 30/10/2019                    |               | 1.0 - 1.1  |                   | <3                             | <5 <                                                | <3                       |                             |                            |                                  | <3    | <3                  | <3                     | <5                    | <3                        |                       |                       |                       |                                  | 17.7                                            | <0.004              | < 0.004      | < 0.004             | < 0.004           | + <0.004<br>5 1.5   |
| VC02<br>VC02      | 30/10/2019                    | VC02_0.5-0.6  | 0.5 - 0.6  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | 1                                               |                     | <0.5         | <0.5                | <0.5              | 5 < 0.5             |
| VC02              | 30/10/2019                    | VC02_0.5-1.0  | 0.5 - 1.0  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | 5                   | < 0.5        | < 0.5               | <0.5              | 5 < 0.5             |
| VC02              | 30/10/2019                    | VC02_1.0-1.2  | 1.0 - 1.2  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | j                   | <0.5         | <0.5                | <0.5              | 5 <0.5              |
| VC02              | 30/10/2019                    | VC02_1.0-1.5  | 1.0 - 1.5  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            |                     | <0.5         | < 0.5               | <0.5              | 5 < 0.5             |
| VC02              | 30/10/2019                    | VC02_1.5-1.6  | 1.5 - 1.6  |                   | <3                             | <5 <                                                | <3                       |                             |                            |                                  | <3    | <3                  | <3                     | <5                    | <3                        | -                     |                       |                       |                                  |                                                 | < 0.004             | < 0.004      | < 0.004             | < 0.004           | 4 0.005             |
| VC02<br>VC03      | 30/10/2019                    | VC02_0.0-0.3  | 0.0 - 0.2  |                   | 10                             | 20 1                                                | 10                       |                             |                            |                                  | ~3    | < 3                 | 40                     | 40                    | 94                        |                       |                       |                       |                                  | <0.5                                            | 0.031               | 0.044        | 0.297               | 0.200             | 5 1.13<br>5 <0.5    |
| VC03              | 30/10/2019                    | VC03 0.0-0.5  | 0.0 - 0.5  |                   | <3                             | <5 <                                                | <3                       |                             |                            |                                  | <3    | <3                  | <3                     | <5                    | <3                        |                       |                       |                       |                                  | -0.0                                            | < 0.004             | < 0.004      | <0.004              | < 0.004           | 4 < 0.004           |
| VC03              | 30/10/2019                    | VC03_0.3-0.4  | 0.3 - 0.4  |                   | <3                             | <5 <                                                | <3                       |                             |                            |                                  | <3    | <3                  | <3                     | <5                    | <3                        |                       |                       |                       |                                  |                                                 | < 0.004             | < 0.004      | < 0.004             | < 0.002           | 4 < 0.004           |
| VC03              | 30/10/2019                    | VC03_0.4-0.6  | 0.4 - 0.6  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | 5                   | <0.5         | <0.5                | <0.5              | 5 <0.5              |
| VC03              | 30/10/2019                    | VC03_0.5-1.0  | 0.5 - 1.0  |                   |                                |                                                     |                          | _                           |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | 5                   | < 0.5        | < 0.5               | <0.5              | 5 < 0.5             |
| VC03              | 30/10/2019                    | VC03_0.6-0.7  | 0.6 - 0.7  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | )<br>:              | < 0.5        | <0.5                | <0.5              | $\frac{3}{5}$ < 0.5 |
| VC03              | 30/10/2019                    | VC04_0 0-0 1  | 0.0 - 0.1  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | 5                   | <0.5         | <0.5                | <0.5              | 5 < 0.5             |
| VC04              | 30/10/2019                    | VC04 0.3-0.4  | 0.3 - 0.4  |                   | <3                             | <5 <                                                | <3                       |                             |                            |                                  | <3    | <3                  | <3                     | <5                    | <3                        |                       |                       |                       |                                  | 10.0                                            | < 0.004             | < 0.004      | < 0.004             | < 0.002           | 4 < 0.004           |
| VC04              | 30/10/2019                    | VC04_0.5-1.0  | 0.5 - 1.0  |                   | 4                              | <5                                                  | 4                        |                             |                            |                                  | <3    | <3                  | 5                      | <5                    | 5                         |                       |                       |                       |                                  |                                                 | < 0.005             | < 0.005      | <0.005              | < 0.005           | 5 < 0.005           |
| VC04              | 31/10/2019                    | VC04_0.5-0.6  | 0.5 - 0.6  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | 5                   | <0.5         | <0.5                | <0.5              | 5 <0.5              |
| VC04              | 31/10/2019                    | VC04_0.7-0.8  | 0.7 - 0.8  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           |                     | < 0.5        | < 0.5               | < 0.5             | 5 < 0.5             |
| VC04<br>VC05      | 31/10/2019                    | VC04_0.9-1.0  | 0.9 - 1.0  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | )                   | <0.5         | <0.5                | <0.5              | $\frac{3}{5} < 0.5$ |
| VC05              | 30/10/2019                    | VC05_0.5-0.7  | 0.5 - 0.7  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | ,<br>;              | < 0.5        | <0.5                | <0.5              | 5 < 0.5             |
| VC05              | 30/10/2019                    | VC05_0.5-0.9  | 0.5 - 0.9  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | 5                   | < 0.5        | < 0.5               | <0.5              | 5 < 0.5             |
| VC05              | 30/10/2019                    | VC05_0.8-0.9  | 0.8 - 0.9  |                   | <3                             | <5 <                                                | <3                       |                             |                            |                                  | <3    | <3                  | <3                     | <5                    | <3                        |                       |                       |                       |                                  |                                                 | < 0.004             | < 0.004      | <0.004              | < 0.002           | 4 < 0.004           |
| VC06              | 31/10/2019                    | VC06_0.0-0.1  | 0.0 - 0.1  |                   |                                |                                                     | <5                       | 610                         | ) 19                       | 0 800                            | ) <10 |                     |                        |                       |                           | <50                   | 350                   | 370                   | 720                              | 14                                              |                     | <0.5         | < 0.5               | <0.5              | <u>5</u> 1          |
| VC06              | 31/10/2019                    | VC06_0.0-0.5  | 0.0 - 0.5  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           | -                     |                       |                       |                                  | < 0.5                                           |                     | <0.5         | <0.5                | <0.5              | <u>5</u> <0.5       |
| VC06              | 31/10/2019                    | VC06_0.3-0.4  | 0.5 - 0.4  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            |                     | <0.5<br><0.5 | <0.5                | <0.5<br><0.7      | 5 <0.5<br>5 <0.5    |
| VC06              | 31/10/2019                    | VC06_0.5-0.0  | 0.5 - 1.0  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | 5                   | <0.5         | <0.5                | <0.5              | 5 < 0.5             |
| VC06              | 31/10/2019                    | VC06_0.7-0.8  | 0.7 - 0.8  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | 5                   | <0.5         | <0.5                | <0.5              | 5 < 0.5             |
| VC06              | 31/10/2019                    | VC06_0.8-0.9  | 0.8 - 0.9  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | 5                   | <0.5         | <0.5                | <0.5              | 5 <0.5              |
| VC07              | 30/10/2019                    | VC07_0.0-0.2  | 0.0 - 0.2  |                   | 122                            | 49 17                                               | 75                       | _                           |                            |                                  | <3    | <3                  | 68                     | 79                    | 147                       |                       | ļ                     |                       |                                  |                                                 | 0.307               | < 0.025      | 0.132               | 0.103             | 3 0.417             |
| VC07              | 30/10/2019                    | VC07_0.0-0.5  | 0.0 - 0.5  |                   | 176                            | 69 25                                               | 52                       |                             |                            |                                  | <3    | <3                  | 101                    | 111                   | 212                       |                       |                       |                       |                                  | 2.6                                             | 0.373               | < 0.025      | <0.5                | <0.5              | $\frac{0.8}{5}$     |
| VC07<br>VC07      | 30/10/2019                    | VC07_0.2-0.4  | 0.2 - 0.4  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            |                     | <0.5         | <0.5                | <0.0              | 5 <0.5              |
| VC07              | 30/10/2019                    | VC07 0.5-1.0  | 0.5 - 1.0  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | 5                   | < 0.5        | <0.5                | <0.5              | 5 < 0.5             |
| VC07              | 30/10/2019                    | VC07_0.7-0.8  | 0.7 - 0.7  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | 5                   | <0.5         | <0.5                | <0.5              | 5 < 0.5             |
| VC07              | 30/10/2019                    | VC07_1.0-1.2  | 1.0 - 1.2  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | 5                   | <0.5         | <0.5                | <0.5              | 5 <0.5              |
| VC08              | 31/10/2019                    | VC08_0.0-0.1  | 0.0 - 0.1  |                   |                                |                                                     | <5                       | 50 190                      | ) <10                      | U 190                            | ) <10 |                     |                        |                       |                           | <50                   | 110                   | 110                   | 220                              | 5.9                                             | )                   | < 0.5        | < 0.5               | < 0.5             | <u>5 0.6</u>        |
|                   | 31/10/2019                    |               | 0.3 - 0.4  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | 26.4                                            | •                   | <0.5         | <0.5                | 0.8               | <u>3 2</u>          |
| VC08              | 31/10/2019                    | VC08_0.5-0.6  | 0.5 - 0.6  |                   |                                |                                                     | _                        |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | ;                   | <0.5         | <0.5                | <0.5<br><0.5      | 5 < 0.5             |
| VC08              | 31/10/2019                    | VC08 0.5-1.0  | 0.5 - 1.0  |                   |                                |                                                     |                          |                             |                            | 1                                |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | 5                   | < 0.5        | <0.5                | <0.5              | 5 < 0.5             |
| VC08              | 31/10/2019                    | VC08_0.7-0.8  | 0.7 - 0.8  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | < 0.5                                           | i                   | < 0.5        | < 0.5               | <0.5              | 5 < 0.5             |
| VC08              | 31/10/2019                    | VC08_1.0-1.1  | 1.0 - 1.1  |                   |                                |                                                     |                          |                             |                            |                                  |       |                     |                        |                       |                           |                       |                       |                       |                                  | <0.5                                            | 6                   | <0.5         | <0.5                | <0.5              | 5 <0.5              |
| VC08              | 31/10/2019                    | VC08_1.0-1.5  | 1.0 - 1.5  |                   | 66                             | 48 1´                                               | 14                       |                             |                            |                                  | <3    | <3                  | 18                     | 70                    | 88                        |                       |                       |                       |                                  |                                                 | < 0.004             | < 0.004      | <0.004              | < 0.002           | 4 <0.5              |

|                |                                |                              |            | -3 (>C16-C34<br>-raction) | -4 (>C34-C40<br>-raction)<br>>C10-C40 (Sum of | -c10-c16 SG<br>Cleanup | C16-C34 SG<br>Cleanup | •C34-C40 SG<br>Cleanup | -C10-C40 (sum) SG<br>Cleanup | C6-C9 Fraction | C10-C14 Fraction | C15-C28 Fraction | C29-C36 Fraction | C10-C36 (Sum of Total) | C10-C14 SG Cleanup | C15-C28 SG Cleanup | 229-C36 SG Cleanup | C10-C36 (sum) SG<br>Cleanup | Sum of polycyclic<br>aromatic hydrocarbons | 3enzo(e)pyrene | Acenaphthene                                                                 | Acenaphthylene | Anthracene         | 3enz(a)anthracene                            |
|----------------|--------------------------------|------------------------------|------------|---------------------------|-----------------------------------------------|------------------------|-----------------------|------------------------|------------------------------|----------------|------------------|------------------|------------------|------------------------|--------------------|--------------------|--------------------|-----------------------------|--------------------------------------------|----------------|------------------------------------------------------------------------------|----------------|--------------------|----------------------------------------------|
| [              |                                |                              |            | mg/kg                     | mg/kg mg/l                                    | kg mg/kg               | mg/kg                 | mg/kg                  | mg/kg                        | mg/kg          | mg/kg            | mg/kg            | mg/kg            | mg/kg mg               | g/kg m             | g/kg               | mg/kg              | mg/kg                       | mg/kg                                      | mg/kg          | mg/kg                                                                        | mg/kg          | mg/kg              | mg/kg                                        |
| EQL            | General Solid Waste SCC1 (wit  |                              |            | 3                         | 5 3                                           | 50                     | 100                   | 100                    | 50                           | 3              | 3                | 3                | 5                | 3 5                    | 50 1               | 00                 | 100                | 50                          | 0.5                                        | 0.004          | 0.004                                                                        | 0.004          | 0.004              | 0.004                                        |
| NSW EPA (2014) | General Solid Waste TCLP1      |                              |            |                           |                                               |                        |                       |                        |                              | 000            |                  |                  |                  | 10,000                 |                    |                    |                    | 10,000                      |                                            |                |                                                                              |                |                    |                                              |
| NSW EPA (2014) | Restricted Solid Waste SCC2 (v | (with TCLP)                  |            |                           |                                               |                        |                       |                        |                              | 2,600          |                  |                  |                  | 40,000                 |                    |                    |                    | 40,000                      |                                            |                |                                                                              |                |                    |                                              |
| NSW EPA (2014) | Restricted Solid Waste TCLP2   |                              |            |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             |                                            |                |                                                                              |                |                    |                                              |
| Location Code  | Date                           | Field ID                     | Depth      |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             |                                            |                |                                                                              |                |                    |                                              |
| BH05           | 7/11/2019                      | BH05_4.6-4.7                 | 4.6 - 4.7  |                           |                                               | <50                    | 0 320                 | ) <100                 | ) 320                        | <10            |                  |                  |                  |                        | <50                | 220                | 140                | 360                         | 30.9                                       |                | <0.5                                                                         | 0.5            | , <u>0.</u> €      | <u>з</u> 2.4                                 |
| BH06           | 7/11/2019                      | BH06_1.2-1.45                | 1.2 - 1.45 |                           |                                               | <50                    | 0 850                 | ) 170                  | 0 1020                       | <10            |                  |                  |                  |                        | <50                | 560                | 400                | 960                         | 9.1                                        |                | <0.5                                                                         | < 0.5          | <0.5               | <u>5                                    </u> |
| BH07<br>VC01   | 30/10/2019                     | BH07_2.5-2.95                | 2.5 - 2.95 |                           |                                               | <50                    | 0 <100                | (100                   | ) <50                        | <10            |                  |                  |                  |                        | <50                | <100               | <100               | <50                         | <0.5<br><0.5                               |                | <0.5                                                                         | <0.5<br><0.5   | <0.5<br><0.7       | ゝ <0.5<br>5 <0.5                             |
| VC01           | 30/10/2019                     | VC01_0.0-0.2                 | 0.0 - 0.2  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | 13                                         |                | <0.5                                                                         | < 0.5          | , <0.ť             | 5 1.2                                        |
| VC01           | 30/10/2019                     | VC01_0.5-1.0                 | 0.5 - 1.0  | <                         | 3 <5                                          | <3                     |                       |                        |                              | <3             | <3               | <3               | <5               | <3                     |                    |                    |                    |                             |                                            | < 0.004        | < 0.004                                                                      | < 0.004        | < 0.002            | 4 < 0.004                                    |
| VC01           | 30/10/2019                     | VC01_1.0-1.1                 | 1.0 - 1.1  | <                         | 3 <5                                          | <3                     |                       | -                      |                              | <3             | <3               | <3               | <5               | <3                     |                    |                    |                    |                             | 17 7                                       | <0.004         | < 0.004                                                                      | < 0.004        | < 0.004            | ↓ <0.004                                     |
| VC02           | 30/10/2019                     | VC02_0.5-0.6                 | 0.5 - 0.6  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | 17.7                                       |                | <0.5                                                                         | <0.5           | <0.5               | 5 < 0.5                                      |
| VC02           | 30/10/2019                     | VC02_0.5-1.0                 | 0.5 - 1.0  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | < 0.5          | , <0.5             | 5 <0.5                                       |
| VC02           | 30/10/2019                     | VC02_1.0-1.2                 | 1.0 - 1.2  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | < 0.5                                      |                | <0.5                                                                         | < 0.5          | <0.5               | <u>5 &lt;0.5</u>                             |
| VC02           | 30/10/2019                     | VC02_1.0-1.5                 | 1.0 - 1.5  | <                         | 2 <5                                          | <3                     |                       |                        |                              | <3             | <3               | < 3              | <5               | <3                     |                    |                    |                    |                             | <0.5                                       | <0.004         | <0.5                                                                         | <0.5           | <0.5               | > <0.5<br>4 0.005                            |
| VC02           | 31/10/2019                     | VC02_1.3-1.0                 | 0.0 - 0.5  | 78                        | 3 28 1                                        | 10                     |                       |                        |                              | <3             | <3               | 48               | 46               | 94                     |                    |                    |                    |                             |                                            | 0.631          | 0.044                                                                        | 0.297          | 0.286              | ô 1.13                                       |
| VC03           | 30/10/2019                     | VC03_0.0-0.2                 | 0.0 - 0.2  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | , <0. <del>č</del> | <u>5</u> <0.5                                |
| VC03           | 30/10/2019                     | VC03_0.0-0.5                 | 0.0 - 0.5  | <                         | 8 <5                                          | <3                     |                       |                        |                              | <3             | <3               | <3               | <5               | <3                     |                    |                    |                    |                             |                                            | < 0.004        | < 0.004                                                                      | < 0.004        | < 0.004            | 4 < 0.004                                    |
| VC03           | 30/10/2019                     | VC03_0.3-0.4                 | 0.3 - 0.4  | <                         | 3 <5                                          | <3                     |                       |                        |                              | <3             | <3               | <3               | <5               | <3                     |                    |                    |                    |                             | <0.5                                       | <0.004         | <u>0.004 &lt;0.5 &lt;0 5 &lt;0 5 &lt;0 5 &lt;0 5 &lt;0 5 &lt;0 5 &lt;0 5</u> | <0.004<br><0.5 | <0.004<br><0.004   | + <0.004<br>5 <0.5                           |
| VC03           | 30/10/2019                     | VC03_0.5-1.0                 | 0.5 - 1.0  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | <0.5               | 5 < 0.5                                      |
| VC03           | 30/10/2019                     | VC03_0.6-0.7                 | 0.6 - 0.7  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | , <0.5             | 5 <0.5                                       |
| VC03           | 30/10/2019                     | VC03_1.0-1.2                 | 1.0 - 1.2  |                           |                                               |                        |                       | _                      |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | < 0.5                                      |                | < 0.5                                                                        | < 0.5          | <0.5               | <u>، &lt;0.5</u>                             |
| VC04           | 30/10/2019                     | VC04_0.0-0.1                 | 0.0 - 0.1  |                           | 2 <5                                          | <3                     |                       |                        |                              | <3             | <3               | < 3              | <5               | <3                     |                    |                    |                    |                             | <0.5                                       | <0.004         | <0.5                                                                         | <0.5           | <0.5               | > <0.5<br>4 <0.004                           |
| VC04           | 30/10/2019                     | VC04_0.5-0.4                 | 0.5 - 1.0  |                           | , <u>&lt;</u><br>, <5                         | 4                      |                       |                        |                              | <3             | <3               | 5                | <5               | 5                      |                    |                    |                    |                             |                                            | <0.004         | <0.004                                                                       | <0.004         | <0.004             | 5 < 0.005                                    |
| VC04           | 31/10/2019                     | VC04_0.5-0.6                 | 0.5 - 0.6  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | , <0.5             | 5 <0.5                                       |
| VC04           | 31/10/2019                     | VC04_0.7-0.8                 | 0.7 - 0.8  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | < 0.5                                      |                | <0.5                                                                         | < 0.5          | <0.5               | <u>ة &lt;0.5</u>                             |
| VC04           | 31/10/2019                     | VC04_0.9-1.0                 | 0.9 - 1.0  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | <0.5               | ッ <0.5<br>5 <0.5                             |
| VC05           | 30/10/2019                     | VC05_0.5-0.7                 | 0.5 - 0.7  |                           |                                               | -                      |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | <0.5               | 5 <0.5                                       |
| VC05           | 30/10/2019                     | VC05_0.5-0.9                 | 0.5 - 0.9  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | , <0.5             | 5 <0.5                                       |
| VC05           | 30/10/2019                     | VC05_0.8-0.9                 | 0.8 - 0.9  | <:                        | 3 <5                                          | <3                     |                       | 100                    |                              | <3             | <3               | <3               | <5               | <3                     | = 0                | 0.50               | 0.70               | 700                         |                                            | < 0.004        | < 0.004                                                                      | < 0.004        | < 0.002            | 4 < 0.004                                    |
| VC06           | 31/10/2019                     | VC06_0.0-0.1                 | 0.0 - 0.1  |                           |                                               | <50                    | 0 610                 | ) 190                  | 008 (                        | <10            |                  |                  |                  |                        | <50                | 350                | 370                | 720                         | 14                                         |                | < 0.5                                                                        | < 0.5          | <0.5               | 5 <u>∠05</u>                                 |
| VC06           | 31/10/2019                     | VC06_0.3-0.4                 | 0.3 - 0.4  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | <0.5               | 5 < 0.5                                      |
| VC06           | 31/10/2019                     | VC06_0.5-0.6                 | 0.5 - 0.6  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | < 0.5          | , <0.5             | 5 <0.5                                       |
| VC06           | 31/10/2019                     | VC06_0.5-1.0                 | 0.5 - 1.0  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | <0.5               | 5 <0.5                                       |
| VC06           | 31/10/2019                     | VC06_0.7-0.8                 | 0.7 - 0.8  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | < 0.5                                      |                | < 0.5                                                                        | < 0.5          | <0.5               | 5 <0.5<br>5 <0.5                             |
| VC00           | 30/10/2019                     | VC07_0.0-0.2                 | 0.0 - 0.2  | 122                       | 2 49 1                                        | 75                     |                       |                        |                              | <3             | <3               | 68               | 79               | 147                    |                    |                    |                    |                             | <b>NU.5</b>                                | 0.307          | <0.025                                                                       | 0.132          | 0.10               | 3 0.417                                      |
| VC07           | 30/10/2019                     | VC07_0.0-0.5                 | 0.0 - 0.5  | 176                       | 69 2                                          | 52                     |                       |                        |                              | <3             | <3               | 101              | 111              | 212                    |                    |                    |                    |                             |                                            | 0.373          | <0.025                                                                       | < 0.5          | , <0.5             | 5 0.8                                        |
| VC07           | 30/10/2019                     | VC07_0.2-0.4                 | 0.2 - 0.4  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | 3.6                                        |                | <0.5                                                                         | <0.5           | <0.5               | 5 <0.5                                       |
| VC07           | 30/10/2019                     | VC07_0.5-0.6                 | 0.5 - 0.6  |                           |                                               |                        |                       | -                      |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | < 0.5                                      |                | <0.5                                                                         | < 0.5          | <0.5               | 5 <0.5<br>5 <0.5                             |
| VC07           | 30/10/2019                     | VC07_0.5-1.0                 | 0.7 - 0.7  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | <0.5               | 5 < 0.5                                      |
| VC07           | 30/10/2019                     | VC07_1.0-1.2                 | 1.0 - 1.2  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | < 0.5                                      |                | <0.5                                                                         | < 0.5          | , <0.5             | 5 < 0.5                                      |
| VC08           | 31/10/2019                     | VC08_0.0-0.1                 | 0.0 - 0.1  |                           |                                               | <5(                    | 0 190                 | ) <100                 | ) 190                        | <10            |                  |                  |                  |                        | <50                | 110                | 110                | 220                         | 5.9                                        |                | <0.5                                                                         | <0.5           | <0.5               | 5 0.6                                        |
| VC08           | 31/10/2019                     | VC08_0.3-0.4                 | 0.3 - 0.4  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | 26.4                                       |                | <0.5                                                                         | < 0.5          | 0.8                | 3 2                                          |
| VC08           | 31/10/2019                     | VC08_0.0-0.5                 | 0.0-0.5    |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | 2.8<br><0.5                                |                | <0.5<br><0.5                                                                 | <0.5<br><0.5   | <0.5<br><0 !       | <ul> <li>&lt;0.5</li> <li>&lt;0.5</li> </ul> |
| VC08           | 31/10/2019                     | VC08_0.5-1.0                 | 0.5 - 1.0  |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | < 0.5                                      |                | < 0.5                                                                        | < 0.5          | , <0.5             | 5 < 0.5                                      |
| VC08           | 31/10/2019                     | VC08_0.7-0.8                 | 0.7 - 0.8  |                           | 1                                             |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | , <0. <del>;</del> | 5 <0.5                                       |
| VC08           | 31/10/2019                     | VC08_1.0-1.1                 | 1.0 - 1.1  |                           |                                               | 14                     |                       |                        | +                            |                |                  |                  | 70               | 00                     |                    |                    |                    |                             | <0.5                                       |                | < 0.5                                                                        | < 0.5          | <0.5               | <u>i &lt;0.5</u>                             |
|                | 31/10/2019                     | VC08_1.0-1.5<br>VC08_1.3-1.4 | 1.0 - 1.5  | 66                        | <u>48</u> 1                                   | 14                     | +                     | +                      | +                            | <3             | <3               | 18               | 70               | 88                     |                    |                    |                    |                             | <0 5                                       | <0.004         | 0.004 <u>&gt;</u><br>۲ ۵ ۶                                                   | <0.004<br><0 F | <0.004<br><0.004   | + <0.5<br>5 <0.5                             |
| VC08           | 31/10/2019                     | VC08_1.5-1.6                 | 1.5 - 1.6  |                           | 1 1                                           |                        | 1                     | 1                      | +                            |                |                  |                  |                  |                        |                    |                    |                    |                             | < 0.5                                      |                | <0.5                                                                         | <0.5           | <0.5               | 5 <0.5                                       |
| VC09           | 30/10/2019                     | VC09_0.0-0.2                 | 0.0 - 0.2  | <                         | 3 <5                                          | <3                     |                       |                        |                              | <3             | <3               | <3               | <5               | <3                     |                    |                    |                    |                             |                                            | <0.004         | <0.004                                                                       | < 0.004        | < 0.002            | 4 <0.004                                     |
| VC09           | 30/10/2019                     | VC09_0.0-0.5                 | 0.0 - 0.5  |                           | ┦──┤──                                        |                        |                       |                        | <u> </u>                     |                |                  | -                |                  |                        |                    |                    |                    |                             | < 0.5                                      |                | < 0.5                                                                        | < 0.5          | <0.5               | <u>ວ່ &lt;0.5</u>                            |
| VC09           | 30/10/2019                     |                              | 0.4 - 0.6  |                           | ┨──┤──                                        |                        | +                     | +                      | +                            |                |                  | <u>├</u>         |                  |                        |                    |                    |                    |                             | <0.5<br><0.5                               | ├              | <0.5<br><0 5                                                                 | <0.5<br><0 F   | <0.5               | <u>&gt; &lt;0.5</u><br>5 <∩ 5                |
| VC09           | 30/10/2019                     | VC09_0.7-0.8                 | 0.7 - 0.8  | <u> </u>                  | 1                                             |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             | <0.5                                       |                | <0.5                                                                         | <0.5           | , <0.5             | 5                                            |
|                |                                |                              |            |                           |                                               |                        |                       |                        |                              |                |                  |                  |                  |                        |                    |                    |                    |                             |                                            |                |                                                                              |                |                    |                                              |


|                      |            |              |           | 2013                      |                           |                                               | TRH - N                | NEPM 20                | 13 - SG (              | Cleanup                      |                | TRH              | I - NEPM         | 1999             |                           | TRH -              | NEPM 19            | 99 - SG            | Cleanup                     |                                            |                |              |                |               |                   |
|----------------------|------------|--------------|-----------|---------------------------|---------------------------|-----------------------------------------------|------------------------|------------------------|------------------------|------------------------------|----------------|------------------|------------------|------------------|---------------------------|--------------------|--------------------|--------------------|-----------------------------|--------------------------------------------|----------------|--------------|----------------|---------------|-------------------|
|                      |            |              |           | F3 (>C16-C34<br>Fraction) | Ft (>C34-C40<br>Fraction) | >C10-C40 (Sum of<br>Total)                    | >C10-C16 SG<br>Cleanup | >C16-C34 SG<br>Cleanup | >C34-C40 SG<br>Cleanup | >C10-C40 (sum) SG<br>Cleanup | C6-C9 Fraction | C10-C14 Fraction | C15-C28 Fraction | C29-C36 Fraction | C10-C36 (Sum of<br>Total) | C10-C14 SG Cleanup | C15-C28 SG Cleanup | C29-C36 SG Cleanup | C10-C36 (sum) SG<br>Cleanup | Sum of polycyclic<br>aromatic hydrocarbons | Benzo(e)pyrene | Acenaphthene | Acenaphthylene | Anthracene    | Benz(a)anthracene |
|                      | 30/10/2010 |              |           | mg/kg                     | mg/kg                     | mg/kg                                         | mg/kg                  | mg/kg                  | mg/kg                  | mg/kg                        | mg/kg          | mg/kg            | mg/kg            | mg/kg            | mg/kg                     | mg/kg              | mg/kg              | mg/kg              | mg/kg                       | mg/kg                                      | mg/kg          | mg/kg        | mg/kg          | mg/kg         | mg/kg             |
| VC10                 | 30/10/2019 | VC10_0.7_0.8 | 0.0 - 1.0 |                           | <5                        | 5 6                                           | 3                      |                        |                        |                              | <3             | < 3              | <3               | <5               | < 3                       |                    |                    |                    |                             | ~0.5                                       | 0.006          | <0.0         |                | <0.0          | 0.012             |
| VC10                 | 31/10/2019 | VC10_0.7-0.0 | 0.0 - 0.2 | ~                         |                           |                                               | 5                      |                        |                        |                              | ~5             | 5                | ~5               | ~5               | -5                        |                    |                    |                    |                             | <0.5                                       | 0.000          | <0.004       | <0.004         | <0.004        | <0.012            |
| VC10                 | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |                           | <5                        | 5 <                                           | 3                      |                        |                        |                              | <3             | < 3              | <3               | <5               | <3                        |                    |                    |                    |                             | ~0.5                                       | <0.004         | <0.0         | <0.0           | <0.0          | <0.0              |
| VC10                 | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |                           |                           |                                               | <u> </u>               |                        |                        |                              | 10             |                  |                  | 10               | -0                        |                    |                    |                    |                             | <0.5                                       | +0.00+         | <0.004       | <0.004         | <0.004        | <0.004            |
| VC11                 | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | < 0.5                                      |                | <0.0         | <0.0           | <0.0          | <0.5              |
| VC11                 | 30/10/2019 | VC11_0.0-0.5 | 0.0-0.5   |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | < 0.5                                      |                | <0.0         | <0.0           | <0.0          | <0.5              |
| VC11                 | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 | F                         | <5                        | 5                                             | 6                      |                        |                        |                              | <3             | <3               | 4                | <5               | 4                         |                    |                    |                    |                             | 10.0                                       | <0 004         | <0.0         | <0.04          | <0.04         | <0.04             |
| VC11                 | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  | •                         |                    |                    |                    |                             | <0.5                                       | -0.001         | <0.5         | <0.5           | <0.5          | <0.5              |
| VC11                 | 30/10/2019 | VC11_1.0-1.2 | 10-12     |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | < 0.5                                      |                | <0.0         | <0.5           | <0.5          | <0.5              |
| VC12                 | 31/10/2019 | VC12 0 0-0 5 | 0.0-0.5   | 185                       | 72                        | 25                                            | 7                      |                        |                        |                              | <3             | <6               | 109              | 112              | 221                       |                    |                    |                    |                             | 0.0                                        | 0 117          | <0.004       | <0.5           | <0.5          | <0.5              |
| VC12                 | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | < 0.5                                      | 0.111          | <0.5         | < 0.5          | < 0.5         | <0.5              |
| VC12                 | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | < 0.5                                      |                | <0.5         | < 0.5          | < 0.5         | <0.5              |
| VC12                 | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | < 0.5                                      |                | < 0.5        | <0.5           | < 0.5         | <0.5              |
| VC12                 | 31/10/2019 | VC12 1.0-1.1 | 1.0 - 1.1 |                           |                           |                                               | <50                    | <100                   | <100                   | <50                          | <10            | )                |                  |                  |                           | <50                | <100               | <100               | <50                         | < 0.5                                      |                | < 0.5        | < 0.5          | < 0.5         | < 0.5             |
| VC13                 | 31/10/2019 | VC13 0.0-0.1 | 0.0 - 0.1 |                           |                           |                                               | <50                    | 160                    | <100                   | 160                          | <10            | )                |                  |                  |                           | <50                | <100               | 100                | 100                         | 6.9                                        |                | < 0.5        | < 0.5          | < 0.5         | 0.7               |
| VC13                 | 31/10/2019 | VC13 0.0-0.5 | 0.0 - 0.5 |                           |                           |                                               |                        |                        |                        |                              | _              |                  |                  |                  |                           |                    |                    |                    |                             | 10.2                                       |                | < 0.5        | < 0.5          | < 0.5         | 1                 |
| VC13                 | 31/10/2019 | VC13 0.3-0.4 | 0.3 - 0.4 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | 4.4                                        |                | < 0.5        | < 0.5          | < 0.5         | 0.5               |
| VC13                 | 31/10/2019 | VC13 0.5-0.6 | 0.5 - 0.6 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | < 0.5          | < 0.5         | < 0.5             |
| VC13                 | 31/10/2019 | VC13 0.5-1.0 | 0.5 - 1.0 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | < 0.5          | <0.5          | <0.5              |
| VC13                 | 31/10/2019 | VC13 0.7-0.8 | 0.7 - 0.8 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | < 0.5                                      |                | <0.5         | < 0.5          | <0.5          | <0.5              |
| VC13                 | 31/10/2019 | VC13 1.0-1.1 | 1.0 - 1.1 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | < 0.5          | <0.5          | <0.5              |
| VC14                 | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | < 0.5          | <0.5          | <0.5              |
| VC14                 | 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | < 0.5          | <0.5          | <0.5              |
| VC14                 | 31/10/2019 | VC14 0.3-0.4 | 0.3 - 0.4 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | < 0.5          | <0.5          | <0.5              |
| VC14                 | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | < 0.5          | <0.5          | <0.5              |
| VC14                 | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | < 0.5          | <0.5          | <0.5              |
| VC14                 | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |                           |                           |                                               | <50                    | <100                   | <100                   | <50                          | <10            |                  |                  |                  |                           | <50                | <100               | <100               | <50                         | <0.5                                       |                | <0.5         | <0.5           | <0.5          | <0.5              |
| VC14                 | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | < 0.5          | <0.5          | <0.5              |
| VC14                 | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             | <0.5                                       |                | <0.5         | <0.5           | <0.5          | <0.5              |
| Statistics           |            |              |           |                           |                           |                                               |                        |                        |                        |                              |                |                  |                  |                  |                           |                    |                    |                    |                             |                                            |                |              |                |               |                   |
| Number of Results    |            |              |           | 17                        | 17                        | 7 1                                           | 7 Q                    | Q                      | Q                      | Q                            | 25             | 17               | 17               | 17               | 17                        | Q                  | Q                  | Q                  | Q                           | 72                                         | 17             | ۵۵           |                | 00            | 00                |
| Number of Detects    |            |              |           |                           | 5                         | <u>,                                     </u> | γ 0<br>7 Λ             | 5                      | 0<br>2                 | 0<br>5                       | 20<br>0        |                  | 7                | 5                | 7                         | 0                  | 0<br>/             | 0                  | 0<br>5                      | 13                                         | 5              | 90           | 30             | 90<br>A       | 90                |
| Minimum Concentratio | n          |              |           |                           | <5                        |                                               | , U<br>3 <50           | <100                   | <100                   | -50<br>-50                   | <2<br>0        | -22<br>          | -22              | -5               | <2<br>1                   |                    | 4<br><100          | <100               |                             | ۲۹<br>۲۵۶                                  |                | <0.001       |                | +             | <0.004            |
| Maximum Concentratio | n          |              |           | 185                       | 72                        | 25                                            | 7 <50                  | 850                    | 100                    | 1020                         | <0<br><10      | <                | 100              | 112              | 221                       | <50                | 560                | 400                | 00×<br>0A0                  | 30.0                                       | 0.000          | <0.004       | 0.004          | 10.004<br>0 R | 24                |
| maximum concondatio  |            |              |           | 100                       | 1 14                      | -1 20                                         | 00                     | 000                    | 100                    | 1020                         | 017            | -0               | 100              | L 114            |                           | 1 100              | 000                | -00                |                             | 50.5                                       | 0.001          | -0.0         | 0.0            | 0.0           | 2.7               |



|   |                                  |                 |              |                                  |                                  |                                                     | PAHs                          |                                  |                |                    |                            |                                  |                |                 |                                     |                                      |                              |                                                                |                                                            |          |                           |
|---|----------------------------------|-----------------|--------------|----------------------------------|----------------------------------|-----------------------------------------------------|-------------------------------|----------------------------------|----------------|--------------------|----------------------------|----------------------------------|----------------|-----------------|-------------------------------------|--------------------------------------|------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------|---------------------------|
|   | a Benzo(b+j+k)fluoranth<br>장 ene | benzo(a) pvrene | μg/L         | යි Benzo[b+j]fluoranthen<br>න් e | a<br>Senzo(k)fluoranthene<br>bar | a<br>Solutiona<br>Solutiona<br>Benzo(g,h,i)perylene | Chrysene<br>Chrysene<br>mg/kg | G<br>Sy<br>Dibenz(a,h)anthracene | Mg/gm<br>by/bm | ∭ayhthalene<br>bay | eueue<br>Linorene<br>mg/kg | al Indeno(1,2,3-<br>S c,d)pyrene | Bhenanthrene   | byrene<br>mg/kg | BAHs (Sum of total) -<br>장 Lab calc | TEQ)(zero LOR) - Lab<br>Calc<br>Calc | TEQ)(zero LOR) - Lab<br>Calc | ୁ Total 8 PAHs (as BaP<br>ସୁ TEQ)(half LOR) - Lab<br>ଦ୍ରି Calc | Total 8 PAHs (as BaP<br>حصل العام (full LOR) - Lab<br>Calc |          | bay/2,4,5-trichlorophenol |
|   | 1                                | 0.004           | 0.005        | 0.004                            | 0.004                            | 0.004                                               | 0.004                         | 0.004                            | 0.004          | 0.005              | 0.004                      | 0.004                            | 0.004          | 0.004           | 0.004                               | 0.5                                  | 0.005                        | 0.5                                                            | 0.5                                                        | 0.4      | 0.5                       |
|   |                                  | 10              | 40           |                                  |                                  |                                                     |                               |                                  |                |                    |                            |                                  |                |                 | 200                                 |                                      |                              |                                                                |                                                            |          | 14,400                    |
|   |                                  | 23              |              |                                  |                                  |                                                     |                               |                                  |                |                    |                            |                                  |                |                 | 800                                 |                                      |                              |                                                                |                                                            |          | 57,600                    |
|   |                                  |                 | 160          |                                  |                                  |                                                     |                               |                                  |                |                    |                            |                                  |                |                 |                                     |                                      |                              |                                                                |                                                            |          |                           |
|   |                                  |                 |              |                                  |                                  |                                                     |                               |                                  |                |                    |                            |                                  |                |                 |                                     |                                      |                              |                                                                |                                                            |          |                           |
|   |                                  | 4               |              | 4 2                              | 17                               | 1.8                                                 | 22                            | <0.5                             | 4 9            | <0.5               | <0.5                       | 15                               | 1 4            | 57              |                                     | 5                                    | 1                            | 5.3                                                            | 5 5                                                        | <1       | <0.5                      |
|   |                                  | 1.1             | <0.5         | 1.4                              | 0.7                              | 0.8                                                 | 0.7                           | <0.5                             | 1.4            | <0.5               | <0.5                       | 0.6                              | <0.5           | 1.6             |                                     | 1.5                                  |                              | 1.7                                                            | 2                                                          | <1       | < 0.5                     |
|   |                                  | <0.5            | <0.5         | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        | <1       | <0.5                      |
|   |                                  | < 0.5           | -0.5         | < 0.5                            | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | < 0.5                      | < 0.5                            | < 0.5          | < 0.5           |                                     | < 0.5                                |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   | <1                               | 1.4             | <0.5         | <0.004                           | 0.8                              | <0.004                                              | <0.004                        | <0.5                             | <0.004         | <0.5               | <0.5                       | 0.8                              | 0.7            | 2.1             | <0.004                              | 1.9                                  |                              | 2.1                                                            | 2.4                                                        | <0.5     | <0.5                      |
|   |                                  | < 0.004         |              | <0.004                           | <0.004                           | <0.004                                              | <0.004                        | < 0.004                          | < 0.004        | < 0.005            | < 0.004                    | < 0.004                          | <0.004         | <0.004          | <0.004                              | 40.0                                 |                              | 0.0                                                            | 1.2                                                        | <1       | < 0.5                     |
|   |                                  | 1.9             | <0.5         | 2.7                              | 0.9                              | 1.6                                                 | 1.5                           | <0.5                             | 2.6            | <0.5               | <0.5                       | 1.2                              | 0.9            | 2.9             |                                     | 2.6                                  |                              | 2.8                                                            | 3.1                                                        |          |                           |
|   |                                  | < 0.5           |              | 0.5                              | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | < 0.5                      | < 0.5                            | < 0.5          | 0.5             |                                     | < 0.5                                |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5<br><0.5    | <0 5         | <0.5<br><0.5                     | <0.5<br><0.5                     | <0.5<br><0.5                                        | <0.5<br><0.5                  | <0.5                             | <0.5           | <0.5<br><0.5       | <0.5                       | <0.5                             | <0.5<br><0.5   | <0.5<br><0.5    |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5            | <b>~</b> 0.0 | <0.5                             | < 0.5                            | <0.5                                                | <0.5                          | < 0.5                            | <0.5           | <0.5               | <0.5                       | < 0.5                            | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | 0.004           |              | < 0.004                          | < 0.004                          | < 0.004                                             | 0.005                         | < 0.004                          | 0.011          | < 0.005            | < 0.004                    | < 0.004                          | 0.004          | 0.01            | 0.039                               |                                      |                              |                                                                |                                                            | <1       | <0.5                      |
|   |                                  | 1.57            | < 0.5        | 1.49                             | 0.661                            | 1                                                   | 0.997                         | 0.219                            | 1.89           | < 0.2              | 0.095                      | 0.963                            | 0.885          | 1.78            | 14.8                                |                                      |                              |                                                                |                                                            | <1       | <0.5                      |
|   |                                  | <0.5            | <0.5         | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            | <0.004                              | <0.5                                 |                              | 0.6                                                            | 1.2                                                        | <1       | <0.5                      |
|   |                                  | <0.004          |              | <0.004                           | <0.004                           | <0.004                                              | <0.004                        | <0.004                           | <0.004         | <0.005             | <0.004                     | < 0.004                          | <0.004         | <0.004          | <0.004                              |                                      |                              |                                                                |                                                            | <1       | < 0.5                     |
|   |                                  | < 0.5           |              | < 0.5                            | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | <0.5                       | < 0.5                            | < 0.5          | < 0.5           | 01001                               | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          | 010                       |
|   |                                  | <0.5            |              | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | < 0.5           |              | < 0.5                            | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | < 0.5                      | < 0.5                            | < 0.5          | < 0.5           |                                     | < 0.5                                |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5<br><0.5    | <0.5         | <0.5<br><0.5                     | <0.5<br><0.5                     | <0.5<br><0.5                                        | <0.5<br><0.5                  | <0.5<br><0.5                     | <0.5<br><0.5   | <0.5<br><0.5       | <0.5<br><0.5               | <0.5<br><0.5                     | <0.5<br><0.5   | <0.5<br><0.5    |                                     | < 0.5                                |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | < 0.004         | -0.0         | < 0.004                          | < 0.004                          | < 0.004                                             | < 0.004                       | < 0.004                          | < 0.004        | <0.005             | < 0.004                    | < 0.004                          | < 0.004        | < 0.004         | <0.004                              | 40.0                                 |                              | 0.0                                                            | 1.2                                                        | <1       | <0.5                      |
|   | <1                               | <0.005          |              | <0.005                           | <0.005                           | <0.005                                              | <0.005                        | <0.005                           | <0.005         | <0.005             | <0.005                     | <0.005                           | <0.005         | <0.005          | <0.005                              | <0.5                                 |                              | 0.7                                                            | 1.4                                                        | <0.6     | <0.6                      |
|   |                                  | < 0.5           | -0.5         | < 0.5                            | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | < 0.5                      | < 0.5                            | < 0.5          | < 0.5           |                                     | < 0.5                                |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5            | <0.5         | <0.5<br><0.5                     | <0.5<br><0.5                     | <0.5<br><0.5                                        | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5            | <0.5         | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | 0.7            | <0.5               | <0.5                       | <0.5                             | <0.5           | 0.8             |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5            |              | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | < 0.5           |              | < 0.5                            | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | < 0.5                      | < 0.5                            | < 0.5          | < 0.5           | -0.004                              | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          | -0.5                      |
|   |                                  | 20.004<br>1.8   |              | 20.004 1.8                       | 0.004                            | <0.004<br>1 1                                       | <0.004<br>1                   | <0.004                           | <0.004<br>2 3  | <0.005             | <0.004                     | 0.004 <u>۵</u>                   | <0.004<br>0.7  | 2.6             | <0.004                              | 23                                   |                              | 2.5                                                            | 2.8                                                        | <1       | <0.5                      |
|   |                                  | <0.5            |              | <0.5                             | < 0.5                            | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | < 0.5                            | <0.5           | <0.5            |                                     | < 0.5                                |                              | 0.6                                                            | 1.2                                                        | ~1       | -0.0                      |
|   |                                  | <0.5            |              | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | < 0.5           |              | < 0.5                            | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | < 0.5                      | < 0.5                            | < 0.5          | < 0.5           |                                     | < 0.5                                |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5<br><0 5    |              | <0.5<br><0.5                     | <0.5<br><0.5                     | <0.5<br><0.5                                        | <0.5<br><0.5                  | <0.5<br><0.5                     | <0.5<br><0 5   | <0.5<br><0 5       | <0.5<br><0.5               | <0.5<br><0.5                     | <0.5<br><0.5   | <0.5<br><0 5    |                                     | <0.5<br><0.5                         |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5            |              | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | 0.627           |              | 0.606                            | 0.304                            | 0.483                                               | 0.378                         | 0.089                            | 0.595          | <0.2               | <0.025                     | 0.375                            | 0.226          | 0.639           | 5.72                                |                                      |                              |                                                                |                                                            | <1       | <0.5                      |
|   | 1                                | 0.8             | <0.5         | 0.799                            | 0.375                            | 0.5                                                 | 0.7                           | < 0.5                            | 1.5            | < 0.2              | < 0.5                      | < 0.5                            | 0.7            | 1.5             | 7.5                                 | 1                                    |                              | 1.3                                                            | 1.5                                                        | <0.5     | <0.5                      |
|   |                                  | 0.7<br><0.5     |              | 0.7<br><0.5                      | <0.5<br><0.5                     | <0.5<br><0.5                                        | <0.5<br><0.5                  | <0.5<br><0.5                     | 1<br><0.5      | <0.5<br><0.5       | <0.5<br><0.5               | <0.5<br><0.5                     | <0.5<br><0.5   | 1.2<br><0.5     |                                     | 0.8<br><0.5                          |                              | 1.1                                                            | 1.4                                                        |          |                           |
|   |                                  | <0.5            |              | <0.5                             | < 0.5                            | <0.5                                                | < 0.5                         | < 0.5                            | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5            |              | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | < 0.5           | <0 E         | < 0.5                            | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | < 0.5                      | < 0.5                            | < 0.5          | < 0.5           |                                     | < 0.5                                |                              | 0.6                                                            | 1.2                                                        | -1       | <0 E                      |
|   |                                  | 0.9             | <0.5         | 3                                | <0.5                             | <0.5<br>1.1                                         | 0.0                           | < 0.5                            | 4.6            | <0.5               | <0.5                       | <0.5<br>0.9                      | <0.5<br>2.7    | 1.5             |                                     | 3.8                                  |                              | 1.4                                                            | 4.2                                                        | <u> </u> | <0.5                      |
|   |                                  | 0.6             | 0.7          | 0.7                              | <0.5                             | <0.5                                                | < 0.5                         | < 0.5                            | 0.7            | <0.5               | <0.5                       | < 0.5                            | <0.5           | 0.8             |                                     | 0.7                                  |                              | 1                                                              | 1.3                                                        |          |                           |
|   |                                  | <0.5            |              | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | < 0.5           |              | < 0.5                            | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | < 0.5                      | < 0.5                            | < 0.5          | < 0.5           |                                     | < 0.5                                |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5<br><0.5    |              | <0.5<br><0.5                     | <0.5<br><0.5                     | <0.5<br><0.5                                        | <0.5<br><0.5                  | <0.5<br><0.5                     | <0.5           | <0.5<br><0.5       | <0.5<br><0.5               | <0.5<br><0.5                     | <0.5<br><0.5   | <0.5<br><0.5    |                                     | <0.5                                 |                              | 0.0<br>0.6                                                     | 1.2                                                        |          |                           |
| _ | <1                               | <0.5            |              | 0.009                            | < 0.004                          | <0.5                                                | <0.5                          | <0.004                           | <0.5           | <0.005             | <0.004                     | <0.5                             | <0.5           | <0.5            | <0.5                                | <0.5                                 |                              | 0.6                                                            | 1.2                                                        | <0.5     | <0.5                      |
|   |                                  | <0.5            |              | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | < 0.5           |              | < 0.5                            | < 0.5                            | < 0.5                                               | < 0.5                         | < 0.5                            | < 0.5          | < 0.5              | < 0.5                      | < 0.5                            | < 0.5          | < 0.5           | ~0.004                              | <0.5                                 |                              | 0.6                                                            | 1.2                                                        | - 4      | -0 F                      |
|   |                                  | <0.004<br><0.5  |              | <0.004<br><0.5                   | <0.004<br><0.5                   | <0.004<br><0.5                                      | <0.004<br><0.5                | <0.004<br><0.5                   | <0.004<br><0.5 | <0.005<br><0.5     | <0.004<br><0.5             | <0.004<br><0.5                   | <0.004<br><0.5 | <0.004<br><0.5  | <0.004                              | <0.5                                 |                              | 0.6                                                            | 1 2                                                        | <1       | <0.5                      |
|   |                                  | <0.5            |              | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <u>&lt;0.5</u>             | <u>&lt;0</u> .5                  | <0.5           | <0.5            |                                     | < <u>0.5</u>                         |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5            |              | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |
|   |                                  | <0.5            | <0.5         | <0.5                             | <0.5                             | <0.5                                                | <0.5                          | <0.5                             | <0.5           | <0.5               | <0.5                       | <0.5                             | <0.5           | <0.5            |                                     | <0.5                                 |                              | 0.6                                                            | 1.2                                                        |          |                           |

|                  |                                |               |            |          |              |                                                                                          |                    |               | PAHs          |               |               |                |                                              |              |              |               |           |              |                               |                   |                   |             |              |
|------------------|--------------------------------|---------------|------------|----------|--------------|------------------------------------------------------------------------------------------|--------------------|---------------|---------------|---------------|---------------|----------------|----------------------------------------------|--------------|--------------|---------------|-----------|--------------|-------------------------------|-------------------|-------------------|-------------|--------------|
|                  |                                |               |            | th       |              | Le                                                                                       | Ð                  | (I)           |               | ene           |               |                |                                              |              |              |               | · (       | ч<br>в       | ab<br>ab                      | d q               | <u>д</u> 0        | q, r        |              |
|                  |                                |               |            | oran     |              | uthe "                                                                                   | hen                | lene          |               | ace           |               |                |                                              |              |              |               | (tal)     | а<br>Г       | , La                          | Ва<br>- Га        | s Ba<br>Lat       | <u>ب</u>    | eno          |
|                  |                                |               |            | lluc     |              | oral                                                                                     | ant                | ery           |               | lthr          |               |                |                                              |              | d)           |               | of to     | (as<br>DR)   | (as<br>DR)                    | R) .              | (as<br>(2) -      | eno         | bhe          |
|                  |                                |               |            | [+K)     |              | jflu                                                                                     | nor                | d(i,i         |               | h)aı          | ene           | ane            |                                              | က်မ          | rene         |               | Б<br>Е    | NHS<br>0 L C | AHs<br>o LC                   | LO<br>LO          | LOF               | yd.         | lord         |
|                  |                                |               |            | (+q)     |              | [b+j                                                                                     | (k)fl              | (g,h          | sne           | <u>r</u> (a,I | nthe          | Jale           | це                                           | (1,2         | nthi         | (h)           | lc (Su    |              | zerc                          | r P∕<br>nalf      | l III             | ithy        | rich         |
|                  |                                |               |            | ÖZL      |              |                                                                                          | IZO                | IZO           | Jse           | enz           | oral          | ohth           | orei                                         | eno<br>)pyr  | ena          | ene           | Hs<br>ca  | င (၁<br>၁    | al 8<br>Q)( <sub>2</sub><br>c | al 8<br>၁)(†<br>င | al 8<br>သ)(f<br>c | -Me<br>sol) | ,5-tl        |
|                  |                                |               |            | Ber      |              | e Ber                                                                                    | Ber                | Ber           | Chi           | Dib           | Flu           | Nat            | Flu                                          | c,d          | Phe          | Pyr           | PA<br>Lat | Cal TE       | Tot<br>TE(<br>Cal             | Tot<br>Cal        | Tot<br>TE(<br>Cal | 3,4<br>cre  | 2,4          |
|                  |                                |               |            | mg/kg    | mg/kg        | µg/L mg/kg                                                                               | mg/kg              | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/kg          | mg/kg                                        | mg/kg        | mg/kg        | mg/kg         | mg/kg     | mg/kg        | µg/L                          | mg/kg             | mg/kg             | mg/kg       | mg/kg        |
| EQL              |                                |               |            | 1        | 0.004        | 0.005 0.004                                                                              | 0.004              | 0.004         | 0.004         | 0.004         | 0.004         | 0.005          | 0.004                                        | 0.004        | 0.004        | 0.004         | 0.004     | 0.5          | 0.005                         | 0.5               | 0.5               | 0.4         | 0.5          |
| NSW EPA (2014) ( | General Solid Waste SCC1 (with | n TCLP)       |            |          | 10           | 40                                                                                       |                    |               |               |               |               |                |                                              |              |              |               | 200       |              |                               |                   |                   |             | 14,400       |
| NSW EPA (2014) F | Restricted Solid Waste SCC2 (w | vith TCLP)    |            |          | 23           | 40                                                                                       |                    |               |               |               |               |                |                                              |              |              |               | 800       |              |                               |                   |                   |             | 57.600       |
| NSW EPA (2014) F | Restricted Solid Waste TCLP2   |               |            |          |              | 160                                                                                      |                    |               |               |               |               |                |                                              |              |              |               |           |              |                               |                   |                   |             |              |
|                  |                                |               | _          |          |              |                                                                                          |                    |               |               |               |               |                |                                              |              |              |               |           |              |                               |                   |                   |             |              |
| Location Code    | Date                           | Field ID      | Depth      | <u> </u> | 1            |                                                                                          |                    | 4.0           | 0.0           | -0 F          | 1.0           | -0.5           | · 10 F                                       | 4.5          | 4 4          | <b>F 7</b>    |           |              |                               | <u> </u>          |                   |             | -0 E         |
| BH05<br>BH06     | 7/11/2019                      | BH05_4.6-4.7  | 4.0 - 4.7  |          | 1 1          | 4.2                                                                                      | 2 I.7<br>4 0.7     | 1.8           | 2.2           | <0.5          | 4.9           | <0.5<br><0.5   | <pre>0.5 </pre>                              | 1.5<br>0.6   | 1.4<br><0.5  | 5.7<br>1.6    |           | 5<br>15      |                               | 5.3               | <u> </u>          | <1          | <0.5         |
| BH07             | 7/11/2019                      | BH07 2.5-2.95 | 2.5 - 2.95 |          | <0.5         | 5 <0.5 <0.5                                                                              | 5 < 0.5            | <0.5          | < 0.5         | < 0.5         | <0.5          | < 0.5          | < 0.5                                        | < 0.5        | <0.5         | <0.5          |           | < 0.5        |                               | 0.6               | 1.2               | <1          | < 0.5        |
| VC01             | 30/10/2019                     | vc01_0.4-0.6  | 0.4 - 0.6  |          | <0.5         | 5 <0.5                                                                                   | 5 <0.5             | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | o <0.5                                       | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC01             | 30/10/2019                     | VC01_0.0-0.2  | 0.0 - 0.2  |          | 1.4          | <0.5 1.9                                                                                 | 9 0.8              | 1.1           | 1.1           | <0.5          | 1.9           | <0.5           | < 0.5                                        | 0.8          | 0.7          | 2.1           |           | 1.9          |                               | 2.1               | 2.4               |             |              |
| VC01             | 30/10/2019                     | VC01_0.5-1.0  | 0.5 - 1.0  | <1       | < 0.004      | <ol> <li>&lt;0.004</li> <li>&lt;0.004</li> </ol>                                         | 4 < 0.004          | < 0.004       | < 0.004       | < 0.004       | < 0.004       | <0.005         | < 0.004                                      | < 0.004      | <0.004       | < 0.004       | <0.004    | <0.5         |                               | 0.6               | 1.2               | < 0.5       | <0.5         |
| VC01             | 30/10/2019                     | VC02_0.0-0.2  | 0.0 - 0.2  |          | < 0.002      | < 0.002                                                                                  | 4 <0.004<br>7 0.9  | <0.004<br>1 6 | <0.004<br>1 5 | <0.004        | <0.004<br>2.6 | <0.005<br><0.5 | <0.004                                       | <0.004       | 0.004×<br>۱۹ | <0.004<br>2 9 | <0.004    | 2.6          |                               | 28                | 31                | <1          | <0.5         |
| VC02             | 30/10/2019                     | VC02_0.0-0.2  | 0.5 - 0.6  |          | <0.5         | 5 0.5                                                                                    | 5 < 0.5            | <0.5          | < 0.5         | <0.5          | < 0.5         | <0.5           | <ol> <li>&lt;0.5</li> <li>&lt;0.5</li> </ol> | < 0.5        | <0.5         | 0.5           |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC02             | 30/10/2019                     | VC02_0.5-1.0  | 0.5 - 1.0  |          | <0.5         | 5 <0.5                                                                                   | 5 <0.5             | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | i <0.5                                       | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC02             | 30/10/2019                     | VC02_1.0-1.2  | 1.0 - 1.2  |          | <0.5         | 5 <0.5 <0.5                                                                              | 5 < 0.5            | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | < 0.5                                        | < 0.5        | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC02             | 30/10/2019                     | VC02_1.0-1.5  | 1.0 - 1.5  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | <0.5          | < 0.5         | <0.5          | < 0.5         | <0.5           | < 0.5                                        | < 0.5        | < 0.5        | < 0.5         | 0.020     | <0.5         |                               | 0.6               | 1.2               |             | <0 F         |
| VC02             | 31/10/2019                     | VC02_1.5-1.6  | 1.5 - 1.6  |          | 0.002        | <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> | 4 <0.004<br>0 661  | <0.004<br>1   | 0.005         | <0.004        | 0.011         | <0.005         | 0.004                                        | <0.004       | 0.004        | 1 78          | 14.8      |              |                               | ┢────┼            |                   | <1          | <0.5         |
| VC03             | 30/10/2019                     | VC03 0.0-0.2  | 0.0 - 0.2  |          | <0.5         | 5 <0.5 <0.5                                                                              | 5 < 0.5            | <0.5          | < 0.5         | <0.5          | <0.5          | < 0.5          | < 0.5                                        | < 0.5        | <0.5         | <0.5          | 14.0      | <0.5         |                               | 0.6               | 1.2               |             | -0.0         |
| VC03             | 30/10/2019                     | VC03_0.0-0.5  | 0.0 - 0.5  |          | < 0.004      | < 0.004                                                                                  | 4 < 0.004          | <0.004        | <0.004        | <0.004        | <0.004        | <0.005         | 6 < 0.004                                    | < 0.004      | <0.004       | <0.004        | <0.004    |              |                               |                   |                   | <1          | <0.5         |
| VC03             | 30/10/2019                     | VC03_0.3-0.4  | 0.3 - 0.4  |          | < 0.004      | < 0.004                                                                                  | 4 < 0.004          | < 0.004       | < 0.004       | < 0.004       | < 0.004       | < 0.005        | < 0.004                                      | < 0.004      | <0.004       | <0.004        | <0.004    |              |                               |                   |                   | <1          | <0.5         |
| VC03             | 30/10/2019                     | VC03_0.4-0.6  | 0.4 - 0.6  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | <0.5          | < 0.5         | < 0.5         | < 0.5         | < 0.5          | < 0.5                                        | < 0.5        | < 0.5        | < 0.5         |           | < 0.5        |                               | 0.6               | 1.2               | ]           | <u> </u>     |
| VC03             | 30/10/2019                     | VC03_0.5-1.0  | 0.5 - 1.0  |          | <0.5<br><0.5 | 5 <0.5<br>5 <0.5                                                                         | 5 <0.5<br>5 <0.5   | <0.5          | <0.5          | < 0.5         | <0.5<br><0.5  | <0.5<br><0.5   | <pre>0.5 </pre>                              | < 0.5        | <0.5         | <0.5          |           | <0.5         |                               | 0.0               | 1.2               |             |              |
| VC03             | 30/10/2019                     | VC03 1.0-1.2  | 1.0 - 1.2  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | <0.5          | < 0.5         | < 0.5         | < 0.5         | < 0.5          | < 0.5                                        | < 0.5        | < 0.5        | < 0.5         |           | < 0.5        |                               | 0.6               | 1.2               |             |              |
| VC04             | 30/10/2019                     | VC04_0.0-0.1  | 0.0 - 0.1  |          | <0.5         | 5 <0.5 <0.5                                                                              | 5 <0.5             | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | i <0.5                                       | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC04             | 30/10/2019                     | VC04_0.3-0.4  | 0.3 - 0.4  |          | < 0.004      | < 0.004                                                                                  | 4 < 0.004          | < 0.004       | < 0.004       | < 0.004       | < 0.004       | < 0.005        | < 0.004                                      | < 0.004      | < 0.004      | < 0.004       | < 0.004   | .0.5         |                               |                   |                   | <1          | < 0.5        |
| VC04             | 31/10/2019                     | VC04_0.5-1.0  | 0.5 - 1.0  | <        | <0.005       |                                                                                          | 5 < 0.005          | <0.005        | <0.005        | <0.005        | <0.005        | <0.005         | <0.005                                       | < 0.005      | <0.005       | <0.005        | <0.005    | < 0.5        |                               | 0.7               | 1.4               | <0.6        | <0.6         |
| VC04             | 31/10/2019                     | VC04_0.3-0.0  | 0.7 - 0.8  |          | <0.5         | 5 < 0.5 < 0.5                                                                            | 5 < 0.5            | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | <pre>0.5 </pre>                              | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC04             | 31/10/2019                     | VC04_0.9-1.0  | 0.9 - 1.0  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | < 0.5                                        | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC05             | 30/10/2019                     | VC05_0.0-0.1  | 0.0 - 0.1  |          | <0.5         | 5 <0.5 <0.5                                                                              | 5 < 0.5            | <0.5          | <0.5          | <0.5          | 0.7           | <0.5           | < 0.5                                        | <0.5         | <0.5         | 0.8           |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC05             | 30/10/2019                     | VC05_0.5-0.7  | 0.5 - 0.7  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | <0.5          | < 0.5         | < 0.5         | < 0.5         | < 0.5          | < 0.5                                        | < 0.5        | < 0.5        | < 0.5         |           | < 0.5        |                               | 0.6               | 1.2               | ]           | <u> </u>     |
| VC05             | 30/10/2019                     | VC05_0.5-0.9  | 0.5 - 0.9  |          | <0.04        |                                                                                          | 5 <0.5<br>4 <0.004 | <0.0          | <0.0          | <0.5          | <0.0          | <0.0           | <0.0                                         | <0.0         | <0.0         | <0.5          | <0.004    | <0.5         |                               | 0.0               | 1.2               | <1          | <0.5         |
| VC06             | 31/10/2019                     | VC06 0.0-0.1  | 0.0 - 0.1  |          | 1.8          | 3 1.8                                                                                    | 8 0.8              | 1.1           | 1             | <0.5          | 2.3           | < 0.5          | < 0.5                                        | 0.9          | 0.7          | 2.6           | 0.001     | 2.3          |                               | 2.5               | 2.8               | <1          | < 0.5        |
| VC06             | 31/10/2019                     | VC06_0.0-0.5  | 0.0 - 0.5  |          | <0.5         | 5 <0.5                                                                                   | 5 <0.5             | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | o <0.5                                       | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC06             | 31/10/2019                     | VC06_0.3-0.4  | 0.3 - 0.4  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | < 0.5         | < 0.5         | < 0.5         | < 0.5         | < 0.5          | < 0.5                                        | < 0.5        | < 0.5        | < 0.5         |           | < 0.5        |                               | 0.6               | 1.2               | ]           | <u> </u>     |
| VC06             | 31/10/2019                     | VC06_0.5-0.6  | 0.5 - 0.6  |          | <0.5         | > <0.5                                                                                   | 5 <0.5             | <0.5          | <0.5          | < 0.5         | <0.5          | <0.5           | <0.5                                         | <0.5         | <0.5         | <0.5          |           | < 0.5        |                               | 0.6               | 1.2               | ]           | ───┤         |
| VC06             | 31/10/2019                     | VC06_0.7-0.8  | 0.7 - 0.8  |          | <0.5         | 5 <0.5                                                                                   | 5 <0.5             | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | o <0.5                                       | < 0.5        | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             | <u>├</u> ──┤ |
| VC06             | 31/10/2019                     | VC06_0.8-0.9  | 0.8 - 0.9  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | i <0.5                                       | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC07             | 30/10/2019                     | VC07_0.0-0.2  | 0.0 - 0.2  |          | 0.627        | 0.606                                                                                    | 6 0.304            | 0.483         | 0.378         | 0.089         | 0.595         | <0.2           | < 0.025                                      | 0.375        | 0.226        | 0.639         | 5.72      |              |                               |                   |                   | <1          | < 0.5        |
| VC07             | 30/10/2019                     | VC07_0.0-0.5  | 0.0 - 0.5  | 1        | 8.0          | 3 <0.5 0.799                                                                             | 9 0.375            | 0.5           | 0.7           | < 0.5         | 1.5           | < 0.2          | 2 <0.5                                       | < 0.5        | 0.7          | 1.5           | 7.5       | 1            |                               | 1.3               | 1.5               | <0.5        | <0.5         |
| VC07             | 30/10/2019                     | VC07_0.2-0.4  | 0.2 - 0.4  |          | 0.1<br><0.5  | 5 < 0.7                                                                                  | 7 <0.5<br>5 <0.5   | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5                                         | <0.5         | <0.5         | <0.5          |           | 0.8<br><0.5  |                               | 0.6               | 1.4               |             |              |
| VC07             | 30/10/2019                     | VC07_0.5-1.0  | 0.5 - 1.0  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | <0.5          | < 0.5         | < 0.5         | < 0.5         | < 0.5          | < 0.5                                        | < 0.5        | < 0.5        | < 0.5         |           | < 0.5        |                               | 0.6               | 1.2               |             |              |
| VC07             | 30/10/2019                     | VC07_0.7-0.8  | 0.7 - 0.7  |          | <0.5         | 5 <0.5                                                                                   | 5 <0.5             | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | i <0.5                                       | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC07             | 30/10/2019                     | VC07_1.0-1.2  | 1.0 - 1.2  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | < 0.5         | < 0.5         | < 0.5         | < 0.5         | < 0.5          | < 0.5                                        | < 0.5        | < 0.5        | < 0.5         |           | < 0.5        |                               | 0.6               | 1.2               |             | -0.5         |
| VC08             | 31/10/2019                     | VC08_0.0-0.1  | 0.0 - 0.1  |          | 0.9          |                                                                                          | 1 <0.5<br>3 1.3    | <0.5          | 0.6           | < 0.5         | 1.3           | <0.5           | <0.5                                         | <0.5         | <0.5<br>2 7  | 1.5           |           | 1.1          |                               | 1.4               | 1.7               | <1          | <0.5         |
| VC08             | 31/10/2019                     | VC08_0.0-0.5  | 0.0-0.5    |          | 0.6          | 0.7 0.7                                                                                  | <0.5               | <0.5          | < 0.5         | <0.5          | 0.7           | <0.5           | <0.5                                         | < 0.5        | < 0.5        | 0.8           |           | 0.7          |                               |                   | 1.3               |             | <u>├</u> ──┤ |
| VC08             | 31/10/2019                     | VC08_0.5-0.6  | 0.5 - 0.6  |          | <0.5         | 5 <0.5                                                                                   | 5 <0.5             | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | i <0.5                                       | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC08             | 31/10/2019                     | VC08_0.5-1.0  | 0.5 - 1.0  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | < 0.5                                        | < 0.5        | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC08             | 31/10/2019                     | VC08_0.7-0.8  | 0.7 - 0.8  |          | <0.5         | 5 <0.5                                                                                   | 5 <0.5             | <0.5          | < 0.5         | < 0.5         | < 0.5         | <0.5           | < 0.5                                        | < 0.5        | <0.5         | < 0.5         |           | <0.5         |                               | 0.6               | 1.2               | ]           | ───┤         |
| VC08             | 31/10/2019                     | VC08 1 0-1 5  | 10-15      | <1       | >.0.2        |                                                                                          | 0.0<br>9 <0.004    | <0.5          | <0.5<br><0.5  | <0.0          | <0.5          | 0.5~<br><0 005 | <0.0                                         | <0.5         | <0.5<br><0.5 | <0.5          | <0.5      | <0.5         |                               | 0.0               | 1.2               | <0.5        | <0.5         |
| VC08             | 31/10/2019                     | VC08_1.3-1.4  | 1.3 - 1.4  |          | <0.5         | 5 <0.5                                                                                   | 5 <0.5             | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | 5 <u></u> <0.5                               | < 0.5        | <0.5         | < 0.5         | 0.0       | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC08             | 31/10/2019                     | VC08_1.5-1.6  | 1.5 - 1.6  |          | <0.5         | 5 <0.5                                                                                   | 5 <0.5             | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | s <0.5                                       | <0.5         | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC09             | 30/10/2019                     | VC09_0.0-0.2  | 0.0 - 0.2  |          | < 0.004      | < 0.004                                                                                  | 4 < 0.004          | < 0.004       | < 0.004       | < 0.004       | < 0.004       | < 0.005        | < 0.004                                      | < 0.004      | < 0.004      | < 0.004       | <0.004    | -0 -         |                               |                   |                   | <1          | <0.5         |
| VC09             | 30/10/2019                     |               | 0.0 - 0.5  |          | <0.5         | > <0.5<br>5 - 0 #                                                                        | 5 < <u>&lt;0.5</u> | <0.5<br><0.5  | <0.5<br><0.5  | <0.5          | <0.5<br><0.5  | <0.5<br><0.5   | <0.5<br><0.5                                 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5  |           | <0.5<br><0.5 |                               | 0.0               | 1.2               |             | ┞───┤        |
| VC09             | 30/10/2019                     | VC09 0.5-1.0  | 0.5 - 1.0  |          | <0.5         | 5 <0.5                                                                                   | 5 < 0.5            | <0.5          | <0.5          | <0.5          | <0.5          | <0.5           | <pre>&lt;0.5</pre>                           | < 0.5        | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |
| VC09             | 30/10/2019                     | VC09_0.7-0.8  | 0.7 - 0.8  |          | <0.5         | 5 <0.5 <0.5                                                                              | 5 < 0.5            | <0.5          | < 0.5         | <0.5          | <0.5          | < 0.5          | < 0.5                                        | < 0.5        | <0.5         | <0.5          |           | <0.5         |                               | 0.6               | 1.2               |             |              |

|                                      |                                      |                                     |            |                              |                  |                       |                                 | PA                                    | ٨Hs                       |             |                                          |          |                            |              |         |                                   |                                                      |                                                      |                                                      |                                                      |                                   |                       |
|--------------------------------------|--------------------------------------|-------------------------------------|------------|------------------------------|------------------|-----------------------|---------------------------------|---------------------------------------|---------------------------|-------------|------------------------------------------|----------|----------------------------|--------------|---------|-----------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------|-----------------------|
|                                      |                                      |                                     |            | 3enzo(b+j+k)fluoranth<br>⊧ne | Benzo(a) pyrene  | Benzo[b+j]fluoranthen | 3enzo(k)fluoranthene            | Benzo(g,h,i)perylene<br>Chrysene      | Dibenz(a,h)anthracene     | Iuoranthene | Vaphthalene                              | -luorene | ndeno(1,2,3-<br>c,d)pyrene | chenanthrene | Jrene   | PAHs (Sum of total) -<br>_ab calc | Total 8 PAHs (as BaP<br>TEQ)(zero LOR) - Lab<br>Calc | Total 8 PAHs (as BaP<br>TEQ)(zero LOR) - Lab<br>Calc | Total 8 PAHs (as BaP<br>TEQ)(half LOR) - Lab<br>Calc | Total 8 PAHs (as BaP<br>TEQ)(full LOR) - Lab<br>Calc | 3,4-Methylphenol (m,p-<br>cresol) | 2,4,5-trichlorophenol |
|                                      |                                      |                                     |            | mg/kg                        | <br>mg/kg μg/L   | mg/kg                 | mg/kg                           | mg/kg mg/                             | kg mg/kg                  | g mg/kg     | mg/kg                                    | mg/kg    | mg/kg                      | mg/kg        | mg/kg   | mg/kg                             | mg/kg                                                | μg/L                                                 | mg/kg                                                | mg/kg                                                | mg/kg                             | mg/kg                 |
|                                      |                                      |                                     |            | 1                            | 0.004 0.005      | 0.004                 | 0.004                           | 0.004 0.00                            | 0.004                     | 0.004       | 0.005                                    | 0.004    | 0.004                      | 0.004        | 0.004   | 0.004                             | 0.5                                                  | 0.005                                                | 0.5                                                  | 0.5                                                  | 0.4                               | 0.5                   |
| NSW EPA (2014) G<br>NSW EPA (2014) G | eneral Solid Waste SCC1 (with TCLP   | )                                   |            |                              | 40               |                       |                                 |                                       |                           |             |                                          |          |                            |              |         | 200                               |                                                      |                                                      |                                                      |                                                      |                                   | 14,400                |
| NSW EPA (2014) R                     | estricted Solid Waste SCC2 (with TCI | LP)                                 |            |                              | 23               |                       |                                 |                                       |                           |             |                                          |          |                            |              |         | 800                               |                                                      |                                                      |                                                      |                                                      |                                   | 57,600                |
| NSW EPA (2014) Re                    | estricted Solid Waste TCLP2          |                                     |            |                              | 160              |                       |                                 |                                       |                           |             |                                          |          |                            |              |         |                                   |                                                      |                                                      |                                                      |                                                      |                                   |                       |
| Location Code                        | Date                                 | Field ID                            | Denth      |                              |                  |                       |                                 |                                       |                           |             |                                          |          |                            |              |         |                                   |                                                      |                                                      |                                                      |                                                      |                                   |                       |
| BH05                                 | 7/11/2019                            | BH05 4.6-4.7                        | 4.6 - 4.7  |                              | 4                | 4.2                   | 2 1.7                           | 1.8                                   | 2.2 <0                    | .5 4.9      | 0 < 0.5                                  | <0.5     | 1.5                        | 1.4          | 5.7     | ,,                                | 5                                                    | ,                                                    | 5.3                                                  | 5.5                                                  | <1                                | <0.5                  |
| BH06                                 | 7/11/2019                            | BH06_1.2-1.45                       | 1.2 - 1.45 |                              | 1.1 <0.5         | 1.4                   | 4 0.7                           | 0.8                                   | 0.7 <0                    | .5 1.4      | <0.5                                     | <0.5     | 0.6                        | <0.5         | 1.6     |                                   | 1.5                                                  | ,!                                                   | 1.7                                                  | 2                                                    | <1                                | <0.5                  |
| BH07                                 | 7/11/2019                            | BH07_2.5-2.95                       | 2.5 - 2.95 |                              | <0.5 <0.5        | < 0.5                 | → <0.5                          | < 0.5 <                               | <0.5 <0                   | .5 < 0.5    | 5 <0.5<br><0.5                           | < 0.5    | < 0.5                      | < 0.5        | < 0.5   | ļ                                 | < 0.5                                                | <u> </u>                                             | 0.6                                                  | 1.2                                                  | <1                                | <0.5                  |
| VC01                                 | 30/10/2019                           | VC01_0.4-0.8                        | 0.4 - 0.8  |                              | <0.5<br>1 4 <0.5 | <0.0<br>1 9           | 20.5<br>2010                    | <0.5 <<br>1 1                         | <u>0.5 &lt;0</u><br>11 <0 | .5 <0.5     | > <0.5<br>> <0.5                         | <0.5     | 0.5                        | <0.5<br>0.7  | 21      |                                   | <0.5<br>1.9                                          | , <b> </b>                                           | 2.1                                                  | 2.4                                                  | ļ                                 | <u> </u>              |
| VC01                                 | 30/10/2019                           | VC01_0.5-1.0                        | 0.5 - 1.0  | <1                           | < 0.004          | < 0.004               | 4 < 0.004                       | <0.004 <0.0                           | 004 < 0.00                | 04 < 0.004  | < 0.005                                  | < 0.004  | < 0.004                    | < 0.004      | < 0.004 | <0.004                            | <0.5                                                 | ,/                                                   | 0.6                                                  | 1.2                                                  | < 0.5                             | <0.5                  |
| VC01                                 | 30/10/2019                           | VC01_1.0-1.1                        | 1.0 - 1.1  |                              | <0.004           | < 0.004               | ↓ <0.004                        | <0.004 <0.                            | 004 < 0.00                | 04 < 0.004  | < 0.005                                  | < 0.004  | < 0.004                    | < 0.004      | < 0.004 | <0.004                            |                                                      | '                                                    |                                                      |                                                      | <1                                | <0.5                  |
| VC02                                 | 30/10/2019                           | VC02_0.0-0.2                        | 0.0 - 0.2  |                              | 1.9 < 0.5        | 2.7                   | <u> </u>                        | 1.6                                   | 1.5 <0                    | .5 2.6      | S <0.5                                   | < 0.5    | 1.2                        | 0.9          | 2.9     |                                   | 2.6                                                  | <u> '</u>                                            | 2.8                                                  | 3.1                                                  | ļ!                                | <u> </u>              |
| VC02                                 | 30/10/2019                           | VC02_0.5-0.6                        | 0.5 - 0.6  |                              | < 0.5            | 0.0                   | <u>v &lt;0.5</u><br>5 <0.5      | <0.5 <                                | <0.5 <0<br><0.5 <0        | .5 <0.5     | <pre>&gt; &lt;0.5<br/>&gt; &lt;0.5</pre> | <0.5     | < 0.5                      | <0.5         | 0.5     |                                   | < 0.5                                                | , <b></b> /                                          | 0.6                                                  | 1.2                                                  | <u>├</u> ──┤                      |                       |
| VC02                                 | 30/10/2019                           | VC02_0.0 1.0                        | 1.0 - 1.2  |                              | <0.5 <0.5        | <0.5                  | <del>ا</del> د. حار             | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 < 0.5                                  | < 0.5    | < 0.5                      | <0.5         | <0.5    | ł                                 | <0.5                                                 | ,                                                    | 0.6                                                  | 1.2                                                  | ļļ                                |                       |
| VC02                                 | 30/10/2019                           | VC02_1.0-1.5                        | 1.0 - 1.5  |                              | <0.5             | <0.5                  | 0.5> ز                          | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 <0.5                                   | <0.5     | <0.5                       | <0.5         | <0.5    |                                   | <0.5                                                 | <u>,                                     </u>        | 0.6                                                  | 1.2                                                  |                                   |                       |
| VC02                                 | 30/10/2019                           | VC02_1.5-1.6                        | 1.5 - 1.6  |                              | 0.004            | < 0.004               | + <0.004                        | < 0.004 0.0                           | 005 < 0.00                | 0.011       | < 0.005                                  | < 0.004  | < 0.004                    | 0.004        | 0.01    | 0.039                             | <b> </b> '                                           | <u>                                     </u>         | <u> </u>                                             | !                                                    | <1                                | < 0.5                 |
| VC02                                 | 31/10/2019                           | VC02_0.0-0.5                        | 0.0 - 0.5  |                              | 1.57 <0.5        | 1.49                  | $\frac{1}{5}$ $\frac{0.661}{5}$ |                                       | 997 0.21                  | 5 < 0.5     | 0 <0.2<br>≤ <0.5                         | 0.095    | 0.963                      | 0.885        | 1.78    | 14.8                              | <0.5                                                 | /                                                    | 0.6                                                  | 12                                                   | <1                                | <0.5                  |
| VC03                                 | 30/10/2019                           | VC03_0.0-0.5                        | 0.0 - 0.5  |                              | <0.004           | < 0.004               | 4 < 0.004                       | <0.004 <0.0                           | 004 <0.00                 | .3 <0.3     | <0.005                                   | < 0.004  | < 0.004                    | <0.004       | <0.004  | < 0.004                           | <0.5                                                 | ·                                                    | 0.0                                                  | 1.2                                                  | <1                                | < 0.5                 |
| VC03                                 | 30/10/2019                           | VC03_0.3-0.4                        | 0.3 - 0.4  |                              | <0.004           | < 0.004               | 4 <0.004                        | <0.004 <0.                            | 004 < 0.00                | 04 < 0.004  | < 0.005                                  | < 0.004  | < 0.004                    | < 0.004      | < 0.004 | < 0.004                           |                                                      |                                                      |                                                      |                                                      | <1                                | < 0.5                 |
| VC03                                 | 30/10/2019                           | VC03_0.4-0.6                        | 0.4 - 0.6  |                              | <0.5             | <0.5                  | 0.5< ز                          | < 0.5 <                               | <0.5 <0                   | .5 <0.5     | 5 <0.5                                   | <0.5     | < 0.5                      | <0.5         | < 0.5   |                                   | <0.5                                                 | ,!                                                   | 0.6                                                  | 1.2                                                  | $\square$                         |                       |
| VC03                                 | 30/10/2019                           | VC03_0.5-1.0                        | 0.5 - 1.0  |                              | < 0.5            | < 0.5                 | → <0.5                          | < 0.5 <                               | <0.5 <0                   | .5 < 0.5    | 5 <0.5<br><0.5                           | < 0.5    | < 0.5                      | < 0.5        | < 0.5   | ļ                                 | < 0.5                                                | <u> </u>                                             | 0.6                                                  | 1.2                                                  | ļ!                                | <b></b>               |
| VC03                                 | 30/10/2019                           | VC03_0.8-0.7                        | 10-12      |                              | <0.5             | <0.5                  | 5 < 0.5                         | <0.5 <                                | <0.5 <0<br><0.5 <0        | .5 <0.5     | 5 <0.5                                   | <0.5     | < 0.5                      | <0.5         | <0.5    | Į                                 | <0.5                                                 | , <b></b>                                            | 0.6                                                  | 1.2                                                  | <u> </u> /                        | <u> </u>              |
| VC04                                 | 30/10/2019                           | VC04 0.0-0.1                        | 0.0 - 0.1  |                              | <0.5 <0.5        | < 0.5                 | o.o.<br>0.5 د                   | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 < 0.5                                  | < 0.5    | < 0.5                      | < 0.5        | <0.5    | <del> </del> <del> </del>         | < 0.5                                                | ,                                                    | 0.6                                                  | 1.2                                                  | , <b> </b>                        |                       |
| VC04                                 | 30/10/2019                           | VC04_0.3-0.4                        | 0.3 - 0.4  |                              | <0.004           | < 0.004               | 4 <0.004                        | <0.004 <0.                            | 004 <0.00                 | 04 <0.004   | <0.005                                   | < 0.004  | < 0.004                    | < 0.004      | < 0.004 | <0.004                            |                                                      |                                                      |                                                      | I                                                    | <1                                | <0.5                  |
| VC04                                 | 30/10/2019                           | VC04_0.5-1.0                        | 0.5 - 1.0  | <1                           | < 0.005          | < 0.005               | 0.005 ز                         | <0.005 <0.0                           | 005 < 0.00                | 05 < 0.005  | < 0.005                                  | < 0.005  | < 0.005                    | < 0.005      | < 0.005 | <0.005                            | < 0.5                                                | <u> </u> '                                           | 0.7                                                  | 1.4                                                  | <0.6                              | <0.6                  |
| VC04                                 | 31/10/2019                           | <u>VC04_0.5-0.6</u>                 | 0.5 - 0.6  |                              | <0.5             | <0.5                  | → <0.5                          | <0.5 <                                | <0.5 <0                   | .5 <0.5     | o <0.5<br>≤0.5                           | <0.5     | <0.5                       | <0.5         | < 0.5   | ļ                                 | <0.5                                                 |                                                      | 0.6                                                  | 1.2                                                  | ļ!                                |                       |
| VC04                                 | 31/10/2019                           | VC04_0.7-0.0                        | 0.9 - 1.0  |                              | <0.5             | <0.5                  |                                 | <0.5 <                                | <0.5 <0                   | 5 < 0.5     | 5 < 0.5                                  | <0.5     | <0.5                       | <0.5         | <0.5    | , <del></del>                     | <0.5                                                 | , <del> </del> /                                     | 0.0                                                  | 1.2                                                  | <b>├</b> ───┦                     | <u> </u>              |
| VC05                                 | 30/10/2019                           | VC05_0.0-0.1                        | 0.0 - 0.1  |                              | <0.5 <0.5        | <0.5                  | 0.5                             | <0.5 <                                | <0.5 <0                   | .5 0.7      | <0.5                                     | <0.5     | <0.5                       | <0.5         | 0.8     | ·!                                | < 0.5                                                | , <u> </u> '                                         | 0.6                                                  | 1.2                                                  | . !                               |                       |
| VC05                                 | 30/10/2019                           | VC05_0.5-0.7                        | 0.5 - 0.7  |                              | <0.5             | < 0.5                 | 0.5 ز                           | < 0.5                                 | <0.5 <0                   | .5 <0.5     | 5 <0.5                                   | < 0.5    | <0.5                       | <0.5         | < 0.5   |                                   | < 0.5                                                | ,                                                    | 0.6                                                  | 1.2                                                  |                                   |                       |
| VC05                                 | 30/10/2019                           | VC05_0.5-0.9                        | 0.5 - 0.9  |                              | <0.5             | <0.5                  | <u>(0.5 د از 0.5 از </u>        | < 0.5 <                               | <0.5 <0.0                 | .5 <0.5     |                                          | <0.5     | <0.5                       | <0.5         | <0.5    | -0.004                            | <0.5                                                 | <b>↓</b> ′                                           | 0.6                                                  | 1.2                                                  | $\left  \right $                  | <0.5                  |
| VC05                                 | 31/10/2019                           | VC06_0.0-0.1                        |            |                              | <0.004<br>1 8    | 1.8                   | R 0.004                         | <u>&lt;0.004</u> <u>&lt;0.</u><br>1_1 | 1 <0                      | 5 2.3       | <0.005                                   | <0.004   | <0.004                     | <0.004       | 2.6     | <0.00 <del>4</del>                | 2.3                                                  | , <b> </b> /                                         | 2.5                                                  | 2.8                                                  |                                   | < 0.5                 |
| VC06                                 | 31/10/2019                           | VC06 0.0-0.5                        | 0.0 - 0.5  |                              | <0.5             | <0.5                  | 5 <0.5                          | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 < 0.5                                  | < 0.5    | <0.5                       | <0.5         | < 0.5   | , <del></del> †                   | <0.5                                                 | , <del> </del>                                       | 0.6                                                  | 1.2                                                  | . <b>├───</b> ┤                   |                       |
| VC06                                 | 31/10/2019                           | VC06_0.3-0.4                        | 0.3 - 0.4  |                              | <0.5             | <0.5                  | i <0.5                          | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 <0.5                                   | <0.5     | <0.5                       | <0.5         | <0.5    |                                   | <0.5                                                 | <u>,                                     </u>        | 0.6                                                  | 1.2                                                  |                                   |                       |
| VC06                                 | 31/10/2019                           | VC06_0.5-0.6                        | 0.5 - 0.6  |                              | < 0.5            | < 0.5                 | <u>i &lt;0.5</u>                | < 0.5 <                               | <0.5 <0                   | .5 < 0.5    | 5 < 0.5                                  | < 0.5    | < 0.5                      | < 0.5        | < 0.5   | ]                                 | < 0.5                                                | <u> </u> '                                           | 0.6                                                  | 1.2                                                  | ļ!                                | <u> </u>              |
| VC06                                 | 31/10/2019                           | VC06_0.5-1.0                        | 0.5 - 1.0  |                              | <0.5             | <0.5                  | → <0.5<br>5 <0.5                | <0.5 <                                | <0.5 <0                   | .5 <0.5     | o <0.5<br>≤ <0.5                         | <0.5     | < 0.5                      | <0.5         | < 0.5   | ļ                                 | < 0.5                                                |                                                      | 0.6                                                  | 1.2                                                  | ļ/                                | <u> </u>              |
| VC06                                 | 31/10/2019                           | VC06 0.8-0.9                        | 0.8 - 0.9  |                              | <0.5             | <0.5                  | 5 <0.5                          | < 0.5 <                               | <0.5 <0                   | .5 <0.5     | 5 < 0.5                                  | <0.5     | < 0.5                      | < 0.5        | <0.5    | ł                                 | <0.5                                                 | ,                                                    | 0.6                                                  | 1.2                                                  | . <b> </b>                        |                       |
| VC07                                 | 30/10/2019                           | VC07_0.0-0.2                        | 0.0 - 0.2  |                              | 0.627            | 0.606                 | <u>کا 0.304</u>                 | 0.483 0.3                             | 378 0.08                  | 39 0.595    | 5 <0.2                                   | <0.025   | 0.375                      | 0.226        | 0.639   | 5.72                              |                                                      | <u> </u>                                             |                                                      |                                                      | <1                                | <0.5                  |
| VC07                                 | 30/10/2019                           | VC07_0.0-0.5                        | 0.0 - 0.5  | 1                            | 0.8 < 0.5        | 0.799                 | 0.375                           | 0.5                                   | 0.7 <0                    | .5 1.5      | 5 <0.2                                   | < 0.5    | < 0.5                      | 0.7          | 1.5     | 7.5                               |                                                      | <u> </u> '                                           | 1.3                                                  | 1.5                                                  | <0.5                              | <0.5                  |
| VC07                                 | 30/10/2019                           | <u> </u>                            | 0.2 - 0.4  |                              | 0.7              | 0.7                   | <0.5<br>5 <0.5                  | <0.5 <                                | <0.5 <0                   | .5 1        | <0.5                                     | <0.5     | <0.5                       | <0.5         | 1.2     | ļ                                 | 0.8                                                  |                                                      | 1.1                                                  | 1.4                                                  | ļ!                                |                       |
| VC07                                 | 30/10/2019                           | VC07_0.5-1.0                        | 0.5 - 1.0  |                              | <0.5             | <0.5                  | 5 <0.5                          | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 <0.5                                   | <0.5     | < 0.5                      | < 0.5        | <0.5    | ·                                 | <0.5                                                 | , <b></b>                                            | 0.6                                                  | 1.2                                                  | . <del> </del> /                  |                       |
| VC07                                 | 30/10/2019                           | VC07_0.7-0.8                        | 0.7 - 0.7  |                              | <0.5             | <0.5                  | 0.5 ز                           | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 <0.5                                   | <0.5     | <0.5                       | < 0.5        | < 0.5   |                                   | < 0.5                                                | ,                                                    | 0.6                                                  | 1.2                                                  |                                   |                       |
| VC07                                 | 30/10/2019                           | VC07_1.0-1.2                        | 1.0 - 1.2  |                              | <0.5             | <0.5                  | 0.5> ز                          | < 0.5 <                               | <0.5 <0                   | .5 <0.5     | 5 <0.5                                   | <0.5     | < 0.5                      | < 0.5        | <0.5    |                                   | < 0.5                                                | ,                                                    | 0.6                                                  | 1.2                                                  | <u> </u>                          |                       |
| VC08                                 | 31/10/2019                           | VC08_0.0-0.1                        | 0.0 - 0.1  |                              | 0.9 <0.5         | 1                     | <0.5                            | <0.5                                  | 0.6 <0                    | .5 1.3      | S <0.5                                   | <0.5     | < 0.5                      | <0.5         | 1.5     | ļ                                 | 1.1                                                  | , <b> </b> '                                         | 1.4                                                  | 1.7                                                  | <1                                | <0.5                  |
| VC08                                 | 31/10/2019                           | VC08_0.0-0.5                        | 0.0-0.5    |                              | 06 07            | 07                    | <0.5                            | <0.5 <0                               | <u> </u>                  | .5 4.0      | <0.5                                     | <0.5     | <0.9                       | <0.5         | 08      |                                   | 0.7                                                  | <b>├</b> ────′                                       | 4                                                    | 4.2                                                  | ┝───┦                             | <u> </u>              |
| VC08                                 | 31/10/2019                           | VC08_0.5-0.6                        | 0.5 - 0.6  |                              | <0.5             | <0.5                  | 5.0< ز                          | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 < 0.5                                  | < 0.5    | < 0.5                      | < 0.5        | <0.5    | <del> </del> <del> </del>         | < 0.5                                                | ,                                                    | 0.6                                                  | 1.2                                                  | , <b> </b>                        |                       |
| VC08                                 | 31/10/2019                           | VC08_0.5-1.0                        | 0.5 - 1.0  |                              | <0.5             | <0.5                  | 0.5> ز                          | < 0.5 <                               | <0.5 <0                   | .5 <0.5     | 5 <0.5                                   | <0.5     | <0.5                       | <0.5         | <0.5    |                                   | < 0.5                                                | <u>'</u>                                             | 0.6                                                  | 1.2                                                  |                                   |                       |
| VC08                                 | 31/10/2019                           | VC08_0.7-0.8                        | 0.7 - 0.8  |                              | < 0.5            | < 0.5                 | <u>i &lt;0.5</u>                | < 0.5 <                               | <0.5 <0                   | .5 < 0.5    | 5 < 0.5                                  | < 0.5    | < 0.5                      | < 0.5        | < 0.5   | ]                                 | < 0.5                                                | <u> </u> '                                           | 0.6                                                  | 1.2                                                  | ļ!                                | <u> </u>              |
| VC08                                 | 31/10/2019                           | <u>VC08_1.0-1.1</u><br>VC08_1.0-1.5 | 1.0 - 1.1  | <1                           | <0.5             | <0.5                  | > <0.5                          | <0.5 <                                | <0.5 <0.00                | .5 <0.5     | 0.5<br>0.005                             | <0.5     | < 0.5                      | <0.5         | < 0.5   | <0.5                              | < 0.5                                                |                                                      | 0.6                                                  | 1.2                                                  | <0.5                              | <0.5                  |
| VC08                                 | 31/10/2019                           | VC08_1.3-1.4                        | 1.3 - 1.4  |                              | <0.5             | <0.5                  | 5 < 0.5                         | <0.5 <                                | <0.5 <0.00                | .5 <0.5     | 5 <u>&lt;0.005</u><br>5 <0.5             | <0.004   | < 0.5                      | < 0.5        | <0.5    | <0.5                              | <0.5                                                 | ,<br>                                                | 0.6                                                  | 1.2                                                  | ~0.5                              | <0.5                  |
| VC08                                 | 31/10/2019                           | VC08_1.5-1.6                        | 1.5 - 1.6  |                              | <0.5             | <0.5                  | 0.5> ز                          | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 < 0.5                                  | <0.5     | < 0.5                      | < 0.5        | < 0.5   |                                   | < 0.5                                                | ,'                                                   | 0.6                                                  | 1.2                                                  |                                   |                       |
| VC09                                 | 30/10/2019                           | VC09_0.0-0.2                        | 0.0 - 0.2  |                              | <0.004           | < 0.004               | 4 <0.004                        | <0.004 <0.                            | 004 < 0.00                | 04 < 0.004  | <0.005                                   | < 0.004  | < 0.004                    | < 0.004      | < 0.004 | <0.004                            | ļ'                                                   | <u> </u>                                             |                                                      |                                                      | <1                                | <0.5                  |
| VC09                                 | 30/10/2019                           | VC09_0.0-0.5                        | 0.0 - 0.5  |                              | < 0.5            | < 0.5                 | <u>&lt;0.5</u>                  | < 0.5 <                               | <0.5 <0                   | .5 < 0.5    | 5 <0.5                                   | < 0.5    | < 0.5                      | < 0.5        | < 0.5   |                                   | < 0.5                                                | <u> </u> '                                           | 0.6                                                  | 1.2                                                  | ļ/                                | ───                   |
| VC09                                 | 30/10/2019                           | VC09_0.4-0.8                        | 0.5 - 1.0  |                              | <0.5             | <0.0                  | 5 < 0.5                         | <0.5                                  | <0.5 <0<br><0.5 <0        | 5 <0.5      | 5 <0.5<br>5 <0.5                         | <0.5     | <0.5                       | <0.5         | <0.5    | <del> </del>                      | <0.5                                                 |                                                      | 0.0                                                  | 1.2                                                  | <b>├</b> ──┤                      |                       |
| VC09                                 | 30/10/2019                           | VC09 0.7-0.8                        | 0.7 - 0.8  |                              | <0.5 <0.5        | <0.5                  | 5 <0.5                          | <0.5 <                                | <0.5 <0                   | .5 <0.5     | 5 < 0.5                                  | < 0.5    | < 0.5                      | <0.5         | <0.5    | <del> </del> <del> </del>         | <0.5                                                 | ,                                                    | 0.6                                                  | 1.2                                                  | ļļ                                |                       |
|                                      |                                      |                                     |            |                              |                  |                       |                                 |                                       |                           |             |                                          |          |                            |              |         |                                   |                                                      |                                                      |                                                      |                                                      |                                   |                       |



|                   |            |              |           |                       |                               |                     |                |                | PAHs     |               |              |             |          |                             |                |         |                          |                                        |                                      |                                       |                                         | T                                            |                  |
|-------------------|------------|--------------|-----------|-----------------------|-------------------------------|---------------------|----------------|----------------|----------|---------------|--------------|-------------|----------|-----------------------------|----------------|---------|--------------------------|----------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------------|------------------|
|                   |            |              |           | luoranth              | e                             | ranthen             | Inthene        | rylene         |          | thracene      |              |             |          |                             |                |         | <sup>-</sup> total) -    | (as BaP<br>R) - Lab                    | (as BaP<br>R) - Lab                  | (as BaP<br>R) - Lab                   | (as BaP<br>) - Lab                      | nol (m,p-                                    | phenol           |
|                   |            |              |           | Benzo(b+j+k)fl<br>ene | Renzo(a) pyre                 | Benzo[b+j]fluo<br>e | Benzo(k)fluora | Benzo(g,h,i)pe | Chrysene | Dibenz(a,h)an | Fluoranthene | Naphthalene | Fluorene | Indeno(1,2,3-<br>c,d)pyrene | Phenanthrene   | Pyrene  | PAHs (Sum of<br>Lab calc | Total 8 PAHs  <br>TEQ)(zero LO<br>Calc | Total 8 PAHs<br>TEQ)(zero LO<br>Calc | Total 8 PAHs<br>TEQ)(half LOF<br>Calc | Total 8 PAHs  <br>TEQ)(full LOR<br>Calc | 3,4-Methylphe<br>cresol)                     | 2,4,5-trichloro  |
|                   | I          |              |           | mg/kg                 | mg/kg                         | µg/L mg/kg          | mg/kg          | mg/kg          | mg/kg    | mg/kg         | mg/kg        | mg/kg       | mg/kg    | mg/kg                       | mg/kg          | mg/kg   | mg/kg                    | mg/kg                                  | µg/L                                 | mg/kg                                 | mg/kg                                   | mg/kg                                        | mg/kg            |
| VC09              | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | <0.5          | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | <0.5                                   | )                                    | 0.6                                   | 1.:                                     | <u> </u>                                     |                  |
| VC10              | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |                       | 0.013                         | 0.01                | 0.007          | 0.008          | 0.008    | < 0.004       | 0.016        | <0.005      | < 0.004  | 0.008                       | 0.008          | 0.017   | 0.113                    | <u>,</u>                               |                                      |                                       | <u> </u>                                | <1                                           | - <0.5           |
| VC10              | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |                       | <0.5                          | <0.5 <0.5           | < 0.5          | <0.5           | < 0.5    | < 0.5         | <0.5         | < 0.5       | < 0.5    | <0.5                        | <0.5           | < 0.5   |                          | <0.5                                   | ,                                    | 0.6                                   | 1.2                                     | <u>'</u>                                     | <u> </u>         |
| VC10              | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |                       | < 0.004                       | < 0.004             | < 0.004        | <0.004         | < 0.004  | < 0.004       | < 0.004      | <0.005      | < 0.004  | < 0.004                     | <0.004         | < 0.004 | <0.004                   | ·                                      | <u> </u>                             |                                       | <b> </b>                                | <1                                           | <0.5             |
| VC10              | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |                       | <0.5                          | <0.5                | <0.5           | <0.5           | < 0.5    | < 0.5         | <0.5         | <0.5        | < 0.5    | < 0.5                       | < 0.5          | < 0.5   |                          | <0.5                                   | -                                    | 0.6                                   | 1.2                                     | <u>-</u>                                     | <u> </u>         |
| VC11              | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |                       | <0.5                          | <0.5 <0.5           | <0.5           | <0.5           | < 0.5    | < 0.5         | < 0.5        | <0.5        | < 0.5    | < 0.5                       | < 0.5          | < 0.5   |                          | <0.5                                   | -                                    | 0.6                                   | 1.2                                     | <u>-</u>                                     | <b>_</b>         |
|                   | 30/10/2019 |              | 0.0 - 0.5 |                       | C.U>                          | <0.0                |                | 0.02           | <0.02    | <0.02         | <0.0         | <0.05       | <0.02    | C.U>                        | <0.04          | <0.02   | <0.004                   | <u>&lt;0.5</u>                         | ·                                    | 0.0                                   | <u> </u>                                | -                                            | 1 <0/            |
| VC11              | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 |                       | <0.004                        | <0.004              |                | <0.004         | <0.004   | <0.004        | <0.004       | <0.005      | <0.004   | <0.004                      | <0.004<br><0.5 | <0.004  | <u><u> </u></u>          | -0 F                                   | <u>.</u>                             | 0.6                                   | 1                                       | <u>,                                    </u> | <u> </u>         |
| VC11              | 30/10/2019 | VC11_0.0-1.0 | 10-12     |                       | <0.5                          | <0.5                | <0.5           | <0.5           | <0.5     | <0.5          | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | <0.5                                   |                                      | 0.0                                   | 1.2                                     | ·<br>·                                       | +                |
| VC12              | 31/10/2019 | VC12 0 0-0 5 | 0.0 - 0.5 | <                     | <pre> &lt;0.5 1 &lt;0.5</pre> | 0.226               | 0.116          | <0.5           | <0.5     | <0.5          | <0.5         | <0.3        | <0.5     | <0.5                        | <0.5           | <0.5    | <0.5                     | <u>√0.5</u><br>√ <u>√0.5</u>           | ;                                    | 0.0                                   | 1.2                                     | $\frac{1}{2} < 0^{-1}$                       | 5 < 0 4          |
| VC12              | 31/10/2019 | VC12_0.0-0.0 | 0.3 - 0.4 |                       | <0.5                          | <0.220              | <0.110         | <0.5           | <0.0     | <0.0          | <0.5         | <0.2        | <0.0     | <0.5                        | <0.5           | <0.5    | -0.0                     | <0.5                                   | ;                                    | 0.0                                   | 1.2                                     | 2                                            | 1 10.0           |
| VC12              | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |                       | <0.0                          | <0.0                | <0.5           | <0.5           | <0.0     | <0.0          | < 0.5        | <0.0        | <0.0     | <0.0                        | <0.0           | <0.5    |                          | <0.5                                   | ;                                    | 0.0                                   | 1.2                                     | ;<br>                                        | +                |
| VC12              | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |                       | <0.0                          | <0.5 <0.5           | <0.5           | <0.5           | <0.0     | <0.5          | <0.5         | <0.5        | < 0.5    | < 0.5                       | < 0.5          | < 0.5   |                          | <0.5                                   | ; <b></b>                            | 0.0                                   | 1.2                                     | ;<br>                                        | +                |
| VC12              | 31/10/2019 | VC12 1.0-1.1 | 1.0 - 1.1 |                       | < 0.5                         | <0.5                | < 0.5          | < 0.5          | < 0.5    | < 0.5         | < 0.5        | < 0.5       | < 0.5    | < 0.5                       | < 0.5          | < 0.5   |                          | <0.5                                   |                                      | 0.6                                   | 1.                                      | 2 <                                          | <0.5             |
| VC13              | 31/10/2019 | VC13 0.0-0.1 | 0.0 - 0.1 |                       | 1                             | 1.1                 | < 0.5          | 0.6            | 0.6      | < 0.5         | 1.4          | < 0.5       | < 0.5    | < 0.5                       | < 0.5          | 1.5     |                          | 1.2                                    | <u>,</u>                             | 1.5                                   | 1.                                      | 3 <                                          | <0.5             |
| VC13              | 31/10/2019 | VC13 0.0-0.5 | 0.0 - 0.5 |                       | 1                             | 1.2                 | 0.5            | 0.7            | 0.9      | < 0.5         | 2            | < 0.5       | < 0.5    | < 0.5                       | 0.8            | 2.1     |                          | 1.3                                    | <u> </u>                             | 1.6                                   | 1.                                      | 3                                            |                  |
| VC13              | 31/10/2019 | VC13 0.3-0.4 | 0.3 - 0.4 |                       | 0.7                           | 0.8                 | < 0.5          | 0.5            | <0.5     | < 0.5         | 0.9          | <0.5        | <0.5     | <0.5                        | <0.5           | 1       |                          | 8.0                                    | <u>از</u>                            | 1.1                                   | 1.                                      | 1                                            | 1                |
| VC13              | 31/10/2019 | VC13 0.5-0.6 | 0.5 - 0.6 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | < 0.5         | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | < 0.5                                  | <i>,</i>                             | 0.6                                   | 1.'                                     | 2                                            | 1                |
| VC13              | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | <0.5          | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | < 0.5                                  | ار                                   | 0.6                                   | 1.'                                     | 2                                            |                  |
| VC13              | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | < 0.5         | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | < 0.5                                  | j                                    | 0.6                                   | 1.'                                     | 2                                            |                  |
| VC13              | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | < 0.5         | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | <0.5                                   | j                                    | 0.6                                   | 1.'                                     | 2                                            |                  |
| VC14              | 31/10/2019 | VC14_0.0-0.1 | 0.0 - 0.1 |                       | <0.5                          | <0.5 <0.5           | < 0.5          | <0.5           | <0.5     | < 0.5         | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | < 0.5                                  | j                                    | 0.6                                   | 1.'                                     | 2                                            |                  |
| VC14              | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | <0.5          | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | <0.5                                   | ,                                    | 0.6                                   | 1.1                                     | 2                                            |                  |
| VC14              | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | <0.5          | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | <0.5                                   | )                                    | 0.6                                   | 1.:                                     | 2                                            |                  |
| VC14              | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | < 0.5         | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | <0.5                                   | )                                    | 0.6                                   | 1.:                                     | 2                                            |                  |
| VC14              | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |                       | <0.5                          | <0.5 <0.5           | < 0.5          | <0.5           | <0.5     | < 0.5         | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | < 0.5                                  | ,                                    | 0.6                                   | 1.5                                     | 2                                            |                  |
| VC14              | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | <0.5          | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | < 0.5                                  | ,                                    | 0.6                                   | 1.2                                     | <u>2 &lt;1</u>                               | 1 <0.5           |
| VC14              | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | <0.5          | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | < 0.5                                  | ,                                    | 0.6                                   | 1.2                                     | 2                                            |                  |
| VC14              | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                       | <0.5                          | <0.5                | < 0.5          | <0.5           | <0.5     | <0.5          | <0.5         | <0.5        | <0.5     | <0.5                        | <0.5           | <0.5    |                          | < 0.5                                  | <u>,</u>                             | 0.6                                   | <u> </u>                                | <u> </u>                                     |                  |
| Statistics        |            |              |           |                       |                               |                     |                |                |          |               |              |             |          |                             |                |         |                          |                                        |                                      |                                       |                                         |                                              |                  |
| Number of Results |            |              |           |                       | 5 90                          | 19 90               | 90             | 90             | 90       | 90            | 90           | 90          | 90       | 90                          | 90             | 90      | 17                       | 78                                     | 0 ز                                  | 78                                    | 7!                                      | 3 25                                         | ؛2 از            |
| Number of Detects |            |              |           |                       | 1 17                          | 1 19                | 12             | 13             | 14       | 2             | 18           | 0           | 1        | 9                           | 11             | 19      | 5                        | ز 13                                   | , 0                                  | <del>78</del> ر                       | 7/                                      | 3 (                                          | ) (              |
| Minimum Concentr  | ation      |              |           | <                     | 1 < 0.004                     | <0.5 <0.004         | < 0.004        | < 0.004        | < 0.004  | < 0.004       | < 0.004      | <0.005      | < 0.004  | < 0.004                     | < 0.004        | < 0.004 | <0.004                   | <del>، &lt;0</del> .5                  | ,                                    | 0.6                                   | 1.'                                     | 2 <0.5                                       | <u>: 0&gt; ز</u> |
| Maximum Concent   | ration     |              |           |                       | 1 4                           | <0.5 4.2            | 1.7            | 1.8            | 2.2      | 0.219         | 4.9          | <0.5        | < 0.5    | 1.5                         | 2.7            | 5.7     | 14.8                     | 3 5                                    | ر<br>ار                              | 5.3                                   | 5./                                     | ^> ز                                         | <0.6             |



|                                                        |                       |                    |                    |                    |                | Phenols             |                |               |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                          |
|--------------------------------------------------------|-----------------------|--------------------|--------------------|--------------------|----------------|---------------------|----------------|---------------|----------------------|-----------------------------|--------------|-------------------|--------|--------------------|------------------------|------------------------|-------------------|---------------------|------------------|------------------|--------------------------------|--------------------------|
|                                                        | 2,4,6-trichlorophenol | 2,4-dichlorophenol | 2,4-dimethylphenol | 2,6-dichlorophenol | 2-chlorophenol | 2-methylnaphthalene | 2-methylphenol | 2-nitrophenol | 3-methylcholanthrene | 4-chloro-3-<br>methylphenol | Acetophenone | Pentachlorophenol | Phenol | 1,1-dichloroethane | 1,2,3-trichlorobenzene | 1,2,3-trichloropropane | 1,2-dibromoethane | 1,3-dichlorobenzene | 2-butanone (MEK) | 2-hexanone (MBK) | 4-methyl-2-pentanone<br>(MIBK) | Bromodichloromethan<br>e |
|                                                        | mg/kg                 | mg/kg              | mg/kg              | mg/kg              | mg/kg          | mg/kg               | mg/kg          | mg/kg         | mg/kg                | mg/kg                       | mg/kg        | mg/kg             | mg/kg  | mg/kg              | mg/kg                  | mg/kg                  | mg/kg             | mg/kg               | mg/kg            | mg/kg            | mg/kg                          | mg/kg                    |
| EQL                                                    | 0.5                   | 0.5                | 0.5                | 0.5                | 0.5            | 0.005               | 0.2            | 0.5           | 0.5                  | 0.5                         | 0.5          | 1                 | 0.5    | 0.5                | 0.5                    | 0.5                    | 0.5               | 0.5                 | 5                | 5                | 5                              | 0.5                      |
| NSW EPA (2014) General Solid Waste SCC1 (with TCLP)    | 72                    |                    |                    |                    |                |                     | 7,200          |               |                      |                             |              |                   |        |                    |                        |                        |                   |                     | 7,200            |                  |                                |                          |
| NSW EPA (2014) General Solid Waste TCLP1               |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                          |
| NSW EPA (2014) Restricted Solid Waste SCC2 (with TCLP) | 288                   |                    |                    |                    |                |                     | 28,800         |               |                      |                             |              |                   |        |                    |                        |                        |                   |                     | 28,800           |                  |                                |                          |
| NSW EPA (2014) Restricted Solid Waste TCLP2            |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |        |                    |                        |                        |                   |                     |                  |                  |                                |                          |

| Location Code | Date       | Field ID                                                                | Depth                |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
|---------------|------------|-------------------------------------------------------------------------|----------------------|---|---------------------------|---------|-------|-------|--------------|-------|-------|------|-------|------|----|-------------|------|------|-------|------|------------------------------------------------|-------|-----|---------------|
| BH05          | 7/11/2019  | BH05_4.6-4.7                                                            | 4.6 - 4.7            | < | ).5                       |         |       |       |              | <0.5  |       |      | <0.5  |      | <2 | <0.5        |      |      |       |      |                                                | <5    |     |               |
| BH06          | 7/11/2019  | BH06_1.2-1.45                                                           | 1.2 - 1.45           | < | ).5                       |         |       |       |              | <0.5  |       |      | <0.5  |      | <2 | <0.5        |      |      |       |      |                                                | <5    |     |               |
| BH07          | 7/11/2019  | BH07_2.5-2.95                                                           | 2.5 - 2.95           | < | ).5                       |         |       |       |              | <0.5  |       |      | <0.5  |      | <2 | <0.5        |      |      |       |      |                                                | <5    |     |               |
| VC01          | 30/10/2019 | vc01_0.4-0.6                                                            | 0.4 - 0.6            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC01          | 30/10/2019 | VC01_0.0-0.2                                                            | 0.0 - 0.2            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC01          | 30/10/2019 | VC01_0.5-1.0                                                            | 0.5 - 1.0            | < | ).5 <0.5                  | 5 <0.5  | <0.5  | <0.5  | < 0.005      | <0.5  | <0.5  | <0.5 | <0.5  | <0.5 | <1 | <0.5        |      |      |       |      | <0.5                                           |       |     |               |
| VC01          | 30/10/2019 | VC01_1.0-1.1                                                            | 1.0 - 1.1            | < | ).5 <0.5                  | 5 <0.5  | <0.5  | <0.5  | < 0.005      | <0.5  | <0.5  |      | <0.5  |      | <2 | <0.5        |      |      |       |      |                                                |       |     |               |
| VC02          | 30/10/2019 | VC02 0.0-0.2                                                            | 0.0 - 0.2            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC02          | 30/10/2019 | VC02 0.5-0.6                                                            | 0.5 - 0.6            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC02          | 30/10/2019 | VC02 0.5-1.0                                                            | 0.5 - 1.0            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC02          | 30/10/2019 | VC02 1.0-1.2                                                            | 1.0 - 1.2            |   |                           | 1       |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC02          | 30/10/2019 | VC02 1.0-1.5                                                            | 1.0 - 1.5            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC02          | 30/10/2019 | VC02 1.5-1.6                                                            | 1.5 - 1.6            | < | ).5 <0.5                  | 5 < 0.5 | <0.5  | <0.5  | < 0.005      | <0.5  | <0.5  |      | <0.5  |      | <2 | <0.5        |      |      |       |      |                                                |       |     |               |
| VC02          | 31/10/2019 | VC02 0.0-0.5                                                            | 0.0 - 0.5            | < | ).5 <0.5                  | 5 < 0.5 | < 0.5 | < 0.5 | 0.044        | < 0.5 | < 0.5 |      | < 0.5 |      | <2 | < 0.5       |      |      |       |      |                                                |       |     | 1             |
| VC03          | 30/10/2019 | VC03 0.0-0.2                                                            | 0.0 - 0.2            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC03          | 30/10/2019 | VC03 0.0-0.5                                                            | 0.0 - 0.5            | < | ).5 <0.5                  | 5 < 0.5 | < 0.5 | <0.5  | < 0.005      | <0.5  | <0.5  |      | <0.5  |      | <2 | <0.5        |      |      |       |      |                                                |       |     | 1             |
| VC03          | 30/10/2019 | VC03 0.3-0.4                                                            | 0.3 - 0.4            | < | ).5 <0.5                  | 5 < 0.5 | < 0.5 | < 0.5 | < 0.005      | < 0.5 | < 0.5 |      | < 0.5 |      | <2 | < 0.5       | <0.5 | <0.5 | < 0.5 | <0.5 | < 0.5                                          | <5 <  | 5 < | 5 < 0.5       |
| VC03          | 30/10/2019 | VC03 0.4-0.6                                                            | 0.4 - 0.6            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       | -   | <u> </u>      |
| VC03          | 30/10/2019 | VC03 0.5-1.0                                                            | 0.5 - 1.0            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC03          | 30/10/2019 | VC03_0.6-0.7                                                            | 0.6 - 0.7            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     | +             |
| VC03          | 30/10/2019 | VC03 1.0-1.2                                                            | 1.0 - 1.2            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     | +             |
| VC04          | 30/10/2019 | VC04_0.0-0.1                                                            | 0.0 - 0.1            |   |                           | 1       |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     | +             |
| VC04          | 30/10/2019 | VC04_0.3-0.4                                                            | 0.3 - 0.4            | < | ) 5 < 0 !                 | 5 <0.5  | <0.5  | <0.5  | <0.005       | <0.5  | <0.5  |      | <0.5  |      | <2 | <0.5        |      |      |       |      |                                                |       |     |               |
| VC04          | 30/10/2019 | VC04_0.5-1.0                                                            | 0.5 - 1.0            |   | 0.0                       | 3 <0.6  | <0.6  | <0.6  | <0.005       | <0.6  | <0.6  | <0.6 | <0.6  | <0.6 | <1 | <0.6        |      |      |       |      | <0.6                                           |       |     |               |
| VC04          | 31/10/2019 | VC04_0.5-0.6                                                            | 0.5 - 0.6            |   |                           | , .0.0  | -0.0  | -0.0  | 10.000       | .0.0  | -0.0  | -0.0 | 10.0  | 10.0 |    | -0.0        |      |      |       |      | -0.0                                           |       |     |               |
| VC04          | 31/10/2019 | VC04_0.7-0.8                                                            | 0.7 - 0.8            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC04          | 31/10/2019 | VC04_0.1 0.0                                                            | 0.9 - 1.0            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC05          | 30/10/2019 | VC05_0.0-0.1                                                            | 0.0 - 0.1            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC05          | 30/10/2019 | VC05_0.5-0.7                                                            | 0.5 - 0.7            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC05          | 30/10/2019 | VC05_0.5-0.9                                                            | 0.5 - 0.9            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC05          | 30/10/2019 | VC05_0.8-0.9                                                            | 0.8 - 0.9            | 5 | 15 <04                    | 5 <0.5  | <0.5  | <0.5  | <0.005       | <0.5  | <0.5  |      | <0.5  |      | <2 | <0.5        | <0.5 | <0.5 | <0.5  | <0.5 | <0.5                                           | <5 <  | 5 < | 5 <0.5        |
| VC06          | 31/10/2019 | VC06_0.0-0.1                                                            | 0.0 - 0.1            |   | ) 5                       | ,       | -0.0  | -0.0  | 40.000       | <0.5  | -0.0  |      | <0.5  |      | <2 | <0.5        | -0.0 | -0.0 | 40.0  | -0.0 | -0.0                                           | <5    |     | <u>, 10.0</u> |
| VC06          | 31/10/2019 | VC06_0.0-0.5                                                            | 0.0 - 0.5            |   | /.0                       |         |       |       |              | -0.0  |       |      | -0.0  |      | -2 | -0.0        |      |      |       |      |                                                | -0    |     |               |
| VC06          | 31/10/2019 | VC06_0.3-0.4                                                            | 0.0 - 0.0            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC06          | 31/10/2019 | VC06_0.5-0.6                                                            | 0.5 - 0.4            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC06          | 31/10/2019 | VC06_0.5-1.0                                                            | 0.5 - 0.0            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC06          | 31/10/2019 | VC06_0.7-0.8                                                            | 0.7 - 0.8            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC06          | 31/10/2019 | VC06_0.8-0.9                                                            | 0.7 - 0.0            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC07          | 30/10/2019 | VC07_0.0-0.2                                                            | 0.0 - 0.2            | 5 | 15 <04                    | 5 <0.5  | <0.5  | <0.5  | <0.025       | <0.5  | <0.5  |      | <0.5  |      | <2 | <0.5        | <0.5 | <0.5 | <0.5  | <0.5 | <0.5                                           | <5 <  | 5 < | 5 <0.5        |
| VC07          | 30/10/2019 | VC07_0.0-0.5                                                            | 0.0 - 0.2            |   | ) 5 < 0.0                 | 5 <0.5  | <0.5  | <0.5  | <0.025       | <0.5  | <0.5  | <0.5 | <0.5  | <0.5 | <1 | <0.5        | -0.0 | -0.0 | 40.0  | -0.0 | <0.5                                           | -0 -, |     | ,             |
| VC07          | 30/10/2019 | VC07_0.2-0.4                                                            | 0.0 - 0.0            |   | /.0 .0.                   | ,       | -0.0  | -0.0  | 40.020       | -0.0  | -0.0  | -0.0 | -0.0  | -0.0 | 1  | -0.0        |      |      |       |      | -0.0                                           |       |     |               |
| VC07          | 30/10/2019 | VC07_0.2-0.4                                                            | 0.5 - 0.6            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC07          | 30/10/2019 | <u> </u>                                                                | 0.5 - 0.0            |   |                           |         |       |       | <u>├</u> ─── |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     | +             |
| VC07          | 30/10/2019 | VC07_0.5-1.0                                                            | 0.7 - 0.7            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC07          | 30/10/2019 | <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> | 10-12                |   |                           |         |       |       | <u>├</u> ─── |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     | +             |
| VC08          | 31/10/2019 | VC08_0.0-0.1                                                            | 0.0 - 0.1            | 5 | ) 5                       |         |       |       |              | <0.5  |       |      | <0.5  |      | <2 | <0.5        |      |      |       |      |                                                | <5    |     |               |
| VC08          | 31/10/2019 | VC08_0.3-0.4                                                            | 0.0 - 0.1            |   | /.0                       |         |       |       |              | -0.0  |       |      | -0.0  |      | -2 | -0.0        |      |      |       |      |                                                | -0    |     |               |
| VC08          | 31/10/2019 | VC08_0.0-0.5                                                            | 0.0-0.5              |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC08          | 31/10/2019 | VC08_0.5-0.6                                                            | 0.5-0.6              |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC08          | 31/10/2019 | VC08_0.5-1.0                                                            | 0.5 - 0.0            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     | +             |
| VC08          | 31/10/2019 |                                                                         | 0.0 - 1.0            |   |                           |         |       |       | ├            |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC08          | 31/10/2019 |                                                                         |                      |   |                           | +       |       |       | ├            |       |       |      |       |      |    |             |      |      |       |      |                                                |       | +   |               |
| VC00          | 31/10/2019 |                                                                         | 1.0 - 1.1            |   | 15 -0 1                   |         | <0 E  | -0 F  | <0.005       | <0 E  | -0 F  | -0 F | <0 E  | <0 E | -1 | -0 E        |      |      |       |      | -0 E                                           |       |     |               |
|               | 31/10/2019 |                                                                         | G.I - U.I<br>1 2 1 4 |   | <u> <u.< u="">:</u.<></u> | 0.0     | <0.5  | SU.2  | ~0.005       | <0.5  | <0.5  | <0.5 | <0.5  | ~U.3 | <1 | <u>~0.5</u> |      |      |       |      | <u.5< td=""><td></td><td></td><td></td></u.5<> |       |     |               |
|               | 31/10/2019 |                                                                         | 1.3 - 1.4            |   |                           |         |       |       | <u>├</u>     |       |       |      |       |      |    |             |      |      |       |      |                                                |       | -   |               |
|               | 31/10/2019 |                                                                         | 0.1 - 0.1            |   | 15 -0 1                   |         | <0 E  | -0 F  | <0.005       | <0 E  | -0 F  |      | <0 E  |      | -0 | -0 E        |      |      |       |      |                                                |       |     |               |
| VC09          | 30/10/2019 |                                                                         | 0.0 - 0.2            |   | <u> <u.< u="">:</u.<></u> | 0.0     | <0.5  | SU.2  | ~0.005       | <0.5  | <0.5  |      | <0.5  |      | <2 | <u>~0.5</u> |      |      |       |      |                                                |       |     |               |
| VC09          | 30/10/2019 |                                                                         | 0.0 - 0.3            |   | _                         |         |       |       | ├            |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC09          | 30/10/2019 |                                                                         |                      |   | _                         |         |       |       | ├            |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |
| VC09          | 20/10/2019 |                                                                         |                      |   |                           |         |       |       | <u>├</u>     |       |       |      |       |      |    |             |      |      |       |      |                                                |       | -   |               |
| 14009         | 30/10/2019 | Ινωυ9_0.7-0.8                                                           | 0.7 - 0.8            |   |                           |         |       |       |              |       |       |      |       |      |    |             |      |      |       |      |                                                |       |     |               |



|                   |            |              |           |                       |                    |                    |                    |                | Phenols             |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                          |
|-------------------|------------|--------------|-----------|-----------------------|--------------------|--------------------|--------------------|----------------|---------------------|----------------|---------------|----------------------|-----------------------------|--------------|-------------------|--------------|--------------------|------------------------|------------------------|-------------------|---------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|
|                   |            |              |           | 2,4,6-trichlorophenol | 2,4-dichlorophenol | 2,4-dimethylphenol | 2,6-dichlorophenol | 2-chlorophenol | 2-methylnaphthalene | 2-methylphenol | 2-nitrophenol | 3-methylcholanthrene | 4-chloro-3-<br>methylphenol | Acetophenone | Pentachlorophenol | Phenol       | 1,1-dichloroethane | 1,2,3-trichlorobenzene | 1,2,3-trichloropropane | 1,2-dibromoethane | 1,3-dichlorobenzene | 2-butanone (MEK) | 2-hexanone (MBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-methyl-2-pentanone<br>(MIBK) | Bromodichloromethan<br>e |
| 1.4000            |            |              |           | mg/kg                 | mg/kg              | mg/kg              | mg/kg              | mg/kg          | mg/kg               | mg/kg          | mg/kg         | mg/kg                | mg/kg                       | mg/kg        | mg/kg             | mg/kg        | mg/kg              | mg/kg                  | mg/kg                  | mg/kg             | mg/kg               | mg/kg            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                          | mg/kg                    |
| VC09              | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 | -0 F                  | 40 F               | -0 F               |                    |                |                     | -0.5           | ·             |                      | 10.5                        |              |                   | -0.5         |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b> '               |
|                   | 30/10/2019 |              | 0.7 - 0.8 | <0.5                  | <0.5               | <0.5               | <0.5               | o <0.5         | < 0.005             | <0.5           | o <0.5        |                      | <0.5                        |              | <2                | <0.5         |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
|                   | 31/10/2019 |              | 0.0 - 0.2 | <0 F                  | <0 F               | <0 E               | -0.5               | 0 5            | 0 005               | -0 F           | · -0 E        |                      | <0 F                        |              | -0                | <0 F         |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | ┢────                    |
|                   | 31/10/2019 |              | 0.0 - 0.5 | <0.5                  | <0.5               | <0.5               | <0.5               | s <0.5         | <0.005              | <0.5           | o <0.5        |                      | <0.5                        |              | <2                | <0.5         |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | <b> </b>                 |
|                   | 31/10/2019 |              | 0.0 - 0.0 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | <b> </b>                 |
|                   | 30/10/2019 |              | 0.0 - 0.2 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | <u> </u>                 |
|                   | 20/10/2019 | VC11_0.0-0.5 | 0.0 - 0.3 | <0.5                  | <0.5               | <0.5               | <0.5               | <05            | <0.005              | <0.5           | <0.5          |                      | <0.5                        |              | <2                | <0.5         | <0.5               | <0.5                   | <0 F                   | <0.5              | <0.5                | -5               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <5                             | <0.5                     |
| VC11              | 20/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 | <0.5                  | <b>\U.</b> 5       | <b>NU.5</b>        | NU.0               | S \0.0         | > <0.000            | -0.5           | 5 NU.5        |                      | <b>NU.0</b>                 |              | ~2                | <b>~0.</b> 5 | \0.5               | <b>~0.5</b>            | <b>NU.5</b>            | <b>~0.5</b>       | <b>~</b> 0.5        | <b>~</b> 0       | \circlelon \circlel | <u>~0</u>                      | <u> </u>                 |
| VC11              | 20/10/2019 | VC11_0.5-1.0 |           |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              |                          |
| VC12              | 31/10/2019 | VC12_0.0.05  | 0.0 0.5   | <0 5                  | <0.5               | <0.5               | <0.5               |                |                     | <0.5           | <0.5          | <0.5                 | <0.5                        | <0.5         | ~1                | <0.5         |                    |                        |                        |                   | <0.5                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | '                        |
| VC12              | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.3 | <0.5                  | <b>\U.5</b>        | <b>NU.5</b>        | <b>NU.0</b>        | S \0.0         | ~0.005              | -0.5           | 5 <u> </u>    | <0.5                 | N N.0                       | <b>~0.5</b>  | <b>N</b>          | <b>~0.</b> 5 |                    |                        |                        |                   | <b>~</b> 0.5        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | '                        |
| VC12              | 21/10/2019 | VC12_0.3-0.4 | 0.5 - 0.4 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | <u> </u>                 |
| VC12              | 21/10/2019 |              | 0.5 - 0.0 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | <u> </u>                 |
| VC12              | 21/10/2019 | VC12_0.0-0.9 |           | <0 F                  |                    |                    |                    |                |                     | <0.5           |               |                      | <0.5                        |              | <2                | <0.5         |                    |                        |                        |                   |                     | -5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | <u> </u>                 |
|                   | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 | <0.5                  |                    |                    |                    |                |                     | <0.5           | )<br>·        |                      | <0.5                        |              | <2                | <0.5         |                    |                        |                        |                   |                     | <0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | <sup> </sup>             |
|                   | 31/10/2019 |              | 0.0 - 0.1 | <0.5                  |                    |                    |                    |                |                     | <0.5           | )             |                      | <0.5                        |              | <u>~</u> 2        | <0.5         |                    |                        |                        |                   |                     | <0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ′                              | <b> </b>                 |
|                   | 31/10/2019 |              | 0.0 - 0.5 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | i                        |
|                   | 31/10/2019 |              | 0.3 - 0.4 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
|                   | 31/10/2019 |              | 0.5 - 0.0 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
| VC13              | 31/10/2019 |              | 0.5 - 1.0 |                       |                    |                    | ļ                  |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | I                        |
| VC13              | 31/10/2019 |              | 0.7 - 0.8 |                       |                    |                    | ļ                  |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | I                        |
| VC13              | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
| VC14              | 31/10/2019 | VC14_0.0-0.1 | 0.0 - 0.1 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
| VC14              | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | ┢────                    |
| VC14              | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
| VC14              | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
| VC14              | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   | .0.5         |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
| VC14              | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 | <0.5                  |                    |                    |                    |                |                     | <0.5           |               |                      | <0.5                        |              | <2                | <0.5         |                    |                        |                        |                   |                     | <5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
| VC14              | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·'                             | <b> </b>                 |
| VC14              | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | !                              | L                        |
| Statistics        |            |              |           |                       |                    |                    |                    |                |                     |                |               |                      |                             |              |                   |              |                    |                        |                        |                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                          |
| Number of Results |            |              |           | 25                    | 17                 | 17                 | 17                 | 7 17           | 17                  | 25             | 17            | 5                    | 25                          | 5            | 25                | 25           | 4                  | 4                      | 4                      | 4                 | 9                   | 12               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                              | 4                        |
| Number of Detects |            |              |           | 0                     | 0                  |                    | 0                  |                | ) 1                 | 0              | 0             | 0                    | 0                           | 0            | 0                 | 0            | 0                  | 0                      | 0                      | 0                 | 0                   | 0                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                              | 0                        |
| Minimum Concentra | ation      |              |           | <0.5                  | <0.5               | <0.5               | <0.5               | 5 < 0.5        | 5 <0 005            | <0.5           | < 0.5         | <0.5                 | <0.5                        | <0.5         | <1                | <0.5         | <0.5               | <0.5                   | <0.5                   | <0.5              | <0.5                | <5               | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <5                             | <0.5                     |
| Maximum Concentra | ation      |              |           | <0.0                  | <0.6               | <0.6               | <0.6               | S <0.6         | 0 044               | <0.6           | <0.6          | <0.6                 | <0.6                        | <0.6         | <2                | <0.6         | <0.5               | <0.5                   | <0.5                   | <0.5              | <0.5                | <5               | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <5                             | <0.5                     |
|                   |            |              |           | .0.0                  | .0.0               | .0.0               |                    |                |                     |                |               | .0.0                 |                             |              | · ~               |              |                    |                        |                        |                   |                     | -0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                          |

Statistics Number of Number of Minimum ( Maximum



|                          |                              |            |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     | VOC                                 | Cs                      |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     | F                               |                                     |                                      |                                          |                                          |                        | ,                                    |                                   |
|--------------------------|------------------------------|------------|-------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|-------------------------|-------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|----------------|---------------------|---------------------------------|-------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------|--------------------------------------|-----------------------------------|
|                          |                              |            | mg/kg | og<br>A/Carbon disulfide | o a Chlorodibromomethan b a c | n W<br>Sy/6<br>b<br>A/b<br>Chloroethane | a cis-1,3-<br>n ସ୍ନାdichloropropene | d cis-1,4-Dichloro-2-<br>n X butene | by/bu<br>by/bu<br>by/bu | mg/kg | a<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b | a<br>a<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b | o da<br>by<br>by<br>Dayloroethane | d<br>dx/<br>b-isopropyltoluene | d<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k<br>k | b<br>M/kg<br>b | d tert-butylbenzene | ogy<br>by/<br>Tetrachloroethene | ອີ trans-1,3-<br>ກຊ/dichloropropene | o 協 trans-1,2-<br>n 첫 dichloroethene | ອັສ trans-1,4-Dichloro-2-<br>ກ້ຊາ butene | , data data data data data data data dat | n W<br>M/Vinyl acetate | o d<br>by/<br>by/<br>1-naphthylamine | ය 2-(acetylamino)<br>여 첫 fluorene |
| Vaste SCC1 (with TCLP)   |                              |            | 0.5   | 0.5                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                       | 0.5                                 | 0.5                                 | 0.5                     | 0.5   | 0.5                                                                                              | 0.5                                                                                              | 0.5                               | 0.5                            | 0.5                                                                                              | 0.5<br>18      | 0.5                 | 25.2                            | 0.5                                 | 0.5                                  | 0.5                                      | 5                                        | 5                      | 0.5                                  | 0.5                               |
| Vaste TCLP1              |                              |            |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| d Waste SCC2 (with TCLP) |                              |            |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  | 72             |                     | 101                             |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| d Waste TCLP2            |                              |            |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
|                          | Field ID                     | Denth      |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| 019                      | BH05 4 6-4 7                 | 46-47      |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  | <0.5           |                     | <0.5                            |                                     |                                      |                                          |                                          | <u> </u>               | T                                    | I                                 |
| 2019                     | BH06 1.2-1.45                | 1.2 - 1.45 |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  | < 0.5          |                     | < 0.5                           |                                     | <del> </del> <del> </del>            |                                          |                                          |                        | ł                                    |                                   |
| 2019                     | BH07_2.5-2.95                | 2.5 - 2.95 |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  | <0.5           |                     | <0.5                            |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | vc01_0.4-0.6                 | 0.4 - 0.6  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ļ                                    |                                          |                                          |                        | I                                    |                                   |
| /2019                    | VC01_0.0-0.2                 | 0.0 - 0.2  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        | <0.5                                 | <0.5                              |
| /2019                    | VC01_0.3-1.0                 | 10-11      |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | <del> </del>                         |                                          |                                          |                        | ~0.5                                 | <0.5                              |
| /2019                    | VC02 0.0-0.2                 | 0.0 - 0.2  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ł                                    |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC02_0.5-0.6                 | 0.5 - 0.6  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | t                                    |                                          |                                          |                        |                                      | i                                 |
| /2019                    | VC02_0.5-1.0                 | 0.5 - 1.0  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC02_1.0-1.2                 | 1.0 - 1.2  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ļ                                    |                                          |                                          |                        | <b> </b>                             | I                                 |
| /2019                    | VC02_1.0-1.5<br>VC02_1.5.1.6 | 1.0 - 1.5  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC02_0.0-0.5                 | 0.0 - 0.5  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | <del> </del> <del> </del>            |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC03_0.0-0.2                 | 0.0 - 0.2  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ŧ                                    |                                          |                                          |                        | †                                    | i                                 |
| /2019                    | VC03_0.0-0.5                 | 0.0 - 0.5  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC03_0.3-0.4                 | 0.3 - 0.4  | <0.5  | <0.5                     | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <5                                      | <0.5                                | <0.5                                | <0.5                    | <0.5  | <0.5                                                                                             | <0.5                                                                                             | <0.5                              | <0.5                           | <0.5                                                                                             | <0.5           | <0.5                | <0.5                            | <0.5                                | <0.5                                 | <0.5                                     | <5                                       | <5                     | ,l                                   | <u> </u>                          |
| /2019                    | VC03_0.4-0.6                 | 0.4 - 0.6  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      | ]                                 |
| /2019                    | VC03_0.5-1.0                 | 0.5 - 1.0  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | <del> </del>                         |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC03 1.0-1.2                 | 1.0 - 1.2  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ł                                    |                                          |                                          |                        |                                      | i                                 |
| /2019                    | VC04_0.0-0.1                 | 0.0 - 0.1  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC04_0.3-0.4                 | 0.3 - 0.4  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ]                                    |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC04_0.5-1.0                 | 0.5 - 1.0  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ļ                                    |                                          |                                          |                        | <0.6                                 | <0.6                              |
| /2019                    | VC04_0.5-0.6                 | 0.5 - 0.6  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        | ł                                    |                                   |
| /2019                    | VC04_0.9-1.0                 | 0.9 - 1.0  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | <del> </del> <del> </del>            |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC05_0.0-0.1                 | 0.0 - 0.1  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ŧ                                    |                                          |                                          |                        | ·†                                   |                                   |
| /2019                    | VC05_0.5-0.7                 | 0.5 - 0.7  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC05_0.5-0.9                 | 0.5 - 0.9  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                       |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 | 0.5                                 |                                      |                                          |                                          |                        | I                                    |                                   |
| /2019                    | VC05_0.8-0.9                 | 0.8 - 0.9  | <0.5  | <0.5                     | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <5                                      | <0.5                                | <0.5                                | <0.5                    | <0.5  | <0.5                                                                                             | <0.5                                                                                             | <0.5                              | <0.5                           | <0.5                                                                                             | < 0.5          | <0.5                | < 0.5                           | <0.5                                | <0.5                                 | <0.5                                     | <5                                       | <5                     | ┌────┤                               |                                   |
| /2019                    | VC06_0.0-0.5                 | 0.0 - 0.5  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  | <0.5           |                     | <0.5                            |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC06 0.3-0.4                 | 0.3 - 0.4  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | <del> </del> <del> </del>            |                                          |                                          |                        | t                                    |                                   |
| /2019                    | VC06_0.5-0.6                 | 0.5 - 0.6  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC06_0.5-1.0                 | 0.5 - 1.0  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | I                                    |                                          |                                          |                        |                                      |                                   |
| /2019                    |                              | 0.7 - 0.8  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | Į                                    |                                          |                                          |                        | ┌────┤                               |                                   |
| /2019                    | VC07_0.0-0.2                 | 0.0 - 0.2  | <0.5  | <0.5                     | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <5                                      | <0.5                                | <0.5                                | <0.5                    | <0.5  | <0.5                                                                                             | <0.5                                                                                             | <0.5                              | <0.5                           | <0.5                                                                                             | <0.5           | <0.5                | <0.5                            | <0.5                                | <0.5                                 | <0.5                                     | <5                                       | <5                     |                                      |                                   |
| /2019                    | VC07 0.0-0.5                 | 0.0 - 0.5  | 0.0   | 0.0                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ű                                       | 0.0                                 | 0.0                                 | 0.0                     | 0.0   | 0.0                                                                                              | 0.0                                                                                              | 0.0                               | 0.0                            | 0.0                                                                                              | 0.0            | 0.0                 | 0.0                             | 0.0                                 |                                      | 0.0                                      | Ū                                        |                        | <0.5                                 | <0.5                              |
| /2019                    | VC07_0.2-0.4                 | 0.2 - 0.4  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC07_0.5-0.6                 | 0.5 - 0.6  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ļ                                    |                                          |                                          |                        | I                                    |                                   |
| /2019                    | VC07_0.5-1.0                 | 0.5 - 1.0  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ļ                                    |                                          |                                          |                        | ┌────┤                               |                                   |
| /2019                    | VC07_0.7-0.8                 | 10-12      |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        | ł                                    |                                   |
| /2019                    | VC08 0.0-0.1                 | 0.0 - 0.1  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  | <0.5           |                     | <0.5                            |                                     | <del> </del> <del> </del>            |                                          |                                          |                        | ł                                    | i                                 |
| /2019                    | VC08_0.3-0.4                 | 0.3 - 0.4  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC08_0.0-0.5                 | 0.0-0.5    |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC08_0.5-0.6                 | 0.5 - 0.6  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      | I                                 |
| /2019                    |                              | 0.5 - 1.0  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ļ                                    |                                          |                                          |                        | ł                                    |                                   |
| /2019                    | VC08 1.0-1.1                 | 1.0 - 1.1  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        | ,───┤                                |                                   |
| /2019                    | VC08_1.0-1.5                 | 1.0 - 1.5  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | <del> </del> <del> </del>            |                                          |                                          |                        | <0.5                                 | <0.5                              |
| /2019                    | VC08_1.3-1.4                 | 1.3 - 1.4  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |
| /2019                    | VC08_1.5-1.6                 | 1.5 - 1.6  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | Ţ                                    |                                          |                                          |                        | Ī                                    | ]                                 |
| /2019                    | VC09_0.0-0.2                 | 0.0 - 0.2  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | ļ                                    |                                          |                                          |                        |                                      | ]                                 |
| /2019                    | VC09_0.4-0.6                 | 0.0 - 0.5  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        | ,───┤                                | ]                                 |
| /2019                    | VC09_0.5-1.0                 | 0.5 - 1.0  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     | <del> </del> <del> </del>            |                                          |                                          |                        | ł                                    |                                   |
| /2019                    | VC09_0.7-0.8                 | 0.7 - 0.8  |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     |                                     |                         |       |                                                                                                  |                                                                                                  |                                   |                                |                                                                                                  |                |                     |                                 |                                     |                                      |                                          |                                          |                        |                                      |                                   |

|                                             |                            |                               |                         |              |              |                |            |                 | VOCs          |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
|---------------------------------------------|----------------------------|-------------------------------|-------------------------|--------------|--------------|----------------|------------|-----------------|---------------|-----------------------|---------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------|--------------------|------------------|------------|---------------------------|--------------|------------------|
|                                             |                            |                               |                         |              | de           | omethan        |            | ne<br>Z         | 4             | ane                   | ٥             | sne               | hane         | nene         | ene          | e            | ene          | lene         | це                 | Ø                  | lloro-2-         | omethan    |                           | ine          | (0               |
|                                             |                            |                               |                         | noform       | oon disulfi  | rodibrom       | roethane   | ,3-<br>oroprope | e e           | omometha              | tylbenzen     | pylbenze          | achloroet    | propyltolu   | butylbenz    | loroether    | outylbenz    | achloroeth   | s-1,3-<br>oroprope | s-1,2-<br>oroethen | s-1,4-Dich<br>ne | lorofluoro | acetate                   | phthylam     | cetylamin<br>ene |
|                                             |                            |                               |                         | Bron         | Carb         | Chlo<br>e      | Chlo       | cis-1<br>dichl  | bute          | Dibre                 | .nq-u         | n-pro             | Pent         | p-iso        | sec-         | Trich        | tert-b       | Tetra        | trans<br>dichl     | trans<br>dichl     | trans<br>butei   | Trich<br>e | Vinyl                     | 1-na         | 2-(ac<br>fluor   |
| EQL                                         |                            |                               |                         | mg/kg<br>0.5 | mg/kg<br>0.5 | mg/kg r<br>0.5 | mg/kg<br>5 | mg/kg m<br>0.5  | g/kg m<br>0.5 | ng/kg mg/k<br>0.5 0.5 | g mg/k<br>0.5 | kg mg/kg<br>5 0.5 | mg/kg<br>0.5       | mg/kg<br>0.5       | mg/kg<br>0.5     | mg/kg<br>5 | mg/kg<br>5                | mg/kg<br>0.5 | mg/kg<br>0.5     |
| NSW EPA (2014) Gene                         | eral Solid Waste SCC1 (wit | h TCLP)                       |                         |              |              |                |            |                 |               |                       |               |                   |              |              |              | 18           |              | 25.2         |                    |                    |                  |            |                           |              |                  |
| NSW EPA (2014) Gene<br>NSW EPA (2014) Restr | ricted Solid Waste TCLPT   | with TCLP)                    |                         |              |              |                |            |                 |               |                       |               |                   |              |              |              | 72           |              | 101          |                    |                    |                  |            |                           |              |                  |
| NSW EPA (2014) Restr                        | ricted Solid Waste TCLP2   |                               |                         |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| Location Code                               | Date                       | Field ID                      | Depth                   |              |              |                |            |                 |               | ······                |               |                   |              |              |              |              |              |              |                    | <b>-</b>           |                  |            |                           |              |                  |
| BH05<br>BH06                                | 7/11/2019 7/11/2019        | BH05_4.6-4.7<br>BH06_1.2-1.45 | 4.6 - 4.7<br>1.2 - 1.45 |              |              |                |            |                 |               |                       |               |                   |              |              |              | <0.5<br><0.5 |              | <0.5<br><0.5 |                    |                    |                  |            |                           |              |                  |
| BH07                                        | 7/11/2019                  | BH07_2.5-2.95                 | 2.5 - 2.95              |              |              |                |            |                 |               |                       |               |                   |              |              |              | <0.5         |              | < 0.5        |                    |                    |                  |            |                           |              |                  |
| VC01<br>VC01                                | 30/10/2019                 | vc01_0.4-0.6<br>VC01_0.0-0.2  | 0.4 - 0.6               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | <b> </b>                  |              |                  |
| VC01                                        | 30/10/2019                 | VC01_0.5-1.0                  | 0.5 - 1.0               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           | <0.5         | <0.5             |
| VC01                                        | 30/10/2019                 | VC01_1.0-1.1                  | 1.0 - 1.1               |              |              |                |            |                 |               |                       | _             |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC02                                        | 30/10/2019                 | VC02_0.5-0.6                  | 0.5 - 0.6               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC02                                        | 30/10/2019                 | VC02_0.5-1.0                  | 0.5 - 1.0               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC02<br>VC02                                | 30/10/2019                 | VC02_1.0-1.2<br>VC02_1.0-1.5  | 1.0 - 1.2               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | ·                         |              |                  |
| VC02                                        | 30/10/2019                 | VC02_1.5-1.6                  | 1.5 - 1.6               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC02<br>VC03                                | 30/10/2019                 | VC02_0.0-0.5                  | 0.0 - 0.2               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | <del> </del>              |              |                  |
| VC03                                        | 30/10/2019                 | VC03_0.0-0.5                  | 0.0 - 0.5               | 0.5          |              |                | _          |                 |               |                       | _             |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC03<br>VC03                                | 30/10/2019                 | VC03_0.3-0.4<br>VC03_0.4-0.6  | 0.3 - 0.4               | <0.5         | <0.5         | <0.5           | <5         | <0.5            | <0.5          | <0.5 <0               | .5 <(         | 0.5 <0.5          | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5               | <0.5               | <0.5             | <5         | <5                        |              |                  |
| VC03                                        | 30/10/2019                 | VC03_0.5-1.0                  | 0.5 - 1.0               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC03                                        | 30/10/2019                 | VC03_0.6-0.7                  | 0.6 - 0.7               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | <b> </b>                  |              |                  |
| VC04                                        | 30/10/2019                 | VC04_0.0-0.1                  | 0.0 - 0.1               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC04                                        | 30/10/2019                 | VC04_0.3-0.4                  | 0.3 - 0.4               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           | <0.6         | <0.6             |
| VC04                                        | 31/10/2019                 | VC04_0.5-0.6                  | 0.5 - 0.6               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | <del> </del> <del> </del> | -0.0         |                  |
| VC04                                        | 31/10/2019                 | VC04_0.7-0.8                  | 0.7 - 0.8               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC04<br>VC05                                | 30/10/2019                 | VC04_0.9-1.0                  | 0.0 - 0.1               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | <del> </del> <del> </del> |              |                  |
| VC05                                        | 30/10/2019                 | VC05_0.5-0.7                  | 0.5 - 0.7               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC05<br>VC05                                | 30/10/2019                 | VC05_0.5-0.9                  | 0.5 - 0.9               | <0.5         | <0.5         | <0.5           | <5         | <0.5            | <0.5          | <0.5 <0               | .5 <0         | 0.5 <0.5          | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5               | <0.5               | <0.5             | <5         | <5                        |              |                  |
| VC06                                        | 31/10/2019                 | VC06_0.0-0.1                  | 0.0 - 0.1               |              |              |                | -          |                 |               |                       |               |                   |              |              |              | <0.5         |              | <0.5         |                    |                    |                  | -          |                           |              |                  |
| VC06<br>VC06                                | 31/10/2019                 | VC06_0.0-0.5<br>VC06_0.3-0.4  | 0.0 - 0.5               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | <b> </b>                  |              |                  |
| VC06                                        | 31/10/2019                 | VC06_0.5-0.6                  | 0.5 - 0.6               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC06                                        | 31/10/2019                 | VC06_0.5-1.0<br>VC06_0.7-0.8  | 0.5 - 1.0               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | <b> </b>                  |              |                  |
| VC06                                        | 31/10/2019                 | VC06_0.8-0.9                  | 0.8 - 0.9               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC07                                        | 30/10/2019                 | VC07_0.0-0.2                  | 0.0 - 0.2               | <0.5         | <0.5         | <0.5           | <5         | <0.5            | <0.5          | <0.5 <0               | .5 <0         | 0.5 <0.5          | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5               | <0.5               | <0.5             | <5         | <5                        | <0.5         | <0.5             |
| VC07                                        | 30/10/2019                 | VC07_0.2-0.4                  | 0.2 - 0.4               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           | -0.0         |                  |
| VC07                                        | 30/10/2019                 | VC07_0.5-0.6                  | 0.5 - 0.6               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC07                                        | 30/10/2019                 | VC07_0.7-0.8                  | 0.7 - 0.7               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | ·                         |              |                  |
| VC07                                        | 30/10/2019                 | VC07_1.0-1.2                  | 1.0 - 1.2               |              |              |                |            |                 |               |                       |               |                   |              |              |              | <0 E         |              | <0 F         |                    |                    |                  |            |                           |              |                  |
| VC08<br>VC08                                | 31/10/2019                 | VC08_0.0-0.1                  | 0.0 - 0.1               |              |              |                |            |                 |               |                       |               |                   |              |              |              | <0.5         |              | <0.5         |                    |                    |                  |            | <del> </del>              |              | <u></u>          |
| VC08                                        | 31/10/2019                 | VC08_0.0-0.5                  | 0.0-0.5                 |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC08<br>VC08                                | 31/10/2019                 | VC08_0.5-0.6<br>VC08_0.5-1.0  | 0.5 - 0.6               |              |              |                |            |                 |               |                       | _             |                   |              |              |              |              |              |              |                    |                    |                  |            | <b> </b>                  |              |                  |
| VC08                                        | 31/10/2019                 | VC08_0.7-0.8                  | 0.7 - 0.8               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC08                                        | 31/10/2019                 | VC08_1.0-1.1                  | 1.0 - 1.1               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           | <٥ ٢         | <0.5             |
| VC08                                        | 31/10/2019                 | VC08_1.3-1.4                  | 1.3 - 1.4               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           | -0.0         |                  |
|                                             | 31/10/2019                 | VC08_1.5-1.6                  | 1.5 - 1.6               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | Ţ                         |              |                  |
| VC09                                        | 30/10/2019                 | VC09_0.0-0.2                  | 0.0 - 0.5               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            | <del> </del>              |              |                  |
| VC09                                        | 30/10/2019                 | VC09_0.4-0.6                  | 0.4 - 0.6               |              |              |                |            |                 |               |                       |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| VC09                                        | 30/10/2019                 | VC09_0.5-1.0<br>VC09_0.7-0.8  | 0.7 - 0.8               |              |              |                |            |                 |               | <u> </u>              | _             |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |
| B                                           |                            |                               |                         |              |              |                |            |                 |               | 4                     |               |                   |              |              |              |              |              |              |                    |                    |                  |            |                           |              |                  |



|                                       |            |              |           |           |                  |                          |              |                             | VO                            | Cs             |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
|---------------------------------------|------------|--------------|-----------|-----------|------------------|--------------------------|--------------|-----------------------------|-------------------------------|----------------|-------------|----------------|-----------------|-------------------|--------------------|------------------|-----------------|-------------------|-------------------|-------------------------------|------------------------------|---------------------------------|----------------------------|----------------|-----------------|-----------------------------|
|                                       |            |              |           | Bromoform | Carbon disulfide | Chlorodibromomethan<br>e | Chloroethane | cis-1,3-<br>dichloropropene | cis-1,4-Dichloro-2-<br>butene | Dibromomethane | lodomethane | n-butylbenzene | n-propylbenzene | Pentachloroethane | p-isopropyltoluene | sec-butylbenzene | Trichloroethene | tert-butylbenzene | Tetrachloroethene | trans-1,3-<br>dichloropropene | trans-1,2-<br>dichloroethene | trans-1,4-Dichloro-2-<br>butene | Trichlorofluoromethan<br>e | Vinyl acetate  | 1-naphthylamine | 2-(acetylamino)<br>fluorene |
| · · · · · · · · · · · · · · · · · · · |            |              |           | mg/kg     | mg/kg            | mg/kg                    | j mg/kg      | mg/kg                       | mg/kg                         | mg/kg          | mg/kg       | mg/kg          | mg/kg           | mg/kg             | mg/kg              | mg/kg            | mg/kg           | mg/kg             | mg/kg             | mg/kg                         | mg/kg                        | mg/kg                           | mg/kg                      | mg/kg          | mg/kg           | mg/kg                       |
| VC09                                  | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC10                                  | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC10                                  | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC10                                  | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |           |                  |                          | _            |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                | <u> </u>        |                             |
| VC10                                  | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |           |                  |                          | _            |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                | <u> </u>        |                             |
| VC11                                  | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |           |                  |                          | _            |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                | <u> </u>        |                             |
| VC11                                  | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |           |                  |                          | _            |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 | <u> </u>                    |
| VC11                                  | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 | <0.5      | <0.5             | 5 <0.                    | 5 <5         | 5 <0.5                      | <0.5                          | <0.5           | 5 <0.5      | 5 < 0.5        | 5 < 0.5         | <0.5              | < 0.5              | <0.5             | < 0.5           | <0.5              | 5 <0.5            | < 0.5                         | < 0.5                        | <0.                             | 5 <                        | <u>5&gt; ز</u> |                 | <u> </u>                    |
| VC11                                  | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |           |                  |                          | _            |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                | <u> </u>        | <u> </u>                    |
| VC11                                  | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |           |                  |                          | _            |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            | <u> </u>       |                 | <u> </u>                    |
| VC12                                  | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 |           |                  |                          | _            |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                | <0.5            | < 0.5                       |
| VC12                                  | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |           |                  |                          | _            |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                | <u> </u>        | <u> </u>                    |
| VC12                                  | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |           |                  |                          | _            |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            | 4              | <b></b>         | <u> </u>                    |
| VC12                                  | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            | <u> </u>       |                 | <u> </u>                    |
| VC12                                  | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  | < 0.5           |                   | <0.5              | 5                             |                              |                                 |                            |                |                 |                             |
| VC13                                  | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  | <0.5            |                   | <0.5              | ,<br>,                        |                              |                                 |                            |                |                 |                             |
| VC13                                  | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC13                                  | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC13                                  | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC13                                  | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC13                                  | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            | Τ              |                 |                             |
| VC13                                  | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            | 1              |                 |                             |
| VC14                                  | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC14                                  | 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC14                                  | 31/10/2019 | VC14 0.3-0.4 | 0.3 - 0.4 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC14                                  | 31/10/2019 | VC14 0.5-1.0 | 0.5 - 1.0 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            |                |                 |                             |
| VC14                                  | 31/10/2019 | VC14 0.7-0.8 | 0.7 - 0.8 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            | 1              |                 |                             |
| VC14                                  | 31/10/2019 | VC14 1.0-1.1 | 1.0 - 1.1 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  | < 0.5           |                   | < 0.5             | 5                             |                              |                                 |                            | <u> </u>       |                 |                             |
| VC14                                  | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            | +              | <u> </u>        | 1                           |
| VC14                                  | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |           |                  |                          |              |                             |                               |                |             |                |                 |                   |                    |                  |                 |                   |                   |                               |                              |                                 |                            | +              | <u> </u>        | 1                           |
| Statistics<br>Number of Results       | ·          |              | ·         | 4         | 4                | 4                        | 4 4          | 4 4                         | 4                             | 4              | 4 4         | 4              | 4               | 4                 | 4                  | 4                | 12              |                   | 4 12              | 2 4                           | 4                            |                                 | 4 4                        | 4 4            |                 | 5                           |
| Number of Detects                     |            |              |           | 0         | 0                | ) (                      | 0 0          | ) 0                         | 0                             | 0              | ) (         | ) (            | ) 0             | 0                 | 0                  | 0                | 0               | 0                 | ) (               | 0                             | 0                            | (                               | ) (                        | <u>) (</u>     | <u>л с</u>      | 0                           |
| Minimum Concentra                     | ation      |              |           | <0.5      | <0.5             | 5 <0.                    | 5 <5         | 5 < 0.5                     | <0.5                          | <0.5           | 5 < 0.5     | o <0.5         | o <0.5          | <0.5              | < 0.5              | <0.5             | <0.5            | <0.5              | 5 < 0.5           | < 0.5                         | < 0.5                        | <0.                             | 5 <{                       | 5> ز           | , <0.5          | , <0.5                      |
| Maximum Concentra                     | ation      |              |           | <0.5      | < 0.5            | 5 <0.                    | 5 <5         | 5 <0.5                      | <0.5                          | <0.5           | 5 < 0.5     | < 0.5          | i <0.5          | <0.5              | < 0.5              | < 0.5            | < 0.5           | <0.5              | 5 < 0.5           | < 0.5                         | < 0.5                        | <0.                             | 5 <                        | 5> ز           | , <0.6          | , <0.6                      |

Statistics Number of Number of Minimum C Maximum C



|                                          |                |                                   |            |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           | SVOCs        |                              |                                             |                                       |                                             |                         |                              |
|------------------------------------------|----------------|-----------------------------------|------------|---------------------|------------------------------|------------------|-----------------------------------------------|---------------------------------------|----------------------------|---------------------------------------|--------------------------------|----------------------------------------|-------------------------------|--------------------------------------------------|----------------|------------------------|-------------------------------------------|---------------------------|--------------|------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------------|-------------------------|------------------------------|
| :PA (2014) Genera                        | al Solid Waste | e SCC1 (with TCLP)                |            | t by/2-nitroaniline | 0 g<br>3,3-Dichlorobenzidine | L builtroaniline | പ്പള്ള 4-(dimethylamino)<br>നൂട്ട് azobenzene | o a 4-bromophenyl phenyl<br>여 정 ether | 9 월<br>3 월 4-chloroaniline | o a 4-chlorophenyl phenyl<br>아중 ether | 0.<br>2/bd<br>gy/dnitroaniline | 0 ga 4-Nitroquinoline-N-<br>G x/ oxide | 0.5<br>by/5-nitro-o-toluidine | 은 점 T,12-<br>더 위 dimethylbenz(a)anthra<br>여 cene | aniline<br>0.5 | ansandenzene<br>B<br>1 | ය යි Bis(2-chloroethoxy)<br>රා යි methane | G Bis(2-chloroethyl)ether | 5.0 m<br>5.0 | 0.0 M<br>5.0 Shlorobenzilate | eu<br>eu<br>coronene<br>S<br>mg/kg<br>0.005 | 5 년 Hexachlorocyclopenta<br>당 성 diene | 0 M<br>G<br>G<br>G<br>G<br>Hexachloroethane | Exachloropropene<br>5.0 | encophorone<br>Bay/kg<br>0.5 |
| PA (2014) Genera                         | al Solid Waste | e TCLP1<br>etc SCC2 (with TCLP)   |            |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
| PA (2014) Restrict<br>PA (2014) Restrict | ted Solid Was  | ste SCC2 (with TCLP)<br>ste TCLP2 |            |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          |                |                                   |            |                     | •                            |                  |                                               | -                                     |                            |                                       |                                | •                                      | •                             |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
| on Code                                  | Date           |                                   | Depth      |                     | 1                            |                  |                                               | 1                                     |                            |                                       |                                | 1                                      |                               | 1                                                |                | I                      |                                           |                           |              |                              |                                             |                                       | ——————————————————————————————————————      |                         |                              |
|                                          | 7/11/2019      | BH05_4.0-4.7<br>BH06_1_2-1_45     | 4.0 - 4.7  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             | <u> </u>                |                              |
|                                          | 7/11/2019      | BH07_2.5-2.95                     | 2.5 - 2.95 |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       | —                                           |                         |                              |
|                                          | 30/10/2019     | 9 vc01_0.4-0.6                    | 0.4 - 0.6  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | 9 VC01_0.0-0.2                    | 0.0 - 0.2  |                     | -0.5                         | 11.0             | -0.5                                          | -0.5                                  | -0.5                       | -0.5                                  | -0.5                           |                                        | -0.5                          | -0.5                                             | -0.5           |                        | -0.5                                      | -0.5                      | -0.5         | -0.5                         | 10.005                                      | -0.5                                  | -0.5                                        |                         | -0.5                         |
|                                          | 30/10/2019     |                                   | 0.5 - 1.0  | <1.(                | 0 <0.5                       | <1.0             | <0.5                                          | <0.5                                  | <0.5                       | <0.5                                  | <0.5                           | o <0.5                                 | <0.5                          | <0.5                                             | <0.5           | <1                     | <0.5                                      | <0.5                      | <0.5         | <0.5                         | <0.005                                      | <2.5                                  | <0.5                                        | <0.5                    | <0.5                         |
|                                          | 30/10/2019     | VC02_0.0-0.2                      | 0.0 - 0.2  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              | <0.003                                      |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | VC02_0.5-0.6                      | 0.5 - 0.6  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             | <u> </u>                |                              |
|                                          | 30/10/2019     | 9 VC02_0.5-1.0                    | 0.5 - 1.0  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | 9 VC02_1.0-1.2                    | 1.0 - 1.2  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | V = V = V = 1.0 - 1.5             | 1.0 - 1.5  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              | <0.005                                      |                                       | <del>_</del>                                | <del>_</del>            |                              |
|                                          | 31/10/2019     | 9 VC02_1.3-1.0                    | 0.0 - 0.5  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              | 0.375                                       |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | VC03_0.0-0.2                      | 0.0 - 0.2  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | 9 VC03_0.0-0.5                    | 0.0 - 0.5  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              | <0.005                                      |                                       |                                             |                         |                              |
|                                          | 30/10/2019     |                                   | 0.3 - 0.4  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              | <0.005                                      |                                       | —                                           | —                       |                              |
|                                          | 30/10/2019     | VC03_0.5-1.0                      | 0.5 - 1.0  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | VC03_0.6-0.7                      | 0.6 - 0.7  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | 9 VC03_1.0-1.2                    | 1.0 - 1.2  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | 9 VC04_0.0-0.1                    | 0.0 - 0.1  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              | 10.005                                      |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | VC04_0.3-0.4                      | 0.3 - 0.4  | <1(                 | <0.6                         | <10              | <0.6                                          | <0.6                                  | <0.6                       | <0.6                                  | <0.6                           | s <0.6                                 | <0.6                          | <0.6                                             | <0.6           | <1                     | <0.6                                      | <0.6                      | <0.6         | <0.6                         | <0.005                                      | <25                                   | <0.6                                        | <0.6                    | <0.6                         |
|                                          | 31/10/2019     | 9 VC04_0.5-0.6                    | 0.5 - 0.6  | 51.0                | , .0.0                       | \$1.0            | -0.0                                          | -0.0                                  | -0.0                       | -0.0                                  | -0.0                           | , .0.0                                 | 40.0                          | -0.0                                             | -0.0           |                        | -0.0                                      | -0.0                      | -0.0         | 40.0                         | -0.000                                      | ~2.0                                  | -0.0                                        | -0.0                    |                              |
|                                          | 31/10/2019     | VC04_0.7-0.8                      | 0.7 - 0.8  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 31/10/2019     | 9 VC04_0.9-1.0                    | 0.9 - 1.0  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     |                                   | 0.0 - 0.1  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       | —                                           | —                       |                              |
|                                          | 30/10/2019     | VC05_0.5-0.7                      | 0.5 - 0.9  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | VC05_0.8-0.9                      | 0.8 - 0.9  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              | <0.005                                      |                                       |                                             |                         |                              |
|                                          | 31/10/2019     | 9 VC06_0.0-0.1                    | 0.0 - 0.1  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 31/10/2019     | VC06_0.0-0.5                      | 0.0 - 0.5  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 31/10/2019     |                                   | 0.3 - 0.4  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             | <u> </u>                |                              |
|                                          | 31/10/2019     | 9 VC06 0.5-1.0                    | 0.5 - 1.0  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             | <u> </u>                |                              |
|                                          | 31/10/2019     | VC06_0.7-0.8                      | 0.7 - 0.8  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 31/10/2019     | 9 VC06_0.8-0.9                    | 0.8 - 0.9  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     |                                   | 0.0 - 0.2  | <1 (                | <0.5                         | <10              | <0 F                                          | <0.5                                  | <0.5                       | <0.5                                  | <0.5                           | <0.5                                   | <0.5                          | <0.5                                             | <0 F           | ~1                     | <0.5                                      | <0 F                      | <0.5         | <0.5                         | 0.256                                       | <25                                   | <0.5                                        | <0.5                    | <0.5                         |
|                                          | 30/10/2019     | VC07_0.0-0.3                      | 0.0 - 0.3  | ×1.0                | 0.5                          | <1.0             | <0.5                                          | <0.5                                  | <0.5                       | <0.5                                  | <0.5                           | 5 <u> </u>                             | <0.5                          | <0.5                                             | <0.5           | ~1                     | <0.5                                      | <0.5                      | <b>~</b> 0.5 | <0.5                         | 0.25                                        | ~2.0                                  | <0.5                                        | <0.5                    | <0.5                         |
|                                          | 30/10/2019     | 9 VC07_0.5-0.6                    | 0.5 - 0.6  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             | <u> </u>                |                              |
|                                          | 30/10/2019     | 9 VC07_0.5-1.0                    | 0.5 - 1.0  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | VC07_0.7-0.8                      | 0.7 - 0.7  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     |                                   | 1.0 - 1.2  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             | <u> </u>                |                              |
|                                          | 31/10/2019     | 9 VC08 0.3-0.4                    | 0.3 - 0.4  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             | <u> </u>                |                              |
|                                          | 31/10/2019     | VC08_0.0-0.5                      | 0.0-0.5    |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 31/10/2019     | VC08_0.5-0.6                      | 0.5 - 0.6  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 31/10/2019     |                                   | 0.5 - 1.0  |                     |                              |                  |                                               |                                       |                            |                                       | ļ                              |                                        | ├                             |                                                  |                |                        |                                           | ļ                         | $\vdash$     |                              |                                             |                                       | +                                           | <u> </u>                |                              |
|                                          | 31/10/2019     | WC00_0.7-0.0<br>WC08_1_0-1_1      | 1.0 - 1.1  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        | ++                            |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             | —                       |                              |
|                                          | 31/10/2019     | VC08 1.0-1.5                      | 1.0 - 1.5  | <1.0                | 0.5                          | <1.0             | <0.5                                          | <0.5                                  | <0.5                       | <0.5                                  | <0.5                           | 5 < 0.5                                | <0.5                          | <0.5                                             | <0.5           | <1                     | <0.5                                      | <0.5                      | <0.5         | <0.5                         | <0.005                                      | <2.5                                  | <0.5                                        | <0.5                    | <0.5                         |
|                                          | 31/10/2019     | VC08_1.3-1.4                      | 1.3 - 1.4  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 31/10/2019     | VC08_1.5-1.6                      | 1.5 - 1.6  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        | [                             |                                                  |                |                        |                                           |                           |              |                              | 10.005                                      |                                       |                                             |                         |                              |
|                                          | 30/10/2019     |                                   | 0.0 - 0.2  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           | ļ                         | $\vdash$     |                              | <0.005                                      |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | VC09 0.4-0.6                      | 0.4 - 0.6  |                     |                              |                  |                                               |                                       |                            |                                       | i                              |                                        | +                             |                                                  |                |                        |                                           | ļ                         | $\vdash$     |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | VC09_0.5-1.0                      | 0.5 - 1.0  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |
|                                          | 30/10/2019     | VC09_0.7-0.8                      | 0.7 - 0.8  |                     |                              |                  |                                               |                                       |                            |                                       |                                |                                        |                               |                                                  |                |                        |                                           |                           |              |                              |                                             |                                       |                                             |                         |                              |

|                         |                                  |                               |                                 |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          | SVOCs         |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
|-------------------------|----------------------------------|-------------------------------|---------------------------------|----------------|---------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------|------------------------------------------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|-------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-----------------|
| FOI                     |                                  |                               |                                 | → ditroaniline | d a 3,3-Dichlorobenzidine | ud/kg<br>L | dimethylamino) طرق<br>المجالية<br>ما المجالية<br>ما المحالية<br>ما المحالي ما المحالية<br>ما المحالية<br>ما المحالي محالي محالي محالي محالي محالي محالي محالي محالي محالية<br>محالي محالي مح | o a 4-bromophenyl phenyl<br>G a ether | o da<br>2 dy/ 4-chloroaniline<br>5 d | a 4-chlorophenyl phenyl<br>Gayether<br>u | ටග් 4-nitroaniline<br>ගත් | a 4-Nitroquinoline-N-<br>الكارية<br>مرابع | o a<br>2/5-nitro-o-toluidine<br>6/2/20 | a 7,12-<br>a k dimethylbenz(a)anthra<br>a cene | mg/kg       | eue<br>Mg/kg | Bis(2-chloroethoxy) ق<br>م ک<br>ش العلیہ العل | 고 3<br>고 3<br>요즘 Bis(2-chloroethyl)ether | ⊂<br>arbazole | ⊃<br>∆/6<br>2 Chlorobenzilate | eueue<br>Coroueue<br>mg/kg | د diene در العدمان محمد المراجع ا<br>مراجع المراجع ال<br>مراجع المراجع ال | d Hexachloroethane | d Hexachloropropene | encone<br>mg/kg |
| NSW EPA (2014) Genera   | I Solid Waste SCC1 (with TCLP)   |                               |                                 | ·              | 0.0                       | ·          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                   | 0.0                                  | 0.0                                      | 0.0                       | 0.0                                       | 0.0                                    | 0.0                                            | 0.0         | •            | 0.0                                                                                                                                             | 0.0                                      | 0.0           | 0.0                           | 0.000                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                | 0.0                 | 0.0             |
| NSW EPA (2014) Genera   | I Solid Waste TCLP1              |                               |                                 |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| NSW EPA (2014) Restrict | ted Solid Waste SCC2 (with TCLP) |                               |                                 |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| NSW EPA (2014) Restrict | ted Solid Waste TCLP2            |                               |                                 |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
|                         |                                  |                               |                                 |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| Location Code           | Date                             | Field ID                      | Depth                           | · · · ·        |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                     | 1                                    | <u> </u>                                 |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | <u> </u>            |                 |
| BH06                    | 7/11/2019                        | BH05_4.0-4.7<br>BH06_1.2_1.45 | 4.0 - 4.7<br>1 2 - 1 <i>1</i> 5 |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| BH07                    | 7/11/2019                        | BH07 2.5-2.95                 | 2.5 - 2.95                      |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC01                    | 30/10/2019                       | vc01 0.4-0.6                  | 0.4 - 0.6                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC01                    | 30/10/2019                       | VC01_0.0-0.2                  | 0.0 - 0.2                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC01                    | 30/10/2019                       | VC01_0.5-1.0                  | 0.5 - 1.0                       | <1.0           | <0.5                      | <1.0       | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.5                                  | <0.5                                 | <0.5                                     | <0.5                      | <0.5                                      | <0.5                                   | <0.5                                           | <0.5        | <1           | <0.5                                                                                                                                            | <0.5                                     | <0.5          | <0.5                          | <0.005                     | <2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.5               | <0.5                | <0.5            |
| VC01                    | 30/10/2019                       | VC01_1.0-1.1                  | 1.0 - 1.1                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | <0.005                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC02                    | 30/10/2019                       | VC02_0.0-0.2                  | 0.0 - 0.2                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC02<br>VC02            | 30/10/2019                       | VC02_0.5-0.0                  | 0.5 - 0.0                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC02                    | 30/10/2019                       | VC02_1.0-1.2                  | 1.0 - 1.2                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC02                    | 30/10/2019                       | VC02_1.0-1.5                  | 1.0 - 1.5                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC02                    | 30/10/2019                       | VC02_1.5-1.6                  | 1.5 - 1.6                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | <0.005                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC02                    | 31/10/2019                       | VC02_0.0-0.5                  | 0.0 - 0.5                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | 0.375                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC03                    | 30/10/2019                       | VC03_0.0-0.2                  | 0.0 - 0.2                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | <0.005                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                     |                 |
| VC03                    | 30/10/2019                       | VC03_0.0-0.5                  | 0.0 - 0.5                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | <0.005                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC03                    | 30/10/2019                       | VC03_0.4-0.6                  | 0.4 - 0.6                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | ×0.003                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC03                    | 30/10/2019                       | VC03 0.5-1.0                  | 0.5 - 1.0                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC03                    | 30/10/2019                       | VC03_0.6-0.7                  | 0.6 - 0.7                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC03                    | 30/10/2019                       | VC03_1.0-1.2                  | 1.0 - 1.2                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC04                    | 30/10/2019                       | VC04_0.0-0.1                  | 0.0 - 0.1                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | -0.005                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC04                    | 30/10/2019                       | VC04_0.3-0.4                  | 0.3 - 0.4                       | <1.0           | <0.6                      | <1.0       | <0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.6                                  | <0.6                                 | <0.6                                     | <0.6                      | <0.6                                      | <0.6                                   | <0.6                                           | <0.6        | -1           | <0.6                                                                                                                                            | <0.6                                     | <0.6          | <0.6                          | < 0.005                    | <25                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.6               | <0.6                | <0.6            |
| VC04<br>VC04            | 31/10/2019                       | VC04_0.5-0.6                  | 0.5 - 0.6                       | <1.0           | <b>~0.0</b>               | <1.0       | <b>~</b> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.0                                  | <0.0                                 | <b>~</b> 0.0                             | <b>\U.U</b>               | <b>~</b> 0.0                              | <b>\0.0</b>                            | <b>~</b> 0.0                                   | <b>\0.0</b> | ~1           | <b>~</b> 0.0                                                                                                                                    | <b>\0.0</b>                              | <b>~</b> 0.0  | <b>~</b> 0.0                  | <0.005                     | ~2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~0.0               | ~0.0                | <0.0            |
| VC04                    | 31/10/2019                       | VC04 0.7-0.8                  | 0.7 - 0.8                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                     |                 |
| VC04                    | 31/10/2019                       | VC04_0.9-1.0                  | 0.9 - 1.0                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC05                    | 30/10/2019                       | VC05_0.0-0.1                  | 0.0 - 0.1                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC05                    | 30/10/2019                       | VC05_0.5-0.7                  | 0.5 - 0.7                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC05                    | 30/10/2019                       | VC05_0.5-0.9                  | 0.5 - 0.9                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | <0.005                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                     |                 |
|                         | 30/10/2019                       | VC05_0.8-0.9                  | 0.8 - 0.9                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | <0.005                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC06                    | 31/10/2019                       | VC06 0.0-0.5                  | 0.0 - 0.5                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC06                    | 31/10/2019                       | VC06_0.3-0.4                  | 0.3 - 0.4                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC06                    | 31/10/2019                       | VC06_0.5-0.6                  | 0.5 - 0.6                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC06                    | 31/10/2019                       | VC06_0.5-1.0                  | 0.5 - 1.0                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC06                    | 31/10/2019                       | VC06_0.7-0.8                  | 0.7 - 0.8                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                     |                 |
| VC08<br>VC07            | 30/10/2019                       | VC07_0.0-0.2                  | 0.0 - 0.2                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | 0 256                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC07                    | 30/10/2019                       | VC07 0.0-0.5                  | 0.0 - 0.5                       | <1.0           | <0.5                      | <1.0       | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.5                                 | <0.5                                 | <0.5                                     | <0.5                      | <0.5                                      | <0.5                                   | <0.5                                           | <0.5        | <1           | <0.5                                                                                                                                            | <0.5                                     | <0.5          | <0.5                          | 0.25                       | <2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.5               | <0.5                | <0.5            |
| VC07                    | 30/10/2019                       | VC07_0.2-0.4                  | 0.2 - 0.4                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             | -            |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC07                    | 30/10/2019                       | VC07_0.5-0.6                  | 0.5 - 0.6                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC07                    | 30/10/2019                       | VC07_0.5-1.0                  | 0.5 - 1.0                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC07                    | 30/10/2019                       | VC07_0.7-0.8                  | 0.7 - 0.7                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC07                    | 30/10/2019                       | VC07_1.0-1.2                  | 1.0 - 1.2                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC08                    | 31/10/2019                       | VC08_0.3-0.4                  | 0.3 - 0.4                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC08                    | 31/10/2019                       | VC08 0.0-0.5                  | 0.0-0.5                         |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC08                    | 31/10/2019                       | VC08_0.5-0.6                  | 0.5 - 0.6                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | †                   |                 |
| VC08                    | 31/10/2019                       | VC08_0.5-1.0                  | 0.5 - 1.0                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC08                    | 31/10/2019                       | VC08_0.7-0.8                  | 0.7 - 0.8                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC08                    | 31/10/2019                       | VC08_1.0-1.1                  | 1.0 - 1.1                       | 1 0            | -0 -                      | -1 0       | -0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.5                                  | -0.5                                 |                                          | -0 F                      | -0 5                                      | -0 5                                   | -0 5                                           | -0.5        |              | -0.5                                                                                                                                            | -0 5                                     | -0 5          | -0 5                          | -0.005                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | -0 -                | -0 5            |
| VC08                    | 31/10/2019                       | VC08 1 3-1 4                  | 1 3 - 1 4                       | <1.0           | <0.5                      | <1.0       | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.5                                  | <0.5                                 | <0.5                                     | <0.5                      | <0.5                                      | <0.5                                   | <0.5                                           | <0.5        | [`>          | <0.5                                                                                                                                            | <0.5                                     | <0.5          | <0.5                          | <u>~0.005</u>              | <2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.5               | <0.5                | <0.5            |
| VC08                    | 31/10/2019                       | VC08 1.5-1.6                  | 1.5 - 1.6                       | ┼──┼           |                           |            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                      | +                                        |                           |                                           |                                        | + +                                            |             |              | ┝──┤                                                                                                                                            |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | -+                  |                 |
| VC09                    | 30/10/2019                       | VC09_0.0-0.2                  | 0.0 - 0.2                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 1                                    |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               | <0.005                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | †                   |                 |
| VC09                    | 30/10/2019                       | VC09_0.0-0.5                  | 0.0 - 0.5                       |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC09                    | 30/10/2019                       | VC09_0.4-0.6                  | 0.4 - 0.6                       | $\downarrow$   |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              | T                                                                                                                                               |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |
| VC09                    | 30/10/2019                       | VC09_0.5-1.0                  | 0.5 - 1.0                       | ├───┤          |                           |            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                      | +                                        |                           |                                           |                                        |                                                |             |              | └───┤                                                                                                                                           |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | $\longrightarrow$   |                 |
| NC08                    | 30/10/2019                       | 0.1-0.8                       | υ. <i>ι</i> - υ.δ               |                |                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                      |                                          |                           |                                           |                                        |                                                |             |              |                                                                                                                                                 |                                          |               |                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                     |                 |



|                       |            |              |           |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  | SVOCs        | ,            |              |                 |             |              |         |
|-----------------------|------------|--------------|-----------|----------|----------------|----------|--------------------|-----------------|--------------|------------------|----------|-------------------|-------------|--------------------------|--------------|--------|--------------------|------------------|--------------|--------------|--------------|-----------------|-------------|--------------|---------|
|                       |            |              |           | miline   | hlorobenzidine | iniline  | thylamino)<br>zene | ophenyl phenyl  | oaniline     | ophenyl phenyl   | aniline  | quinoline-N-      | o-toluidine | /lbenz(a)anthra          |              | Izene  | hloroethoxy)<br>Ie | hloroethyl)ether | ole          | oenzilate    | e            | llorocyclopenta | lloroethane | lloropropene | one     |
|                       |            |              |           | 2-nitroa | 3,3-Dic        | 3-nitroe | 4-(dime<br>azoben  | 4-brom<br>ether | 4-chlor      | 4-chlor<br>ether | 4-nitroa | 4-Nitroo<br>oxide | 5-nitro-    | 7,12-<br>dimethy<br>cene | Aniline      | Azober | Bis(2-c<br>methan  | Bis(2-c          | Carbaz       | Chlorot      | Corone       | Hexach<br>diene | Hexach      | Hexach       | Isophor |
| 1/000                 | 20/40/2040 |              |           | mg/kg    | mg/kg          | mg/kg    | mg/kg              | mg/kg           | mg/kg        | mg/kg            | mg/kg    | mg/kg             | mg/kg       | mg/kg                    | mg/kg        | mg/kg  | mg/kg              | mg/kg            | mg/kg        | mg/kg        | mg/kg        | mg/kg           | mg/kg       | mg/kg        | mg/kg   |
| VC09                  | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            | <0.005       |                 | ł           | <u> </u>     |         |
|                       | 30/10/2019 |              | 0.7 - 0.8 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            | <0.005       |                 | <b>-</b>    | <u> </u>     |         |
|                       | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            | <0.005       |                 | <b>-</b>    | <u> </u>     |         |
|                       | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            | <0.005       |                 | ł           | <u> </u>     |         |
|                       | 31/10/2019 | VC10_0.0-0.0 |           |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | <b>-</b>    |              |         |
| VC11                  | 30/10/2019 | VC11_0.0-0.2 | 0.0 0.5   |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | <b>+</b>    |              |         |
| VC11                  | 30/10/2019 | VC11_0.0-0.3 | 0.0 - 0.3 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            | <0.005       |                 | ·           |              |         |
| VC11                  | 30/10/2019 | VC11_0.5-0.7 | 0.5 1 0   |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            | ~0.005       |                 | <b>†</b>    |              |         |
| VC11                  | 30/10/2019 | VC11_0.3-1.0 | 10.12     |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | <b>+</b>    |              |         |
| VC12                  | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <10      | <0.5           | <10      | <0.5               | <0.5            | <0.5         | <0.5             | <05      | <0.5              | <0.5        | <0.5                     | <0.5         | <1     | <0.5               | <0.5             | <0.5         | <0.5         | 0.126        | <25             | <0.5        | <0.5         | <0.5    |
| VC12                  | 31/10/2019 | VC12_0.0-0.3 | 0.0 - 0.3 | <1.0     | ~0.5           | <1.0     | ~0.3               | ~0.5            | <b>~0.</b> 5 | <b>~</b> 0.5     | ~0.5     | <b>~0.</b> 5      | <0.5        | <b>~</b> 0.5             | <b>~</b> 0.5 |        | <b>~</b> 0.5       | <b>~</b> 0.5     | <b>~</b> 0.5 | ~0.5         | 0.120        | ~z.J            | -0.5        | -0.5         | ~0.5    |
| VC12                  | 31/10/2019 | VC12_0.5-0.4 | 0.5 - 0.6 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | ł           |              |         |
| VC12                  | 31/10/2019 | VC12_0.5-0.0 | 0.3 - 0.9 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | <del> </del> |              |                 | ł           |              |         |
| VC12                  | 31/10/2019 | VC12_0.0-0.0 | 10-11     |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | <del> </del> |              |                 | ł           |              |         |
| VC13                  | 31/10/2019 | VC13_0.0-0.1 |           |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ł            |              |                 | ł           |              |         |
| VC13                  | 31/10/2019 | VC13_0.0-0.5 | 0.0-0.5   |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              |              |              |                 | ł           |              |         |
| VC13                  | 31/10/2019 | VC13_0.3-0.4 | 0.0 - 0.0 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | ł           |              |         |
| VC13                  | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | ł           |              |         |
| VC13                  | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            | <del> </del> |                 | ł           |              |         |
| VC13                  | 31/10/2019 | VC13_0.5-1.0 | 0.3 - 1.0 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | ł           |              |         |
| VC13                  | 31/10/2019 | VC13_1.0.1.1 | 10 11     |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | <b>†</b>    |              |         |
| VC14                  | 31/10/2019 | VC13_1.0-1.1 |           |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | <b>†</b>    |              |         |
| VC14                  | 31/10/2019 | VC14_0.0-0.1 | 0.0 0.5   |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | <b>†</b>    |              |         |
| VC14                  | 31/10/2019 | VC14_0.0-0.3 | 0.0 - 0.3 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | <b>†</b>    |              |         |
| VC14                  | 31/10/2019 | VC14_0.5-0.4 | 0.5 1 0   |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | <b>†</b>    |              |         |
| VC14                  | 31/10/2019 | VC14_0.5-1.0 | 0.3 - 1.0 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | ł           |              |         |
| VC14                  | 31/10/2019 | VC14_0.7-0.0 | 10-11     |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | ł           |              |         |
| VC14                  | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ļ            |              |                 | ł           |              |         |
| VC14                  | 31/10/2019 | VC14-0 5-0 6 | 0.5 - 0.6 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              | ł            |              |                 | ł           |              |         |
|                       | 01/10/2013 | 101+0.0-0.0  | 0.0 - 0.0 |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              |              |              |                 | L           | L            |         |
| Statistics            |            |              |           |          |                |          |                    |                 |              |                  |          |                   |             |                          |              |        |                    |                  |              |              |              |                 |             |              |         |
| Number of Results     |            |              |           | 5        | 5              | 5        | 5                  | 5               | 5            | 5                | 5        | 5                 | 5           | 5                        | 5            | 5      | 5                  | 5                | 5            | 5            | 17           | 5               | 5           | 5            | 5       |
| Number of Detects     |            |              |           | 0        | 0              | 0        | 0                  | 0               | 0            | 0                | 0        | 0                 | 0           | 0                        | 0            | 0      | 0                  | 0                | 0            | 0            | 4            | 0               | 0           | 0            | 0       |
| Minimum Concentratio  | on         |              |           | <1.0     | <0.5           | <1.0     | <0.5               | <0.5            | <0.5         | <0.5             | <0.5     | < 0.5             | <0.5        | <0.5                     | <0.5         | <1     | <0.5               | <0.5             | <0.5         | <0.5         | <0.005       | <2.5            | <0.5        | < 0.5        | < 0.5   |
| Maximum Concentration | on         |              |           | <1.0     | <0.6           | <1.0     | <0.6               | <0.6            | <0.6         | <0.6             | <0.6     | < 0.6             | <0.6        | <0.6                     | <0.6         | <1     | <0.6               | <0.6             | <0.6         | <0.6         | 0.375        | <2.5            | <0.6        | < 0.6        | < 0.6   |

| 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5  | 5    | 5    | 5    | 5    | 17     | 5    | 5    | 5    | 5    |
|------|------|------|------|------|------|------|------|------|----|------|------|------|------|--------|------|------|------|------|
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0  | 0    | 0    | 0    | 0    | 4      | 0    | 0    | 0    | 0    |
| <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <0.005 | <2.5 | <0.5 | <0.5 | <0.5 |
| <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <1 | <0.6 | <0.6 | <0.6 | <0.6 | 0.375  | <2.5 | <0.6 | <0.6 | <0.6 |



| Methapyrilene | N-nitrosodiethylamine | N-nitrosodi-n-<br>butylamine | N-nitrosodi-n-<br>propylamine | N-<br>Nitrosomethylethylami<br>ne | N-nitrosomorpholine | N-nitrosopiperidine | N-nitrosopyrrolidine | Pentachlorobenzene | Perylene | Phenacetin | Organochlorine<br>pesticides EPAVic | Other organochlorine<br>pesticides EPAVic | 4,4'-DDE | a-BHC  | Aldrin | Aldrin + Dieldrin | b-BHC  | Chlordane | Chlordane (cis) |
|---------------|-----------------------|------------------------------|-------------------------------|-----------------------------------|---------------------|---------------------|----------------------|--------------------|----------|------------|-------------------------------------|-------------------------------------------|----------|--------|--------|-------------------|--------|-----------|-----------------|
| mg/kg         | mg/kg                 | mg/kg                        | mg/kg                         | mg/kg                             | mg/kg               | mg/kg               | mg/kg                | mg/kg              | mg/kg    | mg/kg      | mg/kg                               | mg/kg                                     | mg/kg    | mg/kg  | mg/kg  | mg/kg             | mg/kg  | mg/kg     | mg/kg           |
| 0.5           | 0.5                   | 0.5                          | 0.5                           | 0.5                               | 0.5                 | 0.5                 | 1                    | 0.5                | 0.004    | 0.5        | 0.1                                 | 0.1                                       | 0.0005   | 0.0005 | 0.0005 | 0.05              | 0.0005 | 0.00025   | 0.00025         |
|               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |          |        |        |                   |        |           |                 |
|               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |          |        |        |                   |        |           |                 |
|               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |          |        |        |                   |        |           |                 |
|               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |          |        |        |                   |        |           |                 |

| 0.5 | 0   |
|-----|-----|
|     |     |
|     |     |
|     |     |
|     |     |
|     | 0.5 |

| Location Code | Date       | Field ID      | Depth      |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
|---------------|------------|---------------|------------|-------|------|-------|------|------|---------|------|------|------|---------|--------|-----------|----------|------------|-------------|-------|-----------|---------------------------------------------|----------------------------------------|
| BH05          | 7/11/2019  | BH05_4.6-4.7  | 4.6 - 4.7  |       |      |       |      |      |         |      |      |      |         |        |           | <0.0     | 5 <0.0     | 5 <0.05     | 5     | < 0.05    | < 0.05                                      | 0.05> ز                                |
| BH06          | 7/11/2019  | BH06_1.2-1.45 | 1.2 - 1.45 |       |      |       |      |      |         |      |      |      |         |        |           | <0.0     | 5 <0.0     | 5 < 0.05    | 5     | < 0.05    | < 0.05                                      | 0.05> ز                                |
| BH07          | 7/11/2019  | BH07_2.5-2.95 | 2.5 - 2.95 |       |      |       |      |      |         |      |      |      |         |        |           | <0.0     | 5 <0.0     | 5 < 0.05    | 5     | < 0.05    | < 0.05                                      | 0.05> ز                                |
| VC01          | 30/10/2019 | vc01_0.4-0.6  | 0.4 - 0.6  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC01          | 30/10/2019 | VC01_0.0-0.2  | 0.0 - 0.2  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC01          | 30/10/2019 | VC01_0.5-1.0  | 0.5 - 1.0  | <0.5  | <0.5 | <0.5  | <0.5 | <0.5 | 5 < 0.5 | <0.5 | <1.0 | <0.5 | < 0.004 | <0.5   |           | < 0.0005 | 0 <0.0005  | 0 <0.00050  | < 0.5 | <0.00050  | < 0.00025                                   | 0.00025 ز                              |
| VC01          | 30/10/2019 | VC01_1.0-1.1  | 1.0 - 1.1  |       |      |       |      |      |         |      |      |      | < 0.004 |        |           | < 0.0005 | 0 <0.0005  | 0 <0.00050  | )     | <0.00050  | < 0.00025                                   | 0.00025 ز                              |
| VC02          | 30/10/2019 | VC02_0.0-0.2  | 0.0 - 0.2  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC02          | 30/10/2019 | VC02_0.5-0.6  | 0.5 - 0.6  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC02          | 30/10/2019 | VC02_0.5-1.0  | 0.5 - 1.0  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC02          | 30/10/2019 | VC02_1.0-1.2  | 1.0 - 1.2  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC02          | 30/10/2019 | VC02_1.0-1.5  | 1.0 - 1.5  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC02          | 30/10/2019 | VC02_1.5-1.6  | 1.5 - 1.6  |       |      |       |      |      |         |      |      |      | < 0.004 | ł      |           | < 0.0005 | 0 <0.0005  | 0 <0.00050  | )     | < 0.00050 | < 0.00025                                   | 0.00025 ز                              |
| VC02          | 31/10/2019 | VC02_0.0-0.5  | 0.0 - 0.5  |       |      |       |      |      |         |      |      |      | 0.329   | )      |           | < 0.0005 | 0 < 0.0005 | 0 <0.00050  | )     | < 0.00050 | < 0.00025                                   | 0.00025 ز                              |
| VC03          | 30/10/2019 | VC03_0.0-0.2  | 0.0 - 0.2  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC03          | 30/10/2019 | VC03_0.0-0.5  | 0.0 - 0.5  |       |      |       |      |      |         |      |      |      | < 0.004 |        |           | < 0.0005 | 0 < 0.0005 | 0 < 0.00050 | )     | < 0.00050 | < 0.00025                                   | 0.00025 ز                              |
| VC03          | 30/10/2019 | VC03_0.3-0.4  | 0.3 - 0.4  |       |      |       |      |      |         |      |      |      | < 0.004 |        |           | < 0.0005 | 0 < 0.0005 | 0 < 0.00050 | )     | < 0.00050 | < 0.00025                                   | 0.00025 ز                              |
| VC03          | 30/10/2019 | VC03_0.4-0.6  | 0.4 - 0.6  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC03          | 30/10/2019 | VC03 0.5-1.0  | 0.5 - 1.0  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC03          | 30/10/2019 | VC03 0.6-0.7  | 0.6 - 0.7  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC03          | 30/10/2019 | VC03 1.0-1.2  | 1.0 - 1.2  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC04          | 30/10/2019 | VC04 0.0-0.1  | 0.0 - 0.1  |       |      |       |      |      |         | 1    |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC04          | 30/10/2019 | VC04 0.3-0.4  | 0.3 - 0.4  |       |      |       |      |      |         | 1    |      |      | < 0.004 |        |           | < 0.0005 | 0 < 0.0005 | 0 < 0.00050 | )     | < 0.00050 | < 0.00025                                   | 0.00025 ز                              |
| VC04          | 30/10/2019 | VC04 0.5-1.0  | 0.5 - 1.0  | <0.6  | <0.6 | <0.6  | <0.6 | <0.6 | 6 < 0.6 | <0.6 | <1.0 | <0.6 | < 0.005 | i <0.6 |           | < 0.0005 | 0 < 0.0005 | 0 < 0.00050 | < 0.5 | < 0.00050 | < 0.00025                                   | 0.00025 ز                              |
| VC04          | 31/10/2019 | VC04 0.5-0.6  | 0.5 - 0.6  |       |      |       |      |      |         | 1    |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC04          | 31/10/2019 | VC04 0.7-0.8  | 0.7 - 0.8  |       |      |       |      |      |         | 1    |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC04          | 31/10/2019 | VC04 0.9-1.0  | 0.9 - 1.0  |       |      |       |      |      |         | 1    |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC05          | 30/10/2019 | VC05 0.0-0.1  | 0.0 - 0.1  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             | -                                      |
| VC05          | 30/10/2019 | VC05 0.5-0.7  | 0.5 - 0.7  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             | -                                      |
| VC05          | 30/10/2019 | VC05 0.5-0.9  | 0.5 - 0.9  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             | -                                      |
| VC05          | 30/10/2019 | VC05 0.8-0.9  | 0.8 - 0.9  |       |      |       |      |      |         |      |      |      | < 0.004 | -      |           | < 0.0005 | 0 < 0.0005 | 0 < 0.00050 | )     | < 0.00050 | < 0.00025                                   | 0.00025 ز                              |
| VC06          | 31/10/2019 | VC06 0.0-0.1  | 0.0 - 0.1  |       |      |       |      |      |         |      |      |      |         |        |           | <0.0     | 5 <0.0     | 5 < 0.05    | 5     | < 0.05    | < 0.05                                      | 0.05 ز                                 |
| VC06          | 31/10/2019 | VC06 0.0-0.5  | 0.0 - 0.5  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC06          | 31/10/2019 | VC06 0.3-0.4  | 0.3 - 0.4  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC06          | 31/10/2019 | VC06 0.5-0.6  | 0.5 - 0.6  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             | -                                      |
| VC06          | 31/10/2019 | VC06 0.5-1.0  | 0.5 - 1.0  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             | -                                      |
| VC06          | 31/10/2019 | VC06_0.7-0.8  | 0.7 - 0.8  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             | -                                      |
| VC06          | 31/10/2019 | VC06 0.8-0.9  | 0.8 - 0.9  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC07          | 30/10/2019 | VC07 0.0-0.2  | 0.0 - 0.2  |       |      |       |      |      |         |      |      |      | 0.136   | 6      |           | < 0.0005 | 0 < 0.0005 | 0 < 0.00050 | )     | < 0.00050 | < 0.00025                                   | 0.00025 ز                              |
| VC07          | 30/10/2019 | VC07 0.0-0.5  | 0.0 - 0.5  | < 0.5 | <0.5 | < 0.5 | <0.5 | <0.5 | 5 < 0.5 | <0.5 | <1.0 | <0.5 | 0.174   | < 0.5  |           | < 0.0005 | 0 < 0.0005 | 0 < 0.00050 | < 0.5 | < 0.00050 | < 0.00025                                   | 0.00025 ز                              |
| VC07          | 30/10/2019 | VC07 0.2-0.4  | 0.2 - 0.4  |       |      |       |      |      |         |      | -    |      | -       |        |           |          |            |             |       |           |                                             |                                        |
| VC07          | 30/10/2019 | VC07 0.5-0.6  | 0.5 - 0.6  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC07          | 30/10/2019 | VC07 0.5-1.0  | 0.5 - 1.0  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC07          | 30/10/2019 | VC07 0.7-0.8  | 0.7 - 0.7  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC07          | 30/10/2019 | VC07 1.0-1.2  | 1.0 - 1.2  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC08          | 31/10/2019 | VC08_0.0-0.1  | 0.0 - 0.1  |       |      |       |      |      |         |      |      |      |         |        |           | <0.0     | 5 <0.0     | 5 < 0.05    | 5     | < 0.05    | < 0.05                                      | o.05 ان                                |
| VC08          | 31/10/2019 | VC08 0.3-0.4  | 0.3 - 0.4  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC08          | 31/10/2019 | VC08 0.0-0.5  | 0.0-0.5    |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC08          | 31/10/2019 | VC08 0.5-0.6  | 0.5 - 0.6  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           |                                             |                                        |
| VC08          | 31/10/2019 | VC08_0.5-1.0  | 0.5 - 1.0  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           | <b> </b>                                    | -                                      |
| VC08          | 31/10/2019 | VC08_0.7-0.8  | 0.7 - 0.8  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           | <b> </b>                                    | -                                      |
| VC08          | 31/10/2019 | VC08_1.0-1.1  | 1.0 - 1.1  |       |      |       |      |      |         |      |      |      |         |        |           |          |            |             |       |           | <b> </b>                                    | -                                      |
| VC08          | 31/10/2019 | VC08 1.0-1.5  | 1.0 - 1.5  | <0.5  | <0.5 | <0.5  | <0.5 | <0.5 | 5 <0.5  | <0.5 | <1.0 | <0.5 | <0.004  | <0.5   |           | <0.0005  | 0 < 0.0005 | 0 < 0.00050 | < 0.5 | <0.00050  | <0.00025                                    | 5 <0.00025                             |
| VC08          | 31/10/2019 | VC08 1.3-1.4  | 1.3 - 1.4  | -0.0  | 5.5  | 0.0   | 0.0  | -0.0 |         |      |      | 0.0  | 0.004   |        |           | 0.0000   | 0.0000     |             |       | 0.00000   | 5.00020                                     | 5.00020                                |
| VC08          | 31/10/2019 | VC08 1 5-1 6  | 1.5 - 1.6  |       |      |       |      |      |         |      |      |      |         | 1      | 1 1       | 1        | 1          | 1           |       | 1         | l                                           | 1                                      |
| VC09          | 30/10/2019 | VC09_0.0-0.2  | 0.0 - 0.2  |       |      |       |      |      | 1       |      |      |      | <0.004  |        |           | <0.0005  | 0 < 0.0005 | 0 < 0.00050 |       | <0.00050  | <0.00025                                    | 5 <0.00025                             |
| VC09          | 30/10/2019 | VC09_0.0-0.5  | 0.0 - 0.5  |       |      |       |      |      |         |      |      |      | 5.001   |        |           |          |            |             |       |           |                                             | 0.00020                                |
| VC09          | 30/10/2019 | VC09 0.4-0.6  | 0.4 - 0.6  |       |      |       |      |      |         |      |      |      |         |        |           |          |            | 1           |       |           | (                                           | 1 1                                    |
| VC09          | 30/10/2019 | VC09_0.5-1.0  | 0.5 - 1.0  |       |      |       |      |      |         |      |      |      |         |        |           |          |            | 1           |       |           | (                                           | 1                                      |
| VC09          | 30/10/2019 | VC09_0.7-0.8  | 07-08      |       |      |       |      |      |         |      |      |      |         | 1      |           |          | 1          | 1           |       |           | 1                                           | 1                                      |
|               | 00,10,2010 | 1.000_0.1 0.0 | 0.0        |       |      |       |      |      | 1       | 1 I  |      |      | 1       | 1      | ı — — — — |          | 1          | 1           | 1     | 1         | <u>ــــــــــــــــــــــــــــــــــــ</u> | لـــــــــــــــــــــــــــــــــــــ |



|                |            |              |           | Methapyrilene | N-nitrosodiethylamine | N-nitrosodi-n-<br>butylamine | N-nitrosodi-n-<br>propylamine | N-<br>Nitrosomethylethylami<br>ne | N-nitrosomorpholine | N-nitrosopiperidine | N-nitrosopyrrolidine | Pentachlorobenzene | Perylene | Phenacetin | Organochlorine<br>pesticides EPAVic | Other organochlorine<br>pesticides EPAVic | 4,4'-DDE  | a-BHC                                 | Aldrin    | Aldrin + Dieldrin | b-BHC     | Chlordane   | Chlordane (cis) |
|----------------|------------|--------------|-----------|---------------|-----------------------|------------------------------|-------------------------------|-----------------------------------|---------------------|---------------------|----------------------|--------------------|----------|------------|-------------------------------------|-------------------------------------------|-----------|---------------------------------------|-----------|-------------------|-----------|-------------|-----------------|
|                |            |              |           | mg/kg         | mg/kg                 | mg/kg                        | mg/kg                         | mg/kg                             | mg/kg               | mg/kg               | mg/kg                | mg/kg              | mg/kg    | mg/kg      | mg/kg                               | mg/kg                                     | mg/kg     | mg/kg                                 | mg/kg     | mg/kg             | mg/kg     | mg/kg       | mg/kg           |
| VC09           | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | ·                                     |           |                   |           | /           |                 |
| VC10           | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |               |                       |                              |                               |                                   |                     |                     |                      |                    | <0.004   |            |                                     |                                           | < 0.00050 | <0.00050                              | < 0.00050 | J                 | <0.00050  | <0.00025    | < 0.00025       |
| VC10           | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | ·                                     |           |                   |           | /           |                 |
| VC10           | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |               |                       |                              |                               |                                   |                     |                     |                      |                    | <0.004   |            |                                     |                                           | < 0.00050 | <0.00050                              | < 0.00050 | J                 | <0.00050  | <0.00025    | < 0.00025       |
| VC10           | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |                                       |           |                   |           | '           |                 |
| VC11           | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |                                       |           |                   |           | '           |                 |
| VC11           | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |                                       |           |                   |           | '           |                 |
| VC11           | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 |               |                       |                              |                               |                                   |                     |                     |                      |                    | < 0.004  |            |                                     |                                           | < 0.00050 | < 0.00050                             | < 0.00050 | Ĵ                 | < 0.00050 | <0.00025    | < 0.00025       |
| VC11           | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | 1                                     |           | 1                 |           | ,           |                 |
| VC11           | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | 1                                     |           | 1                 |           | ,           |                 |
| VC12           | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.5          | 5 < 0.5               | 5 <0.5                       | 5 < 0.5                       | <0.5                              | <0.5                | 5 <0.5              | <1.0                 | <0.5               | 0.055    | <0.5       |                                     |                                           | < 0.00050 | < 0.00050                             | < 0.00050 | 0.5> ر            | < 0.00050 | <0.00025    | < 0.00025       |
| VC12           | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | 1                                     |           | 1                 |           | ,           |                 |
| VC12           | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | ,           |                 |
| VC12           | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | ,           |                 |
| VC12           | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           | < 0.05    | < 0.05                                | < 0.0!    | ز                 | < 0.05    | < 0.05      | < 0.05          |
| VC13           | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           | < 0.05    | < 0.05                                | < 0.0!    | ز                 | < 0.05    | < 0.05      | < 0.05          |
| VC13           | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | ,           |                 |
| VC13           | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | ,           |                 |
| VC13           | 31/10/2019 | VC13 0.5-0.6 | 0.5 - 0.6 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | · · · · · · |                 |
| VC13           | 31/10/2019 | VC13 0.5-1.0 | 0.5 - 1.0 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | · · · · · · |                 |
| VC13           | 31/10/2019 | VC13 0.7-0.8 | 0.7 - 0.8 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | · · · · · · |                 |
| VC13           | 31/10/2019 | VC13 1.0-1.1 | 1.0 - 1.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | · · · · · · |                 |
| VC14           | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | · · · · · · |                 |
| VC14           | 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | · · · · · · |                 |
| VC14           | 31/10/2019 | VC14 0.3-0.4 | 0.3 - 0.4 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | 1                                     |           |                   | 1         | ,           |                 |
| VC14           | 31/10/2019 | VC14 0.5-1.0 | 0.5 - 1.0 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | 1                                     |           |                   | 1         | ,           |                 |
| VC14           | 31/10/2019 | VC14 0.7-0.8 | 0.7 - 0.8 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | 1                                     |           |                   | 1         | ,           |                 |
| VC14           | 31/10/2019 | VC14 1.0-1.1 | 1.0 - 1.1 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           | < 0.05    | , <0.05                               | < 0.0     | ز                 | < 0.05    | < 0.05      | < 0.05          |
| VC14           | 31/10/2019 | VC14 1.3-1.4 | 1.3 - 1.4 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | 1                                     |           |                   | 1         | ,           |                 |
| VC14           | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           | · · · · · · · · · · · · · · · · · · · |           |                   |           | · · · · · · |                 |
|                | •          |              |           | •             |                       |                              | •                             |                                   | •                   |                     |                      |                    |          |            |                                     |                                           | •         |                                       | <u> </u>  | -                 | -         |             | <u> </u>        |
| Statistics     |            |              |           |               |                       |                              |                               |                                   |                     |                     |                      |                    |          |            |                                     |                                           |           |                                       |           |                   |           |             |                 |
| Number of Resu | ılts       |              |           | Ę             | 5 5                   | 5 5                          | 5 5                           | 5                                 | 5                   | 5 5                 | 5                    | 5                  | 17       | 5          | 0                                   | ) 0                                       | 25        | 25                                    | 2!        | 5 ز               | , 25      | 25          | 25              |
|                | 1          |              |           |               |                       |                              |                               |                                   |                     |                     |                      | -                  |          |            | ~                                   |                                           |           |                                       |           | <u> </u>          | ·         |             |                 |

| Statistics            |      |      |      |      |      |      |      |      |      |        |      |   |   |         |          |         |      |         |          |          |
|-----------------------|------|------|------|------|------|------|------|------|------|--------|------|---|---|---------|----------|---------|------|---------|----------|----------|
| Number of Results     | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 17     | 5    | 0 | 0 | 25      | 25       | 25      | 5    | 25      | 25       | 25       |
| Number of Detects     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 4      | 0    | 0 | 0 | 0       | 0        | 0       | 0    | 0       | 0        | 0        |
| Minimum Concentration | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.004 | <0.5 |   |   | <0.0005 | < 0.0005 | <0.0005 | <0.5 | <0.0005 | <0.00025 | <0.00025 |
| Maximum Concentration | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <1.0 | <0.6 | 0.329  | <0.6 |   |   | <0.05   | <0.05    | <0.05   | <0.5 | <0.05   | <0.05    | <0.05    |



|                                                        |                   |        |         |         |                           | OC Pestic | cides      |                      |                      |                    |        |                 |               |                 |            |                    |
|--------------------------------------------------------|-------------------|--------|---------|---------|---------------------------|-----------|------------|----------------------|----------------------|--------------------|--------|-----------------|---------------|-----------------|------------|--------------------|
|                                                        | Chlordane (trans) | d-BHC  | 4,4 DDD | 4,4 DDT | DDT+DDE+DDD - Lab<br>Calc | Dieldrin  | Endosulfan | Endosulfan I (alpha) | Endosulfan II (beta) | Endosulfan Sulfate | Endrin | Endrin aldehyde | Endrin ketone | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide |
|                                                        | mg/kg             | mg/kg  | mg/kg   | mg/kg   | mg/kg                     | mg/kg     | mg/kg      | mg/kg                | mg/kg                | mg/kg              | mg/kg  | mg/kg           | mg/kg         | mg/kg           | mg/kg      | mg/kg              |
| EQL                                                    | 0.00025           | 0.0005 | 0.0005  | 0.0005  | 0.0005                    | 0.0005    | 0.0005     | 0.0005               | 0.0005               | 0.0005             | 0.0005 | 0.0005          | 0.0005        | 0.00025         | 0.0005     | 0.0005             |
| NSW EPA (2014) General Solid Waste SCC1 (with TCLP)    |                   |        |         |         |                           |           | 108        |                      |                      |                    |        |                 |               |                 |            |                    |
| NSW EPA (2014) General Solid Waste TCLP1               |                   |        |         |         |                           |           |            |                      |                      |                    |        |                 |               |                 |            |                    |
| NSW EPA (2014) Restricted Solid Waste SCC2 (with TCLP) |                   |        |         |         |                           |           | 432        |                      |                      |                    |        |                 |               |                 |            |                    |
| NSW EPA (2014) Restricted Solid Waste TCLP2            |                   |        |         |         |                           |           |            |                      |                      |                    |        |                 |               |                 |            |                    |

| Location Code | Date       | Field ID      | Depth      |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          |          |                                       |
|---------------|------------|---------------|------------|-----------|----------|----------|----------|----------------|----------|----------|-----------|----------|----------|-----------------------------------------------|----------|----------|----------|----------|---------------------------------------|
| BH05          | 7/11/2019  | BH05 4.6-4.7  | 4.6 - 4.7  | <0.05     | <0.05    | <0.05    | <0.2     |                | <0.05    |          | < 0.05    | <0.05    | <0.05    | < 0.05                                        | <0.05    |          | < 0.05   | <0.05    | < 0.05                                |
| BH06          | 7/11/2019  | BH06_1.2-1.45 | 1.2 - 1.45 | <0.05     | <0.05    | <0.05    | <0.2     |                | <0.05    |          | <0.05     | < 0.05   | <0.05    | < 0.05                                        | <0.05    |          | <0.05    | <0.05    | < 0.05                                |
| BH07          | 7/11/2019  | BH07_2.5-2.95 | 2.5 - 2.95 | <0.05     | <0.05    | <0.05    | <0.2     |                | <0.05    |          | < 0.05    | <0.05    | <0.05    | < 0.05                                        | <0.05    |          | <0.05    | <0.05    | < 0.05                                |
| VC01          | 30/10/2019 | vc01_0.4-0.6  | 0.4 - 0.6  |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          |          |                                       |
| VC01          | 30/10/2019 | VC01_0.0-0.2  | 0.0 - 0.2  |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          |          |                                       |
| VC01          | 30/10/2019 | VC01_0.5-1.0  | 0.5 - 1.0  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC01          | 30/10/2019 | VC01_1.0-1.1  | 1.0 - 1.1  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC02          | 30/10/2019 | VC02_0.0-0.2  | 0.0 - 0.2  |           |          |          |          |                |          |          |           |          |          | 1                                             |          |          |          |          |                                       |
| VC02          | 30/10/2019 | VC02_0.5-0.6  | 0.5 - 0.6  |           |          |          |          |                |          |          |           |          |          | í                                             |          |          |          |          |                                       |
| VC02          | 30/10/2019 | VC02_0.5-1.0  | 0.5 - 1.0  |           |          |          |          |                |          |          |           |          |          | 1                                             |          |          |          |          |                                       |
| VC02          | 30/10/2019 | VC02_1.0-1.2  | 1.0 - 1.2  |           |          |          |          |                |          |          |           |          |          | í                                             |          |          |          |          |                                       |
| VC02          | 30/10/2019 | VC02_1.0-1.5  | 1.0 - 1.5  |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          |          |                                       |
| VC02          | 30/10/2019 | VC02_1.5-1.6  | 1.5 - 1.6  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC02          | 31/10/2019 | VC02_0.0-0.5  | 0.0 - 0.5  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC03          | 30/10/2019 | VC03_0.0-0.2  | 0.0 - 0.2  |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          | ,!       | <sup> </sup>                          |
| VC03          | 30/10/2019 | VC03_0.0-0.5  | 0.0 - 0.5  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC03          | 30/10/2019 | VC03_0.3-0.4  | 0.3 - 0.4  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC03          | 30/10/2019 | VC03_0.4-0.6  | 0.4 - 0.6  |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          | ,!       | <sup> </sup>                          |
| VC03          | 30/10/2019 | VC03_0.5-1.0  | 0.5 - 1.0  |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          | ,!       | <sup> </sup>                          |
| VC03          | 30/10/2019 | VC03_0.6-0.7  | 0.6 - 0.7  |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          | ,!       | <sup> </sup>                          |
| VC03          | 30/10/2019 | VC03_1.0-1.2  | 1.0 - 1.2  |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          | ,!       | <u> </u>                              |
| VC04          | 30/10/2019 | VC04_0.0-0.1  | 0.0 - 0.1  |           |          |          |          |                |          |          |           |          |          |                                               |          |          |          | ,!       | <u> </u>                              |
| VC04          | 30/10/2019 | VC04_0.3-0.4  | 0.3 - 0.4  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC04          | 30/10/2019 | VC04_0.5-1.0  | 0.5 - 1.0  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC04          | 31/10/2019 | VC04_0.5-0.6  | 0.5 - 0.6  |           |          |          |          |                |          |          |           |          |          | (                                             |          |          |          | ļļ       | ļ'                                    |
| VC04          | 31/10/2019 | VC04_0.7-0.8  | 0.7 - 0.8  |           |          |          |          |                |          |          |           |          |          | (                                             |          |          |          | ,!       | ļ'                                    |
| VC04          | 31/10/2019 | VC04_0.9-1.0  | 0.9 - 1.0  |           |          |          |          |                |          |          |           |          |          | <b>↓</b>                                      |          |          |          | ,!       | <b>↓</b> ′                            |
| VC05          | 30/10/2019 | VC05_0.0-0.1  | 0.0 - 0.1  |           |          |          |          |                |          |          |           |          |          | <b>└────</b> ┤                                |          |          |          | !        | ļ!                                    |
| VC05          | 30/10/2019 | VC05_0.5-0.7  | 0.5 - 0.7  |           |          |          |          |                |          |          |           |          |          | <b>└────</b> ┤                                |          |          |          | !        | ļ!                                    |
| VC05          | 30/10/2019 | VC05_0.5-0.9  | 0.5 - 0.9  |           |          |          |          |                |          |          |           |          |          | <u> </u>                                      |          |          |          |          | <u> </u>                              |
| VC05          | 30/10/2019 | VC05_0.8-0.9  | 0.8 - 0.9  | < 0.00025 | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC06          | 31/10/2019 | VC06_0.0-0.1  | 0.0 - 0.1  | <0.05     | <0.05    | <0.05    | <0.2     |                | <0.05    |          | <0.05     | <0.05    | <0.05    | <0.05                                         | <0.05    |          | <0.05    | <0.05    | <0.05                                 |
| VC06          | 31/10/2019 | VC06_0.0-0.5  | 0.0 - 0.5  |           |          |          |          |                |          |          |           |          |          | <b>↓</b>                                      |          |          |          | )        | ļ!                                    |
| VC06          | 31/10/2019 | VC06_0.3-0.4  | 0.3 - 0.4  |           |          |          |          |                |          |          |           |          |          | <b>↓</b>                                      |          |          |          | J        | Į'                                    |
| VC06          | 31/10/2019 | VC06_0.5-0.6  | 0.5 - 0.6  |           |          |          | -        | + +            |          |          |           |          |          | <b>۱</b> ــــــــــــــــــــــــــــــــــــ |          |          |          |          | <b>┟</b> ─────┘                       |
| VC06          | 31/10/2019 | VC06_0.5-1.0  | 0.5 - 1.0  |           |          |          | -        | + +            |          |          |           |          |          | <b>۱</b> ــــــــــــــــــــــــــــــــــــ |          |          |          |          | <b>┟</b> ─────┘                       |
| VC06          | 31/10/2019 | VC06_0.7-0.8  | 0.7 - 0.8  |           |          |          |          |                |          |          |           |          |          | <b>⊢−−−−</b> ∔                                |          |          |          |          | <b>└────</b> ┘                        |
| VC06          | 31/10/2019 | VC06_0.8-0.9  | 0.8 - 0.9  | -0.0005   | 10,00050 | -0.00050 |          | 10,00050       | 10,00050 | -0.00050 |           |          | 40.00050 | 10,00050                                      | 10 00050 |          | 10,00005 | 10,00050 | 10,00050                              |
|               | 30/10/2019 | VC07_0.0-0.2  | 0.0 - 0.2  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | < 0.00050 | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
|               | 30/10/2019 |               | 0.0 - 0.5  | <0.00025  | <0.00050 | <0.00050 | <0.00050 | <0.00050       | <0.00050 | <0.00050 | <0.00050  | <0.00050 | <0.00050 | <0.00050                                      | <0.00050 | <0.00050 | <0.00025 | <0.00050 | <0.00050                              |
|               | 20/10/2019 | VC07_0.2-0.4  | 0.2 - 0.4  |           |          |          |          | <u> </u>       |          |          |           |          |          | /ł                                            |          |          |          | I        | <b>├</b> ─────┦                       |
|               | 30/10/2019 | VC07_0.5-0.0  | 0.5 - 0.0  |           |          |          |          | + +            |          |          |           |          |          | ι−−−− <b>∔</b>                                |          |          |          |          | <u>⊦</u>                              |
| VC07          | 30/10/2019 | VC07_0.3-1.0  |            |           |          |          |          | + +            |          |          | } }       |          |          | /ł                                            |          |          |          | !        | <u>├</u> ────┦                        |
| VC07          | 30/10/2019 | VC07_0.7-0.0  |            |           |          |          |          | + +            |          |          | } }       |          |          | /ł                                            |          |          |          | !        | <u>├</u> ────┦                        |
|               | 31/10/2019 |               | 0.0 0.1    | <0.05     | <0.05    | <0.05    | <0.2     | + +            | <0.05    |          | <0.05     | <0.05    | <0.05    | <0.05                                         | <0.05    |          | <0.05    | <0.05    | <0.05                                 |
| VC08          | 31/10/2019 | VC08_0.3.0.4  | 0.0-0.1    | <0:03     | <0.05    | <0.05    | ~0.Z     |                | <0.05    |          | ~0.05     | <0.05    | <0.05    | <0.03                                         | <0.05    |          | <0.05    | -0.03    | <0.03                                 |
| VC08          | 31/10/2019 | VC08_0.0-0.5  | 0.0-0.5    |           |          |          |          |                |          |          |           |          |          | rt                                            |          |          |          |          | <u>├</u> ────┤                        |
| VC08          | 31/10/2019 | VC08_0.5-0.6  | 0.0-0.0    |           |          |          |          |                |          |          |           |          |          | /t                                            |          |          |          |          |                                       |
| VC08          | 31/10/2019 | VC08_0.5-1.0  | 0.5 - 0.0  |           |          |          |          |                |          |          |           |          |          | /t                                            |          |          |          |          |                                       |
| VC08          | 31/10/2019 | VC08_0.7-0.8  | 0.3 - 1.0  |           |          |          |          |                |          |          |           |          |          | /t                                            |          |          |          |          |                                       |
| VC08          | 31/10/2019 | VC08_1.0-1.1  | 10-11      |           |          |          |          |                |          |          |           |          |          | (ł                                            |          |          |          | Į        |                                       |
| VC08          | 31/10/2019 | VC08 1 0-1 5  | 10-15      | <0.00025  | <0.00020 | <0 00050 | <0 00050 | <0.00050       | <0 00050 | <0 00050 | <0.00050  | <0 00050 | <0 00050 | <0.00050                                      | <0 00050 | <0 00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC08          | 31/10/2019 | VC08 1 3-1 4  | 13-14      | -0.00023  | -0.00000 | -0.00000 | -0.00000 | -0.00000       | -0.00000 | -0.00000 | -0.00000  | -0.00000 | -0.00000 | -0.00000                                      | -0.00000 | -0.00000 | -0.00020 | -0.00000 | -0.00000                              |
| VC08          | 31/10/2019 | VC08 1 5-1 6  | 15-16      |           |          |          | 1        | ╂────╂         |          |          |           |          |          | ł                                             |          |          |          | Į        |                                       |
| VC09          | 30/10/2019 | VC09_0_0_02   | 0.0-0.2    | <0.00025  | <0.00020 | <0.00020 | <0.00020 | <0.00050       | <0 00050 | <0 00050 | <0.00050  | <0.00050 | <0 00050 | <0.00050                                      | <0 00050 | <0 00050 | <0.00025 | <0.00050 | <0.00050                              |
| VC09          | 30/10/2019 | VC09_0.0.05   | 0.0-0.5    | -0.00020  |          | 0.00000  | 0.00000  |                | 0.00000  | 0.00000  |           | 0.00000  | 0.00000  |                                               | 0.00000  | 0.00000  | 0.00020  |          | .0.00000                              |
| VC09          | 30/10/2019 | VC09_0.4-0.6  | 04-06      |           |          |          | 1        | <del>   </del> |          |          |           |          |          | ł                                             |          |          |          |          |                                       |
| VC09          | 30/10/2019 | VC09_0.5-1.0  | 0.5 - 1.0  |           |          |          | 1        | <del>   </del> |          |          |           |          |          | ł                                             |          |          |          | <b>/</b> | · · · · · · · · · · · · · · · · · · · |
| VC09          | 30/10/2019 | VC09_07-08    | 0.7 - 0.8  |           |          |          | 1        | <del>   </del> |          |          |           |          |          | ł                                             |          |          |          | <b>/</b> | · · · · · · · · · · · · · · · · · · · |
|               | 00/10/2010 | 1,000_0.1 0.0 | 0.1 0.0    |           |          |          | 1        | 1              |          |          |           |          |          | L                                             |          |          |          |          | <u>ل</u> ــــــــــ                   |



|                   |            |              |           |                   |          |          |          |                             | OC Pestici | des        |                      |                      |                    |          |                 |               |                 |            |                    |
|-------------------|------------|--------------|-----------|-------------------|----------|----------|----------|-----------------------------|------------|------------|----------------------|----------------------|--------------------|----------|-----------------|---------------|-----------------|------------|--------------------|
|                   |            |              |           | Chlordane (trans) | d-BHC    | 4,4 DDD  | 4,4 DDT  | B DDT+DDE+DDD - Lab<br>Calc | Dieldrin   | Endosulfan | Endosulfan I (alpha) | Endosulfan II (beta) | Endosulfan Sulfate | Endrin   | Endrin aldehyde | Endrin ketone | g-BHC (Lindane) | Heptachlor | Heptachlor epoxide |
| VC.09             | 30/10/2019 | VC09_0.8-1.0 | 08-10     | шу/ку             | шу/ку    | шу/ку    | шу/ку    | шу/ку                       | iiig/kg    | шу/ку      | iiig/kg              | шу/ку                | iiig/kg            | шу/ку    | iiig/kg         | iiig/kg       | iiig/kg         | iiig/kg    | піў/ку             |
| VC10              | 30/10/2019 | VC10_07-08   | 0.7 - 0.8 | <0.00025          | <0.00050 | <0 00050 | <0.00050 | <0.00050                    | <0.00050   | <0.00050   | <0.00050             | <0.00050             | <0.00050           | <0.00050 | <0.00050        | <0.00050      | <0.00025        | <0.00050   | <0.00050           |
| VC10              | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 | 0.00020           | 0.00000  | 0.00000  | 0.00000  | 0.00000                     | 0.00000    | 0.00000    | 0.00000              | 0.00000              | 0.00000            | 0.00000  | 0.00000         | 0.00000       | 0.00020         | 0.00000    | 0.00000            |
| VC10              | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | <0.00025          | <0.00050 | <0.00050 | <0.00050 | <0.00050                    | <0.00050   | <0.00050   | <0.00050             | <0.00050             | <0.00050           | <0.00050 | <0.00050        | <0.00050      | <0.00025        | <0.00050   | <0.00050           |
| VC10              | 31/10/2019 | VC10 0.5-0.6 | 0.5 - 0.6 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC11              | 30/10/2019 | VC11 0.0-0.2 | 0.0 - 0.2 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC11              | 30/10/2019 | VC11 0.0-0.5 | 0.0 - 0.5 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC11              | 30/10/2019 | VC11 0.5-0.7 | 0.5 - 0.7 | <0.00025          | <0.00050 | <0.00050 | <0.00050 | <0.00050                    | < 0.00050  | <0.00050   | <0.00050             | <0.00050             | <0.00050           | <0.00050 | <0.00050        | <0.00050      | <0.00025        | <0.00050   | <0.00050           |
| VC11              | 30/10/2019 | VC11 0.5-1.0 | 0.5 - 1.0 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC11              | 30/10/2019 | VC11 1.0-1.2 | 1.0 - 1.2 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC12              | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.00025          | <0.00050 | <0.00050 | <0.00050 | <0.00050                    | <0.00050   | <0.00050   | <0.00050             | <0.00050             | <0.00050           | <0.00050 | <0.00050        | <0.00050      | <0.00025        | <0.00050   | <0.00050           |
| VC12              | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC12              | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC12              | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC12              | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 | <0.05             | <0.05    | <0.05    | <0.2     |                             | <0.05      |            | <0.05                | <0.05                | <0.05              | <0.05    | <0.05           |               | <0.05           | <0.05      | <0.05              |
| VC13              | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 | < 0.05            | <0.05    | <0.05    | <0.2     |                             | <0.05      |            | <0.05                | <0.05                | <0.05              | <0.05    | <0.05           |               | <0.05           | <0.05      | <0.05              |
| VC13              | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC13              | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC13              | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC13              | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC13              | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC13              | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC14              | 31/10/2019 | VC14_0.0-0.1 | 0.0 - 0.1 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC14              | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC14              | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC14              | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC14              | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC14              | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 | <0.05             | <0.05    | <0.05    | <0.2     |                             | <0.05      |            | <0.05                | <0.05                | <0.05              | <0.05    | <0.05           |               | <0.05           | <0.05      | <0.05              |
| VC14              | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| VC14              | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| Statistics        |            |              |           |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |
| Number of Results | i          |              |           | 25                | 25       | 25       | 25       | 17                          | 25         | 17         | 25                   | 25                   | 25                 | 25       | 25              | 17            | 25              | 25         | 25                 |
| Number of Detects | 3          |              |           | 0                 | 0        | 0        | 0        | 0                           | 0          | 0          | 0                    | 00                   | 0                  | 00       | 0               | 0             | 0               | 0          | 0                  |
| Minimum Concenti  | ration     |              |           | < 0.00025         | <0.0005  | <0.0005  | < 0.0005 | < 0.0005                    | < 0.0005   | <0.0005    | <0.0005              | < 0.0005             | < 0.0005           | < 0.0005 | <0.0005         | < 0.0005      | <0.00025        | <0.0005    | < 0.0005           |
| Maximum Concent   | tration    |              |           | < 0.05            | < 0.05   | < 0.05   | <0.2     | < 0.0005                    | < 0.05     | < 0.0005   | < 0.05               | < 0.05               | < 0.05             | < 0.05   | < 0.05          | < 0.0005      | < 0.05          | < 0.05     | < 0.05             |
|                   |            |              |           |                   |          |          |          |                             |            |            |                      |                      |                    |          |                 |               |                 |            |                    |



|                                                        | Hexachlorobenzene | Methoxychlor | Oxychlordane | Toxaphene | Tokuthion | Azinphos methyl | Bolstar (Sulprofos) | Bromophos-ethyl | Carbophenothion | Chlorfenvinphos | Chlorfenvinphos E | Chlorpyrifos | Chlorpyrifos-methyl | Coumaphos | Demeton-O | Demeton-S | Demeton-S-methyl | Diazinon | cis-Chlorfenvinphos | Dichlorvos | Dimethoate |
|--------------------------------------------------------|-------------------|--------------|--------------|-----------|-----------|-----------------|---------------------|-----------------|-----------------|-----------------|-------------------|--------------|---------------------|-----------|-----------|-----------|------------------|----------|---------------------|------------|------------|
|                                                        | mg/kg             | mg/kg        | mg/kg        | mg/kg     | mg/kg     | mg/kg           | mg/kg               | mg/kg           | mg/kg           | mg/kg           | mg/kg             | mg/kg        | mg/kg               | mg/kg     | mg/kg     | mg/kg     | mg/kg            | mg/kg    | mg/kg               | mg/kg      | mg/kg      |
| EQL                                                    | 0.0005            | 0.0005       | 0.0005       | 1         | 0.2       | 0.01            | 0.2                 | 0.01            | 0.01            | 0.2             | 0.01              | 0.01         | 0.01                | 2         | 0.2       | 0.2       | 0.01             | 0.01     | 0.01                | 0.01       | 0.01       |
| NSW EPA (2014) General Solid Waste SCC1 (with TCLP)    |                   |              |              |           |           |                 |                     |                 |                 |                 |                   | 7.5          |                     |           |           |           |                  |          |                     |            |            |
| NSW EPA (2014) General Solid Waste TCLP1               |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| NSW EPA (2014) Restricted Solid Waste SCC2 (with TCLP) |                   |              |              |           |           |                 |                     |                 |                 |                 |                   | 30           |                     |           |           |           |                  |          |                     |            |            |
| NSW EPA (2014) Restricted Solid Waste TCLP2            |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |

| Location Code | Date       | Field ID      | Depth      |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
|---------------|------------|---------------|------------|-----------|------------------|---|-----|--------|--------|--------|-------|----------|----------|------|---------|----------|--------|--------|--------|
| BH05          | 7/11/2019  | BH05 4.6-4.7  | 4.6 - 4.7  | <0.05     |                  |   |     |        |        |        |       |          | <0.05    |      |         |          |        |        |        |
| BH06          | 7/11/2019  | BH06 1.2-1.45 | 1.2 - 1.45 | <0.05     |                  |   |     |        |        |        |       |          | <0.05    |      |         |          |        |        |        |
| BH07          | 7/11/2019  | BH07 2.5-2.95 | 2.5 - 2.95 | <0.05     |                  |   |     |        |        |        |       |          | < 0.05   |      |         |          |        |        |        |
| VC01          | 30/10/2019 | vc01 0.4-0.6  | 0.4 - 0.6  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC01          | 30/10/2019 | VC01 0.0-0.2  | 0.0 - 0.2  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC01          | 30/10/2019 | VC01 0.5-1.0  | 0.5 - 1.0  | <0.00050  | <0.00050 <0.0005 | 0 |     | <0.01  | <0.01  | < 0.01 | <0.5  | < 0.0100 | < 0.01 < | 0.01 | <0.0    | 1 < 0.01 | < 0.01 | < 0.01 | <0.01  |
| VC01          | 30/10/2019 | VC01 1.0-1.1  | 1.0 - 1.1  | <0.00050  | <0.00050 <0.0005 | 0 |     | <0.01  | <0.01  | < 0.01 |       | < 0.0100 | < 0.01 < | 0.01 | <0.0    | 1 < 0.01 | < 0.01 | < 0.01 | <0.01  |
| VC02          | 30/10/2019 | VC02 0.0-0.2  | 0.0 - 0.2  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC02          | 30/10/2019 | VC02 0.5-0.6  | 0.5 - 0.6  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC02          | 30/10/2019 | VC02 0.5-1.0  | 0.5 - 1.0  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC02          | 30/10/2019 | VC02 1.0-1.2  | 1.0 - 1.2  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC02          | 30/10/2019 | VC02 1.0-1.5  | 1.0 - 1.5  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC02          | 30/10/2019 | VC02 1.5-1.6  | 1.5 - 1.6  | <0.00050  | <0.00050 <0.0005 | 0 |     | <0.01  | <0.01  | < 0.01 |       | < 0.0100 | < 0.01 < | ).01 | <0.0    | 1 <0.01  | < 0.01 | < 0.01 | < 0.01 |
| VC02          | 31/10/2019 | VC02 0.0-0.5  | 0.0 - 0.5  | <0.00050  | <0.00050 <0.0005 | 0 |     | <0.01  | <0.01  | < 0.01 |       | < 0.0100 | < 0.01 < | ).01 | <0.0    | 1 <0.01  | < 0.01 | < 0.01 | < 0.01 |
| VC03          | 30/10/2019 | VC03 0.0-0.2  | 0.0 - 0.2  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC03          | 30/10/2019 | VC03 0.0-0.5  | 0.0 - 0.5  | <0.00050  | <0.00050 <0.0005 | 0 |     | <0.01  | <0.01  | < 0.01 |       | < 0.0100 | < 0.01 < | ).01 | <0.0    | 1 <0.01  | < 0.01 | < 0.01 | < 0.01 |
| VC03          | 30/10/2019 | VC03 0.3-0.4  | 0.3 - 0.4  | <0.00050  | <0.00050 <0.0005 | 0 |     | <0.01  | < 0.01 | < 0.01 |       | < 0.0100 | < 0.01 < | ).01 | < 0.0   | 1 < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| VC03          | 30/10/2019 | VC03 0.4-0.6  | 0.4 - 0.6  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC03          | 30/10/2019 | VC03 0.5-1.0  | 0.5 - 1.0  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC03          | 30/10/2019 | VC03 0.6-0.7  | 0.6 - 0.7  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC03          | 30/10/2019 | VC03 1.0-1.2  | 1.0 - 1.2  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC04          | 30/10/2019 | VC04 0.0-0.1  | 0.0 - 0.1  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC04          | 30/10/2019 | VC04 0.3-0.4  | 0.3 - 0.4  | <0.00050  | <0.00050 <0.0005 | 0 |     | <0.01  | < 0.01 | < 0.01 |       | < 0.0100 | < 0.01 < | ).01 | <0.0    | 1 < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| VC04          | 30/10/2019 | VC04 0.5-1.0  | 0.5 - 1.0  | <0.00050  | <0.00050 <0.0005 | 0 |     | <0.01  | < 0.01 | < 0.01 | <0.6  | < 0.0100 | < 0.01 < | ).01 | <0.0    | 1 < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| VC04          | 31/10/2019 | VC04 0.5-0.6  | 0.5 - 0.6  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC04          | 31/10/2019 | VC04 0.7-0.8  | 0.7 - 0.8  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC04          | 31/10/2019 | VC04 0.9-1.0  | 0.9 - 1.0  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC05          | 30/10/2019 | VC05_0.0-0.1  | 0.0 - 0.1  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC05          | 30/10/2019 | VC05_0.5-0.7  | 0.5 - 0.7  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC05          | 30/10/2019 | VC05_0.5-0.9  | 0.5 - 0.9  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC05          | 30/10/2019 | VC05 0.8-0.9  | 0.8 - 0.9  | <0.00050  | <0.00050 <0.0005 | 0 |     | < 0.01 | < 0.01 | < 0.01 |       | <0.0100  | < 0.01 < | ).01 | <0.0    | 1 < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| VC06          | 31/10/2019 | VC06 0.0-0.1  | 0.0 - 0.1  | < 0.05    |                  | - |     |        |        |        |       |          | < 0.05   | -    |         |          |        |        |        |
| VC06          | 31/10/2019 | VC06 0.0-0.5  | 0.0 - 0.5  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC06          | 31/10/2019 | VC06 0.3-0.4  | 0.3 - 0.4  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC06          | 31/10/2019 | VC06_0.5-0.6  | 0.5 - 0.6  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC06          | 31/10/2019 | VC06 0.5-1.0  | 0.5 - 1.0  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC06          | 31/10/2019 | VC06 0.7-0.8  | 0.7 - 0.8  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC06          | 31/10/2019 | VC06 0.8-0.9  | 0.8 - 0.9  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC07          | 30/10/2019 | VC07 0.0-0.2  | 0.0 - 0.2  | <0.00050  | <0.00050 <0.0005 | 0 |     | < 0.01 | < 0.01 | < 0.01 |       | <0.0100  | <0.01 <  | ).01 | <0.0    | 1 < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| VC07          | 30/10/2019 | VC07 0.0-0.5  | 0.0 - 0.5  | < 0.00050 | <0.00050 <0.0005 | 0 |     | < 0.01 | < 0.01 | < 0.01 | < 0.5 | < 0.0100 | < 0.01 < | ).01 | <0.0    | 1 < 0.01 | < 0.01 | < 0.01 | < 0.01 |
| VC07          | 30/10/2019 | VC07 0.2-0.4  | 0.2 - 0.4  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC07          | 30/10/2019 | VC07_0.5-0.6  | 0.5 - 0.6  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC07          | 30/10/2019 | VC07 0.5-1.0  | 0.5 - 1.0  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC07          | 30/10/2019 | VC07 0.7-0.8  | 0.7 - 0.7  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC07          | 30/10/2019 | VC07 1.0-1.2  | 1.0 - 1.2  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC08          | 31/10/2019 | VC08 0.0-0.1  | 0.0 - 0.1  | <0.05     |                  |   |     |        |        |        |       |          | < 0.05   |      |         |          |        |        |        |
| VC08          | 31/10/2019 | VC08 0.3-0.4  | 0.3 - 0.4  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC08          | 31/10/2019 | VC08 0.0-0.5  | 0.0-0.5    |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC08          | 31/10/2019 | VC08 0.5-0.6  | 0.5 - 0.6  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC08          | 31/10/2019 | VC08 0.5-1.0  | 0.5 - 1.0  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC08          | 31/10/2019 | VC08 0.7-0.8  | 0.7 - 0.8  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC08          | 31/10/2019 | VC08 1.0-1.1  | 1.0 - 1.1  |           |                  |   |     |        |        |        |       |          |          |      |         |          |        |        |        |
| VC08          | 31/10/2019 | VC08 1.0-1.5  | 1.0 - 1.5  | <0.00050  | <0.00050 <0.0005 | 0 |     | <0.01  | < 0.01 | < 0.01 | <0.5  | < 0.0100 | < 0.01 < | ).01 | <0.0    | 1 < 0.01 | < 0.01 | < 0.01 | <0.01  |
| VC08          | 31/10/2019 | VC08 1.3-1.4  | 1.3 - 1.4  | 0.00000   |                  | - |     |        |        | 0.01   |       |          |          |      |         | 0.0      | 5.01   | 0.01   |        |
| VC08          | 31/10/2019 | VC08 1.5-1.6  | 1.5 - 1.6  | İ         |                  | 1 |     |        |        | 1      | 1     | 1 1      |          |      |         | 1        | 1      |        |        |
| VC09          | 30/10/2019 | VC09 0.0-0.2  | 0.0 - 0.2  | <0.00050  | <0.00050 <0.0005 | 0 | 1 1 | <0.01  | < 0.01 | < 0.01 | 1     | <0.0100  | < 0.01 < | 0.01 | <0.0    | 1 < 0.01 | < 0.01 | <0.01  | <0.01  |
| VC09          | 30/10/2019 | VC09 0.0-0.5  | 0.0 - 0.5  |           |                  | 1 | 1 1 |        |        | 1      | 1     |          |          | -    |         |          |        |        |        |
| VC09          | 30/10/2019 | VC09 0.4-0.6  | 0.4 - 0.6  |           |                  | 1 | 1 1 |        |        | 1      | 1     |          |          |      |         | 1        | 1      | 1 1    |        |
| VC09          | 30/10/2019 | VC09 0.5-1.0  | 0.5 - 1.0  |           |                  |   |     | İ      |        |        | 1     |          |          |      |         | 1        |        |        |        |
| VC09          | 30/10/2019 | VC09 0.7-0.8  | 0.7 - 0.8  |           |                  |   |     |        |        | 1      | 1     |          |          |      |         | 1        | 1      | 1      |        |
| R             |            |               |            |           | • •              |   |     |        |        |        | 1     |          |          |      | <br>- I |          |        |        |        |



|                    |            |              |           | Hexachlorobenzene | Methoxychlor | Oxychlordane | Toxaphene | Tokuthion | Azinphos methyl | Bolstar (Sulprofos) | Bromophos-ethyl | Carbophenothion | Chlorfenvinphos | Chlorfenvinphos E | Chlorpyrifos | Chlorpyrifos-methyl | Coumaphos | Demeton-O | Demeton-S | Demeton-S-methyl | Diazinon | cis-Chlorfenvinphos | Dichlorvos | Dimethoate |
|--------------------|------------|--------------|-----------|-------------------|--------------|--------------|-----------|-----------|-----------------|---------------------|-----------------|-----------------|-----------------|-------------------|--------------|---------------------|-----------|-----------|-----------|------------------|----------|---------------------|------------|------------|
|                    |            |              |           | mg/kg             | mg/kg        | mg/kg        | mg/kg     | mg/kg r   | mg/kg i         | mg/kg               | mg/kg           | mg/kg           | mg/kg           | mg/kg             | mg/kg        | mg/kg               | mg/kg     | mg/kg     | mg/kg     | mg/kg            | mg/kg    | mg/kg               | mg/kg      | mg/kg      |
| VC09               | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            | -          |
| VC10               | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 | <0.00050          | <0.00050     | <0.00050     | )         |           | <0.01           |                     | <0.01           | <0.01           |                 | <0.0100           | <0.01        | <0.01               |           |           |           | <0.01            | <0.01    | <0.01               | <0.01      | <0.01      |
| VC10               | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            | -          |
| VC10               | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 | <0.00050          | <0.00050     | <0.00050     | )         |           | <0.01           |                     | <0.01           | <0.01           |                 | <0.0100           | <0.01        | <0.01               |           |           |           | <0.01            | <0.01    | <0.01               | <0.01      | <0.01      |
| VC10               | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC11               | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC11               | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC11               | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 | <0.00050          | <0.00050     | <0.00050     | )         |           | <0.01           |                     | <0.01           | <0.01           |                 | <0.0100           | <0.01        | <0.01               |           |           |           | <0.01            | <0.01    | < 0.01              | <0.01      | <0.01      |
| VC11               | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC11               | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC12               | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 | <0.00050          | <0.00050     | <0.00050     | )         |           | <0.01           |                     | <0.01           | <0.01           | <0.5            | <0.0100           | <0.01        | <0.01               |           |           |           | <0.01            | <0.01    | <0.01               | < 0.01     | <0.01      |
| VC12               | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC12               | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC12               | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC12               | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 | <0.05             |              |              |           |           |                 |                     |                 |                 |                 |                   | < 0.05       |                     |           |           |           |                  |          |                     |            |            |
| VC13               | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 | <0.05             |              |              |           |           |                 |                     |                 |                 |                 |                   | < 0.05       |                     |           |           |           |                  |          |                     |            |            |
| VC13               | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC13               | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC13               | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC13               | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC13               | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC13               | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC14               | 31/10/2019 | VC14_0.0-0.1 | 0.0 - 0.1 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC14               | 31/10/2019 | VC14_0.0-0.5 | 0.0 - 0.5 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC14               | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC14               | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC14               | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC14               | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 | <0.05             |              |              |           |           |                 |                     |                 |                 |                 |                   | <0.05        |                     |           |           |           |                  |          |                     |            |            |
| VC14               | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| VC14               | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| <b>•</b> · · · ·   |            |              |           |                   |              |              |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           |                  |          |                     |            |            |
| Statistics         |            |              |           | 1 6-1             | ·            | ·            |           |           |                 |                     |                 |                 |                 |                   |              |                     |           |           |           | / I              | ·        |                     | ·          |            |
| Number of Results  |            |              |           | 25                | 17           | 17           | 0         | 0         | 17              | 0                   | 17              | 17              | 5               | 17                | 25           | 17                  | 0         | 0         | 0         | 17               | 17       | 17                  | 17         |            |
| Number of Detects  |            |              |           | 0                 | 0            | 0            | 0         | 0         | 0               | 0                   | 0               | 0               | 0               | 0                 | 0            | 0                   | 0         | 0         | 0         | 0                | 0        | 0                   | 0          | 0          |
| Iviinimum Concenti | ration     |              |           | <0.0005           | <0.0005      | <0.0005      | 2         |           | <0.01           |                     | < 0.01          | < 0.01          | < 0.5           | <0.0100           | < 0.01       | < 0.01              |           |           |           | <0.01            | < 0.01   | <0.01               | <0.01      | <0.01      |
| Maximum Concent    | tration    |              |           | <0.05             | <0.0005      | <0.0005      |           |           | <0.01           |                     | <0.01           | <0.01           | <0.5            | <0.0100           | < 0.05       | <0.01               |           |           |           | <0.01            | <0.01    | <0.01               | <0.01      | <0.01      |



|                    |                                  |               |            |                                 |                             |                       | OP Pes                      | sticides           |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
|--------------------|----------------------------------|---------------|------------|---------------------------------|-----------------------------|-----------------------|-----------------------------|--------------------|----------------------------|-------------------------------------------------|----------------------------------|---------------|--------------|------------------|------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|----------------|------------------------------|------------|-----------------------------|-------------------|--------------|
| EQL                |                                  |               |            | Disnitoton<br>Disnitoton<br>D.2 | Z<br>с<br>ш<br>mg/kg<br>0.2 | non<br>maj/kg<br>0.01 | douodo<br>Ethoprob<br>Mg/kg | Eenamiphos<br>Ba/g | by/6m<br>670<br>700<br>700 | u 620<br>201<br>201<br>201<br>201<br>200<br>200 | Eenthion<br>Ba/kg mg<br>0.0 10.0 | 0.0 Malathion | mg/kg<br>0.2 | 0.0<br>Darathion | 70 B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | 5.0 Dibrom) | c<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b | barathion<br>baybarathion<br>baybarathion | Bhorate<br>0.2 | 0.0<br>A)<br>Birimphos-ethyl | brothiofos | Byrrazophos<br>mg/kg<br>0.2 | mg/kg<br>0.2      | mg/kg<br>0.2 |
| NSW EPA (2014) Ge  | eneral Solid Waste SCC1 (with T  | CLP)          |            |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| NSW EPA (2014) Ge  | eneral Solid Waste TCLP1         |               |            |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| NSW EPA (2014) Re  | estricted Solid Waste SCC2 (with | n TCLP)       |            |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            | $ \longrightarrow $         |                   |              |
| NSVV EPA (2014) Re | estricted Solid Waste ICLP2      |               |            |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| Location Code      | Date                             | Field ID      | Depth      |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| BH05               | 7/11/2019                        | BH05 4.6-4.7  | 4.6 - 4.7  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             | <u> </u>          |              |
| BH06               | 7/11/2019                        | BH06_1.2-1.45 | 1.2 - 1.45 |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| BH07               | 7/11/2019                        | BH07_2.5-2.95 | 2.5 - 2.95 |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC01               | 30/10/2019                       | vc01_0.4-0.6  | 0.4 - 0.6  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                | _           |                                                                                                  |                                           |                |                              |            | +-+                         |                   |              |
|                    | 30/10/2019                       | VC01_0.0-0.2  | 0.0 - 0.2  |                                 |                             | <0.01                 |                             | <0.01              |                            |                                                 | <0.01                            | <0.01         |              | <0.01            | <0.0                                                                                           | 1           |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      | +-+                         |                   |              |
| VC01               | 30/10/2019                       | VC01_0.5-1.0  | 10-11      |                                 |                             | <0.01                 |                             | <0.01              |                            |                                                 | <0.01 <                          | <0.01         |              | <0.01            | <0.0                                                                                           | 1           |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      | <b>├──┼</b>                 |                   |              |
| VC02               | 30/10/2019                       | VC02 0.0-0.2  | 0.0 - 0.2  |                                 |                             | -0.01                 |                             | 30.01              |                            |                                                 | 10.01                            | -0.01         |              | <b>V</b> 0.01    | 40.0                                                                                           |             |                                                                                                  | -0.01                                     |                | <b>40.01</b>                 | 40.01      | <u>├──</u> ┼                |                   |              |
| VC02               | 30/10/2019                       | VC02 0.5-0.6  | 0.5 - 0.6  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC02               | 30/10/2019                       | VC02_0.5-1.0  | 0.5 - 1.0  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC02               | 30/10/2019                       | VC02_1.0-1.2  | 1.0 - 1.2  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC02               | 30/10/2019                       | VC02_1.0-1.5  | 1.0 - 1.5  |                                 |                             |                       |                             |                    |                            |                                                 | .0.04                            | .0.04         |              | .0.04            |                                                                                                | 4           |                                                                                                  | .0.01                                     |                | 10.01                        |            | +-+                         |                   |              |
| VC02               | 30/10/2019                       | VC02_1.5-1.6  | 1.5 - 1.6  |                                 |                             | < 0.01                |                             | < 0.01             |                            |                                                 | <0.01 <                          | < 0.01        |              | < 0.01           | <0.0                                                                                           | 1           | -                                                                                                | <0.01                                     |                | <0.01                        | <0.01      | ──┼                         |                   |              |
| VC02               | 30/10/2019                       | VC02_0.0-0.3  | 0.0 - 0.2  |                                 |                             | <0.01                 |                             | <0.01              |                            |                                                 | <0.01 <                          | <u>\0.01</u>  |              | <0.01            | <0.0                                                                                           |             |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      | ┠───┼─                      |                   |              |
| VC03               | 30/10/2019                       | VC03_0.0-0.5  | 0.0 - 0.5  |                                 |                             | < 0.01                |                             | < 0.01             |                            |                                                 | < 0.01 <                         | <0.01         |              | <0.01            | <0.0                                                                                           | 1           |                                                                                                  | < 0.01                                    |                | < 0.01                       | < 0.01     | <b>├</b> ──┼                |                   |              |
| VC03               | 30/10/2019                       | VC03 0.3-0.4  | 0.3 - 0.4  |                                 |                             | < 0.01                |                             | < 0.01             |                            |                                                 | < 0.01 <                         | < 0.01        |              | < 0.01           | <0.0                                                                                           | )1          |                                                                                                  | < 0.01                                    |                | < 0.01                       | < 0.01     |                             |                   |              |
| VC03               | 30/10/2019                       | VC03_0.4-0.6  | 0.4 - 0.6  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC03               | 30/10/2019                       | VC03_0.5-1.0  | 0.5 - 1.0  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC03               | 30/10/2019                       | VC03_0.6-0.7  | 0.6 - 0.7  |                                 |                             |                       |                             | _                  |                            |                                                 |                                  |               |              |                  |                                                                                                | _           | _                                                                                                |                                           |                |                              |            |                             |                   |              |
| VC03               | 30/10/2019                       | VC03_1.0-1.2  | 1.0 - 1.2  |                                 |                             |                       |                             | -                  |                            |                                                 |                                  |               |              |                  |                                                                                                | _           | -                                                                                                |                                           |                |                              |            | ──┼                         |                   |              |
| VC04               | 30/10/2019                       | VC04_0.0-0.1  | 0.0 - 0.1  |                                 |                             | <0.01                 |                             | <0.01              |                            |                                                 | <0.01 <                          | <0.01         |              | <0.01            | <0.0                                                                                           | 1           |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      | ───┼─                       |                   |              |
| VC04               | 30/10/2019                       | VC04_0.5-1.0  | 0.5 - 0.4  |                                 |                             | <0.01                 |                             | <0.01              |                            |                                                 | <0.01 <                          | <0.01         |              | <0.01            | <0.0                                                                                           | 1           |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      | <b>├──┼</b>                 |                   |              |
| VC04               | 31/10/2019                       | VC04 0.5-0.6  | 0.5 - 0.6  |                                 |                             | 0.01                  |                             | 0.01               |                            |                                                 | 0.01                             | 0.01          |              | 0.01             | 0.0                                                                                            |             |                                                                                                  | 0.01                                      |                | 0.01                         | 0.01       |                             |                   |              |
| VC04               | 31/10/2019                       | VC04_0.7-0.8  | 0.7 - 0.8  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC04               | 31/10/2019                       | VC04_0.9-1.0  | 0.9 - 1.0  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC05               | 30/10/2019                       | VC05_0.0-0.1  | 0.0 - 0.1  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC05               | 30/10/2019                       | VC05_0.5-0.7  | 0.5 - 0.7  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            | $ \longrightarrow $         |                   |              |
| VC05               | 30/10/2019                       |               | 0.5 - 0.9  |                                 |                             | <0.01                 |                             | <0.01              |                            |                                                 | <0.01 <                          | -0.01         |              | <0.01            | <0.0                                                                                           | 1           |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      | $\vdash$                    |                   |              |
| VC06               | 31/10/2019                       | VC06_0.0-0.1  | 0.0 - 0.1  |                                 |                             | <u> </u>              |                             | ~0.01              |                            |                                                 | <0.01                            | <0.01         |              | <0.01            | <0.0                                                                                           |             |                                                                                                  | ~0.01                                     |                | <b>\0.01</b>                 | ~0.01      | <b>├──┼</b>                 |                   |              |
| VC06               | 31/10/2019                       | VC06 0.0-0.5  | 0.0 - 0.5  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            | <b>├</b> ──┼                |                   |              |
| VC06               | 31/10/2019                       | VC06_0.3-0.4  | 0.3 - 0.4  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC06               | 31/10/2019                       | VC06_0.5-0.6  | 0.5 - 0.6  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC06               | 31/10/2019                       | VC06_0.5-1.0  | 0.5 - 1.0  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC06               | 31/10/2019                       | VC06_0.7-0.8  | 0.7 - 0.8  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                | _           | -                                                                                                |                                           |                |                              |            | +-+                         |                   |              |
|                    | 30/10/2019                       |               | 0.0 - 0.2  |                                 |                             | <0.01                 |                             | <0.01              |                            |                                                 | <0.01 <                          | <0.01         |              | <0.01            | <0(                                                                                            | 1           |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      | ───┼─                       |                   |              |
| VC07               | 30/10/2019                       | VC07_0.0-0.2  | 0.0 - 0.5  |                                 |                             | <0.01                 |                             | <0.01              |                            |                                                 | <0.01 <                          | <0.01         |              | <0.01            | <0.0                                                                                           | 1           |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      | <b>├──┼</b>                 |                   |              |
| VC07               | 30/10/2019                       | VC07 0.2-0.4  | 0.2 - 0.4  |                                 |                             | 0.01                  |                             |                    |                            |                                                 |                                  | 0.0.          |              | 0.01             |                                                                                                |             |                                                                                                  | 0.01                                      |                | 0.01                         |            |                             |                   |              |
| VC07               | 30/10/2019                       | VC07_0.5-0.6  | 0.5 - 0.6  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC07               | 30/10/2019                       | VC07_0.5-1.0  | 0.5 - 1.0  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC07               | 30/10/2019                       | VC07_0.7-0.8  | 0.7 - 0.7  |                                 |                             |                       |                             | _                  |                            |                                                 |                                  |               |              |                  |                                                                                                | _           |                                                                                                  |                                           |                |                              |            |                             |                   |              |
|                    | 30/10/2019                       | VC07_1.0-1.2  | 1.0 - 1.2  |                                 |                             |                       |                             | -                  |                            |                                                 |                                  |               |              |                  |                                                                                                | _           | -                                                                                                |                                           |                |                              |            | ──┼                         |                   |              |
|                    | 31/10/2019                       |               | 0.0 - 0.1  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            | ───┼─                       |                   |              |
| VC08               | 31/10/2019                       | VC08_0.0-0.5  | 0.0-0.5    |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                | _           |                                                                                                  |                                           |                |                              |            | <b>├</b> ──┼                |                   |              |
| VC08               | 31/10/2019                       | VC08_0.5-0.6  | 0.5 - 0.6  |                                 | 1                           |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  | 1                                         |                |                              |            |                             | +                 |              |
| VC08               | 31/10/2019                       | VC08_0.5-1.0  | 0.5 - 1.0  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             | <u> </u>          |              |
| VC08               | 31/10/2019                       | VC08_0.7-0.8  | 0.7 - 0.8  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC08               | 31/10/2019                       | VC08_1.0-1.1  | 1.0 - 1.1  |                                 | <u> </u>                    |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           | ļ              |                              |            | $\downarrow$                |                   |              |
|                    | 31/10/2019                       | VC08_1.0-1.5  | 1.0 - 1.5  |                                 |                             | <0.01                 |                             | <0.01              |                            | ├                                               | <0.01 <                          | <0.01         |              | <0.01            | <0.0                                                                                           | 1           |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      |                             | <b></b>           |              |
|                    | 31/10/2019                       |               | 1.3 - 1.4  |                                 |                             |                       |                             |                    |                            | +                                               |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            | +-+                         | $\longrightarrow$ |              |
| VC09               | 30/10/2019                       | VC09_0.0-0.2  | 0.0-0.2    |                                 | 1                           | <0.01                 |                             | <0.01              |                            |                                                 | <0.01 <                          | <0.01         |              | <0.01            | <0.0                                                                                           | 1           |                                                                                                  | <0.01                                     |                | <0.01                        | <0.01      | <b>├──┼</b>                 | $\rightarrow$     |              |
| VC09               | 30/10/2019                       | VC09 0.0-0.5  | 0.0 - 0.5  |                                 | 1                           | -0.01                 |                             | .0.01              |                            |                                                 |                                  | 0.01          |              | 0.01             |                                                                                                | -           |                                                                                                  |                                           | 1              | -0.01                        | -0.01      | <b>├</b> ──┼                |                   |              |
| VC09               | 30/10/2019                       | VC09_0.4-0.6  | 0.4 - 0.6  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| VC09               | 30/10/2019                       | VC09_0.5-1.0  | 0.5 - 1.0  |                                 |                             |                       |                             |                    |                            |                                                 |                                  |               |              |                  |                                                                                                |             |                                                                                                  |                                           |                |                              |            |                             |                   |              |
| IVC09              | 30/10/2019                       | VC09 0.7-0.8  | 0.7 - 0.8  |                                 | 1                           | Ī                     | I                           |                    | l i                        |                                                 |                                  | 1             |              |                  |                                                                                                |             |                                                                                                  | Ĩ                                         | I              | 1                            |            | 1                           | I                 |              |

|                                                 |                                                       |                                                                          |                  |                |                             | (             | OP Pes                 | ticides        |                    |                      |                            |                   |                      |                                   |                                     | -                                            |              |                 |              |                 |                   | -               |                            |                                |                                         |
|-------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|------------------|----------------|-----------------------------|---------------|------------------------|----------------|--------------------|----------------------|----------------------------|-------------------|----------------------|-----------------------------------|-------------------------------------|----------------------------------------------|--------------|-----------------|--------------|-----------------|-------------------|-----------------|----------------------------|--------------------------------|-----------------------------------------|
| EQL<br>NSW EPA (2014) Gen<br>NSW EPA (2014) Gen | eral Solid Waste SCC1 (with<br>eral Solid Waste TCLP1 | n TCLP)                                                                  |                  | ng/kg n<br>0.2 | Z<br>L<br>L<br>mg/kg<br>0.2 | mg/kg<br>0.01 | dom<br>Ethoprop<br>5.0 | mg/kg<br>0.01  | B/kg<br>5'0<br>5'0 | Eensulfothion<br>5.0 | Eenthion<br>Ba//gm<br>10.0 | mg/kg m<br>0.01 0 | sound<br>g/kg<br>0.2 | methyl parathion<br>ba/gm<br>10.0 | 0.0<br>B/kg<br>Mevinphos (Phosdrin) | (Diprom)<br>Maled (Dibrom)<br>Maled (Dibrom) | g mg/kg<br>2 | y mg/kg<br>0.01 | mg/kg<br>0.2 | Pirimphos-ethyl | Birimiphos-methyl | mg/kg<br>10.0   | Byrazophos<br>mg/kg<br>0.2 | au<br>uuo<br>℃<br>mg/kg<br>0.2 | Soundary<br>Terbufos<br>Mg/kg           |
| NSW EPA (2014) Rest                             | tricted Solid Waste SCC2 (w                           | vith TCLP)                                                               |                  |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| NSW EPA (2014) Rest                             | tricted Solid Waste TCLP2                             |                                                                          |                  |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
|                                                 | <b>-</b> .                                            |                                                                          |                  |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| Location Code                                   | Date                                                  | Field ID                                                                 | Depth            | I              |                             |               |                        | <del>г г</del> |                    |                      | r                          |                   |                      |                                   |                                     |                                              |              |                 | 1            |                 |                   |                 | r                          | r                              |                                         |
| BH05                                            | 7/11/2019                                             | BH05_4.6-4.7                                                             | 4.6 - 4.7        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              | _               |              |                 |                   |                 |                            |                                |                                         |
| BH06                                            | 7/11/2019                                             | BH06_1.2-1.45                                                            | 1.2 - 1.45       |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              | _               |              |                 |                   |                 |                            |                                |                                         |
| BHU/                                            | 20/10/2019                                            | BHU/_2.5-2.95                                                            | 2.5 - 2.95       |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
|                                                 | 30/10/2019                                            |                                                                          | 0.4 - 0.6        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
|                                                 | 30/10/2019                                            |                                                                          | 0.0 - 0.2        |                |                             | <0.01         |                        | <0.01          |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | <0.01           |                            |                                |                                         |
|                                                 | 30/10/2019                                            | VC01_0.5-1.0                                                             | 0.5 - 1.0        |                |                             | <0.01         |                        | <0.01          |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | <0.01           |                            |                                |                                         |
|                                                 | 30/10/2019                                            |                                                                          |                  |                |                             | <b>\0.01</b>  |                        | <u> </u>       |                    |                      | <b>\0.01</b>               | <0.01             |                      | <b>\0.01</b>                      |                                     | <0.01                                        | _            | <0.01           |              | <0.01           |                   | <b>\0.01</b>    |                            |                                |                                         |
| VC02                                            | 30/10/2019                                            | VC02_0.0-0.2                                                             | 0.0 - 0.2        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              | _            | -               |              | + +             |                   |                 |                            |                                |                                         |
| VC02                                            | 30/10/2019                                            | VC02_0.5-0.0                                                             | 0.5 - 0.0        |                |                             |               |                        | ├ -            |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | ╉               |                   |                 |                            |                                |                                         |
| VC02                                            | 30/10/2019                                            | V/C02_10_12                                                              | 10-12            |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | + +             |                   |                 |                            |                                |                                         |
| VC02                                            | 30/10/2019                                            | VC02_1.0-1.2                                                             | 10-15            |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| VC02                                            | 30/10/2019                                            | VC02_1.0-1.0                                                             | 15-16            |                |                             | <0.01         |                        | <0.01          |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | <0.01           |                            |                                |                                         |
| VC02                                            | 31/10/2019                                            | VC02_0.0-0.5                                                             | 0.0 - 0.5        |                |                             | <0.01         |                        | <0.01          |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | <0.01           |                            |                                |                                         |
| VC03                                            | 30/10/2019                                            | VC03_0.0-0.2                                                             | 0.0 - 0.2        |                |                             | 10.01         |                        | 30.01          |                    |                      | -0.01                      | 10.01             |                      | -0.01                             |                                     | 10.01                                        | _            | -0.01           |              | 10.01           |                   | -0.01           |                            |                                |                                         |
| VC03                                            | 30/10/2019                                            | VC03_0.0-0.5                                                             | 0.0 - 0.5        |                |                             | <0.01         |                        | <0.01          |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | <0.01           |                            |                                | ·                                       |
| VC03                                            | 30/10/2019                                            | VC03_0_3-0_4                                                             | 0.3 - 0.4        |                |                             | < 0.01        |                        | <0.01          |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | < 0.01          |                            |                                | ·                                       |
| VC03                                            | 30/10/2019                                            | VC03_0.4-0.6                                                             | 0.4 - 0.6        |                |                             | 10.01         |                        | -0.01          |                    |                      | 10.01                      | 10.01             |                      | 0.01                              |                                     | 10.01                                        |              | .0.01           |              | 10.01           |                   | 10.01           |                            |                                | ·                                       |
| VC03                                            | 30/10/2019                                            | VC03_0.5-1.0                                                             | 0.5 - 1.0        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | ·                                       |
| VC03                                            | 30/10/2019                                            | VC03_0.6-0.7                                                             | 0.6 - 0.7        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | ·                                       |
| VC03                                            | 30/10/2019                                            | VC03 1.0-1.2                                                             | 1.0 - 1.2        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | í — — — — — — — — — — — — — — — — — — — |
| VC04                                            | 30/10/2019                                            | VC04 0.0-0.1                                                             | 0.0 - 0.1        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| VC04                                            | 30/10/2019                                            | VC04_0.3-0.4                                                             | 0.3 - 0.4        |                |                             | < 0.01        |                        | < 0.01         |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | < 0.01          |              | < 0.01          |                   | < 0.01          |                            |                                | í — — — — — — — — — — — — — — — — — — — |
| VC04                                            | 30/10/2019                                            | VC04 0.5-1.0                                                             | 0.5 - 1.0        |                |                             | < 0.01        |                        | < 0.01         |                    |                      | < 0.01                     | < 0.01            |                      | < 0.01                            |                                     | < 0.01                                       |              | < 0.01          |              | < 0.01          |                   | < 0.01          |                            |                                | · · · · · ·                             |
| VC04                                            | 31/10/2019                                            | VC04 0.5-0.6                                                             | 0.5 - 0.6        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | í — — — — — — — — — — — — — — — — — — — |
| VC04                                            | 31/10/2019                                            | VC04 0.7-0.8                                                             | 0.7 - 0.8        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | í — — — — — — — — — — — — — — — — — — — |
| VC04                                            | 31/10/2019                                            | VC04 0.9-1.0                                                             | 0.9 - 1.0        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | í — — — — — — — — — — — — — — — — — — — |
| VC05                                            | 30/10/2019                                            | VC05 0.0-0.1                                                             | 0.0 - 0.1        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | í — — — — — — — — — — — — — — — — — — — |
| VC05                                            | 30/10/2019                                            | VC05 0.5-0.7                                                             | 0.5 - 0.7        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| VC05                                            | 30/10/2019                                            | VC05 0.5-0.9                                                             | 0.5 - 0.9        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | ·                                       |
| VC05                                            | 30/10/2019                                            | VC05 0.8-0.9                                                             | 0.8 - 0.9        |                |                             | <0.01         |                        | < 0.01         |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | < 0.01          |              | < 0.01          |                   | <0.01           |                            |                                | ·                                       |
| VC06                                            | 31/10/2019                                            | VC06_0.0-0.1                                                             | 0.0 - 0.1        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | í                                       |
| VC06                                            | 31/10/2019                                            | VC06_0.0-0.5                                                             | 0.0 - 0.5        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| VC06                                            | 31/10/2019                                            | VC06_0.3-0.4                                                             | 0.3 - 0.4        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | 1                                       |
| VC06                                            | 31/10/2019                                            | VC06_0.5-0.6                                                             | 0.5 - 0.6        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | í T                                     |
| VC06                                            | 31/10/2019                                            | VC06_0.5-1.0                                                             | 0.5 - 1.0        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| VC06                                            | 31/10/2019                                            | VC06_0.7-0.8                                                             | 0.7 - 0.8        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| VC06                                            | 31/10/2019                                            | VC06_0.8-0.9                                                             | 0.8 - 0.9        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| VC07                                            | 30/10/2019                                            | VC07_0.0-0.2                                                             | 0.0 - 0.2        |                |                             | <0.01         |                        | <0.01          |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | <0.01           |                            |                                |                                         |
| VC07                                            | 30/10/2019                                            | VC07_0.0-0.5                                                             | 0.0 - 0.5        |                |                             | <0.01         |                        | <0.01          |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | <0.01           |                            |                                | I                                       |
| VC07                                            | 30/10/2019                                            | VC07_0.2-0.4                                                             | 0.2 - 0.4        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              | _               |              |                 |                   |                 |                            |                                |                                         |
| VC07                                            | 30/10/2019                                            | VC07_0.5-0.6                                                             | 0.5 - 0.6        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              | _               |              |                 |                   |                 |                            |                                | ļ                                       |
| VC07                                            | 30/10/2019                                            | VC07_0.5-1.0                                                             | 0.5 - 1.0        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                | I                                       |
| VC07                                            | 30/10/2019                                            | VC07_0.7-0.8                                                             | 0.7 - 0.7        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              | _               |              |                 |                   |                 |                            |                                |                                         |
|                                                 | 30/10/2019                                            | VC07_1.0-1.2                                                             | 1.0 - 1.2        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              | _               |              |                 |                   |                 |                            |                                |                                         |
|                                                 | 31/10/2019                                            |                                                                          | 0.0 - 0.1        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              |                 |                   |                 |                            |                                |                                         |
| VC08                                            | 31/10/2019                                            |                                                                          | 0.0 - 0.4        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | + +             |                   |                 |                            |                                | ]                                       |
| VC08                                            | 31/10/2019                                            |                                                                          |                  |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | ┥               |                   |                 |                            |                                |                                         |
| VC08                                            | 31/10/2019                                            |                                                                          |                  | <del> </del>   |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | ┥               |                   |                 |                            |                                | ]                                       |
| VC08                                            | 31/10/2019                                            |                                                                          |                  |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | ╉               |                   |                 |                            |                                |                                         |
| VC08                                            | 31/10/2019                                            |                                                                          | 10-11            |                |                             |               |                        | ┟──┤           |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | ╉               |                   |                 |                            |                                |                                         |
| VC08                                            | 31/10/2019                                            |                                                                          | 10-15            |                |                             | <0.01         |                        | <0.01          |                    |                      | <∩ ∩1                      | <0.01             |                      | <u>&lt;0 01</u>                   |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | <u>&lt;0 01</u> |                            |                                | ]                                       |
| VC08                                            | 31/10/2019                                            | VC08_1.0-1.3                                                             | 1 3 _ 1 <i>A</i> |                |                             | -0.01         |                        | ~0.01          |                    |                      | <u>~0.01</u>               | -0.01             |                      | <b>\</b> 0.01                     |                                     | -0.01                                        |              | ~0.01           |              | -0.01           |                   | <b>~0.01</b>    |                            |                                |                                         |
| VC08                                            | 31/10/2019                                            | <u>1,000</u> <u>1,0</u> <u>1,4</u><br><u>1,000</u> <u>1,0</u> <u>1,4</u> | 15_16            |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | + +             |                   |                 |                            |                                | ]                                       |
| VC09                                            | 30/10/2019                                            |                                                                          | 0.0-0.2          |                |                             | <0.01         |                        | <0.01          |                    |                      | <0.01                      | <0.01             |                      | <0.01                             |                                     | <0.01                                        |              | <0.01           |              | <0.01           |                   | <0.01           |                            |                                | ]                                       |
| VC09                                            | 30/10/2019                                            | VC09_0.0-0.2                                                             | 0.0 - 0.5        |                |                             | .0.01         |                        | -0.01          |                    |                      | -0.01                      | -0.01             |                      | -0.01                             |                                     | -0.01                                        |              | -0.01           |              | -0.01           |                   | 10.01           |                            |                                |                                         |
| VC09                                            | 30/10/2019                                            | VC.09 0 4-0 6                                                            | 04-06            |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | + +             |                   |                 |                            |                                |                                         |
| VC09                                            | 30/10/2019                                            | VC09_0.5-1_0                                                             | 0.5 - 1.0        |                |                             |               |                        | ├ -            |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | ┨╴┤             |                   |                 |                            |                                |                                         |
| VC09                                            | 30/10/2019                                            | VC09 0.7-0.8                                                             | 0.7 - 0.8        |                |                             |               |                        |                |                    |                      |                            |                   |                      |                                   |                                     |                                              |              |                 |              | 1 1             |                   |                 |                            |                                | ·                                       |



|                   |            |              |           |            |               | OP P     | esticides  |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              |                                               |             |             |
|-------------------|------------|--------------|-----------|------------|---------------|----------|------------|--------------|---------------|----------|--------------|---------|------------------|------------------------|---------------|----------------|-----------|-------------|----------|-----------------|-------------------|--------------|-----------------------------------------------|-------------|-------------|
|                   |            |              |           | Disulfoton | EPN<br>Ethion | Ethoprop | Fenamiphos | Fenitrothion | Fensulfothion | Fenthion | Malathion    | Merphos | Methyl parathion | , Mevinphos (Phosdrin) | Monocrotophos | Naled (Dibrom) | Omethoate | Parathion   | Phorate  | Pirimphos-ethyl | Pirimiphos-methyl | Prothiofos   | Pyrazophos                                    | Ronnel      | Terbufos    |
| N (000            |            |              |           | mg/kg      | mg/kg mg/     | kg mg/k  | tg mg/kg   | mg/kg        | mg/kg         | mg/kg    | mg/kg        | mg/kg   | mg/kg            | mg/kg                  | mg/kg         | mg/kg          | mg/kg     | mg/kg       | mg/kg    | mg/kg           | mg/kg             | mg/kg        | mg/kg                                         | mg/kg       | mg/kg       |
| VC09              | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |            |               | 0.1      |            |              |               | 10.04    | -0.04        |         | 10.01            |                        | 10.04         |                |           | -0.04       |          | 10.01           |                   | -0.04        | └────′                                        | <b> </b>    | ───         |
| VC10              | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |            | <(            | .01      | <0.01      |              |               | <0.01    | <0.01        |         | <0.01            |                        | <0.01         |                |           | <0.01       |          | <0.01           |                   | <0.01        | └────′                                        | <b> </b>    |             |
| VC10              | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |            |               | 01       | 10.01      |              | _             | 10.01    | 10.01        |         | 10.01            |                        | 10.01         |                |           | 10.01       | ļ        | 10.01           |                   | 10.04        | ⊢−−−−′                                        | <b> </b>    | <b></b>     |
| VC10              | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |            | <(            | .01      | <0.01      |              |               | < 0.01   | <0.01        |         | <0.01            |                        | <0.01         |                |           | <0.01       |          | <0.01           |                   | <0.01        | ⊢───′                                         | <b> </b>    |             |
|                   | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | ┢────┘                                        | ┣────       |             |
|                   | 20/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | ┢────┘                                        | <b> </b>    |             |
| VC11              | 30/10/2019 | VC11_0.0-0.3 | 0.0 - 0.3 |            |               | 01       | <0.01      |              | -             | <0.01    | <0.01        |         | <0.01            |                        | <0.01         |                |           | <0.01       |          | <0.01           |                   | <0.01        | ┢────┘                                        | <b> </b>    |             |
| VC11              | 30/10/2019 | VC11_0.5-0.7 | 0.5 1 0   |            |               | .01      | <u> </u>   |              |               | <u> </u> | <b>\0.01</b> |         | ~0.01            |                        | <b>\0.01</b>  |                |           | <0.01       |          | <u> </u>        |                   | <b>\0.01</b> | └────┘                                        | ┝───        | +           |
| VC11              | 30/10/2019 | VC11_0.0-1.0 | 10-12     |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | <sup> </sup>                                  | <u> </u>    | +           |
| VC12              | 31/10/2019 | VC12 0 0-0 5 | 0.0 - 0.5 |            | <(            | 01       | <0.01      |              |               | <0.01    | <0.01        |         | <0.01            |                        | <0.01         |                |           | <0.01       |          | <0.01           |                   | <0.01        | <b>ب</b> ــــــــــــــــــــــــــــــــــــ | <u> </u>    | +           |
| VC12              | 31/10/2019 | VC12_0.0-0.0 | 0.3 - 0.4 |            |               | .01      | -0.01      |              |               | 30.01    | <b>NO.01</b> |         | -0.01            |                        | 30.01         |                |           | -0.01       |          | 30.01           |                   | 10.01        | <b>ر</b> ــــــــــــــــــــــــــــــــــــ | <u> </u>    | +           |
| VC12              | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |            |               |          |            |              |               |          | 1            |         |                  |                        |               |                |           |             |          |                 |                   |              | '                                             | <u> </u>    | +           |
| VC12              | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | /                                             | <u> </u>    | +           |
| VC12              | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | ·'                                            |             | +           |
| VC13              | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | ·'                                            |             | 1           |
| VC13              | 31/10/2019 | VC13 0.0-0.5 | 0.0 - 0.5 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | /                                             |             | -           |
| VC13              | 31/10/2019 | VC13 0.3-0.4 | 0.3 - 0.4 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | /                                             |             | -           |
| VC13              | 31/10/2019 | VC13 0.5-0.6 | 0.5 - 0.6 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | /                                             |             | -           |
| VC13              | 31/10/2019 | VC13 0.5-1.0 | 0.5 - 1.0 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | /                                             |             | 1           |
| VC13              | 31/10/2019 | VC13 0.7-0.8 | 0.7 - 0.8 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | ′                                             |             |             |
| VC13              | 31/10/2019 | VC13 1.0-1.1 | 1.0 - 1.1 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | ′                                             |             |             |
| VC14              | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | ,                                             |             | 1           |
| VC14              | 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | ,                                             |             |             |
| VC14              | 31/10/2019 | VC14_0.3-0.4 | 0.3 - 0.4 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              |                                               |             |             |
| VC14              | 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              |                                               |             |             |
| VC14              | 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              | [                                             |             |             |
| VC14              | 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              |                                               |             |             |
| VC14              | 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              |                                               |             |             |
| VC14              | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              |                                               |             |             |
|                   |            |              |           |            |               |          |            |              |               |          |              |         |                  |                        |               |                |           |             |          |                 |                   |              |                                               |             |             |
| Statistics        |            |              |           |            |               | 47       |            |              |               |          |              | -       |                  |                        |               | -              | 1 -       |             | -        |                 |                   |              |                                               | <del></del> | <del></del> |
| Number of Result  | S          |              |           |            | 0             | 1/       | 0 17       |              | <u>10</u>     | 17       | 17           | 0       | 17               | 0                      | 17            | 0              |           | <u>y 17</u> |          | 17              | 0                 | 17           | 0                                             |             | <u>/ 0</u>  |
| Number of Detect  | S          |              |           | 0          | 0             | 0        | 0 0        | (            | <u>0 1</u>    |          |              | 0       | 0                | 0                      | 0             | 0              | - (       |             | 0        | 0               | 0                 | 0            | 0                                             | <u> </u>    | <u> </u>    |
| Iviinimum Concent | tration    |              |           |            | <(            | .01      | <0.01      | <u> </u>     |               | <0.01    | <0.01        |         | <0.01            |                        | <0.01         |                |           | <0.01       | <u> </u> | <0.01           |                   | <0.01        | <b>└───</b> ′                                 | <b> </b>    | ───         |
| Maximum Concer    | ntration   |              |           |            | <(            | .01      | <0.01      |              |               | <0.01    | <0.01        |         | <0.01            |                        | <0.01         |                |           | <0.01       |          | <0.01           |                   | <0.01        | <u>ــــــــــــــــــــــــــــــــــــ</u>   | L           | <u> </u>    |



|                                                        |               |                   |                        | M       | AH                     |                  | Halog        | genated                     |               |               |               | PC            | Bs            |               |               |              | Herbicides | <u> </u>                      |                       |                               |
|--------------------------------------------------------|---------------|-------------------|------------------------|---------|------------------------|------------------|--------------|-----------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|------------|-------------------------------|-----------------------|-------------------------------|
|                                                        | Trichloronate | Tetrachlorvinphos | 1,2,4-trimethylbenzene | Styrene | 1,3,5-trimethylbenzene | lsopropylbenzene | Bromomethane | Dichlorodifluorometha<br>ne | Arochlor 1016 | Arochlor 1221 | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | Arochlor 1260 | PCBs (Total) | Pronamide  | 1,1,1,2-<br>tetrachloroethane | 1,1,1-trichloroethane | 1,1,2,2-<br>tetrachloroethane |
|                                                        | mg/kg         | mg/kg             | mg/kg                  | mg/kg   | mg/kg                  | mg/kg            | mg/kg        | mg/kg                       | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/kg         | mg/kg        | mg/kg      | mg/kg                         | mg/kg                 | mg/kg                         |
| EQL                                                    | 0.2           | 0.2               | 0.5                    | 0.5     | 0.5                    | 0.5              | 5            | 5                           | 0.005         | 0.005         | 0.005         | 0.005         | 0.005         | 0.005         | 0.005         | 0.005        | 0.5        | 0.5                           | 0.5                   | 0.5                           |
| NSW EPA (2014) General Solid Waste SCC1 (with TCLP)    |               |                   |                        | 108     |                        |                  |              |                             |               |               |               |               |               |               |               | 50           |            | 360                           | 1,080                 | 46.8                          |
| NSW EPA (2014) General Solid Waste TCLP1               |               |                   |                        |         |                        |                  |              |                             |               |               |               |               |               |               |               |              |            |                               |                       |                               |
| NSW EPA (2014) Restricted Solid Waste SCC2 (with TCLP) |               |                   |                        | 432     |                        |                  |              |                             |               |               |               |               |               |               |               | 50           |            | 1,440                         | 4,320                 | 187                           |
| NSW EPA (2014) Restricted Solid Waste TCLP2            |               |                   |                        |         |                        |                  |              |                             |               |               |               |               |               |               |               |              |            |                               |                       |                               |

| Location Code | Date       | Field ID      | Depth      |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
|---------------|------------|---------------|------------|-------|-------|------|-------|----|----|----------|----------|----------|----------|----------|----------|----------|----------|------|-------|-------|-------|
| BH05          | 7/11/2019  | BH05_4.6-4.7  | 4.6 - 4.7  |       | <0.5  |      |       |    |    |          |          |          |          |          |          |          | <0.1     |      | <0.5  | <0.5  | <0.5  |
| BH06          | 7/11/2019  | BH06_1.2-1.45 | 1.2 - 1.45 |       | <0.5  |      |       |    |    |          |          |          |          |          |          |          | <0.1     |      | <0.5  | <0.5  | <0.5  |
| BH07          | 7/11/2019  | BH07_2.5-2.95 | 2.5 - 2.95 |       | <0.5  |      |       |    |    |          |          |          |          |          |          |          | <0.1     |      | <0.5  | <0.5  | <0.5  |
| VC01          | 30/10/2019 | vc01_0.4-0.6  | 0.4 - 0.6  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC01          | 30/10/2019 | VC01_0.0-0.2  | 0.0 - 0.2  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC01          | 30/10/2019 | VC01_0.5-1.0  | 0.5 - 1.0  |       |       |      |       |    |    | < 0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.5 |       |       |       |
| VC01          | 30/10/2019 | VC01_1.0-1.1  | 1.0 - 1.1  |       |       |      |       |    |    | < 0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  |      |       |       |       |
| VC02          | 30/10/2019 | VC02_0.0-0.2  | 0.0 - 0.2  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC02          | 30/10/2019 | VC02_0.5-0.6  | 0.5 - 0.6  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC02          | 30/10/2019 | VC02_0.5-1.0  | 0.5 - 1.0  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       | ·     |
| VC02          | 30/10/2019 | VC02_1.0-1.2  | 1.0 - 1.2  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC02          | 30/10/2019 | VC02_1.0-1.5  | 1.0 - 1.5  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       | , i   |
| VC02          | 30/10/2019 | VC02_1.5-1.6  | 1.5 - 1.6  |       |       |      |       |    |    | < 0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  |      |       |       |       |
| VC02          | 31/10/2019 | VC02 0.0-0.5  | 0.0 - 0.5  |       |       |      |       |    |    | < 0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050  | < 0.0050 | <0.0050  | <0.0050  |      |       |       |       |
| VC03          | 30/10/2019 | VC03 0.0-0.2  | 0.0 - 0.2  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC03          | 30/10/2019 | VC03 0.0-0.5  | 0.0 - 0.5  |       |       |      |       |    |    | < 0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  |      |       |       |       |
| VC03          | 30/10/2019 | VC03 0.3-0.4  | 0.3 - 0.4  | <0.5  | <0.5  | <0.5 | <0.5  | <5 | <5 | < 0.0050 | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  |      | <0.5  | <0.5  | <0.5  |
| VC03          | 30/10/2019 | VC03 0.4-0.6  | 0.4 - 0.6  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC03          | 30/10/2019 | VC03 0.5-1.0  | 0.5 - 1.0  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC03          | 30/10/2019 | VC03 0.6-0.7  | 0.6 - 0.7  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC03          | 30/10/2019 | VC03 1.0-1.2  | 1.0 - 1.2  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       | ·     |
| VC04          | 30/10/2019 | VC04 0.0-0.1  | 0.0 - 0.1  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC04          | 30/10/2019 | VC04 0.3-0.4  | 0.3 - 0.4  |       |       |      |       |    |    | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  |      |       |       |       |
| VC04          | 30/10/2019 | VC04 0.5-1.0  | 0.5 - 1.0  |       |       |      |       |    |    | < 0.0062 | < 0.0062 | < 0.0062 | < 0.0062 | < 0.0062 | < 0.0062 | < 0.0062 | < 0.0062 | <0.6 |       |       |       |
| VC04          | 31/10/2019 | VC04 0.5-0.6  | 0.5 - 0.6  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC04          | 31/10/2019 | VC04 0.7-0.8  | 0.7 - 0.8  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC04          | 31/10/2019 | VC04 0.9-1.0  | 0.9 - 1.0  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC05          | 30/10/2019 | VC05_0.0-0.1  | 0.0 - 0.1  |       |       |      |       |    |    |          |          |          |          |          |          |          | <0.1     |      |       |       |       |
| VC05          | 30/10/2019 | VC05_0.5-0.7  | 0.5 - 0.7  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC05          | 30/10/2019 | VC05_0.5-0.9  | 0.5 - 0.9  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC05          | 30/10/2019 | VC05_0.8-0.9  | 0.8 - 0.9  | < 0.5 | < 0.5 | <0.5 | < 0.5 | <5 | <5 | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  |      | < 0.5 | <0.5  | < 0.5 |
| VC06          | 31/10/2019 | VC06_0.0-0.1  | 0.0 - 0.1  |       | < 0.5 |      |       | -  |    |          |          |          |          |          |          |          | <0.1     |      | < 0.5 | < 0.5 | < 0.5 |
| VC06          | 31/10/2019 | VC06 0.0-0.5  | 0.0 - 0.5  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC06          | 31/10/2019 | VC06 0.3-0.4  | 0.3 - 0.4  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC06          | 31/10/2019 | VC06 0.5-0.6  | 0.5 - 0.6  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC06          | 31/10/2019 | VC06_0.5-1.0  | 0.5 - 1.0  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC06          | 31/10/2019 | VC06 0.7-0.8  | 0.7 - 0.8  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC06          | 31/10/2019 | VC06 0.8-0.9  | 0.8 - 0.9  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC07          | 30/10/2019 | VC07 0.0-0.2  | 0.0 - 0.2  | < 0.5 | < 0.5 | <0.5 | < 0.5 | <5 | <5 | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  |      | < 0.5 | <0.5  | < 0.5 |
| VC07          | 30/10/2019 | VC07 0.0-0.5  | 0.0 - 0.5  |       |       |      |       |    |    | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | 0.0677   | < 0.0050 | 0.0677   | <0.5 |       |       |       |
| VC07          | 30/10/2019 | VC07 0.2-0.4  | 0.2 - 0.4  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC07          | 30/10/2019 | VC07 0.5-0.6  | 0.5 - 0.6  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC07          | 30/10/2019 | VC07 0.5-1.0  | 0.5 - 1.0  |       |       |      |       |    |    |          |          |          |          |          |          |          | <0.1     |      |       |       |       |
| VC07          | 30/10/2019 | VC07 0.7-0.8  | 0.7 - 0.7  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC07          | 30/10/2019 | VC07 1.0-1.2  | 1.0 - 1.2  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC08          | 31/10/2019 | VC08 0.0-0.1  | 0.0 - 0.1  |       | <0.5  |      |       |    |    |          |          |          |          |          |          |          | <0.1     | l    | <0.5  | <0.5  | <0.5  |
| VC08          | 31/10/2019 | VC08 0.3-0.4  | 0.3 - 0.4  |       |       |      |       |    |    |          |          |          |          |          |          |          | <0.1     |      |       |       |       |
| VC08          | 31/10/2019 | VC08 0.0-0.5  | 0.0-0.5    |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC08          | 31/10/2019 | VC08 0.5-0.6  | 0.5 - 0.6  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       | ·     |
| VC08          | 31/10/2019 | VC08 0.5-1.0  | 0.5 - 1.0  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC08          | 31/10/2019 | VC08 0.7-0.8  | 0.7 - 0.8  |       |       |      |       |    |    |          |          |          |          |          |          |          |          | l    | 1     |       |       |
| VC08          | 31/10/2019 | VC08 1.0-1.1  | 1.0 - 1.1  |       |       |      |       |    |    |          |          |          |          |          |          |          |          | l    | 1     |       |       |
| VC08          | 31/10/2019 | VC08 1.0-1.5  | 1.0 - 1.5  |       |       |      |       |    |    | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.5 | 1     |       |       |
| VC08          | 31/10/2019 | VC08 1.3-1.4  | 1.3 - 1.4  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      | 1     |       |       |
| VC08          | 31/10/2019 | VC08 1.5-1.6  | 1.5 - 1.6  |       |       |      |       |    |    |          |          |          |          |          |          |          |          |      |       |       |       |
| VC09          | 30/10/2019 | VC09 0.0-0.2  | 0.0 - 0.2  |       |       |      |       |    |    | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | <0.0050  | l    | 1     |       |       |
| VC09          | 30/10/2019 | VC09 0.0-0.5  | 0.0 - 0.5  |       |       |      |       |    |    |          |          |          |          |          |          |          |          | l    | 1     |       |       |
| VC09          | 30/10/2019 | VC09 0.4-0.6  | 0.4 - 0.6  |       |       |      |       |    |    |          |          |          |          |          |          |          | <0.1     | l    | 1     |       |       |
| VC09          | 30/10/2019 | VC09 0.5-1.0  | 0.5 - 1.0  |       |       |      |       |    |    |          |          |          |          |          |          |          |          | l    | 1     |       |       |
| VC09          | 30/10/2019 | VC09 0.7-0.8  | 0.7 - 0.8  |       |       |      |       |    |    |          |          |          |          |          |          |          |          | l    | 1     |       |       |
|               |            |               | <u> </u>   | 1     |       |      |       |    |    |          |          |          |          |          |          |          | i        |      |       |       |       |



|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Halog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | enated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trichloronate | Tetrachlorvinphos | 1,2,4-trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,3,5-trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lsopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dichlorodifluorometha<br>ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arochlor 1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Arochlor 1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arochlor 1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arochlor 1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Arochlor 1248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arochlor 1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arochlor 1260                                           | PCBs (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pronamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,1,1,2-<br>tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1,1-trichloroethane<br>1,1,2,2-<br>tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mg/kg         | mg/kg             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.0050                                                 | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~0.0050                                                 | <0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.0050                                                 | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0000                                                 | -0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0 0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.0050                                                 | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.5 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000                                                  | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.0050                                                 | 0.0346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.5 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.5 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.5 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0             | 0                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0             | 0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                   | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.0050                                                 | <0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.5 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.0062                                                | 0.0677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.5 <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | mg/kg             | Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina       Imagina     Imagina | Image: second constraints     Image: second constraints       mg/kg     mg/kg       mg/kg     mg/kg <td>M         Image: market of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se</td> <td>MAH           Make         Make           Image: Solution of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second</td> <td>MAH           Image: state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state st</td> <td>MAH         Halog           Image: second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second</td> <td>MAH         Halogenated           a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         &lt;</td> <td>MAH         Halogenated           so         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e</td> <td>MAH         Halogenated           are         a</td> <td>MAH         Halogenated           s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         &lt;</td> <td>MAH         Halogenated         PC           s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s</td> <td>MAH         Halogenated         PCBs           age         age</td> <td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td>MAH         Halogenated         PCBs           gg         gg</td> <td>MAH         Halogenated         PCBs           a         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b</td> <td>MAH         Halogeneted         PCBs         Herbicides           g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g<!--</td--><td>MAH         Helogenated         PCBs         Hetbickles           g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g</td></td> | M         Image: market of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | MAH           Make         Make           Image: Solution of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | MAH           Image: state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state st | MAH         Halog           Image: second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | MAH         Halogenated           a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         < | MAH         Halogenated           so         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e         e | MAH         Halogenated           are         a | MAH         Halogenated           s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         < | MAH         Halogenated         PC           s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s | MAH         Halogenated         PCBs           age         age | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | MAH         Halogenated         PCBs           gg         gg | MAH         Halogenated         PCBs           a         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b | MAH         Halogeneted         PCBs         Herbicides           g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g </td <td>MAH         Helogenated         PCBs         Hetbickles           g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g</td> | MAH         Helogenated         PCBs         Hetbickles           g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g |

| 4   | 4     | 4  | 4  | 17      | 17      | 17      | 17      | 17      | 17      | 17       | 30      | 5    | 12   | 12   | 12   |
|-----|-------|----|----|---------|---------|---------|---------|---------|---------|----------|---------|------|------|------|------|
| 0   | 0     | 0  | 0  | 0       | 0       | 0       | 0       | 0       | 2       | 0        | 2       | 0    | 0    | 0    | 0    |
| 0.5 | <0.5  | <5 | <5 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050 | <0.0050  | <0.0050 | <0.5 | <0.5 | <0.5 | <0.5 |
| 0.5 | < 0.5 | <5 | <5 | <0.0062 | <0.0062 | <0.0062 | <0.0062 | <0.0062 | 0.0677  | < 0.0062 | 0.0677  | <0.6 | <0.5 | <0.5 | <0.5 |



|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         | Chl                              | orinated I                                    | Iydrocarl               | bons                           |                                      |                                  |              | 1                                                                                                                                                                                                                    |                                        |                      |                          |                                         | <b></b>              |                     |                              |
|-------------------------------------------------------------------------------|----------------------------------------|------------------------------------|----------------------------|-----------------------------------------|------------------------------------------------|----------------------|-------------------------|----------------------------------|-----------------------------------------------|-------------------------|--------------------------------|--------------------------------------|----------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|--------------------------|-----------------------------------------|----------------------|---------------------|------------------------------|
| 6.0 m<br>2.0 m<br>2.0 m<br>2.0 m<br>2.0 m<br>2.0 m<br>2.1,1,2-trichloroethane | 25<br>63/<br>63/<br>1,1-dichloroethene | 는 여성<br>(1,1-dichloropropene<br>여성 | 으 a 1,2,4-trichlorobenzene | o 3 1,2-dibromo-3-<br>여 중 chloropropane | 0.<br>12-dichlorobenzene<br>12-dichlorobenzene | 1,2-dichloroethane   | O a 1,2-dichloropropane | 0 g<br>5 k/<br>6 dichloropropane | 0.0 g<br>5.0 g<br>3/<br>0,1,4-dichlorobenzene | 으 a 2,2-dichloropropane | 으 a<br>3 3 2-chloronaphthalene | O a<br>G a<br>G 2-chlorotoluene<br>G | .0 a<br>3 4-chlorotoluene<br>6 a | mg/kg<br>0.5 | 81<br>6<br>6<br>6<br>7<br>6<br>8<br>8<br>8<br>8<br>8<br>9<br>8<br>9<br>8<br>8<br>9<br>8<br>8<br>9<br>8<br>8<br>9<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | Chlorobenzene<br>mg/kg<br>0.5<br>3,600 | mg/kg<br>0.5<br>216  | ය (g<br>by/chloromethane | o a<br>c) 여 cis-1,2-dichloroethene<br>여 | mg/kg<br>0.5<br>310  | By/60<br>5.0<br>5.0 | epiuoli<br>mg/kg<br>4<br>7.2 |
| 173                                                                           | 100                                    |                                    |                            |                                         | 620                                            | 72                   |                         |                                  | 1.080                                         |                         |                                |                                      |                                  |              | 72                                                                                                                                                                                                                   | 14 400                                 | 864                  |                          |                                         | 1 240                |                     | 28.8                         |
| 175                                                                           | 100                                    |                                    |                            |                                         | 020                                            | 12                   |                         |                                  | 1,000                                         |                         |                                |                                      |                                  |              | 12                                                                                                                                                                                                                   | 14,400                                 | 004                  |                          |                                         | 1,240                |                     | 20.0                         |
| <0.5<br><0.5<br><0.5                                                          | <0.5<br><0.5<br><0.5                   |                                    | <0.5                       |                                         | <0.5                                           | <0.5<br><0.5<br><0.5 |                         |                                  |                                               |                         |                                |                                      |                                  |              | <0.5<br><0.5<br><0.5                                                                                                                                                                                                 | <0.5<br><0.5<br><0.5                   | <0.5<br><0.5<br><0.5 |                          |                                         | <0.5<br><0.5<br><0.5 | <0.5                | <4<br><4<br><4               |
|                                                                               |                                        |                                    | <b>~0.5</b>                |                                         | <b>~</b> 0.5                                   |                      |                         |                                  | <b>~0.5</b>                                   |                         | <b>~0.5</b>                    |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      | <b>~0.</b> 5        |                              |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
| <0.5                                                                          | <0.5                                   | <0.5                               | <0.5                       | <0.5                                    | <0.5                                           | <0.5                 | <0.5                    | <0.5                             | <0.5                                          | <0.5                    |                                | <0.5                                 | <0.5                             | <0.5         | <0.5                                                                                                                                                                                                                 | <0.5                                   | <0.5                 | <5                       | <0.5                                    |                      | <0.5                | <5                           |
|                                                                               |                                        |                                    | <0.6                       |                                         | <0.6                                           |                      |                         |                                  | <0.6                                          |                         | <0.6                           |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      | <0.6                |                              |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
| <0.5<br><0.5                                                                  | <0.5<br><0.5                           | <0.5                               | <0.5                       | <0.5                                    | <0.5                                           | <0.5<br><0.5         | <0.5                    | <0.5                             | <0.5                                          | <0.5                    |                                | <0.5                                 | <0.5                             | <0.5         | <0.5<br><0.5                                                                                                                                                                                                         | <0.5<br><0.5                           | <0.5<br><0.5         | <5                       | <0.5                                    | <0.5                 | <0.5                | <5<br><4                     |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
| <0.5                                                                          | <0.5                                   | <0.5                               | <0.5<br><0.5               | <0.5                                    | <0.5<br><0.5                                   | <0.5                 | <0.5                    | <0.5                             | <0.5<br><0.5                                  | <0.5                    | <0.5                           | <0.5                                 | <0.5                             | <0.5         | <0.5                                                                                                                                                                                                                 | <0.5                                   | <0.5                 | <5                       | <0.5                                    |                      | <0.5<br><0.5        | <5                           |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
| <0.5                                                                          | <0.5                                   |                                    |                            |                                         |                                                | <0.5                 |                         |                                  |                                               |                         |                                |                                      |                                  |              | <0.5                                                                                                                                                                                                                 | <0.5                                   | <0.5                 |                          |                                         | <0.5                 |                     | <4                           |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
|                                                                               |                                        |                                    | <0.5                       |                                         | <0.5                                           |                      |                         |                                  | <0.5                                          |                         | <0.5                           |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      | <0.5                |                              |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |
|                                                                               |                                        |                                    |                            |                                         |                                                |                      |                         |                                  |                                               |                         |                                |                                      |                                  |              |                                                                                                                                                                                                                      |                                        |                      |                          |                                         |                      |                     |                              |

|                                        | onoral Solid Wasta SCC1 (wi                                 |               |                    | c.0<br>6.0<br>7.1,2-trichloroethane      | 0.0 m<br>2.0 g<br>2.0 g<br>2.0 g | mg/kg<br>by 2.0<br>mg/gm<br>by 2.0<br>mg<br>by 2.0 |      | G m 1,2-dibromo-3-<br>G sy/chloropropane | 0.5<br>0.5 |       | 0 년<br>5.0kg<br>1,2-dichloropropane | .0 표<br>3.4/<br>bay 1,3-dichloropropane | 0.5<br>2.0<br>2.0 | gy/gm<br>5.2-dichloropropane<br>5.0 | G B<br>G B<br>G 2-chloronaphthalene | mg/kg<br>0.5 | 5.0 mg/kg | euezeue<br>Bromopeuzeue<br>mg/kg<br>0.5 | 6.0 Carbon tetrachloride | Chlorobenzene<br>Morobenzene<br>Morobenzene<br>Morobenzene<br>Chlorobenzene<br>Chlorobenzene | E Logo<br>Logo<br>HO<br>mg/kg<br>0.5 | 5<br>chloromethane<br>2                 | 0.0 g<br>d// cis-1,2-dichloroethene | mg/kg    | 6.0 m<br>2.0 m<br>2.0 c<br>2.0 c | mg/kg<br>4   |
|----------------------------------------|-------------------------------------------------------------|---------------|--------------------|------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------|------------|-------|-------------------------------------|-----------------------------------------|-------------------|-------------------------------------|-------------------------------------|--------------|-----------|-----------------------------------------|--------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|----------|----------------------------------|--------------|
| NSW EPA (2014) Ge<br>NSW EPA (2014) Ge | eneral Solid Waste SCCT (wi                                 |               |                    | 43.2                                     | 23                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          | 155        | 10    |                                     |                                         | 270               |                                     |                                     |              |           |                                         | 10                       | 3,000                                                                                        | 210                                  |                                         |                                     | 510      |                                  | 1.2          |
| NSW EPA (2014) Re<br>NSW EPA (2014) Re | estricted Solid Waste SCC2 (<br>estricted Solid Waste TCLP2 | (with TCLP)   |                    | 173                                      | 100                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          | 620        | 72    |                                     |                                         | 1,080             |                                     |                                     |              |           |                                         | 72                       | 14,400                                                                                       | 864                                  |                                         |                                     | 1,240    |                                  | 28.8         |
|                                        | Ditte                                                       | 51.111D       | D                  |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          | •                                                                                            |                                      |                                         |                                     |          |                                  |              |
| Location Code                          | Date<br>7/11/2019                                           | BH05_4_6-4_7  | Depth<br>4 6 - 4 7 | <0.5                                     | <0.5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            | <0.5  |                                     |                                         |                   |                                     |                                     |              |           |                                         | <0.5                     | <0.5                                                                                         | <0.5                                 |                                         |                                     | <0.5     |                                  | <4           |
| BH06                                   | 7/11/2019                                                   | BH06_1.2-1.45 | 1.2 - 1.45         | <0.5                                     | <0.5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            | <0.5  |                                     |                                         |                   |                                     |                                     |              |           |                                         | <0.5                     | <0.5                                                                                         | 5 <0.5                               |                                         |                                     | <0.5     | ,                                | <4           |
| BH07                                   | 7/11/2019                                                   | BH07_2.5-2.95 | 2.5 - 2.95         | <0.5                                     | <0.5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            | <0.5  |                                     |                                         |                   |                                     |                                     |              |           |                                         | <0.5                     | <0.5                                                                                         | 5 <0.5                               |                                         |                                     | <0.5     |                                  | <4           |
| VC01                                   | 30/10/2019                                                  | vc01_0.4-0.6  | 0.4 - 0.6          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <b></b> '                        | <b> </b>     |
| VC01                                   | 30/10/2019                                                  | VC01_0.0-0.2  | 0.0 - 0.2          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <05  |                                          | <0.5       |       |                                     |                                         | <0.5              |                                     | <0.5                                |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <0.5                             | <u> </u>     |
| VC01                                   | 30/10/2019                                                  | VC01_0.0-1.0  | 1.0 - 1.1          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.5 |                                          | <0.5       |       |                                     |                                         | <0.5              |                                     | <0.5                                |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <0.5                             | <u> </u>     |
| VC02                                   | 30/10/2019                                                  | VC02_0.0-0.2  | 0.0 - 0.2          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <sup> </sup>                     |              |
| VC02                                   | 30/10/2019                                                  | VC02_0.5-0.6  | 0.5 - 0.6          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          |                                  |              |
| VC02                                   | 30/10/2019                                                  | VC02_0.5-1.0  | 0.5 - 1.0          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          | ļ                                                                                            |                                      |                                         |                                     | <b></b>  | <b> '</b>                        | <b> </b>     |
| VC02                                   | 30/10/2019                                                  | VC02_1.0-1.2  | 1.0 - 1.2          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | ──       | <b>{</b> '                       | ───          |
| VC02                                   | 30/10/2019                                                  | VC02_1.0-1.5  | 1.0 - 1.5          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <b>├</b> ────′                   | <del> </del> |
| VC02                                   | 31/10/2019                                                  | VC02_0.0-0.5  | 0.0 - 0.5          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | '                                | <b> </b>     |
| VC03                                   | 30/10/2019                                                  | VC03_0.0-0.2  | 0.0 - 0.2          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          |                                  |              |
| VC03                                   | 30/10/2019                                                  | VC03_0.0-0.5  | 0.0 - 0.5          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <u> </u>                         | <u> </u>     |
| VC03                                   | 30/10/2019                                                  | VC03_0.3-0.4  | 0.3 - 0.4          | <0.5                                     | <0.5                             | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.5 | <0.5                                     | <0.5       | <0.5  | <0.5                                | <0.5                                    | <0.5              | <0.5                                |                                     | <0.5         | <0.5      | <0.5                                    | 5 <0.5                   | <0.5                                                                                         | 5 <0.5                               | <5                                      | <0.5                                | <u> </u> | < 0.5                            | <5           |
| VC03                                   | 30/10/2019                                                  | VC03_0.4-0.6  | 0.4 - 0.6          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <b> '</b>                        |              |
| VC03                                   | 30/10/2019                                                  | VC03_0.6-0.7  | 0.6 - 0.7          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <b>├</b> ────′                   | <b> </b>     |
| VC03                                   | 30/10/2019                                                  | VC03_1.0-1.2  | 1.0 - 1.2          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          |                                  |              |
| VC04                                   | 30/10/2019                                                  | VC04_0.0-0.1  | 0.0 - 0.1          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <u> </u>                         | <u> </u>     |
| VC04                                   | 30/10/2019                                                  | VC04_0.3-0.4  | 0.3 - 0.4          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0 |                                          | 10.0       |       |                                     |                                         | -0.0              |                                     | 10.0                                |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> |                                  | <u> </u>     |
| VC04                                   | 30/10/2019                                                  | VC04_0.5-1.0  | 0.5 - 1.0          |                                          |                                  | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.6 |                                          | <0.6       |       |                                     |                                         | <0.6              |                                     | <0.6                                |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <0.6                             |              |
| VC04                                   | 31/10/2019                                                  | VC04_0.7-0.8  | 0.7 - 0.8          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | '                                | 1            |
| VC04                                   | 31/10/2019                                                  | VC04_0.9-1.0  | 0.9 - 1.0          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <sup> </sup>                     |              |
| VC05                                   | 30/10/2019                                                  | VC05_0.0-0.1  | 0.0 - 0.1          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          |                                  |              |
| VC05                                   | 30/10/2019                                                  | VC05_0.5-0.7  | 0.5 - 0.7          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <b></b> '                        | <b> </b>     |
| VC05                                   | 30/10/2019                                                  | VC05_0.5-0.9  | 0.5 - 0.9          | <0.5                                     | <0.5                             | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <05  | <0.5                                     | <0.5       | <0.5  | <0.5                                | <0.5                                    | <0.5              | <0.5                                |                                     | <0.5         | <0.5      | <0.5                                    | < 0.5                    | <0 F                                                                                         | < 0.5                                | ~5                                      | <0.5                                | <u></u>  | <0.5                             | <5           |
| VC06                                   | 31/10/2019                                                  | VC06_0.0-0.1  | 0.0 - 0.1          | <0.5                                     | <0.5                             | <b>NO.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×0.5 | <0.5                                     | ×0.5       | < 0.5 | ×0.5                                | -0.5                                    | -0.0              | -0.5                                |                                     | ×0.0         | -0.5      | -0.0                                    | <0.5                     | <0.5                                                                                         | , <0.5<br>5 <0.5                     | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | -0.5                                | < 0.5    | , -0.5                           | <0           |
| VC06                                   | 31/10/2019                                                  | VC06_0.0-0.5  | 0.0 - 0.5          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <sup> </sup>                     |              |
| VC06                                   | 31/10/2019                                                  | VC06_0.3-0.4  | 0.3 - 0.4          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | '                                |              |
| VC06                                   | 31/10/2019                                                  | VC06_0.5-0.6  | 0.5 - 0.6          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <b></b> '                        | <b> </b>     |
| VC06                                   | 31/10/2019                                                  |               | 0.5 - 1.0          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | ├────′                           | <b> </b>     |
| VC06                                   | 31/10/2019                                                  | VC06_0.8-0.9  | 0.8 - 0.9          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         | ļ                 |                                     |                                     |              |           | 1                                       |                          |                                                                                              |                                      |                                         | ļ                                   | <u> </u> | <u>├</u> ───′                    | t            |
| VC07                                   | 30/10/2019                                                  | VC07_0.0-0.2  | 0.0 - 0.2          | <0.5                                     | <0.5                             | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.5 | <0.5                                     | <0.5       | <0.5  | <0.5                                | <0.5                                    | < 0.5             | < 0.5                               |                                     | <0.5         | <0.5      | <0.5                                    | <u> </u>                 | <0.5                                                                                         | <u>&lt;</u> 0.5                      | <5                                      | <0.5                                | ,        | <0.5                             | <5           |
| VC07                                   | 30/10/2019                                                  | VC07_0.0-0.5  | 0.0 - 0.5          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.5 |                                          | <0.5       |       |                                     |                                         | <0.5              |                                     | <0.5                                |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <0.5                             | 1            |
| VC07                                   | 30/10/2019                                                  | VC07_0.2-0.4  | 0.2 - 0.4          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <b> '</b>                        | <b> </b>     |
|                                        | 30/10/2019                                                  | VC07_0.5-0.6  | 0.5 - 0.6          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | ├────′                           | <b> </b>     |
| VC07                                   | 30/10/2019                                                  | VC07_0.7-0.8  | 0.7 - 0.7          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <b>├</b> ────′                   | <b> </b>     |
| VC07                                   | 30/10/2019                                                  | VC07_1.0-1.2  | 1.0 - 1.2          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <sup> </sup>                     |              |
| VC08                                   | 31/10/2019                                                  | VC08_0.0-0.1  | 0.0 - 0.1          | <0.5                                     | <0.5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            | <0.5  |                                     |                                         |                   |                                     |                                     |              |           |                                         | <0.5                     | <0.5                                                                                         | 5 <0.5                               |                                         |                                     | <0.5     | <u> </u>                         | <4           |
| VC08                                   | 31/10/2019                                                  | VC08_0.3-0.4  | 0.3 - 0.4          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <b> '</b>                        | <b> </b>     |
| VC08                                   | 31/10/2019                                                  | VC08_0.0-0.5  | 0.0-0.5            |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <b>├</b> ───′                    | 1            |
| VC08                                   | 31/10/2019                                                  | VC08 0.5-1.0  | 0.5 - 1.0          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <u>├</u> ──′                     | <u> </u>     |
| VC08                                   | 31/10/2019                                                  | VC08_0.7-0.8  | 0.7 - 0.8          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | ļ/                               |              |
| VC08                                   | 31/10/2019                                                  | VC08_1.0-1.1  | 1.0 - 1.1          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | ↓ <u> </u>                       | L            |
| VC08                                   | 31/10/2019                                                  | VC08_1.0-1.5  | 1.0 - 1.5          |                                          |                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.5 |                                          | <0.5       |       |                                     |                                         | <0.5              |                                     | <0.5                                |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <b></b>  | < 0.5                            | <b> </b>     |
|                                        | 31/10/2019                                                  |               | 1.3 - 1.4          | <u>                                 </u> |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | ╂────    | <b> '</b>                        | <del> </del> |
| VC09                                   | 30/10/2019                                                  | VC.09 0 0-0 2 | 0.0.2              |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | ┼───     | <b>├</b> ───′                    | <u> </u>     |
| VC09                                   | 30/10/2019                                                  | VC09 0.0-0.5  | 0.0 - 0.5          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> |                                  | [            |
| VC09                                   | 30/10/2019                                                  | VC09_0.4-0.6  | 0.4 - 0.6          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          |                                  |              |
| VC09                                   | 30/10/2019                                                  | VC09_0.5-1.0  | 0.5 - 1.0          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     |          | <u> </u>                         | <u> </u>     |
| VC09                                   | 30/10/2019                                                  | VC09_0.7-0.8  | 0.7 - 0.8          |                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                          |            |       |                                     |                                         |                   |                                     |                                     |              |           |                                         |                          |                                                                                              |                                      |                                         |                                     | <u> </u> | <u> </u>                         | 1            |

|                          |                              |                               |            | 1,1,2-trichloroethane | 1,1-dichloroethene | 1,1-dichloropropene | 1,2,4-trichlorobenzene | 1,2-dibromo-3-<br>chloropropane | 1,2-dichlorobenzene | 1,2-dichloroethane | 1,2-dichloropropane | 1,3-dichloropropane | 1,4-dichlorobenzene | 2,2-dichloropropane | 2-chloronaphthalene | 2-chlorotoluene | 4-chlorotoluene | Bromobenzene | Carbon tetrachloride | Chlorobenzene | Chloroform | Chloromethane | cis-1,2-dichloroethene | Methylene chloride | -lexachlorobutadiene | Vinyl chloride |
|--------------------------|------------------------------|-------------------------------|------------|-----------------------|--------------------|---------------------|------------------------|---------------------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------|-----------------|--------------|----------------------|---------------|------------|---------------|------------------------|--------------------|----------------------|----------------|
|                          |                              |                               |            | mg/kg                 | mg/kg              | mg/kg i             | mg/kg                  | mg/kg                           | mg/kg               | mg/kg              | mg/kg               | mg/kg               | mg/kg               | mg/kg               | mg/kg               | mg/kg           | mg/kg           | mg/kg        | mg/kg                | mg/kg         | mg/kg      | mg/kg         | mg/kg                  | mg/kg              | mg/kg                | mg/kg          |
| EQL<br>NSW EPA (2014) Ge | eneral Solid Waste SCC1 (wi  | ith TCLP)                     |            | 0.5                   | 0.5                | 0.5                 | 0.5                    | 0.5                             | 0.5<br>155          | 0.5                | 0.5                 | 0.5                 | 0.5                 | 0.5                 | 0.5                 | 0.5             | 0.5             | 0.5          | 0.5                  | 0.5           | 0.5        | 5             | 0.5                    | 0.5                | 0.5                  | 4              |
| NSW EPA (2014) Ge        | eneral Solid Waste TCLP1     | ·····                         |            |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    |                      |                |
| NSW EPA (2014) Re        | estricted Solid Waste SCC2 ( | (with TCLP)                   |            | 173                   | 100                |                     |                        |                                 | 620                 | 72                 |                     |                     | 1,080               |                     |                     |                 |                 |              | 72                   | 14,400        | 864        |               |                        | 1,240              | ┝───╯                | 28.8           |
|                          |                              |                               |            |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    |                      |                |
| Location Code            | Date                         | Field ID                      | Depth      |                       |                    |                     |                        |                                 |                     |                    |                     | 1                   |                     |                     | 1                   |                 | 1               | 1            |                      |               |            |               |                        |                    | <del></del>          | <del></del>    |
| BH05<br>BH06             | 7/11/2019                    | BH05_4.6-4.7<br>BH06_1 2-1 45 | 4.6 - 4.7  | <0.5                  | 5 <0.5             |                     |                        |                                 |                     | <0.5<br><0.5       |                     |                     |                     |                     |                     |                 |                 |              | <0.5                 | <0.5          | <0.5       |               |                        | <0.5               | .[]                  | <4             |
| BH07                     | 7/11/2019                    | BH07_2.5-2.95                 | 2.5 - 2.95 | <0.5                  | 5 < 0.5            |                     |                        |                                 |                     | < 0.5              |                     |                     |                     |                     |                     |                 |                 |              | < 0.5                | < 0.5         | < 0.5      |               |                        | < 0.5              |                      | <4             |
| VC01                     | 30/10/2019                   | vc01_0.4-0.6                  | 0.4 - 0.6  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <u> </u>             | $\square$      |
| VC01                     | 30/10/2019                   | VC01_0.0-0.2                  | 0.0 - 0.2  |                       |                    |                     | <0.5                   |                                 | <0.5                |                    |                     |                     | <0.5                |                     | <0.5                |                 |                 |              |                      |               |            |               |                        |                    | <0.5                 | <u> </u>       |
| VC01                     | 30/10/2019                   | VC01_0.3-1.0                  | 1.0 - 1.1  |                       |                    |                     | <b>~0.</b> 5           |                                 | <0.5                |                    |                     |                     | ~0.5                |                     | <0.5                |                 |                 |              |                      |               |            |               |                        |                    | ~0.5                 |                |
| VC02                     | 30/10/2019                   | VC02_0.0-0.2                  | 0.0 - 0.2  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    |                      |                |
| VC02                     | 30/10/2019                   | VC02_0.5-0.6                  | 0.5 - 0.6  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <u> </u>             | <b></b>        |
| VC02                     | 30/10/2019                   | VC02_0.5-1.0                  | 0.5 - 1.0  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | ───′                 | <del> </del>   |
| VC02                     | 30/10/2019                   | VC02_1.0-1.2                  | 1.0 - 1.2  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b>├</b> ───┦        |                |
| VC02                     | 30/10/2019                   | VC02_1.5-1.6                  | 1.5 - 1.6  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    |                      | [              |
| VC02                     | 31/10/2019                   | VC02_0.0-0.5                  | 0.0 - 0.5  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <u> </u>             | <b></b>        |
| VC03                     | 30/10/2019                   | VC03_0.0-0.2                  | 0.0 - 0.2  |                       | -                  |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b> '</b>            | ───            |
| VC03                     | 30/10/2019                   | VC03_0.0-0.3                  | 0.0 - 0.5  | <0.5                  | 5 < 0.5            | <0.5                | <0.5                   | <0.5                            | <0.5                | <0.5               | <0.5                | <0.5                | <0.5                | <0.5                |                     | <0.5            | <0.5            | <0.5         | < 0.5                | <0.5          | <0.5       | <5            | <0.5                   |                    | <0.5                 | <5             |
| VC03                     | 30/10/2019                   | VC03_0.4-0.6                  | 0.4 - 0.6  |                       | 0.0                | 0.0                 | 0.0                    | 0.0                             | 0.0                 | 0.0                | 0.0                 | 0.0                 | 0.0                 | 0.0                 |                     | 0.0             | 0.0             | 0.0          | 0.0                  | 0.0           | 0.0        |               | 0.0                    |                    | 0.0                  |                |
| VC03                     | 30/10/2019                   | VC03_0.5-1.0                  | 0.5 - 1.0  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    |                      |                |
| VC03                     | 30/10/2019                   | VC03_0.6-0.7                  | 0.6 - 0.7  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b>└───</b> ′        | <b> </b>       |
| VC03                     | 30/10/2019                   | VC03_1.0-1.2                  | 0.0 - 0.1  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | ───′                 | <u> </u>       |
| VC04                     | 30/10/2019                   | VC04_0.3-0.4                  | 0.3 - 0.4  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    |                      |                |
| VC04                     | 30/10/2019                   | VC04_0.5-1.0                  | 0.5 - 1.0  |                       |                    |                     | <0.6                   |                                 | <0.6                |                    |                     |                     | <0.6                |                     | <0.6                |                 |                 |              |                      |               |            |               |                        |                    | <0.6                 |                |
| VC04                     | 31/10/2019                   | VC04_0.5-0.6                  | 0.5 - 0.6  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b> '</b>            | <b> </b>       |
| VC04                     | 31/10/2019                   | VC04_0.7-0.8                  | 0.7 - 0.8  |                       | -                  |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b>├</b> ───┘        | <b> </b>       |
| VC05                     | 30/10/2019                   | VC05 0.0-0.1                  | 0.0 - 0.1  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b>├</b> ───┦        |                |
| VC05                     | 30/10/2019                   | VC05_0.5-0.7                  | 0.5 - 0.7  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    |                      |                |
| VC05                     | 30/10/2019                   | VC05_0.5-0.9                  | 0.5 - 0.9  |                       |                    | .0.5                | .0.5                   | .0.5                            |                     |                    | .0.5                |                     |                     |                     |                     |                 |                 |              |                      |               |            |               | .0.5                   |                    |                      | <u> </u>       |
| VC05                     | 30/10/2019                   | VC05_0.8-0.9                  | 0.8 - 0.9  | <0.5                  | 5 <0.5             | <0.5                | <0.5                   | <0.5                            | <0.5                | <0.5               | <0.5                | <0.5                | <0.5                | <0.5                |                     | <0.5            | <0.5            | <0.5         | <0.5                 | <0.5          | <0.5       | <5            | <0.5                   | <0.5               | <0.5                 | <5             |
| VC06                     | 31/10/2019                   | VC06_0.0-0.5                  | 0.0 - 0.5  |                       | -0.0               |                     |                        |                                 |                     | -0.5               |                     |                     |                     |                     |                     |                 |                 |              | ×0.5                 | -0.0          | -0.0       |               |                        | -0.5               | <b>├</b> ───┦        | ~+             |
| VC06                     | 31/10/2019                   | VC06_0.3-0.4                  | 0.3 - 0.4  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    |                      |                |
| VC06                     | 31/10/2019                   | VC06_0.5-0.6                  | 0.5 - 0.6  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <u> '</u>            | <b> </b>       |
| VC06                     | 31/10/2019                   | VC06_0.5-1.0                  | 0.5 - 1.0  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b>↓</b> ′           | <del> </del>   |
| VC06                     | 31/10/2019                   | VC06_0.8-0.9                  | 0.8 - 0.9  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b>├</b> ───┦        |                |
| VC07                     | 30/10/2019                   | VC07_0.0-0.2                  | 0.0 - 0.2  | <0.5                  | 5 <0.5             | <0.5                | <0.5                   | <0.5                            | <0.5                | <0.5               | <0.5                | <0.5                | <0.5                | <0.5                |                     | <0.5            | <0.5            | <0.5         | < 0.5                | <0.5          | <0.5       | <5            | <0.5                   |                    | <0.5                 | <5             |
| VC07                     | 30/10/2019                   | VC07_0.0-0.5                  | 0.0 - 0.5  |                       |                    |                     | <0.5                   |                                 | <0.5                |                    |                     |                     | <0.5                |                     | <0.5                |                 |                 |              |                      |               |            |               |                        |                    | <0.5                 | <b></b>        |
| VC07                     | 30/10/2019                   | VC07_0.2-0.4                  | 0.2 - 0.4  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b>↓</b> ′           | <b> </b>       |
| VC07                     | 30/10/2019                   | VC07_0.5-0.8                  | 0.5 - 0.0  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | ├'                   | <u> </u>       |
| VC07                     | 30/10/2019                   | VC07_0.7-0.8                  | 0.7 - 0.7  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <i> </i>             | [              |
| VC07                     | 30/10/2019                   | VC07_1.0-1.2                  | 1.0 - 1.2  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | '                    | <u> </u>       |
| VC08                     | 31/10/2019                   | VC08_0.0-0.1                  | 0.0 - 0.1  | <0.5                  | 5 <0.5             |                     |                        |                                 |                     | <0.5               |                     |                     |                     |                     |                     |                 |                 |              | <0.5                 | <0.5          | < 0.5      |               |                        | <0.5               | <b> '</b>            | <4             |
| VC08                     | 31/10/2019                   | VC08_0.0-0.5                  | 0.3 - 0.4  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | ───′                 | <u> </u>       |
| VC08                     | 31/10/2019                   | VC08_0.5-0.6                  | 0.5 - 0.6  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <i> </i>             |                |
| VC08                     | 31/10/2019                   | VC08_0.5-1.0                  | 0.5 - 1.0  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | ['                   | <u> </u>       |
|                          | 31/10/2019                   | VC08_0.7-0.8                  | 0.7 - 0.8  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b> '</b>            | <b> </b>       |
| VC08                     | 31/10/2019                   | VC08_1.0-1.1<br>VC08_1.0-1.5  | 1.0 - 1.1  |                       | +                  | +                   | <0.2                   |                                 | <0 5                |                    |                     |                     | <0.5                | }                   | <0.2                |                 |                 | <u> </u>     |                      |               | <u> </u>   |               |                        |                    | <0.5                 | <u> </u>       |
| VC08                     | 31/10/2019                   | VC08 1.3-1.4                  | 1.3 - 1.4  |                       | 1                  |                     | .0.0                   |                                 | -0.0                |                    |                     |                     | -0.0                | 1                   | -0.0                |                 |                 | 1            |                      |               |            |               |                        |                    | -0.0                 | <u> </u>       |
| VC08                     | 31/10/2019                   | VC08_1.5-1.6                  | 1.5 - 1.6  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <u> </u>             | $\square$      |
| VC09                     | 30/10/2019                   | VC09_0.0-0.2                  | 0.0 - 0.2  |                       |                    | ├                   |                        |                                 |                     |                    |                     |                     | <b> </b>            | <b> </b>            |                     |                 |                 |              |                      |               |            |               |                        |                    | <b>└──</b> ′         | ───            |
| VC09                     | 30/10/2019                   |                               | 0.0 - 0.5  |                       | +                  | +                   |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | ───′                 | <u> </u>       |
| VC09                     | 30/10/2019                   | VC09 0.5-1.0                  | 0.5 - 1.0  |                       | 1                  |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <b>├</b> ──┤         | <u> </u>       |
| VC09                     | 30/10/2019                   | VC09_0.7-0.8                  | 0.7 - 0.8  |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |            |               |                        |                    | <u> </u>             |                |



|                                |            |              |           |                       |                    |                     |                        |                                 |                     |                    |                     | Ch                  | lorinated           | Hydrocar            | bons                |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
|--------------------------------|------------|--------------|-----------|-----------------------|--------------------|---------------------|------------------------|---------------------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------|-----------------|--------------|----------------------|---------------|----------------------|---------------|------------------------|---------------------|---------------------|----------------|
|                                |            |              |           | 1,1,2-trichloroethane | 1,1-dichloroethene | 1,1-dichloropropene | 1,2,4-trichlorobenzene | 1,2-dibromo-3-<br>chloropropane | 1,2-dichlorobenzene | 1,2-dichloroethane | 1,2-dichloropropane | 1,3-dichloropropane | 1,4-dichlorobenzene | 2,2-dichloropropane | 2-chloronaphthalene | 2-chlorotoluene | 4-chlorotoluene | Bromobenzene | Carbon tetrachloride | Chlorobenzene | Chloroform           | Chloromethane | cis-1,2-dichloroethene | Methylene chloride  | Hexachlorobutadiene | Vinyl chloride |
| L (000                         |            |              |           | mg/kg                 | mg/kg              | mg/kg               | mg/kg                  | mg/kg                           | mg/kg               | mg/kg              | mg/kg               | mg/kg               | mg/kg               | mg/kg               | mg/kg               | mg/kg           | mg/kg           | mg/kg        | mg/kg                | mg/kg         | mg/kg                | mg/kg         | mg/kg                  | mg/kg               | mg/kg               | mg/kg          |
| VC09                           | 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      | <b></b>       |                        | ───                 |                     |                |
| VC10                           | 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      | <b></b>       |                        | ───                 |                     |                |
| VC10                           | 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      | <b></b>       |                        | ───                 |                     |                |
| VC10                           | 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |                       |                    |                     |                        |                                 |                     |                    | _                   |                     |                     |                     |                     |                 |                 |              |                      |               |                      | <b></b>       |                        | ───                 |                     |                |
| VC10                           | 31/10/2019 | VC10_0.5-0.6 | 0.5 - 0.6 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      | <b></b>       |                        | ───                 |                     |                |
| VC11                           | 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      | <b></b>       |                        | ──┤                 |                     |                |
| VC11                           | 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |                       |                    |                     |                        |                                 |                     |                    | -                   |                     |                     |                     |                     | .0.5            |                 |              |                      |               |                      | <u> </u>      |                        | <u> </u>            |                     |                |
| VC11                           | 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 | <0.5                  | o <0.5             | < < 0.5             | o <0.5                 | o <0.5                          | < 0.5               | o <0.5             | o <0.8              | o <0.5              | o <0.5              | o <0.5              |                     | <0.5            | <0.5            | < 0.5        | <0.5                 | <0.5          | <0.5                 | <5            | <0.5                   | ──┤                 | <0.5                | <5             |
| VC11                           | 30/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               | <u> </u>             | ───           |                        | ──┤                 |                     |                |
| VC11                           | 30/10/2019 | VC11_1.0-1.2 | 1.0 - 1.2 |                       |                    |                     |                        |                                 |                     | _                  |                     |                     |                     |                     | .0.5                |                 |                 |              |                      |               | <u> </u>             | ───           | <u> </u>               | $ \longrightarrow $ |                     |                |
| VC12                           | 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.5 |                       |                    |                     | <0.5                   | <b>)</b>                        | <0.5                | <b>)</b>           |                     |                     | <0.5                | <b>)</b>            | <0.5                |                 |                 |              |                      |               |                      | <b></b>       |                        | ──┤                 | <0.5                |                |
| VC12                           | 31/10/2019 | VC12_0.3-0.4 | 0.3 - 0.4 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      | <b></b>       |                        | ───                 |                     |                |
| VC12                           | 31/10/2019 | VC12_0.5-0.6 | 0.5 - 0.6 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               | '                      |                     |                     |                |
| VC12                           | 31/10/2019 | VC12_0.8-0.9 | 0.8 - 0.9 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC12                           | 31/10/2019 | VC12_1.0-1.1 | 1.0 - 1.1 | <0.5                  | 5 <0.5             | ,<br>,              |                        |                                 |                     | <0.5               | 5                   |                     |                     |                     |                     |                 |                 |              | <0.5                 | <0.5          | , <0.5               |               |                        | <0.5                |                     | <4             |
| VC13                           | 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 | <0.5                  | 5 < 0.5            | 5                   |                        |                                 |                     | <0.5               | 5                   |                     |                     |                     |                     |                 |                 |              | <0.5                 | <0.5          | , <0.5               |               |                        | <0.5                |                     | <4             |
| VC13                           | 31/10/2019 | VC13_0.0-0.5 | 0.0 - 0.5 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC13                           | 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC13                           | 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC13                           | 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC13                           | 31/10/2019 | VC13_0.7-0.8 | 0.7 - 0.8 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               | 1                    |               |                        |                     |                     |                |
| VC13                           | 31/10/2019 | VC13_1.0-1.1 | 1.0 - 1.1 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               | 1                    |               |                        |                     |                     |                |
| VC14                           | 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC14                           | 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC14                           | 31/10/2019 | VC14 0.3-0.4 | 0.3 - 0.4 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC14                           | 31/10/2019 | VC14 0.5-1.0 | 0.5 - 1.0 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC14                           | 31/10/2019 | VC14 0.7-0.8 | 0.7 - 0.8 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC14                           | 31/10/2019 | VC14 1.0-1.1 | 1.0 - 1.1 | <0.5                  | 5 < 0.5            | 5                   |                        |                                 |                     | < 0.5              | 5                   |                     |                     |                     |                     |                 |                 |              | < 0.5                | <0.5          | <0.5 ز               | ,             |                        | < 0.5               |                     | </td           |
| VC14                           | 31/10/2019 | VC14 1.3-1.4 | 1.3 - 1.4 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| VC14                           | 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                       |                    |                     |                        |                                 |                     |                    |                     |                     |                     |                     |                     |                 |                 |              |                      |               |                      |               |                        |                     |                     |                |
| Statistics<br>Number of Result | ts         |              |           | <br>                  | 2 12               | 2 4                 | <u>م</u>               | ) 4                             |                     |                    | 2                   | 4                   | t  c                | ) 4                 | 5                   | 4               |                 | . 4          | 12                   |               | 2 12                 | 2 4           | 4                      | . 8                 |                     |                |
| Number of Detect               | ts         |              |           | (                     | ) ()               |                     | ) 0                    | ) 0                             | 0                   |                    | ) (                 | ) (                 |                     | ) 0                 | 0                   | 0               | 0               | 0            | 0                    | (             |                      | 0             | 0                      | 0                   | 0                   | (              |
| Minimum Concen                 | ntration   |              |           | <0.5                  | 5 < 0.5            | < 0.5               | 5 < 0.5                | 5 < 0.5                         | <0.5                | 5 < 0 5            | 5 <0 !              | 5 < 0 5             | 5 < 0.5             | 5 < 0.5             | <0.5                | <0.5            | <0.5            | <0.5         | <0.5                 | <0.5          | <del>ر &lt;0 5</del> | <5            | <0.5                   | <0.5                | <0.5                | </td           |
| Maximum Concer                 | ntration   |              |           | <0.0                  | 5 <0.5             | <0.5                | <0.0                   | <0.5                            | <0.6                |                    | 5 <0.4              | 5 <0.6              | -0.0<br>5 <0.6      | <0.5                | <0.6                | <0.5            | <0.5            | <0.5         | <0.5                 | <0.6          | 5 <0 F               | <             | <0.5                   | <0.5                | <0.0                | <              |
|                                | nadaon     |              |           | -0.0                  |                    | -0.0                | .0.0                   | .0.0                            | 1.0-                | -0.0               | -0.0                | -0.0                |                     | .0.0                | 0.0                 | .0.             | -0.0            | 0.0          | -0.0                 | -0.0          | -0.0                 |               | -0.0                   | .0.0                | -0.0                | -0             |

Statistics Number of Number of Minimum C Maximum C

# **Circular Quay Investigation** Port Authority of NSW



|                      | Explo              | sives              |              | Nit        | roaromat       | ics                                     | Nitrosoamines                        |                                |                        | Phtha            | alates             |                      |                      |
|----------------------|--------------------|--------------------|--------------|------------|----------------|-----------------------------------------|--------------------------------------|--------------------------------|------------------------|------------------|--------------------|----------------------|----------------------|
| ,3,5-Trinitrobenzene | 2,4-Dinitrotoluene | 2,6-dinitrotoluene | Nitrobenzene | 2-Picoline | -aminobiphenyl | <sup>2</sup> entachloronitrobenze<br>ie | N-Nitrosodiphenyl &<br>Diphenylamine | 3is(2-ethylhexyl)<br>ohthalate | 3utyl benzyl phthalate | Diethylphthalate | Dimethyl phthalate | Di-n-butyl phthalate | Di-n-octyl phthalate |
| ma/ka                | ma/ka              | ma/ka              | <br>ma/ka    | ma/ka      | ma/ka          | ma/ka                                   | ma/ka                                | ma/ka                          | ma/ka                  | ma/ka            | ma/ka              | ma/ka                | ma/ka                |
| 0.5                  | 1                  | 1                  | 0.5          | 0.5        | 0.5            | 0.5                                     | 1                                    | 5                              | 0.5                    | 0.5              | 0.5                | 0.5                  | 0.5                  |
|                      | 4.68               | -                  | 72           |            |                |                                         | -                                    |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      | 18.7               |                    | 288          |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      | 5.0                            |                        |                  |                    |                      |                      |
| <0.5                 | <1.0               | <1.0               | <0.5         | <0.5       | <0.5           | <0.5                                    | <1.0                                 | <5.0                           | <0.5                   | <0.5             | <0.5               | <0.5                 | <0.5                 |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
| -0.0                 | 11.0               | 11.0               | -0.0         | -0.0       | 10.0           | -0.0                                    | 11.0                                 | -5.0                           | -0.0                   | -0.0             | -0.0               | -0.0                 | 10.0                 |
| <0.6                 | <1.0               | <1.0               | <0.6         | <0.6       | <0.6           | <0.6                                    | <1.2                                 | <5.0                           | <0.6                   | <0.6             | <0.6               | <0.6                 | <0.6                 |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
| <0.5                 | <1.0               | <1.0               | <0.5         | <0.5       | <0.5           | <0.5                                    | <1.0                                 | <5.0                           | <0.5                   | <0.5             | <0.5               | <0.5                 | <0.5                 |
| 0.0                  |                    |                    | 0.0          |            |                | 0.0                                     |                                      |                                |                        | 0.0              | 0.0                | 0.0                  | 0.0                  |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
| <0.5                 | <1 0               | <1 0               | <0.5         | <0.5       | <0.5           | <0.5                                    | <1 0                                 | <5.0                           | <0.5                   | <0.5             | <0.5               | <0.5                 | <0.5                 |
| 5.5                  |                    |                    | 5.0          | 5.5        | 5.5            | 5.5                                     |                                      | 5.5                            | 2.0                    | 2.0              | 5.0                | 2.0                  | 5.0                  |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |
|                      |                    |                    |              |            |                |                                         |                                      |                                |                        |                  |                    |                      |                      |

|                                                        | тд/кд | mg/kg | mg/kg | mg/ |
|--------------------------------------------------------|-------|-------|-------|-----|
| EQL 0.5                                                | 1     | 1     | 0.5   | 0.  |
| NSW EPA (2014) General Solid Waste SCC1 (with TCLP)    | 4.68  |       | 72    |     |
| NSW EPA (2014) General Solid Waste TCLP1               |       |       |       |     |
| NSW EPA (2014) Restricted Solid Waste SCC2 (with TCLP) | 18.7  |       | 288   |     |
| NSW EPA (2014) Restricted Solid Waste TCLP2            |       |       |       |     |

|                         |                                 |               |            |             | Explo   | sives |          | Ni    | troaroma | tics     | Nitrosoamines | 1             |       | Phtha | lates |               |          |
|-------------------------|---------------------------------|---------------|------------|-------------|---------|-------|----------|-------|----------|----------|---------------|---------------|-------|-------|-------|---------------|----------|
|                         |                                 |               |            | ۵.          | <u></u> |       |          |       |          | e<br>N   | Threedininee  |               | fe    |       |       | <b></b>       |          |
|                         |                                 |               |            | zen         | Ð       | 0     |          |       |          | pen      | /I &          |               | lala  |       | te    | ate           | ate      |
|                         |                                 |               |            | oen:        | nen     | lene  |          |       | Iyn      | itrol    | len)          | (ly           | ohth  | ate   | ıala  | hala          | hala     |
|                         |                                 |               |            | itrol       | otolu   | tolu  | ene      |       | phe      | ron      | dipt<br>mir   | lhe           | zyl p | thal  | phth  | pht           | pht      |
|                         |                                 |               |            | Trin        | nitro   | nitro | enz      | line  | idor     | chlo     | oso<br>Jyla   | ethy<br>ate   | Sen:  | lpht  | l lyr | utyl          | ctyl     |
|                         |                                 |               |            | -<br>-<br>- | -Dii    | dir   | robe     | Dico  | mir      | ntao     | Nitro         | s(2-6<br>thai | tyl k | ethy  | netł  | īq<br>u       | ō<br>L   |
|                         |                                 |               |            | 1,3         | 2,4     | 2,6   | Nit      | 2-F   | 4-8      | Pe<br>ne |               | Bis<br>pht    | Bu    | Die   | Dir   | Di-           | -i<br>D  |
|                         |                                 |               |            | mg/kg       | mg/kg   | mg/kg | mg/kg    | mg/kg | mg/kg    | mg/kg    | mg/kg         | mg/kg         | mg/kg | mg/kg | mg/kg | mg/kg         | mg/kg    |
| EQL<br>NSW FPA (2014) G | General Solid Waste SCC1 (with  | TCLP)         |            | 0.5         | 4 68    | I     | 0.5      | 0.5   | 0.5      | 0.5      | I             | 5             | 0.5   | 0.5   | 0.5   | 0.5           | 0.5      |
| NSW EPA (2014) G        | General Solid Waste TCLP1       |               |            |             | 1.00    |       | 12       |       |          |          |               |               |       |       |       |               |          |
| NSW EPA (2014) R        | Restricted Solid Waste SCC2 (wi | ith TCLP)     |            |             | 18.7    |       | 288      |       |          |          |               |               |       |       |       |               |          |
| NSW EPA (2014) R        | Restricted Solid Waste TCLP2    |               |            |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| Location Code           | Date                            | Field ID      | Depth      |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| BH05                    | 7/11/2019                       | BH05_4.6-4.7  | 4.6 - 4.7  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| BH06                    | 7/11/2019                       | BH06_1.2-1.45 | 1.2 - 1.45 |             |         |       |          |       |          |          |               |               |       |       |       | <b> </b> '    |          |
| VC01                    | 30/10/2019                      | BH07_2.5-2.95 | 2.5 - 2.95 |             |         |       |          |       |          |          |               |               |       |       |       | <sup> </sup>  |          |
| VC01                    | 30/10/2019                      | VC01_0.0-0.2  | 0.0 - 0.2  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC01                    | 30/10/2019                      | VC01_0.5-1.0  | 0.5 - 1.0  | <0.5        | <1.0    | <1.0  | <0.5     | <0.5  | <0.5     | <0.5     | <1.0          | <5.0          | <0.5  | <0.5  | <0.5  | <0.5          | <0.5     |
| VC01                    | 30/10/2019                      | VC01_1.0-1.1  | 1.0 - 1.1  |             |         |       |          |       |          |          |               |               |       |       |       | <b>└───</b> ′ |          |
| VC02                    | 30/10/2019                      | VC02_0.0-0.2  | 0.0 - 0.2  |             |         |       |          |       |          |          |               |               |       |       |       | ¦'            |          |
| VC02                    | 30/10/2019                      | VC02 0.5-1.0  | 0.5 - 1.0  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC02                    | 30/10/2019                      | VC02_1.0-1.2  | 1.0 - 1.2  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC02                    | 30/10/2019                      | VC02_1.0-1.5  | 1.0 - 1.5  |             |         |       |          |       |          |          |               |               |       |       |       | <b>└───</b> ′ | <u> </u> |
| VC02                    | 30/10/2019                      | VC02_1.5-1.6  | 1.5 - 1.6  |             |         |       |          |       |          |          |               |               |       |       |       | ¦'            |          |
| VC03                    | 30/10/2019                      | VC03 0.0-0.2  | 0.0 - 0.2  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC03                    | 30/10/2019                      | VC03_0.0-0.5  | 0.0 - 0.5  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC03                    | 30/10/2019                      | VC03_0.3-0.4  | 0.3 - 0.4  |             |         |       |          |       |          |          |               |               |       |       |       | <b> </b> '    | <u> </u> |
| VC03                    | 30/10/2019                      | VC03_0.4-0.6  | 0.4 - 0.6  |             |         |       | <b> </b> | 1     | 1        |          |               | <b> </b>      |       |       |       | ¦'            |          |
| VC03                    | 30/10/2019                      | VC03 0.6-0.7  | 0.6 - 0.7  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC03                    | 30/10/2019                      | VC03_1.0-1.2  | 1.0 - 1.2  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC04                    | 30/10/2019                      | VC04_0.0-0.1  | 0.0 - 0.1  |             |         |       |          |       |          |          |               |               |       |       |       | <b>└───</b> ′ |          |
| VC04<br>VC04            | 30/10/2019                      | VC04_0.3-0.4  | 0.3 - 0.4  | <0.6        | <1.0    | <1.0  | <0.6     | <0.6  | <0.6     | <0.6     | <12           | <5.0          | <0.6  | <0.6  | <0.6  | <0.6          | <0.6     |
| VC04                    | 31/10/2019                      | VC04_0.5-0.6  | 0.5 - 0.6  | 0.0         |         |       | 0.0      | 0.0   | 0.0      | 0.0      |               | 0.0           | 0.0   | 0.0   | 0.0   | 0.0           | 0.0      |
| VC04                    | 31/10/2019                      | VC04_0.7-0.8  | 0.7 - 0.8  |             |         |       |          |       |          |          |               |               |       |       |       | <b> </b> '    |          |
| VC04                    | 31/10/2019                      | VC04_0.9-1.0  | 0.9 - 1.0  |             |         |       |          |       |          |          |               |               |       |       |       | <b> </b> '    | <u> </u> |
| VC05                    | 30/10/2019                      | VC05_0.5-0.7  | 0.5 - 0.7  |             |         |       |          |       |          |          |               |               |       |       |       | <sup> </sup>  |          |
| VC05                    | 30/10/2019                      | VC05_0.5-0.9  | 0.5 - 0.9  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC05                    | 30/10/2019                      | VC05_0.8-0.9  | 0.8 - 0.9  |             |         |       |          |       |          |          |               |               |       |       |       | '             |          |
| VC06                    | 31/10/2019                      | VC06_0.0-0.5  | 0.0 - 0.5  |             |         |       |          |       |          |          |               |               |       |       |       | '             | <u> </u> |
| VC06                    | 31/10/2019                      | VC06 0.3-0.4  | 0.3 - 0.4  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC06                    | 31/10/2019                      | VC06_0.5-0.6  | 0.5 - 0.6  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC06                    | 31/10/2019                      | VC06_0.5-1.0  | 0.5 - 1.0  |             |         |       |          |       |          |          |               |               |       |       |       | <b> </b> '    | Ļ        |
| VC06                    | 31/10/2019                      |               | 0.7 - 0.8  |             |         |       |          |       |          |          |               |               |       |       |       | <sup> </sup>  |          |
| VC07                    | 30/10/2019                      | VC07 0.0-0.2  | 0.0 - 0.2  |             |         |       |          |       |          |          |               |               |       |       |       | []            |          |
| VC07                    | 30/10/2019                      | VC07_0.0-0.5  | 0.0 - 0.5  | <0.5        | <1.0    | <1.0  | <0.5     | <0.5  | <0.5     | <0.5     | <1.0          | <5.0          | <0.5  | <0.5  | <0.5  | <0.5          | <0.5     |
| VC07                    | 30/10/2019                      | VC07_0.2-0.4  | 0.2 - 0.4  |             |         |       |          |       |          |          |               |               |       |       |       | <b>└───</b> ′ |          |
| VC07                    | 30/10/2019                      | VC07_0.5-0.6  | 0.5 - 0.6  |             |         |       |          |       |          |          |               |               |       |       |       | <sup> </sup>  |          |
| VC07                    | 30/10/2019                      | VC07_0.7-0.8  | 0.7 - 0.7  |             |         |       |          |       |          |          |               |               |       |       |       | []            |          |
| VC07                    | 30/10/2019                      | VC07_1.0-1.2  | 1.0 - 1.2  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC08                    | 31/10/2019                      | VC08_0.0-0.1  | 0.0 - 0.1  |             |         |       |          |       |          |          |               |               |       |       |       | <b> </b> '    |          |
| VC08                    | 31/10/2019                      | VC08_0.3-0.4  | 0.0-0.5    |             |         |       |          |       |          |          |               |               |       |       |       | '             | <u> </u> |
| VC08                    | 31/10/2019                      | VC08_0.5-0.6  | 0.5 - 0.6  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC08                    | 31/10/2019                      | VC08_0.5-1.0  | 0.5 - 1.0  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC08                    | 31/10/2019                      | VC08_0.7-0.8  | 0.7 - 0.8  |             |         |       | <b> </b> |       |          |          |               | <b> </b>      |       |       |       | <b> </b> '    | <u> </u> |
| VC08                    | 31/10/2019                      | VC08_1.0-1.1  | 1.0 - 1.1  | <0.5        | <1 0    | <10   | <0 5     | <0 5  | <0.5     | <0.2     | <1 0          | <50           | <0 5  | <0 5  | <0.5  | <0.5          | <05      |
| VC08                    | 31/10/2019                      | VC08_1.3-1.4  | 1.3 - 1.4  |             | -1.0    |       | -0.0     | -0.0  | -0.0     | -0.0     | \$1.0         | -0.0          | -0.0  | -0.0  | -0.0  | -0.0          |          |
| VC08                    | 31/10/2019                      | VC08_1.5-1.6  | 1.5 - 1.6  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |
| VC09                    | 30/10/2019                      | VC09_0.0-0.2  | 0.0 - 0.2  |             |         |       | <b> </b> |       |          |          |               | <b> </b>      |       |       |       | <b> </b> '    | <u> </u> |
| VC09                    | 30/10/2019                      |               | 0.0 - 0.5  |             |         |       |          |       |          |          |               |               |       |       |       | i'            |          |
| VC09                    | 30/10/2019                      | VC09_0.5-1.0  | 0.5 - 1.0  |             |         |       | 1        |       |          |          |               | 1             |       |       |       |               | <u> </u> |
| VC09                    | 30/10/2019                      | VC09_0.7-0.8  | 0.7 - 0.8  |             |         |       |          |       |          |          |               |               |       |       |       |               |          |

# **Circular Quay Investigation** Port Authority of NSW



 VC09

 VC10

 VC10

 VC11

 VC11

 VC11

 VC11

 VC11

 VC11

 VC11

 VC11

 VC12

 VC12

 VC12

 VC13

 VC13

 VC13

 VC13

 VC13

 VC13

 VC13

 VC14

 tatistics

## Appendix C Table C4 Analytical results - Waste classification TCLP

|            |              |           |                       | Explo              | sives              | _            | Nit         | roaroma         | tics                        | Nitrosoamines                        |                                | -                      | Phtha            | alates             |                      |                      |
|------------|--------------|-----------|-----------------------|--------------------|--------------------|--------------|-------------|-----------------|-----------------------------|--------------------------------------|--------------------------------|------------------------|------------------|--------------------|----------------------|----------------------|
|            |              |           | 1,3,5-Trinitrobenzene | 2,4-Dinitrotoluene | 2,6-dinitrotoluene | Nitrobenzene | 2-Picoline  | 4-aminobiphenyl | Pentachloronitrobenze<br>ne | N-Nitrosodiphenyl &<br>Diphenylamine | Bis(2-ethylhexyl)<br>phthalate | Butyl benzyl phthalate | Diethylphthalate | Dimethyl phthalate | Di-n-butyl phthalate | Di-n-octyl phthalate |
|            |              |           | mg/kg                 | mg/kg              | mg/kg              | mg/kg        | mg/kg       | mg/kg           | mg/kg                       | mg/kg                                | mg/kg                          | mg/kg                  | mg/kg            | mg/kg              | mg/kg                | mg/kg                |
| 30/10/2019 | VC09_0.8-1.0 | 0.8 - 1.0 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | <b>ا</b>             | <b> </b> '           |
| 30/10/2019 | VC10_0.7-0.8 | 0.7 - 0.8 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | ·'                   | Ļ'                   |
| 31/10/2019 | VC10_0.0-0.2 | 0.0 - 0.2 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | ·'                   | Ļ'                   |
| 31/10/2019 | VC10_0.0-0.5 | 0.0 - 0.5 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | ا<br>ا               | ļ/                   |
| 31/10/2019 |              | 0.5 - 0.6 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | !                    | ───′                 |
| 30/10/2019 | VC11_0.0-0.2 | 0.0 - 0.2 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | !                    | └────′               |
| 30/10/2019 | VC11_0.0-0.5 | 0.0 - 0.5 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | !                    | ───′                 |
| 30/10/2019 | VC11_0.5-0.7 | 0.5 - 0.7 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | !                    | └────′               |
| 20/10/2019 | VC11_0.5-1.0 | 0.5 - 1.0 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    |                      | ───′                 |
| 31/10/2019 | VC12 0.0.05  | 0.0 0.5   | <0.5                  | <1.0               | <10                | <0.5         | <05         | <0 5            | <0.5                        | <10                                  | ~5.0                           | <0.5                   | <0.5             | <0.5               | <0.5                 | <0.5                 |
| 31/10/2019 | VC12_0.0-0.5 | 0.0 - 0.3 | <0.5                  | <1.0               | <1.0               | <b>~</b> 0.5 | <b>NO.5</b> | <b>NU.5</b>     | <b>NO.5</b>                 | <1.0                                 | <b>~</b> 5.0                   | <b>NU.5</b>            | <b>~0.5</b>      | <b>~</b> 0.5       | <u> </u>             | <0.5                 |
| 31/10/2019 | VC12_0.5-0.4 | 0.5-0.4   |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    |                      | ┣────┘               |
| 31/10/2019 | VC12_0.3-0.0 |           |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    |                      | <b>├</b> ────′       |
| 31/10/2019 | VC12_0.0-0.3 | 10-11     |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | ļ                    | <b>├</b> ───┘        |
| 31/10/2019 | VC13_0.0-0.1 | 0.0 - 0.1 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | ļ                    | <u>├</u> ───         |
| 31/10/2019 | VC13_0.0-0.5 | 0.0-0.5   |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | <b>/</b>             |                      |
| 31/10/2019 | VC13_0.3-0.4 | 0.3 - 0.4 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | <b>/</b>             |                      |
| 31/10/2019 | VC13_0.5-0.6 | 0.5 - 0.6 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | Į                    |                      |
| 31/10/2019 | VC13_0.5-1.0 | 0.5 - 1.0 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | /                    |                      |
| 31/10/2019 | VC13 0.7-0.8 | 0.7 - 0.8 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | /                    |                      |
| 31/10/2019 | VC13 1.0-1.1 | 1.0 - 1.1 |                       |                    |                    |              |             | -               |                             |                                      |                                |                        |                  |                    |                      |                      |
| 31/10/2019 | VC14 0.0-0.1 | 0.0 - 0.1 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    |                      |                      |
| 31/10/2019 | VC14 0.0-0.5 | 0.0 - 0.5 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | <sup>†</sup>         |                      |
| 31/10/2019 | VC14 0.3-0.4 | 0.3 - 0.4 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    |                      |                      |
| 31/10/2019 | VC14_0.5-1.0 | 0.5 - 1.0 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    |                      |                      |
| 31/10/2019 | VC14_0.7-0.8 | 0.7 - 0.8 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    |                      |                      |
| 31/10/2019 | VC14_1.0-1.1 | 1.0 - 1.1 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    |                      |                      |
| 31/10/2019 | VC14_1.3-1.4 | 1.3 - 1.4 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | , į                  |                      |
| 31/10/2019 | VC14-0.5-0.6 | 0.5 - 0.6 |                       |                    |                    |              |             |                 |                             |                                      |                                |                        |                  |                    | 1                    |                      |
|            |              |           | 5                     | 5                  | 5                  | 5            | 5           | 5               | 5                           | 5                                    | 5                              | 5                      | 5                | 5                  | 5                    | 5                    |
|            |              |           | 0                     | 0                  | 0                  | 0            | 0           | 0               | 0                           | 0                                    | 0                              | 0                      | 0                | 0                  | 0                    | 0                    |
| 1          |              |           | <0.5                  | <1                 | <1                 | < 0.5        | < 0.5       | < 0.5           | < 0.5                       | <1.0                                 | <5.0                           | < 0.5                  | < 0.5            | < 0.5              | < 0.5                | < 0.5                |
| n          |              |           | <0.6                  | <1                 | <1                 | <0.6         | <0.6        | <0.6            | <0.6                        | <1.0                                 | <5.0                           | <0.6                   | <0.6             | <0.6               | <0.6                 | <0.6                 |

| Number of Detects         0         0         0         0         0           Minimum Concentration         <0.5         <1         <1         <0.5         <1         <0.5         <1         <0.6         <0         <0           Maximum Concentration         <0.6         <1         <1         <0.6         <0         <0         <0         <0 | Number of Results     | 5    | 5  | 5  | 5    |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|----|----|------|----|
| Minimum Concentration         <0.5         <1         <1         <0.5         <1         <0.5         <0           Maximum Concentration         <0.6                                                                                                                                                                                                 | Number of Detects     | 0    | 0  | 0  | 0    |    |
| Maximum Concentration <0.6 <1 <1 <0.6 <0                                                                                                                                                                                                                                                                                                              | Minimum Concentration | <0.5 | <1 | <1 | <0.5 | <0 |
|                                                                                                                                                                                                                                                                                                                                                       | Maximum Concentration | <0.6 | <1 | <1 | <0.6 | <0 |

# Appendix D - Pro UCL outputs

|    | A          | В            | С             | D              | E        | Ξ       | F             | G              | Н              |                 | J              | K             |        | L      |
|----|------------|--------------|---------------|----------------|----------|---------|---------------|----------------|----------------|-----------------|----------------|---------------|--------|--------|
| 1  |            |              |               |                | UCL      | Statis  | tics for Data | Sets with N    | on-Detects     |                 |                |               |        |        |
| 2  |            |              |               |                |          |         |               |                |                |                 |                |               |        |        |
| 3  |            | User Sele    | cted Options  |                |          |         |               |                |                |                 |                |               |        |        |
| 4  | Da         | e/Time of Co | omputation    | ProUCL 5.1     | 18/12/   | 2019 5  | 5:43:05 PM    |                |                |                 |                |               |        |        |
| 5  |            |              | From File     | waste class    | _rev c   | _b.xls  |               |                |                |                 |                |               |        |        |
| 6  |            | Fu           | II Precision  | OFF            |          |         |               |                |                |                 |                |               |        |        |
| 7  |            | Confidence   | Coefficient   | 95%            |          |         |               |                |                |                 |                |               |        |        |
| /  | Number o   | of Bootstrap | Operations    | 2000           |          |         |               |                |                |                 |                |               |        |        |
| 8  |            |              |               |                |          |         |               |                |                |                 |                |               |        |        |
| 9  | Benzo(a) p | /rene        |               |                |          |         |               |                |                |                 |                |               |        |        |
| 10 |            |              |               |                |          |         |               |                |                |                 |                |               |        |        |
| 11 |            |              |               |                |          |         | General       | Statistics     |                |                 |                |               |        |        |
| 12 |            |              | Total         | Number of C    | bserv    | ations  | 95            |                |                | Numbe           | r of Distinct  | Observation   | 5 2    | 20     |
| 13 |            |              |               | Numbe          |          | etects  | 20            |                |                |                 | Number of      | Non-Detect    | . 7    | 75     |
| 14 |            |              | N             |                | tinct D  |         | 18            |                |                | Numb            | er of Distinct |               |        | 3      |
| 15 |            |              |               | Mini           |          |         | 0.004         |                |                | Numbe           | Minimur        | m Non Dotor   | + 0    | 004    |
| 16 |            |              |               | Movi           |          |         | 0.004         |                |                |                 | Movimur        |               | . 0    | 0.5    |
| 17 |            |              |               | IVIAXI         |          |         | 4             |                |                |                 | Davaant        | Non-Delec     |        | 0.5    |
| 18 |            |              |               | Varia          | Ince D   | elecis  | 0.980         |                |                |                 | Percent        | OD Data at    | 5 /    | /8.95% |
| 19 |            |              |               | IV             | iean D   | etects  | 1.113         |                |                |                 |                | SD Detects    | S      | 0.993  |
| 20 |            |              |               | Me             | dian D   | etects  | 0.886         |                |                |                 |                | CV Detect     | 5      | 0.893  |
| 21 |            |              |               | Skewr          | iess D   | etects  | 1.59          |                |                |                 | Ku             | rtosis Detect | S      | 3      |
| 22 |            |              |               | Mean of Log    | iged D   | etects  | -0.67         |                |                |                 | SD of Lo       | gged Detect   | 5      | 1.898  |
| 23 |            |              |               |                |          |         |               |                |                |                 |                |               |        |        |
| 24 |            |              |               |                |          | Norm    | nal GOF Tes   | t on Detects   | Only           |                 |                |               |        |        |
| 25 |            |              | S             | hapiro Wilk    | Fest St  | atistic | 0.852         |                |                | Shapiro W       | ilk GOF Tes    | ŧ             |        |        |
| 26 |            |              | 5% SI         | hapiro Wilk C  | Critical | Value   | 0.905         | [              | Detected Data  | a Not Norm      | al at 5% Sig   | nificance Lev | /el    |        |
| 27 |            |              |               | Lilliefors     | Fest St  | atistic | 0.205         |                |                | Lilliefors      | GOF Test       |               |        |        |
| 28 |            |              | 5             | % Lilliefors C | Critical | Value   | 0.192         | [              | Detected Data  | a Not Norm      | al at 5% Sig   | nificance Lev | /el    |        |
| 29 |            |              |               | C              | etecte   | d Dat   | a Not Norma   | al at 5% Sign  | ificance Leve  | el              |                |               |        |        |
| 30 |            |              |               |                |          |         |               |                |                |                 |                |               |        |        |
| 31 |            |              | Kaplan-       | Meier (KM) S   | Statisti | cs usi  | ng Normal C   | ritical Value  | s and other N  | Nonparame       | tric UCLs      |               |        |        |
| 32 |            |              |               |                | KM       | Mean    | 0.25          |                |                | KI              | M Standard I   | Error of Mea  | n (    | ).0678 |
| 33 |            |              |               |                | K        | MSD     | 0.631         |                |                |                 | 95% KI         | M (BCA) UCI   | _      | 0.367  |
| 34 |            |              |               | 95%            | KM (t    | ) UCL   | 0.363         |                |                | 95% KM (F       | Percentile Bo  | ootstrap) UC  |        | 0.362  |
| 35 |            |              |               | 95%            | KM (z    | ) UCL   | 0.362         |                |                |                 | 95% KM Bo      | otstrap t UCI | _      | 0.402  |
| 26 |            |              | ę             | 90% KM Che     | byshev   | / UCL   | 0.454         |                |                |                 | 95% KM Ch      | ebyshev UCI   | _      | 0.546  |
| 27 |            |              | 97            | .5% KM Che     | byshev   | / UCL   | 0.674         |                |                |                 | 99% KM Ch      | ebyshev UCI   | _      | 0.925  |
| 37 |            |              |               |                | -        |         |               |                |                |                 |                | -             |        |        |
| 30 |            |              |               | G              | amma     | GOF     | Tests on De   | etected Obse   | ervations Onl  | ly              |                |               |        |        |
| 39 |            |              |               | A-D            | Fest St  | atistic | 1.144         |                | Ar             | -<br>nderson-Da | rling GOF T    | est           |        |        |
| 40 |            |              |               | 5% A-D C       | Critical | Value   | 0.779         | Detect         | ed Data Not (  | Gamma Dis       | tributed at 5  | % Significan  | ce Le  | vel    |
| 41 |            |              |               | K-S            | Fest St  | atistic | 0.263         |                | K              | olmoaorov-      | -Smirnov G     | OF            |        |        |
| 42 |            |              |               | 5% K-S C       | ritical  | Value   | 0.201         | Detect         | ed Data Not    | Gamma Dis       | tributed at 5  | % Significan  | cele   | vel    |
| 43 |            |              |               | Detecte        | nd Date  | a Not ( | Gamma Diet    | ributed at 5%  | 6 Significanc  |                 |                |               |        |        |
| 44 |            |              |               | Derecte        | Jau      |         |               | aitu di U7     | - Cigninicant  |                 |                |               |        |        |
| 45 |            |              |               |                | <u> </u> | amme    | Statistics or |                | ata Only       |                 |                |               |        |        |
| 46 |            |              |               |                | k hot    |         | 0 760         |                |                | Ŀ               | star (bias s-  |               |        | 0 697  |
| 47 |            |              |               | Τμ-            |          |         | 1 1 1 1       |                |                | K<br>Thata      | star (bics co  |               | /<br>\ | 1.62   |
| 48 |            |              |               | ine            |          |         | 20.74         |                |                | ineta           |                |               |        | 1.02   |
| 49 |            |              |               | r<br>• • •     |          |         | 30.74         |                |                |                 | nu star (Di    | as conected   | / 4    | 1.40   |
| 50 |            |              |               | Me             | an (de   | uects)  | 1.113         |                |                |                 |                |               |        |        |
| 51 |            |              |               |                | )        |         | Obertait      | alma las s     |                |                 |                |               |        |        |
| 52 |            |              |               | C              | amma     |         | Statistics u  | sing Imputed   | I NON-Detect   |                 |                |               |        |        |
| 53 |            |              | GROS may      | not he used    | whon     | data s  | et has > 50%  | 6 NI )s with m | any tiad aher  | envetions at    | multiple DL    | •             |        |        |
| 55 |            |              |               |                | when     |         |               |                |                |                 |                | s             |        |        |
| 54 |            | GROS may     | y not be used | when kstar     | of dete  | cts is  | small such a  | s <1.0, espec  | cially when th | ne sample s     | ize is small ( | (e.g., <15-20 | )      |        |

|          | A B C D E                                       | F              | G H I J K                                               | L      |
|----------|-------------------------------------------------|----------------|---------------------------------------------------------|--------|
| 56       | This is espec                                   | ally true whe  | en the sample size is small.                            |        |
| 57       | For gamma distributed detected data, BTVs a     |                | iy be computed using gamma distribution on KM estimates | 0.255  |
| 58       | Minimum                                         | 0.004          | Mean                                                    | 0.255  |
| 59       | Maximum<br>ag                                   | 4              | Median CV                                               | 2.492  |
| 60       | SD<br>k bot (MLE)                               | 0.000          | k star (bias corrected MLE)                             | 2.402  |
| 61       | Thata (MLE)                                     | 0.309          | Thota star (bias corrected MLE)                         | 0.300  |
| 62       | nu bot (MLE)                                    | 58 71          | nu star (bias corrected)                                | 58 10  |
| 63       | Adjusted Level of Significance (B)              | 0.0475         |                                                         | 56.19  |
| 64       | Approximate Chi Square Value (58.19. d)         | 41.65          | Adjusted Chi Square Value (58 19 ß)                     | 41 44  |
| 65       | 95% Gamma Approximate UCL (use when n>=50)      | 0.356          | 95% Gamma Adjusted UCL (use when n<50)                  | 0.358  |
| 66       |                                                 | 0.000          |                                                         |        |
| 67       | Estimates of G                                  | iamma Para     | meters using KM Estimates                               |        |
| 00<br>60 | Mean (KM)                                       | 0.25           | SD (KM)                                                 | 0.631  |
| 70       | Variance (KM)                                   | 0.398          | SE of Mean (KM)                                         | 0.0678 |
| 70       | k hat (KM)                                      | 0.157          | k star (KM)                                             | 0.159  |
| 72       | nu hat (KM)                                     | 29.9           | nu star (KM)                                            | 30.29  |
| 72       | theta hat (KM)                                  | 1.591          | theta star (KM)                                         | 1.571  |
| 74       | 80% gamma percentile (KM)                       | 0.286          | 90% gamma percentile (KM)                               | 0.748  |
| 75       | 95% gamma percentile (KM)                       | 1.361          | 99% gamma percentile (KM)                               | 3.119  |
| 76       |                                                 | 1              |                                                         |        |
| 77       | Gamn                                            | na Kaplan-M    | eier (KM) Statistics                                    |        |
| 78       | Approximate Chi Square Value (30.29, $\alpha$ ) | 18.72          | Adjusted Chi Square Value (30.29, β)                    | 18.58  |
| 79       | 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.405          | 95% Gamma Adjusted KM-UCL (use when n<50)               | 0.408  |
| 80       |                                                 |                |                                                         |        |
| 81       | Lognormal GC                                    | OF Test on D   | etected Observations Only                               |        |
| 82       | Shapiro Wilk Test Statistic                     | 0.744          | Shapiro Wilk GOF Test                                   |        |
| 83       | 5% Shapiro Wilk Critical Value                  | 0.905          | Detected Data Not Lognormal at 5% Significance Lev      | el     |
| 84       |                                                 | 0.333          | Lilletors GOF Test                                      |        |
| 85       | 5% Lillerors Critical Value                     | U. 192         | Detected Data Not Lognormal at 5% Significance Lev      | ei     |
| 86       |                                                 |                |                                                         |        |
| 8/       | Lognormal RO                                    | S Statistics   | Using Imputed Non-Detects                               |        |
| 88       | Mean in Original Scale                          | 0.248          | Mean in Log Scale                                       | -4.813 |
| 89       | SD in Original Scale                            | 0.634          | SD in Log Scale                                         | 3.132  |
| 90       | 95% t UCL (assumes normality of ROS data)       | 0.356          | 95% Percentile Bootstrap UCL                            | 0.362  |
| 92       | 95% BCA Bootstrap UCL                           | 0.39           | 95% Bootstrap t UCL                                     | 0.4    |
| 93       | 95% H-UCL (Log ROS)                             | 5.379          |                                                         |        |
| 94       |                                                 | I              |                                                         |        |
| 95       | Statistics using KM estimates                   | on Logged I    | Data and Assuming Lognormal Distribution                |        |
| 96       | KM Mean (logged)                                | -4.195         | KM Geo Mean                                             | 0.0151 |
| 97       | KM SD (logged)                                  | 2.206          | 95% Critical H Value (KM-Log)                           | 3.67   |
| 98       | KM Standard Error of Mean (logged)              | 0.324          | 95% H-UCL (KM -Log)                                     | 0.396  |
| 99       | KM SD (logged)                                  | 2.206          | 95% Critical H Value (KM-Log)                           | 3.67   |
| 100      | KM Standard Error of Mean (logged)              | 0.324          |                                                         |        |
| 101      |                                                 | DI /0.0        |                                                         |        |
| 102      |                                                 | DL/2 S         |                                                         |        |
| 103      | UL/2 Normal                                     | 0.405          |                                                         | 1 7/1  |
| 104      | SD in Original Scale                            | 0.400<br>0 582 |                                                         | 1 78   |
| 105      | 95% t LICL (Assumes normality)                  | 0.505          |                                                         | 1.70   |
| 106      | DL/2 is not a recommended m                     | ethod. provid  | ded for comparisons and historical reasons              |        |
| 107      |                                                 |                |                                                         |        |
| 108      | Nonparame                                       | etric Distribu | tion Free UCL Statistics                                |        |
| 110      | Data do not follow a D                          | iscernible D   | istribution at 5% Significance Level                    |        |
| 110      |                                                 |                |                                                         |        |

|     | A | В            | С              | D               | E             | F               | G               | Н               | I            | J             | K               | L    |
|-----|---|--------------|----------------|-----------------|---------------|-----------------|-----------------|-----------------|--------------|---------------|-----------------|------|
| 111 |   |              |                |                 |               |                 |                 |                 |              |               |                 |      |
| 112 |   |              |                |                 |               | Suggested       | UCL to Use      |                 |              |               |                 |      |
| 113 |   |              | 95             | 5% KM (Cheb     | yshev) UCL    | 0.546           |                 |                 |              |               |                 |      |
| 114 |   |              |                |                 |               |                 |                 |                 |              |               |                 |      |
| 115 |   | Note: Sugges | stions regard  | ling the selec  | tion of a 95% | 6 UCL are pr    | ovided to hel   | p the user to   | select the m | ost appropria | ate 95% UCI     |      |
| 116 |   |              | F              | Recommenda      | tions are bas | sed upon dat    | a size, data o  | distribution, a | and skewnes  | S.            |                 |      |
| 117 |   | These recor  | mmendation     | s are based u   | pon the resu  | Ilts of the sim | nulation studie | es summariz     | ed in Singh, | Maichle, and  | d Lee (2006).   | -    |
| 118 | Н | owever, simu | lations result | ts will not cov | er all Real W | Vorld data se   | ts; for additio | nal insight th  | ie user may  | want to cons  | ult a statistic | ian. |

|     | A      | В        | С             | D              | E              | F               | G             | Н              | I            | J                | K              | L        |
|-----|--------|----------|---------------|----------------|----------------|-----------------|---------------|----------------|--------------|------------------|----------------|----------|
| 119 | ا مد ط |          |               |                |                |                 |               |                |              |                  |                |          |
| 120 | read   |          |               |                |                |                 |               |                |              |                  |                |          |
| 121 |        |          |               |                |                |                 |               |                |              |                  |                |          |
| 122 |        |          |               |                | N              | General         | Statistics    |                | <u></u> .    |                  | N              |          |
| 123 |        |          | Total         | Number of C    | Observations   | 91              |               |                | Numbe        | r of Distinct C  | bservations    | 52       |
| 124 |        |          |               | Numbe          | er of Detects  | 78              |               |                |              | Number of I      | Non-Detects    | 13       |
| 125 |        |          | N             | umber of Dis   | tinct Detects  | 52              |               |                | Numbe        | er of Distinct I | Non-Detects    | 1        |
| 126 |        |          |               | Mini           | imum Detect    | 1.1             |               |                |              | Minimum          | Non-Detect     | 5        |
| 127 |        |          |               | Max            | imum Detect    | 318             |               |                |              | Maximum          | Non-Detect     | 5        |
| 128 |        |          |               | Varia          | ance Detects   | 3981            |               |                |              | Percent          | Non-Detects    | 14.29%   |
| 129 |        |          |               | N              | lean Detects   | 41.67           |               |                |              |                  | SD Detects     | 63.1     |
| 130 |        |          |               | Me             | dian Detects   | 13.75           |               |                |              |                  | CV Detects     | 1.514    |
| 131 |        |          |               | Skewr          |                | 2.403           |               |                |              |                  |                | 5.8      |
| 132 |        |          |               | Mean of Log    | ged Detects    | 2.878           |               |                |              | SD of Log        | ged Detects    | 1.283    |
| 133 |        |          |               |                | NI             |                 | t on Datast   | o Only         |              |                  |                |          |
| 134 |        |          |               | hanira Wills   |                |                 | L ON DETECTS  |                | Tost on De   | tooted Ohan      | nationa Ork    | ,        |
| 135 |        |          | 5             |                |                | 0.042           |               |                |              |                  |                | <b>y</b> |
| 136 |        |          |               | 5% Snapiro     |                | 0.000           |               | Delected Dat   |              |                  | meance Leve    | ;1       |
| 137 |        |          | F             |                |                | 0.282           |               | Data ata d Dat |              | GOF Test         | ifiannan Laura | .1       |
| 138 |        |          | 5             | % Lillietors C | ritical value  | U.I             | Lat EV Cia    |                |              | ai at 5% Sign    | Ificance Leve  | )        |
| 139 |        |          |               | L              |                | a not norma     | li at 5% Sigi | incance Lev    |              |                  |                |          |
| 140 |        |          | Kanlan        |                | Ptotiotico uni |                 |               | o and other    | Nonnoromo    |                  |                |          |
| 141 |        |          | Kapian-       |                |                |                 |               | es and other   | Nonparame    |                  | were of Maan   | 6 201    |
| 142 |        |          |               |                |                | 50.62           |               |                |              |                  |                | 0.291    |
| 143 |        |          |               | 0.5%           |                | 09.02<br>46.57  |               |                |              | 95% Kivi         |                | 47.04    |
| 144 |        |          |               | 95%            |                | 40.37           |               |                | 95% KIVI (P  |                  |                | 47.33    |
| 145 |        |          |               | 95%            |                | 40.40           |               |                |              | 95% KIVI BOO     |                | 48.94    |
| 146 |        |          |               | 5% KM Che      | bysnev UCL     | 54.98           |               |                |              |                  | bysnev UCL     | 03.53    |
| 147 |        |          | 97            | .5% KIVI Che   | bysnev UCL     | 75.4            |               |                | :            |                  | bysnev UCL     | 90.7     |
| 148 |        |          |               |                | amma GOF       | Tests on De     | tected Obs    | envetions On   | dv.          |                  |                |          |
| 149 |        |          |               | <u>م_0</u>     | Test Statistic | 3 879           |               |                | nderson-Da   | rling GOF Te     | set            |          |
| 150 |        |          |               | 5% A-D (       | Critical Value | 0.797           | Detec         | ted Data Not   | Gamma Dis    | tributed at 5%   |                | e l evel |
| 151 |        |          |               | <u>к-s</u>     | Test Statistic | 0.737           | Delee         |                |              | Smirnov GO       | F              |          |
| 152 |        |          |               | 5% K-S (       | Critical Value | 0.105           | Detec         | ted Data Not   | Gamma Dis    | tributed at 5%   |                | e l evel |
| 153 |        |          |               | Detecte        | ed Data Not    | Gamma Dist      | ributed at 5  | % Significan   | ce i evel    |                  |                |          |
| 154 |        |          |               | Dottoon        |                |                 |               |                |              |                  |                |          |
| 155 |        |          |               |                | Gamma          | Statistics or   | Detected [    | Data Only      |              |                  |                |          |
| 156 |        |          |               |                | k hat (MLF)    | 0.708           |               |                | k            | star (bias cor   | rected MLE)    | 0.689    |
| 157 |        |          |               | The            | ta hat (MLE)   | 58.83           |               |                | Theta        | star (bias cor   | rected MLE)    | 60.43    |
| 158 |        |          |               | r              | nu hat (MLE)   | 110.5           |               |                |              | nu star (bia     | s corrected)   | 107.6    |
| 159 |        |          |               | Me             | ean (detects)  | 41.67           |               |                |              |                  |                |          |
| 160 |        |          |               |                |                |                 |               |                |              |                  |                |          |
| 161 |        |          |               | (              | Gamma ROS      | Statistics us   | sing Impute   | d Non-Detec    | ts           |                  |                |          |
| 162 |        |          | GROS may      | not be used    | when data s    | et has $> 50\%$ | NDs with n    | nany tied obs  | ervations at | multiple DI s    |                |          |
| 163 |        | GROS may | y not be used | when kstar     | of detects is  | small such a    | s <1.0. espe  | cially when t  | he sample si | ize is small (e  | e.g., <15-20)  |          |
| 164 |        |          | , 100000      | or such situat | ions. GROS     | method may      | vield incorre | ect values of  | UCLs and R   | TVs              | 3, 220)        |          |
| 165 |        |          |               | 7              | This is especi | ally true whe   | n the sampl   | e size is sma  | II.          |                  |                |          |
| 166 |        | For dar  | nma distribut | ted detected   | data, BTVs a   | and UCLs ma     | y be compu    | ted using gar  | nma distribu | tion on KM es    | stimates       |          |
| 167 |        |          |               |                | Minimum        | 0.01            | , <u> </u>    |                |              |                  | Mean           | 35.71    |
| 168 |        |          |               |                | Maximum        | 318             |               |                |              |                  | Median         | 10.6     |
| 169 |        |          |               |                | SD             | 60.17           |               |                |              |                  | CV             | 1.685    |
| 1/0 |        |          |               |                | k hat (MI F)   | 0.376           |               |                | k            | star (bias cor   | rected MI F)   | 0.371    |
| 1/1 |        |          |               | The            | ta hat (MLF)   | 94.95           |               |                | Theta        | star (bias cor   | rected MLE)    | 96.25    |
| 1/2 |        |          |               | r              | nu hat (MI F)  | 68.46           |               |                |              | nu star (bia     | s corrected)   | 67.54    |
| 1/3 |        |          |               |                |                |                 | <u> </u>      |                |              |                  |                |          |

|     | A B C D E                                              | F               | G                | Н            |             |           | J                                            | K                      | L     |
|-----|--------------------------------------------------------|-----------------|------------------|--------------|-------------|-----------|----------------------------------------------|------------------------|-------|
| 174 | Adjusted Level of Significance (β)                     | 0.0474          |                  |              |             |           |                                              | (07.54.0)              | 40.00 |
| 175 | Approximate Chi Square Value (67.54, α)                | 49.62           |                  | 050/         | Adjust      | ed Chi S  | Square Va                                    | alue (67.54, $\beta$ ) | 49.38 |
| 176 |                                                        | 40.01           |                  | 90%          | Gamma       | Aujustet  |                                              | e when h<50)           | 40.00 |
| 177 | Estimates of (                                         | amma Para       | meters using     | ı KM Estir   | nates       |           |                                              |                        |       |
| 1/8 | Mean (KM)                                              | 36.11           |                  | ,            | hatoo       |           |                                              | SD (KM)                | 59.62 |
| 179 | Variance (KM)                                          | 3554            |                  |              |             |           | SE                                           | of Mean (KM)           | 6.291 |
| 180 | k hat (KM)                                             | 0.367           |                  |              |             |           |                                              | k star (KM)            | 0.362 |
| 182 | nu hat (KM)                                            | 66.77           |                  |              |             |           |                                              | nu star (KM)           | 65.91 |
| 183 | theta hat (KM)                                         | 98.42           |                  |              |             |           | tł                                           | neta star (KM)         | 99.72 |
| 184 | 80% gamma percentile (KM)                              | 57.5            |                  |              |             | 90% (     | gamma pe                                     | ercentile (KM)         | 103.7 |
| 185 | 95% gamma percentile (KM)                              | 155.2           |                  |              |             | 99% (     | gamma pe                                     | ercentile (KM)         | 286.2 |
| 186 |                                                        |                 |                  |              |             |           |                                              |                        |       |
| 187 | Gamn                                                   | na Kaplan-M     | eier (KM) St     | atistics     |             |           |                                              |                        |       |
| 188 | Approximate Chi Square Value (65.91, $\alpha$ )        | 48.23           |                  |              | Adjust      | ed Chi S  | Square Va                                    | lue (65.91, β)         | 47.98 |
| 189 | 95% Gamma Approximate KM-UCL (use when n>=50)          | 49.35           |                  | 95% Gan      | nma Adju    | isted KN  | I-UCL (us                                    | e when n<50)           | 49.6  |
| 190 |                                                        |                 |                  |              |             |           |                                              |                        |       |
| 191 |                                                        | DF Test on D    | etected Obs      | ervations    | Only        |           | 00F T                                        |                        |       |
| 192 | Shapiro Wilk Approximate Test Statistic                | 0.944           |                  |              | Shap        |           |                                              | st<br>innificance la   | . al  |
| 193 | 5% Snapiro Wilk P Value                                | 0.00401         | D                | elected Da   |             | ioforo G  | $\frac{11 \text{ at 5\% 5}}{\text{OE Test}}$ | Ignificance Le         | vei   |
| 194 | 5% Lilliefors Critical Value                           | 0.12            | D                | atected Da   | ta Not L    |           |                                              | ignificance Le         | vol   |
| 195 |                                                        | Not Lognorm     | nal at 5% Sid    |              |             | Synomia   | ii at 5 /0 5                                 |                        |       |
| 196 |                                                        | Hot Loghom      |                  | grinioarioo  |             |           |                                              |                        |       |
| 19/ | Lognormal RC                                           | S Statistics    | Usina Imput      | ed Non-De    | etects      |           |                                              |                        |       |
| 198 | Mean in Original Scale                                 | 35.99           |                  |              |             |           | Mear                                         | n in Log Scale         | 2.54  |
| 200 | SD in Original Scale                                   | 60.01           |                  |              |             |           | SE                                           | ) in Log Scale         | 1.466 |
| 200 | 95% t UCL (assumes normality of ROS data)              | 46.44           |                  |              |             | 95% Pe    | ercentile B                                  | ootstrap UCL           | 46.75 |
| 202 | 95% BCA Bootstrap UCL                                  | 48.16           |                  |              |             |           | 95% Bo                                       | otstrap t UCL          | 48.89 |
| 203 | 95% H-UCL (Log ROS)                                    | 56.71           |                  |              |             |           |                                              |                        |       |
| 204 |                                                        |                 |                  |              |             |           |                                              |                        |       |
| 205 | Statistics using KM estimates                          | on Logged [     | Data and As      | suming Lo    | ognormal    | Distribu  | ution                                        |                        |       |
| 206 | KM Mean (logged)                                       | 2.589           |                  |              |             |           | ł                                            | KM Geo Mean            | 13.32 |
| 207 | KM SD (logged)                                         | 1.393           |                  |              |             | 95% Cr    | itical H Va                                  | alue (KM-Log)          | 2.658 |
| 208 | KM Standard Error of Mean (logged)                     | 0.153           |                  |              |             | 050/ 0    | 95% H-U                                      | CL (KM -Log)           | 51.96 |
| 209 | KM SD (logged)                                         | 1.393           |                  |              |             | 95% Cr    | itical H Va                                  | alue (KM-Log)          | 2.658 |
| 210 | KM Standard Error of Mean (logged)                     | 0.153           |                  |              |             |           |                                              |                        |       |
| 211 |                                                        |                 | tatistics        |              |             |           |                                              |                        |       |
| 212 | DL/2 Normal                                            |                 |                  |              | DL/2        | Log-Tra   | ansforme                                     | 4                      |       |
| 213 | Mean in Original Scale                                 | 36.07           |                  |              |             |           | Mear                                         | -<br>n in Log Scale    | 2.597 |
| 214 | SD in Original Scale                                   | 59.97           |                  |              |             |           | SE                                           | ) in Log Scale         | 1.373 |
| 215 | 95% t UCL (Assumes normality)                          | 46.52           |                  |              |             |           | 959                                          | % H-Stat UCL           | 50.47 |
| 210 | DL/2 is not a recommended m                            | ethod, provid   | ded for com      | oarisons a   | nd histo    | rical rea | sons                                         |                        |       |
| 217 |                                                        |                 |                  |              |             |           |                                              |                        |       |
| 219 | Nonparam                                               | etric Distribu  | tion Free UC     | L Statisti   | cs          |           |                                              |                        |       |
| 220 | Data do not follow a D                                 | iscernible Di   | istribution at   | 5% Signi     | ficance L   | .evel     |                                              |                        |       |
| 221 |                                                        |                 |                  |              |             |           |                                              |                        |       |
| 222 |                                                        | Suggested       | UCL to Use       |              |             |           |                                              |                        |       |
| 223 | 95% KM (Chebyshev) UCL                                 | 63.53           |                  |              |             |           |                                              |                        |       |
| 224 |                                                        |                 |                  |              |             |           |                                              |                        |       |
| 225 | Note: Suggestions regarding the selection of a 95%     | % UCL are pro   | ovided to he     | p the user   | r to selec  | t the mo  | st approp                                    | riate 95% UCL          |       |
| 226 | Recommendations are ba                                 | sed upon dat    | ta size, data    | distribution | n, and sk   | ewness.   |                                              | 11 (0000)              |       |
| 227 | I hese recommendations are based upon the resu         | uits of the sim | nulation studi   | es summa     | arized in S | Singh, N  | laichle, ar                                  | nd Lee (2006).         |       |
| 228 | However, simulations results will not cover all Real V | Vorld data se   | ts; for addition | onal insigh  | t the use   | r may wa  | ant to con                                   | sult a statistic       | an.   |

|     | A       | В      |       | С          |        | D          | E          |          | F                                              | G             | H          |         |          |         | J         |             |       | K       |          | L       |
|-----|---------|--------|-------|------------|--------|------------|------------|----------|------------------------------------------------|---------------|------------|---------|----------|---------|-----------|-------------|-------|---------|----------|---------|
| 229 | Mercury |        |       |            |        |            |            |          |                                                |               |            |         |          |         |           |             |       |         |          |         |
| 230 |         |        |       |            |        |            |            |          |                                                |               |            |         |          |         |           |             |       |         |          |         |
| 231 |         |        |       |            |        |            |            |          | General                                        | Statistics    |            |         |          |         |           |             |       |         |          |         |
| 232 |         |        |       | Tota       | l Nun  | hber of (  | Observa    | tions    | 38                                             |               |            |         | Nur      | mber    | of Distin | nct O       | bser  | vations |          | 21      |
| 233 |         |        |       |            | -      |            |            |          |                                                |               |            |         | Nur      | nber o  | of Missir | ng O        | bser  | vations | 3        | 2       |
| 234 |         |        |       |            |        | Numb       | er of De   | etects   | 22                                             |               |            |         |          |         | Numbei    | r of N      | lon-[ | Detects | 3        | 16      |
| 235 |         |        |       | N          | lumbe  | er of Dis  | tinct De   | etects   | 21                                             |               |            |         | Nu       | Imber   | of Disti  | nct N       | lon-[ | Detects | 3        | 2       |
| 230 |         |        |       |            |        | Min        | imum D     | etect    | 0.01                                           |               |            |         |          |         | Minin     | num         | Non-  | -Detec  | t (      | 0.01    |
| 237 |         |        |       |            |        | Max        | imum D     | etect    | 4.25                                           |               |            |         |          |         | Maxin     | num         | Non-  | -Detec  | t        | 0.1     |
| 230 |         |        |       |            |        | Varia      | ance De    | etects   | 1.418                                          |               |            |         |          |         | Perce     | ent N       | lon-[ | Detects | ; ,      | 42.11%  |
| 239 |         |        |       |            |        | Ν          | lean De    | etects   | 1.055                                          |               |            |         |          |         |           |             | SD D  | Detects | 3        | 1.191   |
| 240 |         |        |       |            |        | Ме         | dian De    | etects   | 0.75                                           |               |            |         |          |         |           |             | CVE   | Detects | 3        | 1.128   |
| 241 |         |        |       |            |        | Skewr      | ness De    | etects   | 1.318                                          |               |            |         |          |         |           | Kurto       | sis [ | Detects | 3        | 1.246   |
| 242 |         |        |       |            | Меа    | in of Log  | ged De     | etects   | -1.007                                         |               |            |         |          |         | SD of     | Logo        | jed [ | Detects | 3        | 1.859   |
| 243 |         |        |       |            |        |            |            |          |                                                |               |            |         |          |         |           |             |       |         |          |         |
| 245 |         |        |       |            |        |            |            | Norma    | al GOF Tes                                     | t on Detect   | s Only     |         |          |         |           |             |       |         |          |         |
| 246 |         |        |       | Ś          | Shapi  | ro Wilk    | Test Sta   | atistic  | 0.835                                          |               |            |         | Shapiro  | o Wilk  | GOF T     | <b>Fest</b> |       |         |          |         |
| 247 |         |        |       | 5% 5       | Shapir | o Wilk (   | Critical V | /alue    | 0.911                                          |               | Detecte    | d Data  | a Not No | ormal   | at 5% S   | Signif      | ican  | ce Lev  | el       |         |
| 248 |         |        |       |            | Li     | Iliefors   | Test Sta   | atistic  | 0.2                                            |               |            |         | Lillie   | fors G  | OF Tes    | st          |       |         |          |         |
| 249 |         |        |       | Į          | 5% Li  | lliefors ( | Critical V | /alue    | 0.184                                          |               | Detecte    | d Data  | a Not No | ormal   | at 5% S   | Signif      | ican  | ce Lev  | el       |         |
| 250 |         |        |       |            |        | 0          | Detecte    | d Data   | Not Norma                                      | l at 5% Sig   | nificance  | e Leve  | əl       |         |           |             |       |         |          |         |
| 251 |         |        |       |            |        |            |            |          |                                                |               |            |         |          |         |           |             |       |         |          |         |
| 252 |         |        |       | Kaplan     | -Meie  | er (KM) S  | Statistic  | s usin   | g Normal C                                     | ritical Value | es and o   | ther N  | lonpara  | ametri  | c UCLs    | \$          |       |         |          |         |
| 253 |         |        |       |            |        |            | KMI        | Mean     | 0.618                                          |               |            |         |          | KM      | Standa    | rd Er       | ror o | of Mear | 1        | 0.17    |
| 254 |         |        |       |            |        |            | K          | M SD     | 1.023                                          |               |            |         |          |         | 95%       | KM          | (BC/  | A) UCL  | -        | 0.909   |
| 255 |         |        |       |            |        | 95%        | 6 KM (t)   | UCL      | 0.904                                          |               |            |         | 95% K    | M (Pe   | rcentile  | Boo         | tstra | p) UCL  | -        | 0.903   |
| 256 |         |        |       |            |        | 95%        | 5 KM (z)   | UCL      | 0.897                                          |               |            |         |          | 9       | 5% KM     | Boot        | strap | o t UCL | -        | 1.022   |
| 257 |         |        |       |            | 90%    | KM Che     | ebyshev    | UCL      | 1.128                                          |               |            |         |          | 95      | 5% KM (   | Cheb        | yshe  | ev UCL  | -        | 1.358   |
| 258 |         |        |       | 9          | 7.5%   | KM Che     | ebyshev    | UCL      | 1.679                                          |               |            |         |          | 99      | 9% KM (   | Cheb        | yshe  | ev UCL  | -        | 2.308   |
| 259 |         |        |       |            |        |            |            |          |                                                |               |            |         |          |         |           |             |       |         |          |         |
| 260 |         |        |       |            |        | C          | Gamma      | GOF      | Tests on De                                    | etected Obs   | ervation   | is Onl  | у        |         |           |             |       |         |          |         |
| 261 |         |        |       |            |        | A-D        | Test Sta   | atistic  | 0.488                                          |               |            | Ar      | derson   | -Darli  | ing GOI   | FTe         | st    | -       |          |         |
| 262 |         |        |       |            | 5      | % A-D (    |            | /alue    | 0.797                                          | Detecte       | ed data a  | ppear   | Gamm     | na Dis  | tributed  | at 5°       | % Si  | gnifica | nce l    | _evel   |
| 263 |         |        |       |            |        | K-S        | lest Sta   | atistic  | 0.139                                          |               |            | K       | olmogo   | prov-S  | mirnov    | GOF         | -     |         |          |         |
| 264 |         |        |       |            | 5      | % K-S (    |            | /alue    | 0.195                                          | Detecte       | ed data a  | ippear  | Gamm     | na Dis  | tributed  | at 5        | % Si  | gnifica | nce I    | _evel   |
| 265 |         |        |       |            | L      | Detected   |            | ppear    | Gamma Di                                       | stributed at  | 5% Sigr    | nificar |          | ei      |           |             |       |         |          |         |
| 266 |         |        |       |            |        |            |            |          | Ptotiotico or                                  | Detected      | Data On    | h.,     |          |         |           |             |       |         |          |         |
| 267 |         |        |       |            |        |            | Ga         |          |                                                |               | Jala On    | iy      |          | li ot   | or (hioo  | r           | ooto  |         |          | 0 5 2 5 |
| 268 |         |        |       |            |        | The        | ta hat (   |          | 1 805                                          |               |            |         | Th       |         |           | corr        |       |         | ,<br>    | 0.555   |
| 269 |         |        |       |            |        | 1110       | nu hat (   |          | 25.73                                          |               |            |         |          |         |           | (hiad       |       |         | <u>,</u> | 23 55   |
| 270 |         |        |       |            |        | Ma         |            |          | 1 055                                          |               |            |         |          |         | nu stai   | (Dias       |       | rected  | , ·      | 20.00   |
| 271 |         |        |       |            |        | IVIC       | san (ue    | 10013)   | 1.000                                          |               |            |         |          |         |           |             |       |         |          |         |
| 272 |         |        |       |            |        |            | Gamma      | ROS      | Statistics u                                   | sina Impute   | d Non-D    | )etect  | •        |         |           |             |       |         |          |         |
| 273 |         |        | G     | ROS ma     | v not  | he used    | l when (   | lata se  | $\frac{1}{10000000000000000000000000000000000$ | NDs with r    | nany tier  | d obse  | rvation  | satm    | ultinle ( | DIs         |       |         |          |         |
| 274 |         | GROS m | av nr | t be use   | d whe  | en kstar   | of deter   | cts is s | mall such a                                    | s <1.0. esne  | ecially wi | hen th  | e samn   |         | e is sma  |             | a. <  | 15-20   |          |         |
| 275 |         |        | ,     | Fi         | or suc | ch situat  | ions. G    | ROS n    | nethod mav                                     | vield incorr  | ect value  | es of I | JCLs an  |         | vs        | (0.         | J., ` |         |          |         |
| 276 |         |        |       |            | J. Jul |            | This is e  | specia   | ally true whe                                  | n the same    | e size is  | smal    | l.       |         |           |             |       |         |          |         |
| 277 |         | For a  | amm   | a distribi | Ited d | etected    | data R     | TVs ar   |                                                | v be comp     | Ited usin  | g gam   | ma dist  | tributi | on on K   | Mes         | tima  | tes     |          |         |
| 2/8 |         | 9      |       |            |        | 5.50.00    | Mini       | imum     | 0.01                                           |               |            | a gan   |          |         | 0111      | 00          |       | Mear    | 1        | 0.617   |
| 2/9 |         |        |       |            |        |            | Maxi       | mum      | 4.25                                           |               |            |         |          |         |           |             | -     | Mediar  |          | 0.045   |
| 280 |         |        |       |            |        |            |            | SD       | 1.037                                          |               |            |         |          |         |           |             |       | C\      | , —      | 1.68    |
| 281 |         |        |       |            |        |            | k hat (    | MLE)     | 0.341                                          |               |            |         |          | k st    | ar (bias  | corr        | ecte  |         | )        | 0.331   |
| 282 |         |        |       |            |        | The        | ta hat (   | MLE)     | 1.811                                          |               |            |         | Th       | ieta st | ar (bias  | corr        | ecter |         | )        | 1.863   |
| 283 |         |        |       |            |        |            |            |          |                                                |               |            |         |          |         | (2140     |             |       | ····    | 1        |         |

|            | A B C D E                                            |                  | F                                                                           | G                                            | н                             |          | JK                                   | L     |  |  |  |  |  |  |
|------------|------------------------------------------------------|------------------|-----------------------------------------------------------------------------|----------------------------------------------|-------------------------------|----------|--------------------------------------|-------|--|--|--|--|--|--|
| 284        | nu hat (M                                            | MLE)             | 25.9                                                                        |                                              |                               |          | nu star (bias corrected)             | 25.19 |  |  |  |  |  |  |
| 285        | Adjusted Level of Significanc                        | e (β)            | 0.0434                                                                      |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 286        | Approximate Chi Square Value (25.1                   | 9, α)            | 14.76                                                                       |                                              |                               | Adjuste  | d Chi Square Value (25.19, β)        | 14.43 |  |  |  |  |  |  |
| 287        | 95% Gamma Approximate UCL (use when n>               | =50)             | 1.054                                                                       |                                              | 95% Ga                        | mma Ao   | djusted UCL (use when n<50)          | 1.078 |  |  |  |  |  |  |
| 288        |                                                      |                  |                                                                             | mma Parameters using KM Estimates            |                               |          |                                      |       |  |  |  |  |  |  |
| 289        | Esuinates                                            |                  |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 290        | Variance                                             | (KM)             | 1 047                                                                       |                                              | 0.17                          |          |                                      |       |  |  |  |  |  |  |
| 291        | k hat                                                | (KM)             | 0.365                                                                       |                                              | 0.353                         |          |                                      |       |  |  |  |  |  |  |
| 292        | nu hat                                               | (KM)             | 27.71                                                                       |                                              |                               |          | nu star (KM)                         | 26.85 |  |  |  |  |  |  |
| 293        | theta hat                                            | (KM)             | 1.695                                                                       |                                              |                               |          | theta star (KM)                      | 1.749 |  |  |  |  |  |  |
| 294        | 80% gamma percentile                                 | (KM)             | 0.98                                                                        |                                              |                               |          | 90% gamma percentile (KM)            | 1.781 |  |  |  |  |  |  |
| 295        | 95% gamma percentile                                 | (KM)             | 2.678                                                                       |                                              |                               |          | 99% gamma percentile (KM)            | 4.963 |  |  |  |  |  |  |
| 297        |                                                      |                  |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 298        | G                                                    | amm              | a Kaplan-Me                                                                 | eier (KM) St                                 | atistics                      |          |                                      |       |  |  |  |  |  |  |
| 299        | Approximate Chi Square Value (26.8                   | 5, α)            | 16.04                                                                       |                                              |                               | Adjuste  | d Chi Square Value (26.85, $\beta$ ) | 15.69 |  |  |  |  |  |  |
| 300        | 95% Gamma Approximate KM-UCL (use when n>            | =50)             | 1.034                                                                       |                                              | 95% Gamma                     | a Adjust | ted KM-UCL (use when n<50)           | 1.057 |  |  |  |  |  |  |
| 301        |                                                      |                  |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 302        | Lognorma                                             | al GO            | F Test on D                                                                 | etected Obs                                  | ervations Or                  | nly      |                                      |       |  |  |  |  |  |  |
| 303        | Shapiro Wilk Test Sta                                | tistic           | 0.912                                                                       |                                              |                               | Shapir   | o Wilk GOF Test                      |       |  |  |  |  |  |  |
| 304        | 5% Shapiro Wilk Critical V                           | /alue            | 0.911                                                                       | Dete                                         | ected Data a                  | ppear Lo | ognormal at 5% Significance L        | evel  |  |  |  |  |  |  |
| 305        | Lilliefors Test Sta                                  | tistic           | 0.196                                                                       |                                              |                               | Lillie   | fors GOF Test                        |       |  |  |  |  |  |  |
| 306        | 5% Lilliefors Critical V                             | /alue            | 0.184                                                                       | De                                           | etected Data                  | Not Log  | Inormal at 5% Significance Lev       | vel   |  |  |  |  |  |  |
| 307        | Detected Data app                                    | ear A            | pproximate                                                                  | proximate Lognormal at 5% Significance Level |                               |          |                                      |       |  |  |  |  |  |  |
| 308        | Lognormo                                             |                  |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 309        | Lognorma<br>Maan in Original S                       |                  |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 310        |                                                      |                  | 1.037                                                                       |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 311        | 95% t UCL (assumes normality of BOS)                 | data)            | 0.902                                                                       |                                              | 95% Percentile Rootstran LICI |          |                                      |       |  |  |  |  |  |  |
| 312        | 95% BCA Bootstrap                                    | UCL              | 0.974                                                                       |                                              | 95% Bootstrap t UCI           |          |                                      |       |  |  |  |  |  |  |
| 313        | 95% H-UCL (Log F                                     | ROS)             | 14.7                                                                        |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 314        |                                                      | ,                |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 315        | Statistics using KM estim                            | ates             | on Logged D                                                                 |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 317        | KM Mean (log                                         | ged)             | -2.405                                                                      |                                              | 0.0902                        |          |                                      |       |  |  |  |  |  |  |
| 318        | KM SD (log                                           | ged)             | 2.174                                                                       |                                              | 95% Critical H Value (KM-Lo   |          |                                      |       |  |  |  |  |  |  |
| 319        | KM Standard Error of Mean (log                       | ged)             | 0.368                                                                       |                                              | 95% H-UCL (KM -Log)           |          |                                      |       |  |  |  |  |  |  |
| 320        | KM SD (log                                           | ged)             | 2.174                                                                       |                                              | 4.005                         |          |                                      |       |  |  |  |  |  |  |
| 321        | KM Standard Error of Mean (log                       | ged)             | 0.368                                                                       |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 322        |                                                      |                  |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 323        |                                                      |                  | DL/2 St                                                                     | atistics                                     |                               |          |                                      |       |  |  |  |  |  |  |
| 324        | DL/2 Normal                                          | <u> </u>         | 0.001                                                                       | DL/2 Log-Transformed                         |                               |          |                                      |       |  |  |  |  |  |  |
| 325        | Mean in Original S                                   | cale             | 0.624                                                                       |                                              | -2.268                        |          |                                      |       |  |  |  |  |  |  |
| 326        | SD in Original S                                     | cale             | 1.033                                                                       |                                              |                               |          | SD in Log Scale                      | 2.185 |  |  |  |  |  |  |
| 327        | 95% t UCL (Assumes norm                              | ality)           | 0.907                                                                       | 95% H-Stat UCL 4.//                          |                               |          |                                      |       |  |  |  |  |  |  |
| 328        |                                                      | <del>o</del> u M | anou, provic                                                                | ieu ior comp                                 | ansons and                    | mstorio  | ai 10a30113                          |       |  |  |  |  |  |  |
| 329        | Nonns                                                | Irame            | tric Distribut                                                              | ion Free LIC                                 | L Statistics                  |          |                                      |       |  |  |  |  |  |  |
| 330        | Detected Data a                                      | ppea             | r Gamma Die                                                                 | stributed at !                               | 5% Significa                  | nce Lev  | rel                                  |       |  |  |  |  |  |  |
| 331        |                                                      |                  |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 332<br>222 |                                                      |                  | Suggested                                                                   | Suagested UCL to Use                         |                               |          |                                      |       |  |  |  |  |  |  |
| 333        | Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k | <=1)             | 1.057                                                                       | -                                            |                               |          |                                      |       |  |  |  |  |  |  |
| 335        |                                                      |                  |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 336        | Note: Suggestions regarding the selection of a       | a 95%            | 6 UCL are provided to help the user to select the most appropriate 95% UCL. |                                              |                               |          |                                      |       |  |  |  |  |  |  |
| 337        | Recommendations ar                                   | e bas            | ed upon data                                                                | a size, data o                               | distribution, a               | and skev | wness.                               |       |  |  |  |  |  |  |
| 338        | These recommendations are based upon the             | resu             | Its of the sim                                                              | ulation studi                                | es summariz                   | ed in Si | ngh, Maichle, and Lee (2006).        |       |  |  |  |  |  |  |
| -          |                                                      |                  |                                                                             |                                              |                               |          |                                      |       |  |  |  |  |  |  |

|     | A                                                                                                                                         | В | С | D | E | F | G | Н | _ | J | K | L |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|--|--|
| 339 | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. |   |   |   |   |   |   |   |   |   |   |   |  |  |
| 340 |                                                                                                                                           |   |   |   |   |   |   |   |   |   |   |   |  |  |

|          | A                                                                 | В              | С            | D              | E              | F                                 | G                                                    | Н             |               | J                 | K          | L      |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------|----------------|--------------|----------------|----------------|-----------------------------------|------------------------------------------------------|---------------|---------------|-------------------|------------|--------|--|--|--|--|--|--|
| 1        |                                                                   |                |              |                | UCL Statis     | tics for Data                     | Sets with No                                         | n-Detects     |               |                   |            |        |  |  |  |  |  |  |
| 2        |                                                                   |                |              | 1              |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 3        |                                                                   | User Sele      | cted Options |                | 10/10/2011     |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 4        | Da                                                                | te/ I ime of C | omputation   | ProUCL 5.1     | 18/12/2019 5   | o:1/:54 AM                        |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 5        |                                                                   |                | From File    | NAGD_revO      | _g.xls         |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 6        |                                                                   | Fu             |              |                |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 7        |                                                                   | Confidence     | Coefficient  | 95%            |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 8        | Number                                                            | of Bootstrap   | Operations   | 2000           |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 9        | Connor                                                            |                |              |                |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 10       | Copper                                                            |                |              |                |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 11       |                                                                   |                |              |                |                | General                           | Statistics                                           |               |               |                   |            |        |  |  |  |  |  |  |
| 12       |                                                                   |                | Total        | Number of C    | Observations   | 8 Number of Distinct Observations |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 13       |                                                                   |                | 10101        | Number         | er of Detects  | 3                                 |                                                      |               |               | Number of No      | on-Detects | 5      |  |  |  |  |  |  |
| 14       |                                                                   |                | N            |                | tinct Detects  | 3                                 |                                                      |               | Numbe         | er of Distinct No | n-Detects  | 1      |  |  |  |  |  |  |
| 15       |                                                                   |                |              | Mini           | mum Detect     | 45                                |                                                      |               | Numbe         | Minimum N         | Ion-Detect | 1      |  |  |  |  |  |  |
| 16       |                                                                   |                |              | Mavi           | mum Detect     | 180                               |                                                      |               |               | Maximum N         | Ion-Detect | 1      |  |  |  |  |  |  |
| 17       |                                                                   |                |              | Varia          | nco Dotocto    | 8600                              |                                                      |               |               | Porcont No        | n Dotocto  | 62.5%  |  |  |  |  |  |  |
| 18       |                                                                   |                |              | vaila          | ean Detecto    | 104 5                             |                                                      |               |               |                   |            | 02.0 % |  |  |  |  |  |  |
| 19       |                                                                   |                |              | IVI<br>Mo      | dian Detects   | 104.5                             |                                                      |               |               |                   |            | 93.22  |  |  |  |  |  |  |
| 20       |                                                                   |                |              | Skour          |                | 0 729                             |                                                      |               |               | Kurtos            |            | 0.092  |  |  |  |  |  |  |
| 21       |                                                                   |                |              | Moon of Log    | and Detects    | -0.720                            |                                                      |               |               | SD of Logg        | ad Detects | N/A    |  |  |  |  |  |  |
| 22       | Mean of Logged Detects     3.844     SD of Logged Detects     2.0 |                |              |                |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 23       |                                                                   |                |              |                | Warning: D     | ata sat has r                     | nly 3 Detect                                         | ed Values     |               |                   |            |        |  |  |  |  |  |  |
| 24       |                                                                   |                | т            | his is not end | wah to comp    | ute meaning                       | ful or reliable                                      | statistics ar | d estimates   | <u> </u>          |            |        |  |  |  |  |  |  |
| 25       |                                                                   |                |              |                |                | die meaning                       |                                                      |               | ia estimates  | •                 |            |        |  |  |  |  |  |  |
| 26       |                                                                   |                |              |                |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 27       |                                                                   |                | Note: Sam    | ole size is sm | nall (e.a. <10 | ) if data are                     | collected us                                         | ing ISM appr  | oach vou s    | hould use         |            |        |  |  |  |  |  |  |
| 28       |                                                                   |                | quidance pr  | ovided in ITR  | C Tech Rea     | Guide on IS                       | M (ITRC 20)                                          | 12) to compu  | te statistics | of interest       |            |        |  |  |  |  |  |  |
| 29       |                                                                   |                | For          | example, vou   | may want to    | use Chebys                        | shev UCL to                                          | estimate EP   | C (ITRC, 20   | 12).              |            |        |  |  |  |  |  |  |
| 30       |                                                                   |                | Chebyshev    | UCL can be     | computed u     | sing the Non                      | parametric a                                         |               | Dotions of P  | roUCL 5.1         |            |        |  |  |  |  |  |  |
| 31       |                                                                   |                | <b>,</b>     |                |                | g                                 | <u></u>                                              |               | - <b>F</b>    |                   |            |        |  |  |  |  |  |  |
| 32       |                                                                   |                |              |                | Norm           | al GOF Test                       | t on Detects                                         | Only          |               |                   |            |        |  |  |  |  |  |  |
| 30<br>34 |                                                                   |                | S            | hapiro Wilk 1  | est Statistic  | 0.979                             | 0.979 Shapiro Wilk GOF Test                          |               |               |                   |            |        |  |  |  |  |  |  |
| 34       |                                                                   |                | 5% S         | hapiro Wilk C  | Critical Value | 0.767                             | Detected Data appear Normal at 5% Significance Le    |               |               |                   |            |        |  |  |  |  |  |  |
| 30       |                                                                   |                |              | Lilliefors 1   | est Statistic  | 0.233                             | Lilliefors GOF Test                                  |               |               |                   |            |        |  |  |  |  |  |  |
| 30       |                                                                   |                | 5            | % Lilliefors C | Critical Value | 0.425                             | Detected Data appear Normal at 5% Significance Level |               |               |                   |            |        |  |  |  |  |  |  |
| 32       |                                                                   |                |              | De             | tected Data a  | appear Norm                       | al at 5% Sigi                                        | nificance Lev | rel           |                   |            |        |  |  |  |  |  |  |
| 39       |                                                                   |                |              |                |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 40       |                                                                   |                | Kaplan-      | Meier (KM) S   | tatistics usin | g Normal Cri                      | itical Values                                        | and other No  | onparametrio  | UCLs              |            |        |  |  |  |  |  |  |
| 41       |                                                                   |                |              |                | KM Mean        | 39.81                             |                                                      |               | K             | A Standard Err    | or of Mean | 29.63  |  |  |  |  |  |  |
| 42       |                                                                   |                |              |                | KM SD          | 68.43                             |                                                      |               |               | 95% KM (          | BCA) UCL   | N/A    |  |  |  |  |  |  |
| 43       |                                                                   |                |              | 95%            | KM (t) UCL     | 95.95                             |                                                      |               | 95% KM (F     | Percentile Boots  | strap) UCL | N/A    |  |  |  |  |  |  |
| 44       |                                                                   |                |              | 95%            | KM (z) UCL     | 88.55                             |                                                      |               |               | 95% KM Boots      | trap t UCL | N/A    |  |  |  |  |  |  |
| 45       |                                                                   |                | (            | 0% KM Che      | byshev UCL     | 128.7                             |                                                      |               | !             | 95% KM Cheby      | shev UCL   | 169    |  |  |  |  |  |  |
| 46       |                                                                   |                | 97           | .5% KM Che     | byshev UCL     | 224.9                             |                                                      |               | !             | 99% KM Cheby      | shev UCL   | 334.7  |  |  |  |  |  |  |
| 47       |                                                                   |                |              |                |                |                                   | 1                                                    |               |               |                   |            |        |  |  |  |  |  |  |
| 48       |                                                                   |                |              | G              | iamma GOF      | Tests on De                       | tected Obser                                         | vations Only  | 1             |                   |            |        |  |  |  |  |  |  |
| 49       |                                                                   |                |              |                | Not End        | ough Data to                      | Perform GO                                           | F Test        |               |                   |            |        |  |  |  |  |  |  |
| 50       |                                                                   |                |              |                |                |                                   |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 51       |                                                                   |                |              |                | Gamma          | Statistics on                     | Detected Da                                          | ata Only      |               |                   |            |        |  |  |  |  |  |  |
| 52       |                                                                   |                |              |                | k hat (MLE)    | 0.745                             |                                                      |               | k             | star (bias corre  | cted MLE)  | N/A    |  |  |  |  |  |  |
| 53       |                                                                   |                |              | The            | ta hat (MLE)   | 140.3                             |                                                      |               | Theta         | star (bias corre  | cted MLE)  | N/A    |  |  |  |  |  |  |
| 54       |                                                                   |                |              | r              | u hat (MLE)    | 4.468                             |                                                      |               |               | nu star (bias     | corrected) | N/A    |  |  |  |  |  |  |
| 55       |                                                                   |                |              | Me             | an (detects)   | 104.5                             |                                                      |               |               |                   |            |        |  |  |  |  |  |  |
| 1111     |                                                                   |                |              |                |                | 1                                 | 1                                                    |               |               |                   |            |        |  |  |  |  |  |  |

|          | A B C D E                                                 | F              | G H I J K                                                       | L        |  |  |  |  |  |  |  |  |  |  |  |
|----------|-----------------------------------------------------------|----------------|-----------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|--|--|
| 56       | Gamma ROS                                                 | Statistics us  | ing Imputed Non-Detects                                         |          |  |  |  |  |  |  |  |  |  |  |  |
| 57       | GROS may not be used when data s                          | set has > 50%  | 6 NDs with many tied observations at multiple DLs               |          |  |  |  |  |  |  |  |  |  |  |  |
| 58       | GROS may not be used when kstar of detects is             | small such a   | s <1.0, especially when the sample size is small (e.g., <15-20) |          |  |  |  |  |  |  |  |  |  |  |  |
| 59       | For such situations, GROS                                 | method may     | vield incorrect values of UCLs and BTVs                         |          |  |  |  |  |  |  |  |  |  |  |  |
| 61       | This is espec                                             | ially true whe | n the sample size is small.                                     |          |  |  |  |  |  |  |  |  |  |  |  |
| 62       | For gamma distributed detected data, BTVs                 | and UCLs ma    | ay be computed using gamma distribution on KM estimates         |          |  |  |  |  |  |  |  |  |  |  |  |
| 62       | Minimum                                                   | 0.01           | Mean                                                            | 39.19    |  |  |  |  |  |  |  |  |  |  |  |
| 64       | Maximum                                                   | 189            | Median                                                          | 0.01     |  |  |  |  |  |  |  |  |  |  |  |
| 65       | SD                                                        | 73.54          | CV                                                              | 1.876    |  |  |  |  |  |  |  |  |  |  |  |
| 66       | k hat (MLE)                                               | 0.15           | k star (bias corrected MLE)                                     | 0.177    |  |  |  |  |  |  |  |  |  |  |  |
| 67       | Theta hat (MLE)                                           | 260.5          | Theta star (bias corrected MLE)                                 | 221      |  |  |  |  |  |  |  |  |  |  |  |
| 68       | nu hat (MLE)                                              | 2.408          | nu star (bias corrected)                                        | 2.838    |  |  |  |  |  |  |  |  |  |  |  |
| 69       | Adjusted Level of Significance ( $\beta$ )                | 0.0195         |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 70       | Approximate Chi Square Value (2.84, α)                    | 0.326          | Adjusted Chi Square Value (2.84, $\beta$ )                      | 0.187    |  |  |  |  |  |  |  |  |  |  |  |
| 71       | 95% Gamma Approximate UCL (use when n>=50)                | 341.1          | 95% Gamma Adjusted UCL (use when n<50)                          | N/A      |  |  |  |  |  |  |  |  |  |  |  |
| 72       | 2                                                         |                |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 73       | 23 Estimates of Gamma Parameters using KM Estimates       |                |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 74       | Mean (KM)                                                 | 39.81          | SD (KM)                                                         | 68.43    |  |  |  |  |  |  |  |  |  |  |  |
| 75       | Variance (KM)                                             | 4683           | SE of Mean (KM)                                                 | 29.63    |  |  |  |  |  |  |  |  |  |  |  |
| 76       | k hat (KM)                                                | 0.338          | k star (KM)                                                     | 0.295    |  |  |  |  |  |  |  |  |  |  |  |
| 77       | nu hat (KM)                                               | 5.415          | nu star (KM)                                                    | 4.718    |  |  |  |  |  |  |  |  |  |  |  |
| 78       | theta hat (KM)                                            | 117.6          | theta star (KM)                                                 | 135      |  |  |  |  |  |  |  |  |  |  |  |
| 79       | 80% gamma percentile (KM)                                 | 60.79          | 90% gamma percentile (KM)                                       | 117.7    |  |  |  |  |  |  |  |  |  |  |  |
| 80       | 95% gamma percentile (KM) 183.1 99% gamma percentile (KM) |                |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 81       | Gamp                                                      | na Kanlan-Me   | sior (KM) Statistics                                            |          |  |  |  |  |  |  |  |  |  |  |  |
| 82       | Gamma Kapian-Meier (KM) Statistics                        |                |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 83       | 95% Gamma Approximate KM-UCL (use when n>=50)             | 183.4          | 95% Gamma Adjusted KM-UCL (use when n<50)                       | 284.8    |  |  |  |  |  |  |  |  |  |  |  |
| 84       | ······································                    |                |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 60<br>86 | Lognormal GC                                              | OF Test on De  | etected Observations Only                                       |          |  |  |  |  |  |  |  |  |  |  |  |
| 87       | Shapiro Wilk Test Statistic                               | 0.84           | Shapiro Wilk GOF Test                                           |          |  |  |  |  |  |  |  |  |  |  |  |
| 88       | 5% Shapiro Wilk Critical Value                            | 0.767          | Detected Data appear Lognormal at 5% Significance Lo            | ce Level |  |  |  |  |  |  |  |  |  |  |  |
| 89       | Lilliefors Test Statistic                                 | 0.345          | Lilliefors GOF Test                                             |          |  |  |  |  |  |  |  |  |  |  |  |
| 90       | 5% Lilliefors Critical Value                              | 0.425          | Detected Data appear Lognormal at 5% Significance Le            | Level    |  |  |  |  |  |  |  |  |  |  |  |
| 91       | Detected Data ap                                          | opear Lognor   | mal at 5% Significance Level                                    |          |  |  |  |  |  |  |  |  |  |  |  |
| 92       |                                                           |                |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 93       | Lognormal RO                                              | S Statistics U | Ising Imputed Non-Detects                                       |          |  |  |  |  |  |  |  |  |  |  |  |
| 94       | Mean in Original Scale                                    | 39.31          | Mean in Log Scale                                               | -0.572   |  |  |  |  |  |  |  |  |  |  |  |
| 95       | SD in Original Scale                                      | 73.47          | SD in Log Scale                                                 | 4.246    |  |  |  |  |  |  |  |  |  |  |  |
| 96       | 95% t UCL (assumes normality of ROS data)                 | 88.52          | 95% Percentile Bootstrap UCL                                    | /8.4/    |  |  |  |  |  |  |  |  |  |  |  |
| 97       |                                                           | 94.0Z          | 95% Bootstrap t UCL                                             | 1807     |  |  |  |  |  |  |  |  |  |  |  |
| 98       | 95% H-UCL (LOU RUS)                                       | 2.909E+12      |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 99       | Statietice using KM astimatos                             | on Loaged D    | ata and Assuming Lognormal Distribution                         |          |  |  |  |  |  |  |  |  |  |  |  |
| 100      | KM Mean (logged)                                          | 1 442          | KM Geo Mean                                                     | 4 228    |  |  |  |  |  |  |  |  |  |  |  |
| 101      | KM SD (logged)                                            | 2.122          | 95% Critical H Value (KM-I on)                                  | 6.481    |  |  |  |  |  |  |  |  |  |  |  |
| 102      | KM Standard Error of Mean (logged)                        | 0.919          | 95% H-UCL (KM -Loa)                                             | 7277     |  |  |  |  |  |  |  |  |  |  |  |
| 103      | KM SD (logged)                                            | 2.122          | 95% Critical H Value (KM-Log)                                   | 6.481    |  |  |  |  |  |  |  |  |  |  |  |
| 104      | KM Standard Error of Mean (logged)                        | 0.919          |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 106      |                                                           |                |                                                                 |          |  |  |  |  |  |  |  |  |  |  |  |
| 107      |                                                           | DL/2 St        | atistics                                                        |          |  |  |  |  |  |  |  |  |  |  |  |
| 108      | DL/2 Normal                                               |                | DL/2 Log-Transformed                                            |          |  |  |  |  |  |  |  |  |  |  |  |
| 109      | Mean in Original Scale                                    | 39.5           | Mean in Log Scale                                               | 1.008    |  |  |  |  |  |  |  |  |  |  |  |
| -        | SD in Original Scale                                      | 73.35          | SD in Log Scale                                                 | 2.589    |  |  |  |  |  |  |  |  |  |  |  |

|     | А                                                                | В                    | С              | D              | E              | F               | G               | Н               |                | J              | K               | L      |  |  |  |  |
|-----|------------------------------------------------------------------|----------------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|--------|--|--|--|--|
| 111 |                                                                  |                      | 95% t l        | JCL (Assume    | es normality)  | 88.63           |                 |                 |                | 95%            | H-Stat UCL      | 164711 |  |  |  |  |
| 112 |                                                                  |                      | DL/2           | s not a recor  | nmended me     | thod, provid    | ed for compa    | arisons and h   | istorical reas | sons           |                 |        |  |  |  |  |
| 113 |                                                                  |                      |                |                |                |                 |                 |                 |                |                |                 |        |  |  |  |  |
| 114 | Nonparametric Distribution Free UCL Statistics                   |                      |                |                |                |                 |                 |                 |                |                |                 |        |  |  |  |  |
| 115 | Detected Data appear Normal Distributed at 5% Significance Level |                      |                |                |                |                 |                 |                 |                |                |                 |        |  |  |  |  |
| 116 |                                                                  |                      |                |                |                |                 |                 |                 |                |                |                 |        |  |  |  |  |
| 117 |                                                                  | Suggested UCL to Use |                |                |                |                 |                 |                 |                |                |                 |        |  |  |  |  |
| 118 |                                                                  |                      |                | 95%            | 5 KM (t) UCL   | 95.95           |                 |                 |                |                |                 |        |  |  |  |  |
| 119 |                                                                  |                      |                |                |                |                 |                 |                 |                |                |                 |        |  |  |  |  |
| 120 | I                                                                | Note: Sugge          | stions regard  | ling the seled | tion of a 95%  | 6 UCL are pr    | rovided to he   | lp the user to  | select the n   | nost appropri  | ate 95% UC      | L.     |  |  |  |  |
| 121 |                                                                  |                      | F              | Recommenda     | ations are ba  | sed upon dat    | ta size, data   | distribution,   | and skewnes    | SS.            |                 |        |  |  |  |  |
| 122 |                                                                  | These record         | mmendation     | s are based ι  | ipon the resu  | ults of the sim | nulation stud   | ies summari:    | zed in Singh   | , Maichle, and | d Lee (2006)    | ).     |  |  |  |  |
| 123 | Но                                                               | wever, simu          | lations result | s will not cov | ver all Real W | /orld data se   | ts; for additio | onal insight th | ne user may    | want to cons   | ult a statistic | cian.  |  |  |  |  |
| 124 |                                                                  |                      |                |                |                |                 |                 |                 |                |                |                 |        |  |  |  |  |

|                                        | A                                                                                               |     | В      |       | С       |         | D        | E             |             | F           | G                                                               |          | Н       |          |          |         | J        |        |        | K         |            | L     |
|----------------------------------------|-------------------------------------------------------------------------------------------------|-----|--------|-------|---------|---------|----------|---------------|-------------|-------------|-----------------------------------------------------------------|----------|---------|----------|----------|---------|----------|--------|--------|-----------|------------|-------|
| 125                                    | Lead                                                                                            |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 126                                    | Luau                                                                                            |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 127                                    |                                                                                                 |     |        |       |         |         |          |               |             | General     | Statistics                                                      |          |         |          |          |         |          |        |        |           |            |       |
| 128                                    |                                                                                                 |     |        |       | Total   | Numb    | per of ( | Observatio    | ons         | 8           | Number of Distinct Observations                                 |          |         |          |          |         |          |        |        |           |            | 8     |
| 129                                    |                                                                                                 |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          | Num      | ber c   | of Miss  | ing (  | Obse   | rvations  | s          | 0     |
| 130                                    |                                                                                                 |     |        |       |         |         |          | Minimu        | um          | 1.4         |                                                                 |          |         |          |          |         |          |        |        | Mear      | ı          | 62.21 |
| 122                                    |                                                                                                 |     |        |       |         |         |          | Maximu        | 318         |             |                                                                 |          |         |          |          |         |          |        | Mediar | ı         | 12.6       |       |
| 133                                    |                                                                                                 |     |        |       |         |         |          | 5             | SD          | 109.4       |                                                                 |          |         |          |          |         | S        | td. E  | rror   | of Mear   | า          | 38.68 |
| 134                                    |                                                                                                 |     |        |       |         | Coe     | fficien  | t of Variati  | ion         | 1.758       |                                                                 |          |         |          |          |         |          |        | Sk     | ewness    | 5          | 2.324 |
| 135                                    |                                                                                                 |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 136                                    |                                                                                                 |     |        | No    | te: Sam | ple siz | e is sn  | nall (e.g., < | <10),       | if data are | collected                                                       | using IS | SM app  | proac    | h, yoı   | u sho   | ould us  | ;e     |        |           |            |       |
| 137                                    | guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 138                                    | For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).                    |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 139                                    | 9 Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1       |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 140                                    |                                                                                                 |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 141                                    |                                                                                                 |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 142                                    |                                                                                                 |     |        |       | S       | hapiro  | Wilk     | Test Statis   | stic        | 0.633       |                                                                 | -        |         | Sha      | apiro    | Wilk    | GOF 1    |        |        |           |            |       |
| 143                                    |                                                                                                 |     |        |       | 5% S    | hapiro  | Wilk C   | Critical Val  | lue         | 0.818       |                                                                 | L        | Data No | ot No    | rmal     | at 5%   | 6 Signi  | ificar | nce L  | evel      |            |       |
| 144                                    |                                                                                                 |     |        |       |         |         | etors    | l est Statis  | stic        | 0.353       |                                                                 | r        |         |          | .Illieto | ors G   |          | st     |        |           |            |       |
| 145 5% Lilliefors Critical Value 0.283 |                                                                                                 |     |        |       |         |         |          |               |             |             |                                                                 |          | IOT INO | rmai     | at 5%    | % Signi | Ificar   | nce L  | -evei  |           |            |       |
| 146                                    | 6 Data Not Normal at 5% Significance Level                                                      |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 147                                    | 7 Assuming Normal Distribution                                                                  |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 148                                    |                                                                                                 |     |        |       | 95% No  | ormal l | ICI      |               | 7.550       |             |                                                                 |          | 95%     |          | s (Ad    | diust   | ed for S | Skev   | vnes   | (a)       |            |       |
| 149                                    |                                                                                                 |     |        |       |         | 95      | 5% Stu   | dent's-t U    | CL          | 135.5       |                                                                 |          |         | 95%      | Adiu     | usted   | -CLT U   | JCL    | (Che   | en-1995   | ) -        | 159.8 |
| 150                                    |                                                                                                 |     |        |       |         |         |          |               |             |             |                                                                 |          |         | 95%      | % Mo     | dified  | I-t UCL  | L (Jo  | hnsc   | on-1978   | ) -        | 140.8 |
| 151                                    |                                                                                                 |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           | <u> </u>   |       |
| 152                                    |                                                                                                 |     |        |       |         |         |          |               |             | Gamma (     | GOF Test                                                        |          |         |          |          |         |          |        |        |           |            |       |
| 154                                    |                                                                                                 |     |        |       |         |         | A-D      | Test Statis   | stic        | 0.494       | Anderson-Darling Gamma GOF Test                                 |          |         |          |          |         |          |        |        |           |            |       |
| 155                                    |                                                                                                 |     |        |       |         | 5%      | A-D C    | Critical Val  | lue         | 0.765       | Detec                                                           | ted dat  | a appe  | ear Ga   | amma     | a Dist  | tributed | d at ! | 5% S   | Significa | ince       | Level |
| 156                                    |                                                                                                 |     |        |       |         |         | K-S      | Test Statis   | stic        | 0.245       |                                                                 | 1        | Kolmoç  | gorov    | -Smiı    | rnov    | Gamm     | na Gé  | OF T   | est       |            |       |
| 157                                    |                                                                                                 |     |        |       |         | 5%      | 5 K-S (  | Critical Val  | lue         | 0.31        | Detected data appear Gamma Distributed at 5% Significance Level |          |         |          |          |         |          |        |        | Level     |            |       |
| 158                                    |                                                                                                 |     |        |       |         | De      | etected  | l data appe   | ear G       | amma Dis    | tributed at                                                     | 5% Sig   | nificar | nce Le   | evel     |         |          |        |        |           | -          |       |
| 159                                    |                                                                                                 |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 160                                    |                                                                                                 |     |        |       |         |         |          |               |             | Gamma       | Statistics                                                      |          |         |          |          |         |          |        |        |           |            |       |
| 161                                    |                                                                                                 |     |        |       |         |         |          | k hat (ML     | .E)         | 0.483       |                                                                 |          |         |          |          | k sta   | ar (bias | s cor  | recte  | ed MLE    | )          | 0.385 |
| 162                                    |                                                                                                 |     |        |       |         |         | The      | ta hat (ML    | -E)         | 128.8       |                                                                 |          |         |          | The      | eta sta | ar (bia  | s cor  | rrecte | ed MLE    | ) 1        | 161.5 |
| 163                                    |                                                                                                 |     |        |       |         |         | 1        | nu hat (ML    | .E)         | 7.73        |                                                                 |          |         |          |          |         | nu sta   | r (bia | as co  | rrected   | )          | 6.165 |
| 164                                    |                                                                                                 |     |        |       | M       | LE Me   | an (bia  | as correcte   | ed)         | 62.21       |                                                                 |          |         |          |          | N       |          | d (bia |        | rrected   | ) 1        | 100.2 |
| 165                                    |                                                                                                 |     |        |       | ۸ مانید |         |          | Cignifican    |             | 0.0105      |                                                                 |          |         | Appr     | roxim    |         |          | uare   | Valu   |           | )          | 1.725 |
| 166                                    |                                                                                                 |     |        |       | Adjus   | sted Le | everor   | Significan    | ice         | 0.0195      |                                                                 |          |         |          |          | Adji    | usted C  |        | quar   | e value   | •          | 1.198 |
| 167                                    |                                                                                                 |     |        |       |         |         |          |               | Δοοιι       | iming Gam   | ma Dietrib                                                      | ution    |         |          |          |         |          |        |        |           |            |       |
| 168                                    |                                                                                                 | 95% | Annroy | imate | - Gamm  |         | (1150.)  | when n>=      | <b>ASSU</b> | 222 4       |                                                                 | uuon     | ۵5% ۵   | diuste   | ad Ga    | mm      |          | (1156  | whe    | on n<50   | <u>)</u> ( | 320.2 |
| 169                                    |                                                                                                 | 507 |        | innau | Camin   |         | . (030   |               | 00)         | 222.7       |                                                                 |          | 5570 A  | lujusit  |          |         |          | (030   |        |           | /          | 20.2  |
| 170                                    |                                                                                                 |     |        |       |         |         |          |               |             | Lognormal   | GOF Test                                                        | t        |         |          |          |         |          |        |        |           |            |       |
| 170                                    |                                                                                                 |     |        |       | S       | hapiro  | Wilk     | Test Statis   | stic        | 0.968       |                                                                 |          | Sha     | apiro V  | Nilk L   | ogno    | ormal (  | GOF    | Tes    | t         |            |       |
| 172<br>172                             |                                                                                                 |     |        |       | 5% S    | hapiro  | Wilk (   | Critical Val  | lue         | 0.818       | Data appear Lognormal at 5% Significance Level                  |          |         |          |          |         |          |        |        |           |            |       |
| 174                                    |                                                                                                 |     |        |       |         | Lilli   | efors    | Test Statis   | stic        | 0.154       |                                                                 |          | Li      | illiefor | rs Log   | gnorr   | nal GC   | OF T   | est    |           |            |       |
| 175                                    | l                                                                                               |     |        |       | 5       | % Lilli | efors (  | Critical Val  | lue         | 0.283       |                                                                 | Data     | a appe  | ar Lo    | gnorn    | nal a   | t 5% S   | Signif | fican  | ce Leve   | )          |       |
| 176                                    | l                                                                                               |     |        |       |         |         |          | Data appe     | ear Lo      | ognormal a  | it 5% Sign                                                      | ificance | e Level |          |          |         |          |        |        |           |            |       |
| 177                                    |                                                                                                 |     |        |       |         |         |          |               |             |             |                                                                 |          |         |          |          |         |          |        |        |           |            |       |
| 178                                    |                                                                                                 |     |        |       |         |         |          |               |             | Lognorma    | Statistics                                                      |          |         |          |          |         |          |        |        |           |            |       |
| 179                                    |                                                                                                 |     |        |       |         | Minim   | um of    | Logged Da     | ata         | 0.336       |                                                                 |          |         |          |          |         | Mea      | an of  | logg   | ed Data   | Э          | 2.809 |
|     | A B C D E F G H I J K                                                       |              |               |                 |                |                 |                 |                | L              |                  |              |       |
|-----|-----------------------------------------------------------------------------|--------------|---------------|-----------------|----------------|-----------------|-----------------|----------------|----------------|------------------|--------------|-------|
| 180 |                                                                             |              |               | Maximum of I    | ogged Data     | 5.762           |                 |                |                | SD of log        | ged Data     | 1.783 |
| 181 |                                                                             |              |               |                 |                |                 |                 |                |                |                  |              |       |
| 182 |                                                                             |              |               |                 | Assı           | uming Logno     | rmal Distribu   | ition          |                |                  |              |       |
| 183 |                                                                             |              |               |                 | 95% H-UCL      | 3370            |                 |                | 90%            | Chebyshev (MV    | /UE) UCL     | 162   |
| 184 |                                                                             |              | 95%           | Chebyshev (     | MVUE) UCL      | 209.8           |                 |                | 97.5%          | Chebyshev (MV    | /UE) UCL     | 276   |
| 185 |                                                                             |              | 99%           | Chebyshev (     | MVUE) UCL      | 406.1           |                 |                |                |                  |              |       |
| 186 |                                                                             |              |               |                 |                |                 |                 |                |                |                  |              |       |
| 187 |                                                                             |              |               |                 | Nonparame      | tric Distribut  | ion Free UC     | L Statistics   |                |                  |              |       |
| 188 | B Data appear to follow a Discernible Distribution at 5% Significance Level |              |               |                 |                |                 |                 |                |                |                  |              |       |
| 189 |                                                                             |              |               |                 |                |                 |                 |                |                |                  |              |       |
| 190 |                                                                             |              |               |                 | Nonpai         | rametric Dist   | ribution Free   | UCLs           |                |                  |              |       |
| 191 |                                                                             |              |               | 95              | % CLT UCL      | 125.8           |                 |                |                | 95% Jack         | knife UCL    | 135.5 |
| 192 |                                                                             |              | 95%           | Standard Bo     | otstrap UCL    | 122.4           |                 |                |                | 95% Bootst       | rap-t UCL    | 600.5 |
| 193 |                                                                             |              | ę             | 95% Hall's Bo   | otstrap UCL    | 490.8           |                 |                | 95%            | Percentile Boots | strap UCL    | 127   |
| 194 |                                                                             |              |               | 95% BCA Bo      | otstrap UCL    | 165.7           |                 |                |                |                  |              |       |
| 195 |                                                                             |              | 90% Cł        | nebyshev(Me     | an, Sd) UCL    | 178.2           |                 |                | 95% Cł         | nebyshev(Mean    | , Sd) UCL    | 230.8 |
| 196 |                                                                             |              | 97.5% Cł      | nebyshev(Me     | an, Sd) UCL    | 303.7           |                 |                | 99% Cł         | nebyshev(Mean    | , Sd) UCL    | 447   |
| 197 |                                                                             |              |               |                 |                |                 |                 |                |                |                  |              |       |
| 198 |                                                                             |              |               |                 |                | Suggested       | UCL to Use      |                |                |                  |              |       |
| 199 |                                                                             |              | 95            | % Adjusted C    | Gamma UCL      | 320.2           |                 |                |                |                  |              |       |
| 200 |                                                                             |              |               |                 |                |                 |                 |                |                |                  |              |       |
| 201 |                                                                             |              |               | Red             | commended      | UCL exceed      | s the maxim     | um observat    | ion            |                  |              |       |
| 202 | 2                                                                           |              |               |                 |                |                 |                 |                |                |                  |              |       |
| 203 |                                                                             | Note: Sugge  | stions regard | ding the selec  | tion of a 95%  | 6 UCL are pr    | ovided to he    | lp the user to | o select the r | nost appropriate | e 95% UCI    |       |
| 204 |                                                                             |              | F             | Recommenda      | itions are bas | sed upon dat    | ta size, data   | distribution,  | and skewne     | SS.              |              |       |
| 205 |                                                                             | These reco   | mmendation    | s are based u   | ipon the resu  | Ilts of the sin | nulation stud   | ies summari    | zed in Singh   | , Maichle, and L | .ee (2006).  |       |
| 206 | Ho                                                                          | owever, simu | lations resul | ts will not cov | er all Real W  | /orld data se   | ts; for additic | onal insight t | he user may    | want to consult  | a statistici | an.   |

|            | A       | В        | С             | D              | E               | F                                                               | G                           | Н               |                | J                   | K             |       | L     |  |  |
|------------|---------|----------|---------------|----------------|-----------------|-----------------------------------------------------------------|-----------------------------|-----------------|----------------|---------------------|---------------|-------|-------|--|--|
| 207        |         |          |               |                |                 |                                                                 |                             |                 |                |                     |               |       |       |  |  |
| 208        | Mercury |          |               |                |                 |                                                                 |                             |                 |                |                     |               |       |       |  |  |
| 209        |         |          |               |                |                 |                                                                 |                             |                 |                |                     |               |       |       |  |  |
| 210        |         |          |               |                |                 | General                                                         | Statistics                  |                 |                |                     |               |       |       |  |  |
| 211        |         |          | Total         | Number of (    | Observations    | 8                                                               |                             |                 | Numbe          | r of Distinct C     | bservations   | 5     | 5     |  |  |
| 212        |         |          |               | Numb           | er of Detects   | 5                                                               |                             |                 |                | Number of I         | Non-Detects   | 3     | 3     |  |  |
| 213        |         |          | Ν             | umber of Dis   | tinct Detects   | 4                                                               |                             |                 | Numbe          | er of Distinct I    | Non-Detects   | 1     | 1     |  |  |
| 214        |         |          |               | Min            | imum Detect     | 0.05                                                            |                             |                 |                | Minimum             | Non-Detect    | 0     | .01   |  |  |
| 215        |         |          |               | Max            | imum Detect     | 4.25                                                            |                             |                 |                | Maximum             | Non-Detect    | 0     | .01   |  |  |
| 216        |         |          |               | Varia          | ance Detects    | 3.32                                                            |                             |                 |                | Percent             | Non-Detects   | 3     | 7.5%  |  |  |
| 210        |         |          |               | N              | lean Detects    | 1.216                                                           |                             |                 |                |                     | SD Detects    | 1     | 1.822 |  |  |
| 21/<br>210 |         |          |               | Ме             | dian Detects    | 0.12                                                            |                             |                 |                |                     | CV Detects    | 1     | 1.498 |  |  |
| 210        |         |          |               | Skewr          | ness Detects    | 1.619                                                           |                             |                 |                | Kurte               | osis Detects  | 2     | 2.194 |  |  |
| 219        |         |          |               | Mean of Loo    | ged Detects     | -1.238                                                          |                             |                 |                | SD of Loa           | ged Detects   | 2     | 2.068 |  |  |
| 220        |         |          |               |                |                 |                                                                 |                             |                 |                |                     | -             |       |       |  |  |
| 221        |         |          | Note: Sam     | ple size is sn | nall (e.a., <1( | ), if data are collected using ISM approach, you should use     |                             |                 |                |                     |               |       |       |  |  |
| 222        |         |          | guidance pr   | ovided in ITF  | RC Tech Reg     | Guide on IS                                                     | M (ITRC 20                  | )12) to comp    | Jte statistice | of interest         |               |       |       |  |  |
| 223        |         |          | For           |                | I may want to   | a Guide on ISM (11 RC, 2012) to compute statistics of Interest. |                             |                 |                |                     |               |       |       |  |  |
| 224        |         |          | Chehvehev     | UCL can be     |                 | sing the Nor                                                    |                             |                 | Ontions of P   |                     |               |       |       |  |  |
| 225        |         |          | 0.009300      |                | . somputou u    |                                                                 |                             |                 |                |                     |               |       |       |  |  |
| 226        |         |          |               |                | Nom             |                                                                 | t on Detooto                | Only            |                |                     |               |       |       |  |  |
| 227        |         |          | c             | haniro Wilk    | Tost Statiatia  |                                                                 |                             |                 | Shanira M      |                     |               |       |       |  |  |
| 228        |         |          | E0/ 0         |                |                 | 0.750                                                           |                             | Detected D-     |                | al at 5% Sia~       | ificance Law  |       |       |  |  |
| 229        |         |          | 5% 5          |                |                 | 0.702                                                           |                             | Delected Da     |                |                     |               | 51    |       |  |  |
| 230        |         |          |               |                |                 | 0.320                                                           |                             | atacted Det-    |                |                     | nificanas L - |       |       |  |  |
| 231        |         |          | 5             |                |                 | 0.343                                                           |                             |                 |                | ମାସା ସା ୨୬୬ ଚାର୍ଡ୍ର | jiincance Le  | vel   |       |  |  |
| 232        |         |          |               | Detected       | Data appear     | Approximate                                                     | s normal at :               | o no significal | ICE LEVEI      |                     |               |       |       |  |  |
| 233        |         |          | Vanter        | Moles (IAA) C  | Notiation       | a Nama I C                                                      |                             |                 |                |                     |               |       |       |  |  |
| 234        |         |          | Kapian-       | IVIEIEľ (KM) S |                 |                                                                 | iucal values                | and other N     | onparametri    |                     |               |       |       |  |  |
| 235        |         |          |               |                | KINI Mean       | 0.764                                                           |                             |                 | K              | vi Standard E       | rror of Mean  |       | J.559 |  |  |
| 236        |         |          |               |                | KM SD           | 1.415                                                           |                             |                 | 0.501 1-1-1    | 95% KM              | I (BCA) UCL   | N/    | /A    |  |  |
| 237        |         |          |               | 95%            | 6 KM (t) UCL    | 1.823                                                           |                             |                 | 95% KM (F      | Percentile Boo      | otstrap) UCL  | N/    | /A    |  |  |
| 238        |         |          |               | 95%            | KM (z) UCL      | 1.683                                                           |                             |                 |                | 95% KM Boo          | otstrap t UCL | N/    | /A    |  |  |
| 239        |         |          | 9             | 90% KM Che     | byshev UCL      | 2.441                                                           |                             |                 |                | 95% KM Che          | byshev UCL    | 3     | 3.201 |  |  |
| 240        |         |          | 97            | .5% KM Che     | byshev UCL      | 4.256                                                           |                             |                 |                | 99% KM Che          | byshev UCL    | 6     | 5.327 |  |  |
| 241        |         |          |               |                | -               | _                                                               |                             |                 |                |                     |               |       |       |  |  |
| 242        |         |          |               | C              | Gamma GOF       | Tests on De                                                     | tected Obse                 | ervations Only  | у              |                     |               |       |       |  |  |
| 243        |         |          |               | A-D            | Test Statistic  | 0.523                                                           |                             | A               | nderson-Da     | rling GOF Te        | st            | _     |       |  |  |
| 244        |         |          |               | 5% A-D C       | Critical Value  | 0.718                                                           | Detecte                     | ed data appea   | ar Gamma D     | istributed at 5     | 5% Significar | nce L | evel  |  |  |
| 245        |         |          |               | K-S            | Test Statistic  | 0.326                                                           |                             | I               | Kolmogorov-    | Smirnov GOF         | =             |       |       |  |  |
| 246        |         |          |               | 5% K-S (       | Critical Value  | 0.374                                                           | Detecte                     | ed data appea   | ar Gamma D     | istributed at 5     | 5% Significar | nce L | evel  |  |  |
| 247        |         |          |               | Detected       | l data appeai   | Gamma Dis                                                       | stributed at 5              | % Significan    | ce Level       |                     |               |       |       |  |  |
| 248        |         |          |               |                |                 |                                                                 |                             |                 |                |                     |               |       |       |  |  |
| 249        |         |          |               |                | Gamma           | Statistics on                                                   | Detected D                  | ata Only        |                |                     |               |       |       |  |  |
| 250        |         |          |               |                | k hat (MLE)     | 0.45                                                            |                             |                 | k              | star (bias cor      | rected MLE)   | C     | 0.314 |  |  |
| 251        |         |          |               | The            | eta hat (MLE)   | 2.699                                                           |                             |                 | Theta          | star (bias cor      | rected MLE)   | 3     | 3.879 |  |  |
| 252        |         |          |               | I              | nu hat (MLE)    | 4.505                                                           | 05 nu star (bias corrected) |                 |                |                     |               |       | 3.135 |  |  |
| 253        |         |          |               | Me             | ean (detects)   | 1.216                                                           |                             |                 |                |                     |               |       |       |  |  |
| 254        |         |          |               |                |                 |                                                                 | 1                           |                 |                |                     |               | 1     |       |  |  |
| 255        |         |          |               | (              | Gamma ROS       | Statistics us                                                   | sing Imputed                | Non-Detects     | 5              |                     |               |       |       |  |  |
| 256        |         |          | GROS may      | not be used    | l when data s   | et has > 50%                                                    | % NDs with r                | nany tied obs   | servations at  | multiple DLs        |               |       |       |  |  |
| 257        |         | GROS may | / not be used | d when kstar   | of detects is   | small such a                                                    | is <1.0, espe               | cially when t   | he sample s    | ize is small (e     | e.g., <15-20) |       |       |  |  |
| 251        | 1       | -        | Fc            | or such situat | ions, GROS      | method may                                                      | yield incorre               | ect values of   | UCLs and B     | TVs                 |               |       |       |  |  |
| 200        | l       |          |               | ٦              | This is espec   | ially true whe                                                  | en the sampl                | le size is sma  | all.           |                     |               |       |       |  |  |
| 209        |         | For gar  | nma distribu  | ted detected   | data, BTVs a    | and UCLs m                                                      | ay be compu                 | uted using ga   | mma distribi   | ution on KM e       | estimates     |       |       |  |  |
| 200        |         |          |               |                | Minimum         | 0.01                                                            |                             | 3.3~            |                |                     | Mean          | 0     | ).764 |  |  |
| 261        |         |          |               |                |                 |                                                                 |                             |                 |                |                     | ouri          |       |       |  |  |

|                                                                                                                                                                                                                                                                                                                                                     | A B C D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                                                                                                                 |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 262                                                                                                                                                                                                                                                                                                                                                 | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                              |  |  |  |  |  |
| 263                                                                                                                                                                                                                                                                                                                                                 | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.98                                                                                                              |  |  |  |  |  |
| 264                                                                                                                                                                                                                                                                                                                                                 | k hat (MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k star (bias corrected MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.276                                                                                                             |  |  |  |  |  |
| 265                                                                                                                                                                                                                                                                                                                                                 | Theta hat (MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Theta star (bias corrected MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.77                                                                                                              |  |  |  |  |  |
| 266                                                                                                                                                                                                                                                                                                                                                 | nu hat (MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nu star (bias corrected)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.411                                                                                                             |  |  |  |  |  |
| 267                                                                                                                                                                                                                                                                                                                                                 | Adjusted Level of Significance (β)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |  |  |  |  |  |
| 268                                                                                                                                                                                                                                                                                                                                                 | Approximate Chi Square Value (4.41, $\alpha$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Adjusted Chi Square Value (4.41, β)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.562                                                                                                             |  |  |  |  |  |
| 269                                                                                                                                                                                                                                                                                                                                                 | 95% Gamma Approximate UCL (use when n>=50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% Gamma Adjusted UCL (use when n<50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.996                                                                                                             |  |  |  |  |  |
| 270                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |  |  |  |  |  |
| 271                                                                                                                                                                                                                                                                                                                                                 | Estimates of Ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | amma Paran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | neters using KM Estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |  |  |  |  |  |
| 272                                                                                                                                                                                                                                                                                                                                                 | Mean (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SD (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.415                                                                                                             |  |  |  |  |  |
| 273                                                                                                                                                                                                                                                                                                                                                 | Variance (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SE of Mean (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.559                                                                                                             |  |  |  |  |  |
| 274                                                                                                                                                                                                                                                                                                                                                 | k hat (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k star (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.266                                                                                                             |  |  |  |  |  |
| 275                                                                                                                                                                                                                                                                                                                                                 | nu hat (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nu star (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.248                                                                                                             |  |  |  |  |  |
| 276                                                                                                                                                                                                                                                                                                                                                 | theta hat (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | theta star (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.876                                                                                                             |  |  |  |  |  |
| 277                                                                                                                                                                                                                                                                                                                                                 | 80% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.281                                                                                                             |  |  |  |  |  |
| 278                                                                                                                                                                                                                                                                                                                                                 | 95% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.191                                                                                                             |  |  |  |  |  |
| 279                                                                                                                                                                                                                                                                                                                                                 | <u>^</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |  |  |  |  |  |
| 280                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a kaplan-Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 5 1 0                                                                                                           |  |  |  |  |  |
| 281                                                                                                                                                                                                                                                                                                                                                 | Approximate Chi Square Value (4.25, α)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Adjusted Chi Square Value (4.25, β)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.513                                                                                                             |  |  |  |  |  |
| 282                                                                                                                                                                                                                                                                                                                                                 | 95% Gamma Approximate KM-UCL (use when n>=50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% Gamma Adjusted KM-UCL (use when n<50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.327                                                                                                             |  |  |  |  |  |
| 283                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | An education of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s                                                                                                                                                   |                                                                                                                   |  |  |  |  |  |
| 284                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |  |  |  |  |  |
| 285                                                                                                                                                                                                                                                                                                                                                 | Shapiro Wilk Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Snapiro Wilk GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   |  |  |  |  |  |
| 286                                                                                                                                                                                                                                                                                                                                                 | 5% Snapiro Wilk Critical Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lillinger OOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evei                                                                                                              |  |  |  |  |  |
| 287                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lillerors GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |  |  |  |  |  |
| 288                                                                                                                                                                                                                                                                                                                                                 | 5% Emerors Childar Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detected Data appear Loynormal at 5% Significance Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | evei                                                                                                              |  |  |  |  |  |
| 289                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |  |  |  |  |  |
| 290                                                                                                                                                                                                                                                                                                                                                 | Lognormal BOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S Statistics I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ising Imputed Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |  |  |  |  |  |
| 201                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DS Statistics Using Imputed Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                   |  |  |  |  |  |
| 291                                                                                                                                                                                                                                                                                                                                                 | Mean in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3 368                                                                                                            |  |  |  |  |  |
| 291                                                                                                                                                                                                                                                                                                                                                 | Mean in Original Scale<br>SD in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3.368                                                                                                            |  |  |  |  |  |
| 291<br>292<br>293                                                                                                                                                                                                                                                                                                                                   | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of BOS data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.761<br>1.514<br>1.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstran UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -3.368<br>3.417<br>1.673                                                                                          |  |  |  |  |  |
| 291<br>292<br>293<br>294                                                                                                                                                                                                                                                                                                                            | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstran UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.761<br>1.514<br>1.775<br>2.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.368<br>3.417<br>1.673<br>26.39                                                                                 |  |  |  |  |  |
| 291<br>292<br>293<br>294<br>295                                                                                                                                                                                                                                                                                                                     | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log BOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.761<br>1.514<br>1.775<br>2.147<br>6348866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.368<br>3.417<br>1.673<br>26.39                                                                                 |  |  |  |  |  |
| 291<br>292<br>293<br>294<br>295<br>296                                                                                                                                                                                                                                                                                                              | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.761<br>1.514<br>1.775<br>2.147<br>6348866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.368<br>3.417<br>1.673<br>26.39                                                                                 |  |  |  |  |  |
| 291<br>292<br>293<br>294<br>295<br>296<br>297                                                                                                                                                                                                                                                                                                       | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.761<br>1.514<br>1.775<br>2.147<br>6348866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.368<br>3.417<br>1.673<br>26.39                                                                                 |  |  |  |  |  |
| 291<br>292<br>293<br>294<br>295<br>295<br>296<br>297<br>298                                                                                                                                                                                                                                                                                         | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.368<br>3.417<br>1.673<br>26.39                                                                                 |  |  |  |  |  |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>299                                                                                                                                                                                                                                                                                  | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (loaged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674                                                               |  |  |  |  |  |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300                                                                                                                                                                                                                                                                                  | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3                                                      |  |  |  |  |  |
| 2991<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301                                                                                                                                                                                                                                                                          | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674                                             |  |  |  |  |  |
| 292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>200                                                                                                                                                                                                                                                                    | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674                                             |  |  |  |  |  |
| 293<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303                                                                                                                                                                                                                                                             | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674                                             |  |  |  |  |  |
| 293<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>295                                                                                                                                                                                                                                                      | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674                                             |  |  |  |  |  |
| 293<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303<br>304<br>305<br>200                                                                                                                                                                                                                                        | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674                                             |  |  |  |  |  |
| 293<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>300<br>301<br>302<br>303<br>304<br>305<br>306                                                                                                                                                                                                                          | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                          | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>Mean in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674                           |  |  |  |  |  |
| 293<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>306                                                                                                                                                                                                                          | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>SD in Original Scale                                                                                                                                                                                                | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.86 | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674<br>-2.76<br>2.619         |  |  |  |  |  |
| 293<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>304<br>305<br>306<br>307<br>308                                                                                                                                                                                                                          | Mean in Original Scale         SD in Original Scale         95% t UCL (assumes normality of ROS data)         95% BCA Bootstrap UCL         95% H-UCL (Log ROS)         Statistics using KM estimates of         KM Mean (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         SD in Original Scale         SD in Original Scale         95% t UCL (Assumes normality)                                                                                                    | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>1.513<br>1.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -LOG)<br>95% H-Stat UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674<br>-2.76<br>2.619<br>4894 |  |  |  |  |  |
| 293<br>293<br>294<br>295<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>210                                                                                                                                                                                              | Mean in Original Scale         SD in Original Scale         95% t UCL (assumes normality of ROS data)         95% BCA Bootstrap UCL         95% H-UCL (Log ROS)         Statistics using KM estimates of         KM Mean (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         SD in Original Scale         SD in Original Scale         SD in Original Scale         95% t UCL (Assumes normality)         DL/2 is not a recommended me                                                                                                    | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>0.762<br>1.513<br>1.776<br>0.762<br>1.513<br>1.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% In Log Scale<br>95% H-Stat UCL<br>ed for comparisons and historical reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674<br>-2.76<br>2.619<br>4894 |  |  |  |  |  |
| 293<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310                                                                                                                                                                                                                   | Mean in Original Scale         SD in Original Scale         95% t UCL (assumes normality of ROS data)         95% BCA Bootstrap UCL         95% H-UCL (Log ROS)         Statistics using KM estimates of         KM Mean (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         SD in Original Scale         SD in Original Scale         SD in Original Scale         95% t UCL (Assumes normality)         DL/2 is not a recommended me              | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.866<br>0.762<br>1.513<br>1.776<br>0.7762<br>1.573<br>1.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% In Log Scale<br>SD in Log Scale<br>95% H-Stat UCL<br>ed for comparisons and historical reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674<br>-2.76<br>2.619<br>4894 |  |  |  |  |  |
| 291<br>292<br>293<br>294<br>295<br>296<br>297<br>298<br>299<br>300<br>301<br>302<br>300<br>301<br>302<br>303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311                                                                                                                                                                                | Mean in Original Scale         SD in Original Scale         95% t UCL (assumes normality of ROS data)         95% BCA Bootstrap UCL         95% H-UCL (Log ROS)         Statistics using KM estimates of         KM Mean (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         SD in Original Scale         SD in Original Scale         95% t UCL (Assumes normality)         DL/2 is not a recommended me                                                                                                                                                        | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>0.762<br>1.513<br>1.776<br>ethod, provide<br>other constribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>ata and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% In Log Scale<br>95% H-Stat UCL<br>ed for comparisons and historical reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674<br>-2.76<br>2.619<br>4894 |  |  |  |  |  |
| 293           292           293           294           295           296           297           298           299           300           301           302           303           304           305           306           307           308           309           310           311           312           313                             | Mean in Original Scale         SD in Original Scale         95% t UCL (assumes normality of ROS data)         95% BCA Bootstrap UCL         95% H-UCL (Log ROS)         Statistics using KM estimates of         KM Mean (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM SD (logged)         KM Standard Error of Mean (logged)         KM SD (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         KM Standard Error of Mean (logged)         SD in Original Scale         SD in Original Scale         SD in Original Scale         95% t UCL (Assumes normality)         DL/2 is not a recommended me         Nonparame         Detected Data appear Appro | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>0.762<br>1.513<br>1.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.7776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.7776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.7776<br>0.7776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776  | Mean in Log Scale         SD in Log Scale         95% Percentile Bootstrap UCL         95% Bootstrap t UCL         ata and Assuming Lognormal Distribution         KM Geo Mean         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% Critical H Value (KM-Log)         95% Critical H Value (KM-Log)         95% H-Stat UCL         ed for comparisons and historical reasons         ion Free UCL Statistics         nal Distributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                  | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674<br>-2.76<br>2.619<br>4894 |  |  |  |  |  |
| 293           292           293           294           295           296           297           298           299           300           301           302           303           304           305           306           307           308           309           311           312           313           314                             | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>UL/2 Normal<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (Assumes normality)<br>DL/2 is not a recommended me<br>Nonparame<br>Detected Data appear Appro                                           | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>0.762<br>1.513<br>1.776<br>othod, provide<br>othod, p                                                                                                                                                                                                                                                                                                                             | Mean in Log Scale         SD in Log Scale         95% Percentile Bootstrap UCL         95% Bootstrap t UCL         ata and Assuming Lognormal Distribution         KM Geo Mean         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% H-UCL (KM -Log)         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% H-Stat UCL         ed for comparisons and historical reasons         ion Free UCL Statistics         hal Distributed at 5% Significance Level                                                                                                                                                                                                            | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674<br>-2.76<br>2.619<br>4894 |  |  |  |  |  |
| 293           292           293           294           295           296           297           298           299           300           301           302           303           304           305           306           307           308           309           310           311           312           313           314               | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>CL/2 Normal<br>DL/2 Normal<br>DL/2 Normal<br>SD in Original Scale<br>95% t UCL (Assumes normality)<br>DL/2 is not a recommended me<br>Nonparame<br>Detected Data appear Appro                                            | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.762<br>1.513<br>1.776<br>othod, provide<br>tric Distribut<br>ximate Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean in Log Scale         SD in Log Scale         95% Percentile Bootstrap UCL         95% Bootstrap t UCL         ata and Assuming Lognormal Distribution         KM Geo Mean         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% Critical H Value (KM-Log)         95% Critical H Value (KM-Log)         95% Critical H Value (KM-Log)         95% H-Stat UCL         ed for comparisons and historical reasons         ion Free UCL Statistics         nal Distributed at 5% Significance Level         UCL to Use                                                                                                                                                                                                                                                                                                                                   | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674<br>-2.76<br>2.619<br>4894 |  |  |  |  |  |
| 293           292           293           294           295           296           297           298           299           300           301           302           303           304           305           306           307           308           309           310           311           312           313           314           315 | Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates of<br>KM Mean (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>CL/2 Normal<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (Assumes normality)<br>DL/2 is not a recommended me<br>Detected Data appear Appro                                                                                                                                                                                                | 0.761<br>1.514<br>1.775<br>2.147<br>6348866<br>on Logged D<br>-2.501<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>2.19<br>0.866<br>0.762<br>1.513<br>1.776<br>othod, provide<br>tric Distribut<br>ximate Norm<br>Suggested<br>1.823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean in Log Scale         SD in Log Scale         95% Percentile Bootstrap UCL         95% Bootstrap t UCL         ata and Assuming Lognormal Distribution         KM Geo Mean         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% Critical H Value (KM-Log)         95% Critical H Value (KM-Log)         95% H-UCL (KM -Log)         95% H-UCL (KM -Log)< | -3.368<br>3.417<br>1.673<br>26.39<br>0.082<br>6.674<br>226.3<br>6.674<br>226.3<br>6.674<br>-2.76<br>2.619<br>4894 |  |  |  |  |  |

|     | A                                                                                                                        |                                                                                                                                           | В         | C             | D              | E              | F             | G             | Н               | I              | J            | K          | L    |  |
|-----|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|----------------|----------------|---------------|---------------|-----------------|----------------|--------------|------------|------|--|
| 317 |                                                                                                                          |                                                                                                                                           |           |               |                |                |               |               |                 |                |              |            |      |  |
| 318 |                                                                                                                          |                                                                                                                                           |           | When a o      | data set follo | ws an approx   | ximate (e.g., | normal) distr | ribution pass   | ing one of th  | e GOF test   |            |      |  |
| 319 | When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL   |                                                                                                                                           |           |               |                |                |               |               |                 |                |              |            |      |  |
| 320 |                                                                                                                          |                                                                                                                                           |           |               |                |                |               |               |                 |                |              |            |      |  |
| 321 |                                                                                                                          | Not                                                                                                                                       | te: Sugge | stions regard | ding the sele  | ction of a 95° | % UCL are p   | rovided to he | elp the user to | o select the r | nost appropr | iate 95% U | ICL. |  |
| 322 | Recommendations are based upon data size, data distribution, and skewness.                                               |                                                                                                                                           |           |               |                |                |               |               |                 |                |              |            |      |  |
| 323 | These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). |                                                                                                                                           |           |               |                |                |               |               |                 |                |              |            |      |  |
| 324 |                                                                                                                          | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. |           |               |                |                |               |               |                 |                |              |            |      |  |

|             | A      | В        | С             | D              | E               | F                                                | G                           | Н              |                | J                | K             |       | L     |  |  |
|-------------|--------|----------|---------------|----------------|-----------------|--------------------------------------------------|-----------------------------|----------------|----------------|------------------|---------------|-------|-------|--|--|
| 325         |        |          |               |                |                 |                                                  |                             |                |                |                  |               |       |       |  |  |
| 326         | Silver |          |               |                |                 |                                                  |                             |                |                |                  |               |       |       |  |  |
| 327         |        |          |               |                |                 |                                                  |                             |                |                |                  |               |       |       |  |  |
| <u>32</u> 8 |        |          |               |                |                 | General                                          | Statistics                  |                |                |                  |               | _     |       |  |  |
| 329         |        |          | Total         | Number of (    | Observations    | 8                                                |                             |                | Numbe          | r of Distinct C  | bservations   | 5     | 5     |  |  |
| 330         |        |          |               | Numb           | er of Detects   | 5                                                |                             |                |                | Number of I      | Non-Detects   | 3     | 3     |  |  |
| 331         |        |          | N             | umber of Dis   | tinct Detects   | 4                                                |                             |                | Numb           | er of Distinct I | Non-Detects   | 1     | 1     |  |  |
| 332         |        |          |               | Min            | imum Detect     | 0.2                                              |                             |                |                | Minimum          | Non-Detect    | C     | ).1   |  |  |
| 333         |        |          |               | Max            | imum Detec      | 3                                                |                             |                |                | Maximum          | Non-Detect    | C     | ).1   |  |  |
| 334         |        |          |               | Varia          | ance Detects    | 1.503                                            |                             |                |                | Percent I        | Non-Detects   | 3     | 7.5%  |  |  |
| 225         |        |          |               | Ν              | lean Detects    | 1.04                                             |                             |                |                |                  | SD Detects    | 1     | 1.226 |  |  |
| 225         |        |          |               | Ме             | dian Detects    | 0.3                                              |                             |                |                |                  | CV Detects    | 1     | 1.179 |  |  |
| 227         |        |          |               | Skewr          | ness Detects    | 1.365                                            |                             |                |                | Kurt             | osis Detects  | C     | 0.908 |  |  |
| 337<br>220  |        |          |               | Mean of Loo    | gged Detects    | -0.584                                           |                             |                |                | SD of Log        | ged Detects   | 1     | 1.255 |  |  |
| <u>აა</u> გ |        |          |               |                |                 | <u> </u>                                         |                             |                |                |                  |               |       |       |  |  |
| 339         |        |          | Note: Sam     | ple size is sn | nall (e.a., <1) | 0), if data are                                  | collected us                | sing ISM app   | roach. vou s   | hould use        |               |       |       |  |  |
| 340         |        |          | quidance pr   | ovided in ITF  | RC Tech Rec     | Guide on IS                                      | M (ITRC. 20                 | )12) to comp   | ute statistics | of interest.     |               |       |       |  |  |
| 341         |        |          | For           |                | I may want t    | to use Chebyshev UCL to estimate FPC (ITRC 2012) |                             |                |                |                  |               |       |       |  |  |
| 342         |        |          | Chehvehev     | UCI can be     |                 | ising the Nor                                    |                             |                | Options of P   | roUCL 5.1        |               |       |       |  |  |
| 343         |        |          | 0.00901101    |                | - somputou t    |                                                  | -parametric                 |                |                |                  |               |       |       |  |  |
| 344         |        |          |               |                | Nor             | nal COF Too                                      | t on Detecto                | Only           |                |                  |               |       |       |  |  |
| 345         |        |          | c             | haniro Wilk    | Test Statistic  | 0 797                                            |                             |                | Shaniro Mi     |                  |               |       |       |  |  |
| 346         |        |          | د<br>۲۵/ ۵    | haniro Wilk    |                 | 0.707                                            |                             | atactad Data   |                |                  | nificance La  | امر   |       |  |  |
| 347         |        |          | 570 5         |                |                 | 0.702                                            |                             |                |                |                  |               | vei   |       |  |  |
| 348         |        |          |               |                |                 | 0.327                                            | <u> </u>                    | atactad Data   |                |                  | nificanas L - | vol   |       |  |  |
| 349         |        |          | 5             |                |                 | 0.343                                            |                             |                |                | inai al 3% SIG   | jiincance Le  | vel   |       |  |  |
| 350         |        |          |               | De             | alected Data    | appear Nom                                       | iai at 5% SlQ               | ji ilicance Le | VEI            |                  |               |       |       |  |  |
| 351         |        |          | Vanlar        | Moles (IAA) C  | Notiotics       | A Name 10                                        |                             |                |                |                  |               |       |       |  |  |
| 352         |        |          | Kapian-       | IVIEIEľ (KM) S |                 | ig inormal Ci                                    | nucal values                | and other N    | onparametri    |                  |               |       | 1 207 |  |  |
| 353         |        |          |               |                | KM Mear         | 0.688                                            |                             |                | KI             | vi Standard E    | rror of Mean  |       | J.38/ |  |  |
| 354         |        |          |               |                | KM SD           | 0.979                                            |                             |                | 0=0            | 95% KM           | I (BCA) UCL   | N/    | /A    |  |  |
| 355         |        |          |               | 95%            | 6 KM (t) UCL    | 1.421                                            |                             |                | 95% KM (F      | Percentile Boo   | otstrap) UCL  | N/    | /A    |  |  |
| 356         |        |          |               | 95%            | KM (z) UCL      | 1.324                                            |                             |                |                | 95% KM Boo       | otstrap t UCL | N/    | /A    |  |  |
| 357         |        |          | 9             | 90% KM Che     | byshev UCL      | 1.849                                            |                             |                |                | 95% KM Che       | byshev UCL    | 2     | 2.374 |  |  |
| 358         |        |          | 97            | .5% KM Che     | byshev UCL      | . 3.104                                          |                             |                |                | 99% KM Che       | byshev UCL    | 4     | 1.538 |  |  |
| 359         |        |          |               |                |                 |                                                  |                             |                |                |                  |               |       |       |  |  |
| 360         |        |          |               | C              | Gamma GOF       | Tests on De                                      | etected Obse                | ervations Only | у              |                  |               |       |       |  |  |
| 361         |        |          |               | A-D            | Test Statistic  | 0.555                                            |                             | A              | nderson-Da     | rling GOF Te     | st            |       |       |  |  |
| 362         |        |          |               | 5% A-D (       | Critical Value  | 0.693                                            | Detecte                     | ed data appea  | ar Gamma D     | istributed at 5  | 5% Significar | nce L | evel  |  |  |
| 363         |        |          |               | K-S            | Test Statistic  | 0.334                                            |                             | I              | Kolmogorov-    | Smirnov GOF      | =             | _     |       |  |  |
| 364         |        |          |               | 5% K-S (       | Critical Value  | 0.365                                            | Detecte                     | ed data appea  | ar Gamma D     | istributed at 5  | 5% Significar | nce L | evel  |  |  |
| 365         |        |          |               | Detected       | l data appea    | r Gamma Dis                                      | stributed at 5              | 5% Significan  | ce Level       |                  |               |       |       |  |  |
| 366         |        |          |               |                |                 |                                                  |                             |                |                |                  |               |       |       |  |  |
| 367         |        |          |               |                | Gamma           | Statistics or                                    | Detected D                  | ata Only       |                |                  |               |       |       |  |  |
| 368         |        |          |               |                | k hat (MLE)     | 0.934                                            |                             |                | k              | star (bias cor   | rected MLE)   | C     | 0.507 |  |  |
| 369         |        |          |               | The            | eta hat (MLE)   | 1.113                                            |                             |                | Theta          | star (bias cor   | rected MLE)   | 2     | 2.051 |  |  |
| 370         |        |          |               | I              | nu hat (MLE)    | 9.341                                            | 41 nu star (bias corrected) |                |                |                  |               |       | 5.07  |  |  |
| 371         |        |          |               | Me             | ean (detects)   | 1.04                                             |                             |                |                |                  |               |       |       |  |  |
| 372         |        |          |               |                |                 | 1                                                | 1                           |                |                |                  |               | 1     |       |  |  |
| 372         |        |          |               | (              | Gamma ROS       | Statistics us                                    | sing Imputed                | Non-Detects    | S              |                  |               |       |       |  |  |
| 374         |        |          | GROS may      | not be used    | I when data     | set has > 509                                    | % NDs with r                | many tied obs  | servations at  | multiple DLs     |               |       |       |  |  |
| 375         |        | GROS may | y not be used | d when kstar   | of detects is   | small such a                                     | as <1.0, espe               | ecially when t | the sample s   | ize is small (e  | e.g., <15-20) |       |       |  |  |
| 376         |        |          | Fc            | or such situat | ions, GROS      | method may                                       | yield incorre               | ect values of  | UCLs and B     | TVs              |               |       |       |  |  |
| 370         |        |          |               | ٦              | This is espec   | ially true whe                                   | en the samp                 | le size is sma | all.           |                  |               |       |       |  |  |
| 3//<br>270  |        | For gar  | nma distribu  | ted detected   | data, BTVs      | and UCLs m                                       | ay be compl                 | uted using ga  | mma distrib    | ution on KM e    | estimates     |       |       |  |  |
| 3/8<br>272  |        |          |               |                | Minimum         | 0.01                                             |                             | 3.34           |                |                  | Mean          | 0     | ).654 |  |  |
| 3/9         | 1      |          |               |                |                 | 2.21                                             |                             |                |                |                  | ouri          | `     |       |  |  |

|     | A B C D E                                      | F              | G                             | H           |         |          |         | J         | K               | L      |  |
|-----|------------------------------------------------|----------------|-------------------------------|-------------|---------|----------|---------|-----------|-----------------|--------|--|
| 380 | Maximum                                        | 3              |                               |             |         |          |         |           | Median          | 0.2    |  |
| 381 | SD                                             | 1.069          |                               |             |         |          |         |           | CV              | 1.635  |  |
| 382 | k hat (MLE)                                    | 0.396          |                               |             |         |          | k star  | (bias c   | orrected MLE)   | 0.331  |  |
| 383 | Theta hat (MLE)                                | 1.653          |                               |             |         | The      | ta star | (bias c   | orrected MLE)   | 1.978  |  |
| 384 | nu hat (MLE)                                   | 6.328          |                               |             |         |          | n       | u star (b | ias corrected)  | 5.289  |  |
| 385 | Adjusted Level of Significance (β)             | 0.0195         |                               |             |         |          |         |           |                 |        |  |
| 386 | Approximate Chi Square Value (5.29, $\alpha$ ) | 1.288          |                               |             | A       | djusted  | l Chi S | Square \  | /alue (5.29, β) | 0.858  |  |
| 387 | 95% Gamma Approximate UCL (use when n>=50)     | 2.685          |                               | 95%         | Gam     | ma Adji  | usted   | UCL (us   | e when n<50)    | 4.031  |  |
| 388 |                                                |                |                               |             |         |          |         |           |                 |        |  |
| 389 | Estimates of Ga                                | amma Paran     | neters using                  | KM Estim    | ates    |          |         |           |                 |        |  |
| 390 | Mean (KM)                                      | 0.688          |                               |             |         |          |         |           | SD (KM)         | 0.979  |  |
| 391 | Variance (KM)                                  | 0.959          |                               |             |         |          |         | SE        | of Mean (KM)    | 0.387  |  |
| 392 | k hat (KM)                                     | 0.493          |                               |             |         |          |         |           | k star (KM)     | 0.392  |  |
| 393 | nu hat (KM)                                    | 7.889          |                               |             |         |          |         |           | nu star (KM)    | 6.264  |  |
| 394 | theta hat (KM)                                 | 1.394          |                               |             |         |          |         | t         | neta star (KM)  | 1.756  |  |
| 395 | 80% gamma percentile (KM)                      | 1.107          |                               |             |         | 9        | 0% ga   | amma p    | ercentile (KM)  | 1.949  |  |
| 396 | 95% gamma percentile (KM)                      | 2.878          |                               |             |         | 9        | 9% ga   | amma p    | ercentile (KM)  | 5.218  |  |
| 397 |                                                |                | 1                             |             |         |          |         |           |                 |        |  |
| 398 | Gamm                                           | a Kaplan-Me    | eier (KM) Sta                 | atistics    |         |          |         |           |                 |        |  |
| 399 | Approximate Chi Square Value (6.26, $\alpha$ ) | 1.776          |                               |             | A       | djusted  | l Chi S | Square \  | /alue (6.26, β) | 1.239  |  |
| 400 | 95% Gamma Approximate KM-UCL (use when n>=50)  | 2.424          |                               | 95% Gan     | nma A   | Adjuste  | d KM-   | UCL (us   | e when n<50)    | 3.477  |  |
| 401 |                                                |                | I                             |             |         |          |         |           |                 |        |  |
| 402 | Lognormal GO                                   | F Test on De   | etected Obse                  | ervations ( | Only    |          |         |           |                 |        |  |
| 403 | Shapiro Wilk Test Statistic                    | 0.83           |                               |             | S       | hapiro V | Wilk G  | iOF Tes   | t               |        |  |
| 404 | 5% Shapiro Wilk Critical Value                 | 0.762          | Det                           | ected Data  | a app   | ear Log  | gnorma  | al at 5%  | Significance L  | evel   |  |
| 405 | Lilliefors Test Statistic                      | 0.289          |                               |             |         | Lilliefo | rs GO   | F Test    |                 |        |  |
| 406 | 5% Lilliefors Critical Value                   | 0.343          | Det                           | ected Data  | a app   | ear Log  | gnorma  | al at 5%  | Significance I  | evel   |  |
| 407 | Detected Data ap                               | pear Lognor    | rmal at 5% Significance Level |             |         |          |         |           |                 |        |  |
| 408 |                                                |                |                               |             |         |          |         |           |                 |        |  |
| 409 | Lognormal ROS                                  | S Statistics U | Jsing Impute                  | d Non-De    | tects   |          |         |           |                 |        |  |
| 410 | Mean in Original Scale                         | 0.658          |                               |             |         |          |         | Mea       | n in Log Scale  | -1.872 |  |
| 411 | SD in Original Scale                           | 1.066          |                               |             |         |          |         | SI        | ) in Log Scale  | 2.067  |  |
| 412 | 95% t UCL (assumes normality of ROS data)      | 1.372          |                               |             |         | 959      | % Per   | centile E | Bootstrap UCL   | 1.255  |  |
| 413 | 95% BCA Bootstrap UCL                          | 1.555          |                               |             |         |          |         | 95% Bo    | ootstrap t UCL  | 5.759  |  |
| 414 | 95% H-UCL (Log ROS)                            | 182.6          |                               |             |         |          |         |           |                 |        |  |
| 415 |                                                |                | 1                             |             |         |          |         |           |                 |        |  |
| 416 | Statistics using KM estimates of               | on Logged Da   | ata and Ass                   | uming Log   | norm    | al Distr | ibutior | า         |                 |        |  |
| 417 | KM Mean (logged)                               | -1.228         |                               |             |         |          |         | ł         | KM Geo Mean     | 0.293  |  |
| 418 | KM SD (logged)                                 | 1.216          |                               |             |         | 959      | % Criti | cal H V   | alue (KM-Log)   | 3.979  |  |
| 419 | KM Standard Error of Mean (logged)             | 0.481          |                               |             |         |          | 9       | 5% H-L    | ICL (KM -Log)   | 3.822  |  |
| 420 | KM SD (logged)                                 | 1.216          |                               |             |         | 959      | % Criti | cal H V   | alue (KM-Log)   | 3.979  |  |
| 421 | KM Standard Error of Mean (logged)             | 0.481          |                               |             |         |          |         |           |                 |        |  |
| 422 |                                                |                |                               |             |         |          |         |           |                 |        |  |
| 423 |                                                | DL/2 St        | tatistics                     |             |         |          |         |           |                 |        |  |
| 424 | DL/2 Normal                                    |                |                               |             | D       | L/2 Log  | g-Tran  | sformed   | 1               |        |  |
| 425 | Mean in Original Scale                         | 0.669          |                               |             |         |          |         | Mea       | n in Log Scale  | -1.488 |  |
| 426 | SD in Original Scale                           | 1.059          |                               |             |         |          |         | SI        | ) in Log Scale  | 1.568  |  |
| 427 | 95% t UCL (Assumes normality)                  | 1.378          |                               |             |         |          |         | 95        | % H-Stat UCL    | 14.3   |  |
| 428 | DL/2 is not a recommended me                   | thod, provid   | ed for compa                  | arisons an  | nd hist | orical r | eason   | s         |                 |        |  |
| 429 |                                                |                |                               |             |         |          |         |           |                 |        |  |
| 430 | Nonparame                                      | tric Distribut | ion Free UC                   | L Statistic | s       |          |         |           |                 |        |  |
| 431 | Detected Data appear                           | r Normal Dis   | tributed at 59                | % Signific  | ance    | Level    |         |           |                 |        |  |
| 432 |                                                |                |                               |             |         |          |         |           |                 |        |  |
| 433 |                                                | Suggested      | UCL to Use                    |             |         |          |         |           |                 |        |  |
| 434 | 95% KM (t) UCL                                 | 1.421          | .421                          |             |         |          |         |           |                 |        |  |
|     |                                                |                |                               |             |         |          |         |           |                 |        |  |

|     | A                                                                                                                                         | В | C | D | E | F | G | H |  | J | K | L |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|--|---|---|---|--|--|
| 435 |                                                                                                                                           |   |   |   |   |   |   |   |  |   |   |   |  |  |
| 436 | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.              |   |   |   |   |   |   |   |  |   |   |   |  |  |
| 437 | Recommendations are based upon data size, data distribution, and skewness.                                                                |   |   |   |   |   |   |   |  |   |   |   |  |  |
| 438 | These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).                  |   |   |   |   |   |   |   |  |   |   |   |  |  |
| 439 | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. |   |   |   |   |   |   |   |  |   |   |   |  |  |

|     | A    | В         | С            | D                | E               | F                                                               | G                                                   | Н              |                 | J                        | K               | L         |  |  |
|-----|------|-----------|--------------|------------------|-----------------|-----------------------------------------------------------------|-----------------------------------------------------|----------------|-----------------|--------------------------|-----------------|-----------|--|--|
| 440 |      |           |              |                  |                 |                                                                 |                                                     |                |                 |                          |                 |           |  |  |
| 441 | Zinc |           |              |                  |                 |                                                                 |                                                     |                |                 |                          |                 |           |  |  |
| 442 |      |           |              |                  |                 |                                                                 |                                                     |                |                 |                          |                 |           |  |  |
| 443 |      |           |              |                  |                 | General                                                         | Statistics                                          |                |                 |                          |                 |           |  |  |
| 444 |      |           | Total        | Number of C      | Observations    | 8                                                               |                                                     |                | Numbe           | er of Distinct (         | Observations    | 8         |  |  |
| 445 |      |           |              | Numb             | er of Detects   | 7                                                               |                                                     |                |                 | Number of                | Non-Detects     | 1         |  |  |
| 446 |      |           | N            | umber of Dis     | tinct Detects   | 7                                                               |                                                     |                | Numb            | er of Distinct           | Non-Detects     | 1         |  |  |
| 447 |      |           |              | Min              | imum Detect     | 2.1                                                             |                                                     |                |                 | Minimum                  | Non-Detect      | 1         |  |  |
| 448 |      |           |              | Max              | imum Detect     | 445                                                             |                                                     |                |                 | Maximum                  | Non-Detect      | 1         |  |  |
| 449 |      |           |              | Varia            | ance Detects    | 27445                                                           |                                                     |                |                 | Percent                  | Non-Detects     | 12.5%     |  |  |
| 450 |      |           |              | N                | lean Detects    | 91.67                                                           |                                                     |                |                 |                          | SD Detects      | 165.7     |  |  |
| 451 |      |           |              | Me               | dian Detects    | 14.4                                                            |                                                     |                |                 |                          | CV Detects      | 1.807     |  |  |
| 452 |      |           |              | Skewr            | ness Detects    | 2.124                                                           |                                                     |                |                 | Kurl                     | osis Detects    | 4.427     |  |  |
| 453 |      |           |              | Mean of Log      | ged Detects     | 2.769                                                           |                                                     |                |                 | SD of Log                | ged Detects     | 2.113     |  |  |
| 454 |      |           |              |                  |                 | I                                                               | 1                                                   |                |                 |                          |                 |           |  |  |
| 455 |      |           | Note: Sam    | ple size is sm   | nall (e.g., <10 | 0), if data are collected using ISM approach, you should use    |                                                     |                |                 |                          |                 |           |  |  |
| 456 |      |           | guidance pr  | ovided in ITF    | C Tech Reg      | eg Guide on ISM (ITRC, 2012) to compute statistics of interest. |                                                     |                |                 |                          |                 |           |  |  |
| 457 |      |           | For          | example, you     | ı may want to   | o use Cheby                                                     | shev UCL to                                         | estimate EP    | C (ITRC, 20     | 12).                     |                 |           |  |  |
| 458 |      |           | Chebyshev    | VUCL can be      | computed u      | sing the Nor                                                    | parametric a                                        | and All UCL (  | Options of P    | roUCL 5.1                |                 |           |  |  |
| 459 |      |           |              |                  |                 |                                                                 |                                                     |                |                 |                          |                 |           |  |  |
| 460 |      |           |              |                  | Norm            | nal GOF Tes                                                     | t on Detects                                        | Only           |                 |                          |                 |           |  |  |
| 461 |      |           | S            | Shapiro Wilk     | Fest Statistic  | 0.642                                                           |                                                     |                | Shapiro W       | ilk GOF Test             |                 |           |  |  |
| 462 |      |           | 5% S         | hapiro Wilk C    | Critical Value  | 0.803                                                           |                                                     | Detected Dat   | ta Not Norm     | al at 5% Sigr            | ificance Leve   | el        |  |  |
| 462 |      |           |              | Lilliefors       | Fest Statistic  | 0.389                                                           |                                                     |                | Lilliefors      | GOF Test                 |                 |           |  |  |
| 464 |      |           | 5            | 5% Lilliefors C  | Critical Value  | 0.304                                                           |                                                     | Detected Dat   | ta Not Norm     | al at 5% Sigr            | ificance Leve   | el        |  |  |
| 465 |      |           |              | C                | etected Data    | a Not Norma                                                     | at 5% Signi                                         | ificance Leve  |                 |                          |                 |           |  |  |
| 405 |      |           |              |                  |                 |                                                                 |                                                     |                |                 |                          |                 |           |  |  |
| 400 |      |           | Kaplan-      | Meier (KM) S     | Statistics usin | g Normal Cr                                                     | itical Values                                       | and other No   | onparametri     | c UCLs                   |                 |           |  |  |
| 407 |      |           |              |                  | KM Mean         | 80.34                                                           |                                                     |                | K               | M Standard E             | Fror of Mean    | 55.97     |  |  |
| 400 |      |           |              |                  | KM SD           | 146.6                                                           |                                                     |                |                 | 95% KN                   | I (BCA) UCL     | 172.9     |  |  |
| 409 |      |           |              | 95%              | 5 KM (t) UCL    | 186.4                                                           |                                                     |                | 95% KM (F       | Percentile Bo            | otstrap) UCL    | 171.7     |  |  |
| 470 |      |           |              | 95%              | KM (z) UCL      | 172.4                                                           |                                                     |                |                 | 95% KM Boo               | otstrap t UCL   | 1798      |  |  |
| 471 |      |           | ļ            | 90% KM Che       | byshev UCL      | 248.3                                                           |                                                     |                |                 | 95% KM Che               | byshev UCL      | 324.3     |  |  |
| 472 |      |           | 97           | 7.5% KM Che      | byshev UCL      | 429.9                                                           |                                                     |                |                 | 99% KM Che               | byshev UCL      | 637.3     |  |  |
| 473 |      |           |              |                  |                 |                                                                 |                                                     |                |                 |                          |                 |           |  |  |
| 474 |      |           |              | G                | amma GOF        | Tests on De                                                     | tected Obse                                         | ervations Only | v               |                          |                 |           |  |  |
| 475 |      |           |              | A-D              | Fest Statistic  | 0.641                                                           |                                                     | A              | ,<br>nderson-Da | rling GOF Te             | st              |           |  |  |
| 470 |      |           |              | 5% A-D C         | Critical Value  | 0.771                                                           | Detecte                                             | d data appea   | ar Gamma D      | )<br>istributed at       | 5% Significar   | nce Level |  |  |
| 477 |      |           |              | K-S              | Fest Statistic  | 0.314                                                           |                                                     | ···            | Kolmogorov-     | -Smirnov GO              | F               |           |  |  |
| 478 |      |           |              | 5% K-S (         | Critical Value  | 0.332                                                           | Detecte                                             | d data appea   | ar Gamma D      | Distributed at           | 5% Significar   | nce Level |  |  |
| 479 |      |           |              | Detected         | data appear     | Gamma Dis                                                       | tributed at 5                                       | % Significan   | ce Level        |                          | <b>J</b>        |           |  |  |
| 480 |      |           |              |                  |                 |                                                                 |                                                     |                |                 |                          |                 |           |  |  |
| 481 |      |           |              |                  | Gamma           | Statistics on                                                   | Detected D                                          | ata Onlv       |                 |                          |                 |           |  |  |
| 482 |      |           |              |                  | k hat (MLF)     | 0.379                                                           |                                                     | <b>,</b>       | k               | star (bias co            | rected MLE)     | 0.312     |  |  |
| 483 |      |           |              | The              | ta hat (MLE)    | 241.6                                                           |                                                     |                | Theta           | star (bias co            | rected MLE)     | 293.8     |  |  |
| 484 |      |           |              | r                | nu hat (MLE)    | 5 311                                                           |                                                     |                |                 | nu star (biz             | as corrected)   | 4 368     |  |  |
| 485 |      |           |              | Me               | an (detects)    | ects) 91.67                                                     |                                                     |                |                 |                          |                 |           |  |  |
| 486 |      |           |              |                  |                 |                                                                 |                                                     |                |                 |                          |                 |           |  |  |
| 487 |      |           |              |                  | amma POS        | Statistice us                                                   | ing Imputed                                         | Non-Detecto    |                 |                          |                 |           |  |  |
| 488 |      |           | GROS mor     |                  | when data a     | $\frac{1}{10000000000000000000000000000000000$                  | 50% NDs with many tied observations at multiple DLs |                |                 |                          |                 |           |  |  |
| 489 |      | GROS may  |              | d when keter     | of detects is   | small such o                                                    |                                                     |                |                 |                          | ,<br>a. <15.201 |           |  |  |
| 490 |      | GROS Hay  |              |                  | ione CPOC       | mothod may                                                      |                                                     |                |                 | אבר וא אוומוו (י<br>דו\פ | o.y., >10-20)   |           |  |  |
| 491 |      |           | FC           | such situat ית   | his is sere     | interrior may                                                   |                                                     |                |                 | 0175                     |                 |           |  |  |
| 492 |      | <b>Fa</b> | nno distuit  | +od data - + - ' | dete DTV        |                                                                 | en une sampl                                        | e size is sma  | III.            | ution on 1/14            | otimate -       |           |  |  |
| 493 |      | ⊢or gar   | nma distribu | ted detected     | data, BIVs a    | and UCLs ma                                                     | ay be compu                                         | ited using ga  | mma distrib     | ution on KM e            | estimates       | 00.01     |  |  |
| 494 |      |           |              |                  | Minimum         | 0.01                                                            |                                                     |                |                 |                          | Mean            | 80.21     |  |  |

|     | A B C D E                                     | F                                 | G                 | H             |               |           | J          | K            | L     |
|-----|-----------------------------------------------|-----------------------------------|-------------------|---------------|---------------|-----------|------------|--------------|-------|
| 495 | Maximum                                       | 445                               |                   |               |               |           |            | Median       | 8.8   |
| 496 | SD                                            | 156.8                             |                   |               |               |           |            | CV           | 1.954 |
| 497 | k hat (MLE)                                   | 0.276                             |                   |               |               | k star (t | pias corre | cted MLE)    | 0.256 |
| 498 | Theta hat (MLE)                               | 291.1                             |                   |               | Thet          | a star (t | pias corre | cted MLE)    | 313.9 |
| 499 | nu hat (MLE)                                  | 4.408                             |                   |               |               | nu s      | star (bias | corrected)   | 4.089 |
| 500 | Adjusted Level of Significance (β)            | 0.0195                            |                   |               |               |           |            |              |       |
| 501 | Approximate Chi Square Value (4.09, α)        | 0.757                             |                   |               | Adjusted      | Chi Sq    | uare Valu  | ie (4.09, β) | 0.467 |
| 502 | 95% Gamma Approximate UCL (use when n>=50)    | 433.2                             |                   | 95% Ga        | ımma Adjı     | usted U0  | CL (use w  | /hen n<50)   | 702.7 |
| 503 |                                               |                                   |                   |               |               |           |            |              |       |
| 504 | Estimates of G                                | iamma Parar                       | neters using      | KM Estimate   | es            |           |            |              |       |
| 505 | Mean (KM)                                     | 80.34                             |                   |               |               |           |            | SD (KM)      | 146.6 |
| 506 | Variance (KM)                                 | 21483                             |                   |               |               |           | SE of N    | Mean (KM)    | 55.97 |
| 507 | k hat (KM)                                    | 0.3                               |                   |               |               |           | k          | star (KM)    | 0.271 |
| 508 | nu hat (KM)                                   | 4.807                             |                   |               |               |           | nu         | ı star (KM)  | 4.338 |
| 509 | theta hat (KM)                                | 267.4                             |                   |               |               |           | theta      | a star (KM)  | 296.3 |
| 510 | 80% gamma percentile (KM)                     | 119.8                             |                   |               | 9             | 0% gan    | nma perce  | entile (KM)  | 239.5 |
| 511 | 95% gamma percentile (KM)                     | M) 379.4 99% gamma percentile (KM |                   |               |               |           |            |              | /4/./ |
| 512 |                                               |                                   |                   |               |               |           |            |              |       |
| 513 | Gamn                                          | na Kaplan-Me                      | eler (KM) Sta     | atistics      | A             | 01:0      |            | - (4.0.4     | 0.500 |
| 514 | Approximate Chi Square Value (4.34, α)        | 0.859                             |                   |               | Adjusted      | Chi Sq    | uare Valu  | ie (4.34, β) | 0.539 |
| 515 | 95% Gamma Approximate KM-UCL (use when n>=50) | 405.5                             |                   | 95% Gamm      | a Adjusted    | 1 KM-U    | CL (use w  | /hen n<50)   | 646   |
| 516 |                                               |                                   |                   |               |               |           |            |              |       |
| 517 |                                               |                                   |                   | ervations Oni | y<br>Ohanim N |           |            |              |       |
| 518 | Shapiro Wilk Test Statistic                   | 0.879                             | Det               |               | Snapiro       |           |            |              | 1     |
| 519 | 5% Shapiro Wilk Critical Value                | 0.803                             | Det               | ected Data a  | ppear Log     | normal    | at 5% Sig  | Inificance L | evel  |
| 520 |                                               | 0.205                             | Det               |               | LIIIETO       | SGOF      | I est      |              | 1     |
| 521 | 5% Lilletors Critical Value                   | 0.304                             | Det               |               | ppear Log     | normai    | at 5% Sig  | Inificance L | evei  |
| 522 | Detected Data ap                              | pear Lognor                       | mai at 5% 5       | ignilicance L | evei          |           |            |              |       |
| 523 | L canormal PO                                 | S Statiation I                    | loing Impute      | d Non Dotoo   | to            |           |            |              |       |
| 524 | Logioinial RO                                 |                                   |                   |               | 15            |           | Moon in    |              | 2 121 |
| 525 | SD in Original Scale                          | 156.8                             |                   |               |               |           |            |              | 2.121 |
| 526 | 95% + LICL (accurace normality of POS data)   | 195.0                             |                   |               | 050           | / Dorco   | ntilo Boot |              | 175.6 |
| 527 | 95% BCA Bootetran LICL                        | 226.4                             |                   |               | 307           |           | 5% Boots   |              | 175.0 |
| 528 | 95% H-UCL (Log BOS)                           | 1096022                           |                   |               |               | 5         | 5 /6 DOUS  | and tool     | 1772  |
| 529 | 33 % H-OCE (LOG NOS)                          | 1030022                           |                   |               |               |           |            |              |       |
| 530 | Statistics using KM estimates                 | on Logged D                       | ata and Ass       | umina Loano   | rmal Distri   | bution    |            |              |       |
| 531 | KM Mean (logged)                              | 2 423                             |                   |               |               | bullon    | KM         | Geo Mean     | 11 28 |
| 532 | KM SD (logged)                                | 2.120                             |                   |               | 959           | 6 Critics |            | (KM-I og)    | 6 266 |
| 533 | KM Standard Error of Mean (logged)            | 0.781                             |                   |               |               | 959       |            | (KM -L og)   | 11647 |
| 534 | KM SD (loaned)                                | 2.046                             |                   |               | 95%           | 6 Critics | al H Value | (KM-Log)     | 6.266 |
| 535 | KM Standard Frror of Mean (logged)            | 0.781                             |                   |               | 507           |           |            | 209)         | 5.200 |
| 536 |                                               |                                   |                   |               |               |           |            |              |       |
| 537 |                                               | DL/2 S                            | tatistics         |               |               |           |            |              |       |
| 538 | DL/2 Normal                                   | 2220                              |                   |               | DL/2 Log      | -Transf   | ormed      |              |       |
| 539 | Mean in Original Scale                        | 80.28                             |                   |               |               | ,         | Mean in    | Log Scale    | 2.336 |
| 540 | SD in Original Scale                          | 156.7                             | 7 SD in Log Scale |               |               |           |            |              | 2.308 |
| 541 | 95% t UCL (Assumes normality)                 | 185.3                             |                   |               |               |           | 95% H      | I-Stat UCL   | 67066 |
| 542 | DL/2 is not a recommended me                  | ethod. provid                     | ed for comp       | arisons and h | nistorical re | easons    |            |              |       |
| 543 |                                               | ., F                              |                   |               |               |           |            |              |       |
| 544 | Nonbarame                                     | etric Distribut                   | tion Free UC      | L Statistics  |               |           |            |              |       |
| 545 | Detected Data appea                           | r Gamma Dis                       | stributed at 5    | % Significan  | ce Level      |           |            |              |       |
| 546 | 2 4 appou                                     |                                   |                   |               |               |           |            |              |       |
| 54/ |                                               | Suggested                         | UCL to Use        |               |               |           |            |              |       |
| 548 | 95% KM Bootstran t UCI                        | 1798                              | Adjusted K        | M-UCL (use    | when k<=      | 1 and 1   | 5 < n < 50 | ) but k<=1)  | 646   |
| 549 | · · · · · · · · · · · · · · · · · · ·         |                                   | ,                 | (             |               |           |            | - ,          | -     |

|     | A                                                                                                                            | В                                                                                                                                         | С | D | E | F | G | Н |  | J | K | L |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|---|---|---|--|--|
| 550 |                                                                                                                              |                                                                                                                                           |   |   |   |   |   |   |  |   |   |   |  |  |
| 551 | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. |                                                                                                                                           |   |   |   |   |   |   |  |   |   |   |  |  |
| 552 |                                                                                                                              | Recommendations are based upon data size, data distribution, and skewness.                                                                |   |   |   |   |   |   |  |   |   |   |  |  |
| 553 |                                                                                                                              | These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).                  |   |   |   |   |   |   |  |   |   |   |  |  |
| 554 | Hc                                                                                                                           | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. |   |   |   |   |   |   |  |   |   |   |  |  |
| 555 |                                                                                                                              |                                                                                                                                           |   |   |   |   |   |   |  |   |   |   |  |  |

|    | A B C D E F G H I J K L<br>UCL Statistics for Data Sets with Non-Detects |               |               |                |               |               |               |               |              |               |                 |           |  |  |
|----|--------------------------------------------------------------------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|--------------|---------------|-----------------|-----------|--|--|
| 1  |                                                                          |               |               |                | UCL Statis    | tics for Data | Sets with N   | on-Detects    |              |               |                 |           |  |  |
| 2  |                                                                          |               |               |                |               |               |               |               |              |               |                 |           |  |  |
| 3  |                                                                          | User Selec    | cted Options  |                |               |               |               |               |              |               |                 |           |  |  |
| 4  | Date                                                                     | e/Time of Co  | omputation    | ProUCL 5.1     | 20/12/2019 1  | 0:21:03 AM    |               |               |              |               |                 |           |  |  |
| 5  |                                                                          |               | From File     | NAGD_revC      | _j.xls        |               |               |               |              |               |                 |           |  |  |
| 6  |                                                                          | Ful           | I Precision   | OFF            |               |               |               |               |              |               |                 |           |  |  |
| 7  |                                                                          | Confidence    | Coefficient   | 95%            |               |               |               |               |              |               |                 |           |  |  |
| 8  | Number o                                                                 | f Bootstrap ( | Operations    | 2000           |               |               |               |               |              |               |                 |           |  |  |
| 9  |                                                                          |               |               |                |               |               |               |               |              |               |                 |           |  |  |
| 10 | a Acenaphthene                                                           |               |               |                |               |               |               |               |              |               |                 |           |  |  |
| 11 |                                                                          |               |               |                |               |               |               |               |              |               |                 |           |  |  |
| 12 |                                                                          |               |               |                |               | General       | Statistics    |               |              |               |                 |           |  |  |
| 13 |                                                                          |               | Total         | Number of C    | bservations   | 8             |               |               | Number       | of Distinct C | Observations    | 5         |  |  |
| 14 |                                                                          |               |               | Numbe          | er of Detects | 1             |               |               |              | Number of     | Non-Detects     | 7         |  |  |
| 15 |                                                                          |               | N             | umber of Dist  | inct Detects  | 1             |               |               | Numbe        | r of Distinct | Non-Detects     | 4         |  |  |
| 16 |                                                                          |               |               |                |               |               |               |               |              |               |                 |           |  |  |
| 17 | v                                                                        | Varning: On   | ly one distin | ct data value  | was detect    | ed! ProUCL    | (or any other | r software) s | hould not be | e used on su  | ch a data set   | !         |  |  |
| 18 | It is sugge                                                              | ested to use  | alternative s | ite specific v | alues deteri  | mined by the  | Project Tea   | m to estimat  | te environme | ental parame  | eters (e.g., El | PC, BTV). |  |  |
| 19 |                                                                          |               |               |                |               |               |               |               |              |               |                 |           |  |  |
| 20 |                                                                          |               |               | The d          | ata set for v | ariable Acer  | naphthene wa  | as not proce  | essed!       |               |                 |           |  |  |
| 21 |                                                                          |               |               |                |               |               |               |               |              |               |                 |           |  |  |

|                                                                                              | A                                                                                                      | В        | С                  | D              | E              | F             | G              | Н              | I           | J                | K             | L      |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|--------------------|----------------|----------------|---------------|----------------|----------------|-------------|------------------|---------------|--------|--|
| 22                                                                                           | A                                                                                                      |          |                    |                |                |               |                |                |             |                  |               |        |  |
| 23                                                                                           | Acenaphth                                                                                              | yiene    |                    |                |                |               |                |                |             |                  |               |        |  |
| 24                                                                                           |                                                                                                        |          |                    |                |                | <b>0 1 1</b>  | 04-41-11       |                |             |                  |               |        |  |
| 25                                                                                           |                                                                                                        |          | <del>-</del> - · · | No.            | Maran 11       | General       | Statistics     |                |             |                  | Nessa         | _      |  |
| 26                                                                                           |                                                                                                        |          | l otal             | Number of C    | voservations   | 8             |                |                | Numb        | er of Distinct C | Deservations  | 5      |  |
| 27                                                                                           |                                                                                                        |          |                    | Numbe          | er of Detects  | <u>კ</u>      |                |                | KI -        | Number of        | Non-Detects   | 5      |  |
| 28                                                                                           |                                                                                                        |          | N                  | umber of Dist  | inct Detects   | 3             |                |                | Num         | ber of Distinct  | Non-Detects   | 2      |  |
| 29                                                                                           |                                                                                                        |          |                    | Mini           | mum Detect     | 0.105         |                |                |             | Minimum          | Non-Detect    | 0.004  |  |
| 30                                                                                           |                                                                                                        |          |                    | Maxi           | mum Detect     | 0.192         |                |                |             | Maximum          | Non-Detect    | 0.005  |  |
| 31                                                                                           |                                                                                                        |          |                    | Varia          | nce Detects    | 0.00215       |                |                |             | Percent          | Non-Detects   | 62.5%  |  |
| 32                                                                                           |                                                                                                        |          |                    | M              | ean Detects    | 0.158         |                |                |             |                  | SD Detects    | 0.0464 |  |
| 33                                                                                           |                                                                                                        |          |                    | Med            | an Detects     | 0.176         |                |                |             |                  | CV Detects    | 0.293  |  |
| 34                                                                                           |                                                                                                        |          |                    | Skewn          | ess Detects    | -1.505        |                |                |             | Kurt             | osis Detects  | N/A    |  |
| 35                                                                                           |                                                                                                        |          |                    | Mean of Log    | ged Detects    | -1.8/8        |                |                |             | SD of Log        | ged Detects   | 0.326  |  |
| 36                                                                                           |                                                                                                        |          |                    |                | ) M/a D        |               |                |                |             |                  |               |        |  |
| 37                                                                                           |                                                                                                        |          |                    | ••••••••       | warning: D     | ata set nas   | only 3 Deter   | cted values.   |             |                  |               |        |  |
| 38                                                                                           |                                                                                                        |          | 11                 | nis is not end | bugn to comp   | bute meaning  | gtul or rellar | DIE STATISTICS | and estima  | ites.            |               |        |  |
| 39                                                                                           | 39                                                                                                     |          |                    |                |                |               |                |                |             |                  |               |        |  |
| 40                                                                                           | 40<br>Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use |          |                    |                |                |               |                |                |             |                  |               |        |  |
| 41                                                                                           | 41 Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use    |          |                    |                |                |               |                |                |             |                  |               |        |  |
| 42                                                                                           | 42 guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.     |          |                    |                |                |               |                |                |             |                  |               |        |  |
| 43                                                                                           |                                                                                                        |          |                    | VICL con bo    | a may want u   | o use Cheby   |                |                | Ontiona d   | 2012).           |               |        |  |
| 44                                                                                           |                                                                                                        |          | Chebyshev          | OCL Can be     | e computed t   | Ising the No  | nparameuro     |                |             | DI PIOUCE 5.1    |               |        |  |
| 45                                                                                           |                                                                                                        |          |                    |                | Norm           |               | t on Dotoot    | Only           |             |                  |               |        |  |
| 46                                                                                           |                                                                                                        |          | 9                  | haniro Wilk T  | Act Statistic  |               |                | SOIIIy         | Shaniro V   | Vilk GOE Test    |               |        |  |
| 47                                                                                           |                                                                                                        |          | 5% SI              |                | ritical Value  | 0.002         |                | atacted Data   | appear No   | rmal at 5% Sic   | nificanco I o |        |  |
| 48                                                                                           |                                                                                                        |          | 576 51             |                |                | 0.707         | U              |                |             | e GOE Teet       |               | vei    |  |
| 49                                                                                           |                                                                                                        |          | 5                  |                | ritical Value  | 0.321         | П              | atacted Data   | annear No   | rmal at 5% Sic   | nificance Le  |        |  |
| 50                                                                                           |                                                                                                        |          | 5                  |                | tected Data    | o.420         | nal at 5% Si   |                |             |                  |               |        |  |
| 51                                                                                           |                                                                                                        |          |                    | De             |                | арреантонн    |                |                |             |                  |               |        |  |
| 52                                                                                           |                                                                                                        |          | Kanlan-            | Meier (KM) S   | Statistics usi | ng Normal C   | ritical Value  | s and other    | Nonnaram    | etric UCI s      |               |        |  |
| 53                                                                                           |                                                                                                        |          | Rapian             |                | KM Mean        | 0.0618        |                |                |             | M Standard F     | rror of Mean  | 0.0338 |  |
| 54                                                                                           |                                                                                                        |          |                    |                | KM SD          | 0.0781        |                |                | · · ·       | 95% KM           |               | N/A    |  |
| 55                                                                                           |                                                                                                        |          |                    | 95%            | KM (t) UCI     | 0.126         |                |                | 95% KM (    | Percentile Bo    | otstran) UCI  | N/A    |  |
| 56                                                                                           |                                                                                                        |          |                    | 95%            | KM (z) UCI     | 0.117         |                |                |             | 95% KM Boo       | otstrap t UCI | N/A    |  |
| 57                                                                                           |                                                                                                        |          | ç                  | 0% KM Chel     | byshev UCL     | 0.163         |                |                |             | 95% KM Che       | byshev UCL    | 0.209  |  |
| 58                                                                                           |                                                                                                        |          | 97                 | .5% KM Chel    | byshev UCL     | 0.273         |                |                |             | 99% KM Che       | byshev UCL    | 0.398  |  |
| 59                                                                                           |                                                                                                        |          |                    |                | ,              |               |                |                |             |                  | ,             |        |  |
| 60                                                                                           |                                                                                                        |          |                    | G              | amma GOF       | Tests on De   | etected Obs    | ervations Or   | ly          |                  |               |        |  |
| 61                                                                                           |                                                                                                        |          |                    |                | Not En         | ough Data to  | Perform G      | OF Test        |             |                  |               |        |  |
| 62                                                                                           |                                                                                                        |          |                    |                |                | •             |                |                |             |                  |               |        |  |
| 64                                                                                           |                                                                                                        |          |                    |                | Gamma          | Statistics or | Detected       | Data Only      |             |                  |               |        |  |
| 64<br>65                                                                                     |                                                                                                        |          |                    |                | k hat (MLE)    | 15.28         |                |                | ł           | star (bias cor   | rected MLE)   | N/A    |  |
| 60                                                                                           |                                                                                                        |          |                    | The            | ta hat (MLE)   | 0.0103        |                |                | Theta       | a star (bias cor | rected MLE)   | N/A    |  |
| 00                                                                                           |                                                                                                        |          |                    | n              | u hat (MLE)    | 91.68         |                |                |             | nu star (bia     | is corrected) | N/A    |  |
| 69                                                                                           | 1                                                                                                      |          |                    | Ме             | an (detects)   | 0.158         |                |                |             | •                | ,             |        |  |
| 60                                                                                           |                                                                                                        |          |                    | -              | . /            |               |                |                |             |                  |               |        |  |
| 70                                                                                           |                                                                                                        |          |                    | G              | amma ROS       | Statistics us | sing Impute    | d Non-Detec    | ts          |                  |               |        |  |
| GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs |                                                                                                        |          |                    |                |                |               |                |                |             |                  |               |        |  |
| 70                                                                                           | 1                                                                                                      | GROS may | y not be used      | when kstar o   | of detects is  | small such a  | s <1.0, espe   | cially when t  | he sample   | size is small (e | e.g., <15-20) |        |  |
| ו /2<br>די                                                                                   |                                                                                                        |          | Fo                 | r such situati | ons, GROS I    | method may    | yield incorre  | ect values of  | UCLs and I  | BTVs             | - /           |        |  |
| 73<br>77                                                                                     |                                                                                                        |          |                    | Т              | his is especi  | ally true whe | n the sampl    | e size is sma  | III.        |                  |               |        |  |
| 74<br>75                                                                                     |                                                                                                        | For gar  | mma distribut      | ed detected    | data, BTVs a   | nd UCLs ma    | y be compu     | ted using gar  | mma distrib | ution on KM e    | stimates      |        |  |
| 70<br>76                                                                                     |                                                                                                        |          |                    |                | Minimum        | 0.01          |                |                |             |                  | Mean          | 0.0755 |  |
| 10                                                                                           | J                                                                                                      |          |                    |                |                |               |                |                |             |                  |               |        |  |

|     | A B C D E                                     | F              | G H I J K                                             | L      |  |  |  |  |  |  |  |
|-----|-----------------------------------------------|----------------|-------------------------------------------------------|--------|--|--|--|--|--|--|--|
| 77  | Maximum                                       | 0.192          | Median                                                | 0.0466 |  |  |  |  |  |  |  |
| 78  | SD                                            | 0.0745         | CV                                                    | 0.987  |  |  |  |  |  |  |  |
| 79  | k hat (MLE)                                   | 1.022          | k star (bias corrected MLE)                           | 0.722  |  |  |  |  |  |  |  |
| 80  | Theta hat (MLE)                               | 0.0739         | Theta star (bias corrected MLE)                       | 0.105  |  |  |  |  |  |  |  |
| 81  | nu hat (MLE)                                  | 16.35          | nu star (bias corrected)                              | 11.55  |  |  |  |  |  |  |  |
| 82  | Adjusted Level of Significance (β)            | 0.0195         |                                                       |        |  |  |  |  |  |  |  |
| 83  | Approximate Chi Square Value (11.55, α)       | 4.934          | Adjusted Chi Square Value (11.55, $\beta$ )           | 3.898  |  |  |  |  |  |  |  |
| 84  | 95% Gamma Approximate UCL (use when n>=50)    | 0.177          | 95% Gamma Adjusted UCL (use when n<50)                | N/A    |  |  |  |  |  |  |  |
| 85  |                                               |                |                                                       |        |  |  |  |  |  |  |  |
| 86  | Estimates of G                                | amma Parai     | meters using KM Estimates                             |        |  |  |  |  |  |  |  |
| 87  | Mean (KM)                                     | 0.0618         | SD (KM)                                               | 0.0781 |  |  |  |  |  |  |  |
| 88  | Variance (KM)                                 | 0.0061         | SE of Mean (KM)                                       | 0.0338 |  |  |  |  |  |  |  |
| 89  | k hat (KM)                                    | 0.626          | k star (KM)                                           | 0.474  |  |  |  |  |  |  |  |
| 90  | nu hat (KM)                                   | 10.01          | nu star (KM)                                          | 7.589  |  |  |  |  |  |  |  |
| 91  | theta hat (KM)                                | 0.0987         | theta star (KM)                                       | 0.13   |  |  |  |  |  |  |  |
| 92  | 80% gamma percentile (KM)                     | 0.101          | 90% gamma percentile (KM)                             | 0.169  |  |  |  |  |  |  |  |
| 93  | 95% gamma percentile (KM)                     | 0.242          | 99% gamma percentile (KM)                             | 0.422  |  |  |  |  |  |  |  |
| 94  |                                               | 12 1 14        |                                                       |        |  |  |  |  |  |  |  |
| 95  | Gamm                                          | a Kaplan-Me    | eler (KM) Statistics                                  | 1.005  |  |  |  |  |  |  |  |
| 96  | Approximate Chi Square Value (7.59, α)        | 2.499          | Adjusted Chi Square Value (7.59, β)                   | 1.825  |  |  |  |  |  |  |  |
| 97  | 95% Gamma Approximate KM-UCL (use when n>=50) | 0.188          | 95% Gamma Adjusted KM-UCL (use when h<50)             | 0.257  |  |  |  |  |  |  |  |
| 98  |                                               | E Toot on D    | stastad Observations Only                             |        |  |  |  |  |  |  |  |
| 99  | Lognormal GU                                  |                | Shapira Wilk COE Test                                 |        |  |  |  |  |  |  |  |
| 100 | Shapiro Wilk Test Statistic                   | 0.800          | Shapiro Wilk GOF Test                                 |        |  |  |  |  |  |  |  |
| 101 | 5% Shapiro Wilk Chucal Value                  | 0.707          | Lilliofore COE Test                                   | vei    |  |  |  |  |  |  |  |
| 102 |                                               | 0.337          | Lilieors GOF Test                                     |        |  |  |  |  |  |  |  |
| 103 | 5% Linelois Childal Value                     | 0.425          | Detected Data appear Lognormal at 5% Significance Lev | vei    |  |  |  |  |  |  |  |
| 104 |                                               | ipear Lugrio   |                                                       |        |  |  |  |  |  |  |  |
| 105 | Lognormal BOS                                 | S Statistics I | Ising Imputed Non-Detects                             |        |  |  |  |  |  |  |  |
| 106 | Mean in Original Scale                        | 0.0915         | Mean in Log Scale                                     | -2 583 |  |  |  |  |  |  |  |
| 107 | SD in Original Scale                          | 0.0617         | SD in Log Scale                                       | 0.659  |  |  |  |  |  |  |  |
| 108 | 95% t UCL (assumes normality of ROS data)     | 0.133          | 95% Percentile Bootstrap UCL                          | 0.128  |  |  |  |  |  |  |  |
| 109 | 95% BCA Bootstrap UCL                         | 0.133          | 95% Bootstrap t UCL                                   | 0.171  |  |  |  |  |  |  |  |
| 110 | 95% H-UCL (Log ROS)                           | 0.182          |                                                       |        |  |  |  |  |  |  |  |
| 111 |                                               | ) 0.102        |                                                       |        |  |  |  |  |  |  |  |
| 112 | Statistics using KM estimates                 | on Logged [    | Data and Assuming Lognormal Distribution              |        |  |  |  |  |  |  |  |
| 113 | KM Mean (logged)                              | -4.155         | KM Geo Mean                                           | 0.0157 |  |  |  |  |  |  |  |
| 114 | KM SD (logged)                                | 1.771          | 95% Critical H Value (KM-Log)                         | 5.492  |  |  |  |  |  |  |  |
| 110 | KM Standard Error of Mean (logged)            | 0.767          | 95% H-UCL (KM -Log)                                   | 2.977  |  |  |  |  |  |  |  |
| 117 | KM SD (logged)                                | 1.771          | 95% Critical H Value (KM-Log)                         | 5.492  |  |  |  |  |  |  |  |
| 110 | KM Standard Error of Mean (logged)            | 0.767          |                                                       |        |  |  |  |  |  |  |  |
| 110 |                                               |                |                                                       |        |  |  |  |  |  |  |  |
| 120 |                                               | DL/2 St        | atistics                                              |        |  |  |  |  |  |  |  |
| 121 | DL/2 Normal                                   |                | DL/2 Log-Transformed                                  |        |  |  |  |  |  |  |  |
| 122 | Mean in Original Scale                        | 0.0606         | Mean in Log Scale                                     | -4.56  |  |  |  |  |  |  |  |
| 123 | SD in Original Scale                          | 0.0844         | SD in Log Scale                                       | 2.229  |  |  |  |  |  |  |  |
| 124 | 95% t UCL (Assumes normality)                 | 0.117          | 95% H-Stat UCL                                        | 38.23  |  |  |  |  |  |  |  |
| 125 | DL/2 is not a recommended me                  | ethod, provid  | ded for comparisons and historical reasons            |        |  |  |  |  |  |  |  |
| 126 |                                               |                |                                                       |        |  |  |  |  |  |  |  |
| 127 | Nonparame                                     | tric Distribu  | tion Free UCL Statistics                              |        |  |  |  |  |  |  |  |
| 128 | Detected Data appea                           | r Normal Dis   | stributed at 5% Significance Level                    |        |  |  |  |  |  |  |  |
| 129 |                                               |                |                                                       |        |  |  |  |  |  |  |  |
| 130 |                                               | Suggested      | UCL to Use                                            |        |  |  |  |  |  |  |  |
| 131 | 95% KM (t) UCL                                | 0.126          |                                                       |        |  |  |  |  |  |  |  |
|     |                                               |                |                                                       |        |  |  |  |  |  |  |  |

|     | A                                                                                                                                         | В                                                                          | С | D | E | F | G | H |  | J | K | L |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|---|---|---|---|---|--|---|---|---|--|
| 132 |                                                                                                                                           |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 133 | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.              |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 134 |                                                                                                                                           | Recommendations are based upon data size, data distribution, and skewness. |   |   |   |   |   |   |  |   |   |   |  |
| 135 | These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).                  |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 136 | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. |                                                                            |   |   |   |   |   |   |  |   |   |   |  |

|     | A                                                                                        | В        | С             | D               | E              | F              | G                        | Н                                         |               | J                      | K             | L       |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------|----------|---------------|-----------------|----------------|----------------|--------------------------|-------------------------------------------|---------------|------------------------|---------------|---------|--|--|--|--|--|
| 137 | A                                                                                        |          |               |                 |                |                |                          |                                           |               |                        |               |         |  |  |  |  |  |
| 138 | Anthracene                                                                               | •        |               |                 |                |                |                          |                                           |               |                        |               |         |  |  |  |  |  |
| 139 |                                                                                          |          |               |                 |                | General        | Statiation               |                                           |               |                        |               |         |  |  |  |  |  |
| 140 |                                                                                          |          | Toto          | Number of (     | hearvations    | seneral<br>s   | GIAUSUCS                 |                                           | Numbo         | ar of Distinct (       | hearvations   | Б       |  |  |  |  |  |
| 141 |                                                                                          |          | iota          | Numb            | er of Detecte  | 3              |                          |                                           | NUTIDE        | Number of              | Non-Detecte   | 5       |  |  |  |  |  |
| 142 |                                                                                          |          | N             | umber of Dis    | tinct Detects  | 3              |                          |                                           | Numb          | er of Distinct         | Non-Detects   | 2       |  |  |  |  |  |
| 143 |                                                                                          |          | 1             | Min             | imum Detect    | 0.101          |                          |                                           | . tamb        | Minimum                | Non-Detect    | 0.004   |  |  |  |  |  |
| 144 |                                                                                          |          |               | Max             | imum Detect    | 0.11           |                          |                                           |               | Maximum                | Non-Detect    | 0.005   |  |  |  |  |  |
| 145 |                                                                                          |          |               | Varia           | ance Detects   | 2.3268E-5      |                          |                                           |               | Percent                | Non-Detects   | 62.5%   |  |  |  |  |  |
| 140 |                                                                                          |          |               | N               | lean Detects   | 0.107          |                          |                                           |               |                        | SD Detects    | 0.00482 |  |  |  |  |  |
| 147 |                                                                                          |          |               | Me              | dian Detects   | 0.109          |                          |                                           |               |                        | CV Detects    | 0.0451  |  |  |  |  |  |
| 149 |                                                                                          |          |               | Skewr           | ness Detects   | -1.506         |                          |                                           |               | Kurt                   | osis Detects  | N/A     |  |  |  |  |  |
| 150 |                                                                                          |          |               | Mean of Log     | ged Detects    | -2.236         |                          |                                           |               | SD of Log              | ged Detects   | 0.0457  |  |  |  |  |  |
| 151 |                                                                                          |          |               |                 |                | 1              |                          |                                           |               |                        |               |         |  |  |  |  |  |
| 152 |                                                                                          |          |               |                 | Warning: D     | ata set has    | only 3 Detec             | cted Values.                              |               |                        |               |         |  |  |  |  |  |
| 153 |                                                                                          |          | Т             | his is not en   | ough to com    | pute meaning   | gful or reliat           | ole statistics                            | and estimat   | tes.                   |               |         |  |  |  |  |  |
| 154 |                                                                                          |          |               |                 |                |                |                          |                                           |               |                        |               |         |  |  |  |  |  |
| 155 |                                                                                          |          |               |                 |                |                |                          |                                           |               |                        |               |         |  |  |  |  |  |
| 156 |                                                                                          |          | Note: Sam     | ple size is si  | mall (e.g., <1 | 0), if data ar |                          | using ISM ap                              | proach, yo    | u should use           |               |         |  |  |  |  |  |
| 157 |                                                                                          |          | guidance pi   |                 | RC Tech Reg    | g Guide on IS  | SM (ITRC, 2              | 2012) to com                              | pute statisti | cs of interest         | •             |         |  |  |  |  |  |
| 158 |                                                                                          |          | Chobyobo      | example, yo     |                | o use Cheby    | snev UCL t               |                                           | Ontions of    | 2012).<br>EBrollCL 5.1 |               |         |  |  |  |  |  |
| 159 | Chebysnev OCL can be computed using the Nonparametric and All OCL Options of ProOCL 5. I |          |               |                 |                |                |                          |                                           |               |                        |               |         |  |  |  |  |  |
| 160 | Normal GOF Test on Detects Only                                                          |          |               |                 |                |                |                          |                                           |               |                        |               |         |  |  |  |  |  |
| 161 |                                                                                          |          | ę             | Shapiro Wilk    | Test Statistic | 0.881          | t on Deleca              | , only                                    | Shapiro W     | /ilk GOF Test          |               |         |  |  |  |  |  |
| 162 |                                                                                          |          | 5% S          | hapiro Wilk (   | Critical Value | 0.767          | D                        | etected Data                              | appear Nor    | mal at 5% Sic          | inificance Le | vel     |  |  |  |  |  |
| 163 |                                                                                          |          |               | Lilliefors      | Test Statistic | 0.321          |                          |                                           | Lilliefors    |                        |               |         |  |  |  |  |  |
| 165 |                                                                                          |          | 5             | 5% Lilliefors C | Critical Value | 0.425          | D                        | etected Data                              | appear Nor    | mal at 5% Sig          | Inificance Le | vel     |  |  |  |  |  |
| 166 |                                                                                          |          |               | De              | tected Data    | appear Norn    | nal at 5% Si             | al at 5% Significance Level               |               |                        |               |         |  |  |  |  |  |
| 167 |                                                                                          |          |               |                 |                |                |                          |                                           |               |                        |               |         |  |  |  |  |  |
| 168 |                                                                                          |          | Kaplan-       | Meier (KM)      | Statistics usi | ng Normal C    | ritical Value            | tical Values and other Nonparametric UCLs |               |                        |               |         |  |  |  |  |  |
| 169 |                                                                                          |          |               |                 | KM Mean        | 0.0426         |                          |                                           | K             | M Standard E           | rror of Mean  | 0.0216  |  |  |  |  |  |
| 170 |                                                                                          |          |               |                 | KM SD          | 0.0499         |                          |                                           |               | 95% KM                 | I (BCA) UCL   | N/A     |  |  |  |  |  |
| 171 |                                                                                          |          |               | 95%             | 5 KM (t) UCL   | 0.0835         |                          |                                           | 95% KM (F     | Percentile Boo         | otstrap) UCL  | N/A     |  |  |  |  |  |
| 172 |                                                                                          |          |               | 95%             | KM (z) UCL     | 0.0781         |                          |                                           |               | 95% KM Boo             | tstrap t UCL  | N/A     |  |  |  |  |  |
| 173 |                                                                                          |          | 1             | 90% KM Che      | byshev UCL     | 0.107          |                          |                                           |               | 95% KM Che             | byshev UCL    | 0.137   |  |  |  |  |  |
| 174 |                                                                                          |          | 97            | 7.5% KM Che     | byshev UCL     | 0.177          |                          |                                           |               | 99% KM Che             | byshev UCL    | 0.257   |  |  |  |  |  |
| 175 |                                                                                          |          |               |                 |                | Tests on De    |                          |                                           | <b>b</b> .    |                        |               |         |  |  |  |  |  |
| 176 |                                                                                          |          |               |                 | Not En         | Tests on De    |                          | OF Test                                   | iy            |                        |               |         |  |  |  |  |  |
| 177 |                                                                                          |          |               |                 | NOL EI         |                | Periorin G               | OFTESL                                    |               |                        |               |         |  |  |  |  |  |
| 178 |                                                                                          |          |               |                 | Gamma          | Statistics or  | Detected [               | )ata Only                                 |               |                        |               |         |  |  |  |  |  |
| 179 |                                                                                          |          |               |                 | k hat (MLF)    | 725.2          |                          |                                           | k             | star (bias cor         | rected MLE)   | N/A     |  |  |  |  |  |
| 180 |                                                                                          |          |               | The             | ta hat (MLE)   | 1.4741E-4      |                          |                                           | Theta         | star (bias cor         | rected MLE)   | N/A     |  |  |  |  |  |
| 181 |                                                                                          |          |               | 1               | nu hat (MLE)   | 4351           | nu star (bias corrected) |                                           |               |                        |               |         |  |  |  |  |  |
| 102 |                                                                                          |          |               | Me              | ean (detects)  | 0.107          |                          |                                           |               | (                      |               |         |  |  |  |  |  |
| 103 |                                                                                          |          |               |                 | . 7            | 1              |                          |                                           |               |                        |               |         |  |  |  |  |  |
| 185 |                                                                                          |          |               | (               | Gamma ROS      | Statistics u   | sing Impute              | d Non-Detec                               | ts            |                        |               |         |  |  |  |  |  |
| 186 |                                                                                          |          | GROS may      | / not be used   | when data s    | et has > 50%   | NDs with n               | nany tied obs                             | ervations at  | t multiple DLs         |               |         |  |  |  |  |  |
| 187 |                                                                                          | GROS mag | y not be used | d when kstar    | of detects is  | small such a   | s <1.0, espe             | cially when th                            | ne sample s   | ize is small (e        | e.g., <15-20) |         |  |  |  |  |  |
| 188 |                                                                                          |          | Fo            | or such situat  | ions, GROS     | method may     | yield incorre            | ect values of l                           | JCLs and B    | STVs                   |               |         |  |  |  |  |  |
| 189 |                                                                                          |          |               | 7               | This is especi | ially true whe | n the sampl              | e size is sma                             | II.           |                        |               |         |  |  |  |  |  |
| 190 |                                                                                          | For ga   | mma distribu  | ted detected    | data, BTVs a   | and UCLs ma    | y be compu               | ted using gar                             | nma distribu  | ution on KM e          | stimates      |         |  |  |  |  |  |
| 191 |                                                                                          |          |               |                 | Minimum        | 0.0832         |                          |                                           |               |                        | Mean          | 0.0965  |  |  |  |  |  |

|            | A B C D E                                     | F              | G H I J K                                            | L                     |  |  |  |  |  |  |
|------------|-----------------------------------------------|----------------|------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| 192        | Maximum                                       | 0.11           | Median                                               | 0.0943                |  |  |  |  |  |  |
| 193        | SD                                            | 0.00973        | CV                                                   | 0.101                 |  |  |  |  |  |  |
| 194        | k hat (MLE)                                   | 113.6          | k star (bias corrected MLE)                          | 71.06                 |  |  |  |  |  |  |
| 195        | Theta hat (MLE)                               | 8.4950E-4      | Theta star (bias corrected MLE)                      | 0.00136               |  |  |  |  |  |  |
| 196        | nu hat (MLE)                                  | 1817           | nu star (bias corrected)                             | 1137                  |  |  |  |  |  |  |
| 197        | Adjusted Level of Significance (β)            | 0.0195         |                                                      |                       |  |  |  |  |  |  |
| 198        | Approximate Chi Square Value (N/A, α)         | 1060           | Adjusted Chi Square Value (N/A, $\beta$ )            | 1041                  |  |  |  |  |  |  |
| 199        | 95% Gamma Approximate UCL (use when n>=50)    | 0.104          | 95% Gamma Adjusted UCL (use when n<50)               | N/A                   |  |  |  |  |  |  |
| 200        |                                               |                |                                                      |                       |  |  |  |  |  |  |
| 201        | Estimates of G                                | iamma Para     | meters using KM Estimates                            | 0.0400                |  |  |  |  |  |  |
| 202        | Mean (KM)                                     | 0.0426         | SD (KM)                                              | 0.0499                |  |  |  |  |  |  |
| 203        | variance (KM)                                 | 0.00249        | SE OI Mean (KM)                                      | 0.0210                |  |  |  |  |  |  |
| 204        | K Hat (KW)                                    | 0.729          | nu stor (KM)                                         | 0.559<br>8.625        |  |  |  |  |  |  |
| 205        | theta hat (KM)                                | 0.0584         | theta star (KM)                                      | 0.023                 |  |  |  |  |  |  |
| 206        | 80% gamma percentile (KM)                     | 0.0304         | 90% gamma percentile (KM)                            | 0.073                 |  |  |  |  |  |  |
| 207        | 95% gamma percentile (KM)                     | 0 159          | 99% gamma percentile (KM)                            | 0.271                 |  |  |  |  |  |  |
| 208        |                                               | 0.100          |                                                      | 0.271                 |  |  |  |  |  |  |
| 209        | Gamm                                          | na Kaplan-M    |                                                      |                       |  |  |  |  |  |  |
| 210        | Approximate Chi Square Value (8.62, α)        | 3.102          | Adjusted Chi Square Value (8.62, β)                  | 2.327                 |  |  |  |  |  |  |
| 211        | 95% Gamma Approximate KM-UCL (use when n>=50) | 0.118          | 95% Gamma Adjusted KM-UCL (use when n<50)            | 0.158                 |  |  |  |  |  |  |
| 212        |                                               |                |                                                      |                       |  |  |  |  |  |  |
| 213        | Lognormal GC                                  | OF Test on D   | etected Observations Only                            |                       |  |  |  |  |  |  |
| 215        | Shapiro Wilk Test Statistic                   | 0.877          | Shapiro Wilk GOF Test                                |                       |  |  |  |  |  |  |
| 216        | 5% Shapiro Wilk Critical Value                | 0.767          | Detected Data appear Lognormal at 5% Significance Le | evel                  |  |  |  |  |  |  |
| 217        | Lilliefors Test Statistic                     | 0.324          | Lilliefors GOF Test                                  |                       |  |  |  |  |  |  |
| 218        | 5% Lilliefors Critical Value                  | 0.425          | Detected Data appear Lognormal at 5% Significance Le | evel                  |  |  |  |  |  |  |
| 219        | Detected Data a                               | opear Logno    | rmal at 5% Significance Level                        |                       |  |  |  |  |  |  |
| 220        |                                               |                |                                                      |                       |  |  |  |  |  |  |
| 221        | Lognormal RO                                  | S Statistics   | s Using Imputed Non-Detects                          |                       |  |  |  |  |  |  |
| 222        | Mean in Original Scale                        | 0.097          | Mean in Log Scale                                    | -2.337                |  |  |  |  |  |  |
| 223        | SD in Original Scale                          | 0.0092         | SD in Log Scale                                      | 0.0939                |  |  |  |  |  |  |
| 224        | 95% t UCL (assumes normality of ROS data)     | 0.103          | 95% Percentile Bootstrap UCL                         | 0.102                 |  |  |  |  |  |  |
| 225        | 95% BCA Bootstrap UCL                         | 0.103          | 95% Bootstrap t UCL                                  | 0.105                 |  |  |  |  |  |  |
| 226        | 95% H-UCL (Log ROS)                           | N/A            |                                                      |                       |  |  |  |  |  |  |
| 227        |                                               |                |                                                      |                       |  |  |  |  |  |  |
| 228        | Statistics using KM estimates                 |                |                                                      | 0.0127                |  |  |  |  |  |  |
| 229        | Kivi Mean (logged)                            | -4.29          | KM Geo Mean                                          | 0.0137                |  |  |  |  |  |  |
| 230        | KM Standard Error of Moon (logged)            | 1.59           |                                                      | 4.989                 |  |  |  |  |  |  |
| 231        | Kivi Stanuaru Error or Mean (logged)          | 1 50           | 95% Critical H Value (KM Loo)                        | 0.975<br><u>4</u> 080 |  |  |  |  |  |  |
| 232        | KM Standard Error of Mean (logged)            | 0.689          | 3576 Childai 11 Value (KW-LOg)                       | 4.303                 |  |  |  |  |  |  |
| 233        |                                               | 0.000          |                                                      |                       |  |  |  |  |  |  |
| 234        |                                               | DL/2 S         | tatistics                                            |                       |  |  |  |  |  |  |
| 235        | DL/2 Normal                                   |                | DL/2 Log-Transformed                                 |                       |  |  |  |  |  |  |
| 236        | Mean in Original Scale                        | 0.0414         | Mean in Log Scale                                    | -4.695                |  |  |  |  |  |  |
| 231<br>220 | SD in Original Scale                          | 0.0543         | SD in Log Scale                                      | 2.037                 |  |  |  |  |  |  |
| 230<br>220 | 95% t UCL (Assumes normality)                 | 0.0778         | 95% H-Stat UCL                                       | 8.898                 |  |  |  |  |  |  |
| 239<br>240 | DL/2 is not a recommended m                   | ethod, provi   | ded for comparisons and historical reasons           |                       |  |  |  |  |  |  |
| 240<br>241 |                                               | -              |                                                      |                       |  |  |  |  |  |  |
| 242        | Nonparame                                     | etric Distribu | tion Free UCL Statistics                             |                       |  |  |  |  |  |  |
| 243        | Detected Data appea                           | ar Normal Dis  | stributed at 5% Significance Level                   |                       |  |  |  |  |  |  |
| 244        |                                               |                |                                                      |                       |  |  |  |  |  |  |
| 245        |                                               | Suggested      | UCL to Use                                           |                       |  |  |  |  |  |  |
| 246        | 95% KM (t) UCL                                | 0.0835         |                                                      |                       |  |  |  |  |  |  |
|            |                                               |                |                                                      |                       |  |  |  |  |  |  |

|     | A                                                                                                                                         | В                                                                          | С | D | E | F | G | Н |  | J | K | L |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|---|---|---|---|---|--|---|---|---|--|
| 247 |                                                                                                                                           |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 248 | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.              |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 249 |                                                                                                                                           | Recommendations are based upon data size, data distribution, and skewness. |   |   |   |   |   |   |  |   |   |   |  |
| 250 | These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).                  |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 251 | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. |                                                                            |   |   |   |   |   |   |  |   |   |   |  |

|     | A         | В        | (         | ;       |         | D        |          | E         | F                                                           | G                              |         | H          |          |          |           |         |        | K         | ┶          | L     |
|-----|-----------|----------|-----------|---------|---------|----------|----------|-----------|-------------------------------------------------------------|--------------------------------|---------|------------|----------|----------|-----------|---------|--------|-----------|------------|-------|
| 252 | Benz(a)an | thracene |           |         |         |          |          |           |                                                             |                                |         |            |          |          |           |         |        |           |            |       |
| 253 | (a)an     |          |           |         |         |          |          |           |                                                             |                                |         |            |          |          |           |         |        |           |            |       |
| 254 |           |          |           |         |         |          |          |           | General                                                     | Statistics                     |         |            |          |          |           |         |        |           |            |       |
| 255 |           |          |           | Total   | Numl    | ber of ( | Observ   | /ations   | 8                                                           |                                |         |            | N        | umbei    | r of Dis  | tinct C | Obse   | rvations  | ;          | 6     |
| 256 |           |          |           |         | -       | Numb     | er of D  | Detects   | 4                                                           |                                |         |            |          |          | Numb      | er of   | Non-   | Detects   |            | 4     |
| 257 |           |          |           | Nı      | umbe    | r of Dis | tinct D  | Detects   | 4                                                           |                                |         |            | Ν        | lumbe    | er of Dis | stinct  | Non-   | Detects   |            | 2     |
| 258 |           |          |           |         |         | Min      | imum     | Detect    | 0.006                                                       |                                |         |            |          |          | Mir       | nimum   | n Nor  | n-Detec   | t (        | 0.004 |
| 259 |           |          |           |         |         | Max      | imum     | Detect    | 0.762                                                       |                                |         |            |          |          | Max       | kimum   | n Nor  | n-Detec   | t (        | 0.005 |
| 260 |           |          |           |         |         | Varia    | ance D   | Detects   | 0.0958                                                      |                                |         |            |          |          | Pe        | rcent   | Non-   | Detects   | ;          | 50%   |
| 201 |           |          |           |         |         | N        | lean D   | Detects   | 0.4                                                         |                                |         |            |          |          |           |         | SD     | Detects   | ;          | 0.309 |
| 262 |           |          |           |         |         | Ме       | dian D   | Detects   | 0.417                                                       |                                |         |            |          |          |           |         | CV     | Detects   | ;          | 0.773 |
| 203 |           |          |           |         |         | Skewr    | ness D   | Detects   | -0.314                                                      |                                |         |            |          |          |           | Kurt    | tosis  | Detects   | ;          | 1.503 |
| 204 |           |          |           |         | Mear    | n of Log | ged D    | Detects   | -1.785                                                      |                                |         |            |          |          | SD        | of Log  | gged   | Detects   | ;          | 2.239 |
| 200 |           |          |           |         |         |          |          |           |                                                             |                                |         |            |          |          |           |         |        |           |            |       |
| 200 |           |          | Note      | : Samp  | ole siz | ze is sı | mall (e  | ə.g., <1  | 0), if data ar                                              | e collecte                     | d usi   | ng ISM a   | pproac   | h, you   | ı should  | d use   |        |           |            |       |
| 207 |           |          | guidar    | nce pro | ovide   | d in IT  | RC Te    | ch Reg    | Guide on I                                                  | SM (ITRC                       | , 201   | 2) to com  | pute st  | tatistic | s of in   | terest  | t.     |           |            |       |
| 269 |           |          |           | For e   | exam    | ple, yo  | u may    | want t    | o use Cheby                                                 | shev UCI                       | L to e  | stimate E  | PC (IT   | RC, 2    | 2012).    |         |        |           |            |       |
| 270 |           |          | Cheb      | yshev   | UCL     | . can b  | e com    | puted ı   | ising the No                                                | nparamet                       | ric ar  | nd All UC  | L Optio  | ons of   | ProUC     | L 5.1   |        |           |            |       |
| 270 |           |          |           |         |         |          |          |           |                                                             |                                |         |            |          |          |           |         |        |           |            |       |
| 272 |           |          |           |         |         |          |          | Norm      | al GOF Tes                                                  | t on Dete                      | cts O   | nly        |          |          |           |         |        |           |            |       |
| 273 |           |          |           | S       | hapiro  | o Wilk   | Test S   | tatistic  | 0.959                                                       | Shapiro Wilk GOF Test          |         |            |          |          |           |         |        |           |            |       |
| 274 |           |          |           | 5% Sł   | napiro  | Wilk (   | Critical | l Value   | 0.748                                                       |                                | Dete    | cted Data  | appea    | r Norr   | nal at 5  | i% Sig  | gnific | ance Le   | vel        |       |
| 275 |           |          |           |         | Lill    | liefors  | Test S   | tatistic  | 0.251                                                       |                                |         |            | Lilli    | iefors   | GOF T     | est     |        |           |            |       |
| 276 |           |          |           | 59      | % Lill  | iefors ( | Critical | Value     | 0.375                                                       |                                | Dete    | cted Data  | appea    | r Norr   | nal at 5  | i% Sig  | gnific | ance Le   | vel        |       |
| 277 |           |          |           |         |         | De       | tected   | d Data a  | appear Norn                                                 | nal at 5%                      | Signi   | ficance L  | evel     |          |           |         |        |           |            |       |
| 278 |           |          |           |         |         |          |          |           |                                                             |                                |         |            |          |          |           |         |        |           |            |       |
| 279 |           |          | Ka        | aplan-l | Meier   | · (KM) : | Statist  | tics usi  | s using Normal Critical Values and other Nonparametric UCLs |                                |         |            |          |          |           |         |        |           |            |       |
| 280 |           |          |           |         |         |          | KM       | l Mean    | 0.202                                                       |                                |         |            |          | K١       | /I Stanc  | lard E  | rror   | of Mear   | i          | 0.112 |
| 281 |           |          |           |         |         |          | ł        | KM SD     | 0.274                                                       |                                |         |            |          |          | 95        | % KN    | И (ВС  | CA) UCL   | 1          | N/A   |
| 282 |           |          |           |         |         | 95%      | 6 KM (   | t) UCL    | 0.414                                                       |                                |         |            | 95%      | KM (P    | Percenti  | le Boo  | otstra | ap) UCL   | . 1        | N/A   |
| 283 |           |          |           |         |         | 95%      | 5 KM (z  | z) UCL    | 0.386                                                       |                                |         |            |          |          | 95% KI    | M Boo   | otstra | ap t UCL  | . 1        | N/A   |
| 284 |           |          |           | 9       | 90% K   | (M Che   | byshe    | ev UCL    | 0.538                                                       |                                |         |            |          | ç        | 95% KN    | /I Che  | ebysh  | nev UCL   | -          | 0.69  |
| 285 |           |          |           | 97.     | .5% K   | (M Che   | byshe    | ev UCL    | 0.901                                                       |                                |         |            |          | ç        | 99% KN    | /I Che  | ebysh  | nev UCL   | -          | 1.316 |
| 286 |           |          |           |         |         |          |          |           |                                                             |                                |         |            |          |          |           |         |        |           |            |       |
| 287 |           |          |           |         |         | C        | Gamma    | a GOF     | Tests on De                                                 | etected OI                     | bserv   | ations Or  | ıly      |          |           |         |        |           |            |       |
| 288 |           |          |           |         |         | A-D      | Test S   | tatistic  | 0.607                                                       |                                |         | A          | nderso   | on-Da    | rling G   | OF Te   | est    |           |            |       |
| 289 |           |          |           |         | 5%      | 6 A-D (  | Critical | l Value   | 0.673                                                       | Detec                          | cted d  | ata appea  | ar Gam   | ma Di    | stribute  | ed at 5 | 5% S   | ignifica  | nce        | Level |
| 290 |           |          |           |         |         | K-S      | Test S   | tatistic  | 0.407                                                       |                                |         |            | Kolmog   | jorov-   | Smirno    | ov GO   | )F     |           |            |       |
| 291 |           |          |           |         | 5%      | % K-S (  | Critical | l Value   | 0.406                                                       | Dete                           | ected   | Data Not   | Gamm     | na Dist  | tributed  | l at 5% | % Sig  | gnificano | e Le       | evel  |
| 292 |           |          |           |         | Dete    | cted d   | ata fol  | low Ap    | pr. Gamma                                                   | Distributio                    | on at ! | 5% Signif  | icance   | Leve     |           |         |        |           |            |       |
| 293 |           |          |           |         |         |          |          |           |                                                             |                                |         |            |          |          |           |         |        |           |            |       |
| 294 |           |          |           |         |         |          | G        | iamma     | Statistics or                                               | Detected                       | d Data  | a Only     |          |          |           |         |        |           |            |       |
| 295 |           |          |           |         |         |          | k hat    | (MLE)     | 0.696                                                       | 696 k star (bias corrected MLE |         |            |          |          |           |         | )      | 0.341     |            |       |
| 296 | Theta hat |          |           |         |         |          |          | (MLE)     | 0.575                                                       |                                |         |            | Т        | Theta s  | star (bia | as cor  | rrecte | ed MLE)   | ' <u> </u> | 1.175 |
| 297 | nu hat    |          |           |         |         |          |          | (MLE)     | 5.565                                                       |                                |         |            |          |          | nu sta    | ar (bia | as co  | rrected   | ' <u> </u> | 2.725 |
| 298 |           | Mean (de |           |         |         |          |          |           | 0.4                                                         |                                |         |            |          |          |           |         |        |           |            |       |
| 299 |           |          |           |         |         |          |          |           |                                                             |                                |         |            |          |          |           |         |        |           |            |       |
| 300 |           |          |           |         |         | (        | Jamm     | a ROS     | Statistics u                                                | sing Impu                      | ted N   | ion-Detec  | sts      |          |           |         |        |           |            |       |
| 301 |           | 0765     | GRO       | S may   | not b   | e used   | when     | data s    | et has > 50%                                                | NDs with                       | n man   | y tied obs | servatio | ons at   | multiple  | e DLs   | 5      | 4         |            |       |
| 302 |           | GROS ma  | ay not be | e used  | wher    | n kstar  | of dete  | ects is s | small such a                                                | s <1.0, es                     | pecia   | lly when t | he sam   | nple si  | ze is sr  | nall (e | e.g.,  | <15-20)   |            |       |
| 303 |           |          |           | Fo      | r sucł  | h situat | ions, C  | GROS      | method may                                                  | yield inco                     | rrect   | values of  | UCLs a   | and B    | TVs       |         |        |           |            |       |
| 304 |           |          |           |         |         | ٦        | This is  | especi    | ally true whe                                               | n the sam                      | ple s   | ize is sma | all.     |          |           |         |        |           |            |       |
| 305 |           | For ga   | ımma di   | stribut | ed de   | etected  | data, I  | BTVs a    | nd UCLs ma                                                  | y be com                       | puted   | using ga   | mma di   | istribu  | tion on   | KM e    | stima  | ates      |            |       |
| 306 |           |          |           |         |         |          | Mii      | nimum     | ım 0.006 Mear                                               |                                |         |            |          |          |           |         |        |           | 0.205      |       |

|     | A B C D E                                      | F              |                                                      | L            |  |  |  |  |  |  |  |
|-----|------------------------------------------------|----------------|------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| 307 | Maximum                                        | 0.762          | Median                                               | 0.01         |  |  |  |  |  |  |  |
| 308 | SD                                             | 0.291          | CV                                                   | 1.418        |  |  |  |  |  |  |  |
| 309 | k hat (MLE)                                    | 0.407          | k star (bias corrected MLE)                          | 0.338        |  |  |  |  |  |  |  |
| 310 | Theta hat (MLE)                                | 0.504          | Theta star (bias corrected MLE)                      | 0.607        |  |  |  |  |  |  |  |
| 311 | nu hat (MLE)                                   | 6.516          | nu star (bias corrected)                             | 5.406        |  |  |  |  |  |  |  |
| 312 | Adjusted Level of Significance (β)             | 0.0195         |                                                      |              |  |  |  |  |  |  |  |
| 313 | Approximate Chi Square Value (5.41, $\alpha$ ) | 1.344          | Adjusted Chi Square Value (5.41, β)                  | 0.901        |  |  |  |  |  |  |  |
| 314 | 95% Gamma Approximate UCL (use when n>=50)     | 0.825          | 95% Gamma Adjusted UCL (use when n<50)               | N/A          |  |  |  |  |  |  |  |
| 315 |                                                |                |                                                      |              |  |  |  |  |  |  |  |
| 316 | Estimates of G                                 | iamma Para     | meters using KM Estimates                            |              |  |  |  |  |  |  |  |
| 317 | Mean (KM)                                      | 0.202          | SD (KM)                                              | 0.274        |  |  |  |  |  |  |  |
| 318 | Variance (KM)                                  | 0.0752         | SE of Mean (KM)                                      | 0.112        |  |  |  |  |  |  |  |
| 319 | k hat (KM)                                     | 0.544          | k star (KM)                                          | 0.423        |  |  |  |  |  |  |  |
| 320 | nu hat (KM)                                    | 8.697          | nu star (KM)                                         | 6.769        |  |  |  |  |  |  |  |
| 321 | theta hat (KM)                                 | 0.372          | theta star (KM)                                      | 0.478        |  |  |  |  |  |  |  |
| 322 | 80% gamma percentile (KM)                      | 0.328          | 90% gamma percentile (KM)                            | 0.565        |  |  |  |  |  |  |  |
| 323 | 95% gamma percentile (KM)                      | 0.824          | 99% gamma percentile (KM)                            | 1.47         |  |  |  |  |  |  |  |
| 324 |                                                |                |                                                      |              |  |  |  |  |  |  |  |
| 325 | Gamm                                           | na Kaplan-M    | leier (KM) Statistics                                |              |  |  |  |  |  |  |  |
| 326 | Approximate Chi Square Value (6.77, α)         | 2.045          | Adjusted Chi Square Value (6.77, β)                  | 1.454        |  |  |  |  |  |  |  |
| 327 | 95% Gamma Approximate KM-UCL (use when n>=50)  | 0.669          | 95% Gamma Adjusted KM-UCL (use when n<50)            | 0.941        |  |  |  |  |  |  |  |
| 328 |                                                |                |                                                      |              |  |  |  |  |  |  |  |
| 329 | Lognormal GC                                   | DF Test on D   | Detected Observations Only                           |              |  |  |  |  |  |  |  |
| 330 | Shapiro Wilk Test Statistic                    | 0.743          | Shapiro Wilk GOF Test                                |              |  |  |  |  |  |  |  |
| 331 | 5% Shapiro Wilk Critical Value                 | 0.748          | Detected Data Not Lognormal at 5% Significance Level |              |  |  |  |  |  |  |  |
| 332 | Lilliefors Test Statistic                      | 0.401          | Lilliefors GOF Test                                  | -            |  |  |  |  |  |  |  |
| 333 | 5% Lilliefors Critical Value                   | 0.375          | Detected Data Not Lognormal at 5% Significance Level |              |  |  |  |  |  |  |  |
| 334 | Detected Data                                  | Not Lognorn    | mal at 5% Significance Level                         |              |  |  |  |  |  |  |  |
| 335 |                                                |                |                                                      |              |  |  |  |  |  |  |  |
| 336 |                                                | S Statistics   | Using Imputed Non-Detects                            | 4.05         |  |  |  |  |  |  |  |
| 337 | Mean in Original Scale                         | 0.201          | Mean in Log Scale                                    | -4.65        |  |  |  |  |  |  |  |
| 338 | SD in Original Scale                           | 0.294          | SD in Log Scale                                      | 3.512        |  |  |  |  |  |  |  |
| 339 | 95% t UCL (assumes normality of RUS data)      | 0.398          | 95% Percentile Bootstrap UCL                         | 0.358        |  |  |  |  |  |  |  |
| 340 | 95% BCA Bootstrap UCL                          | 0.391          | 95% Bootstrap t UCL                                  | 0.511        |  |  |  |  |  |  |  |
| 341 | 95% H-UCL (L0g RUS)                            | 5103921        |                                                      |              |  |  |  |  |  |  |  |
| 342 | Otobiotics using 1/M activation                |                |                                                      |              |  |  |  |  |  |  |  |
| 343 | Statistics using KM estimates                  |                |                                                      | 0.0250       |  |  |  |  |  |  |  |
| 344 | KM Mean (logged)                               | -3.653         | KM Geo Mean                                          | 0.0259       |  |  |  |  |  |  |  |
| 345 | KM Standard Error of Moon (lagged)             | 2.317          |                                                      | 7.030        |  |  |  |  |  |  |  |
| 346 |                                                | 0.940          |                                                      | 7 020        |  |  |  |  |  |  |  |
| 347 | KM Standard Ever of Maan (larged)              | 2.31/          |                                                      | 1.030        |  |  |  |  |  |  |  |
| 348 | Kini Stanuaru Error or Mean (logged)           | 0.940          |                                                      |              |  |  |  |  |  |  |  |
| 349 |                                                |                | Statistics                                           |              |  |  |  |  |  |  |  |
| 350 | DI /2 Normal                                   | 00/2 5         | DI /2 Log Transformed                                |              |  |  |  |  |  |  |  |
| 351 | DUZ INUTITIAI<br>Maan in Original Socia        | 0.201          | DL/2 Log- maistormed                                 | _3 072       |  |  |  |  |  |  |  |
| 352 | Mean In Original Scale                         | 0.201          | 201 Weat In Log Scale                                |              |  |  |  |  |  |  |  |
| 353 |                                                | 0.294          |                                                      | 2.70<br>1960 |  |  |  |  |  |  |  |
| 354 | DI /2 is not a recommanded m                   | othod provid   | ded for comparisons and historical reasons           | -300         |  |  |  |  |  |  |  |
| 355 |                                                | eniou, provi   | นอน เอ ออกมีคารอาร์ สาม การเอกเปล่า 18450115         |              |  |  |  |  |  |  |  |
| 356 | Nonsorten                                      | atric Distribu | Ition Free LICL Statistics                           |              |  |  |  |  |  |  |  |
| 357 |                                                |                | istributed at 5% Significance Level                  |              |  |  |  |  |  |  |  |
| 358 |                                                |                | Subated at 0 /0 Cigninicalite Level                  |              |  |  |  |  |  |  |  |
| 359 |                                                | Suggested      |                                                      |              |  |  |  |  |  |  |  |
| 360 |                                                |                |                                                      |              |  |  |  |  |  |  |  |
| 361 | 90% NIVI (1) UCL                               | JCL 0.414      |                                                      |              |  |  |  |  |  |  |  |

|     | A                                                                                                                                         | В                                                                          | С | D | E | F | G | H |  | J | K | L |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|---|---|---|---|---|--|---|---|---|--|
| 362 |                                                                                                                                           |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 363 | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.              |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 364 |                                                                                                                                           | Recommendations are based upon data size, data distribution, and skewness. |   |   |   |   |   |   |  |   |   |   |  |
| 365 | These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).                  |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 366 | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. |                                                                            |   |   |   |   |   |   |  |   |   |   |  |

|     | A                                                                                                           | В         | С          |        | D              |         | E         | F                | G                                                            | ŀ          | -           |              |         | J         |         |         | K       |      | L     |
|-----|-------------------------------------------------------------------------------------------------------------|-----------|------------|--------|----------------|---------|-----------|------------------|--------------------------------------------------------------|------------|-------------|--------------|---------|-----------|---------|---------|---------|------|-------|
| 367 | Benzo(a) n                                                                                                  | vrene     |            |        |                |         |           |                  |                                                              |            |             |              |         |           |         |         |         |      |       |
| 368 |                                                                                                             | yi cile   |            |        |                |         |           |                  |                                                              |            |             |              |         |           |         |         |         |      |       |
| 369 |                                                                                                             |           |            |        |                |         |           | General          | Statistics                                                   |            |             |              |         |           |         |         |         |      |       |
| 370 |                                                                                                             |           | Tr         | otal N | umber of       | Ohse    | rvations  | 8                |                                                              |            |             | Nu           | Imper   | of Disti  | nct OF  | bserv   | ations  |      | 6     |
| 371 |                                                                                                             |           |            |        | Num            | ber of  | Detects   | 4                |                                                              |            |             | INU          |         | Numbe     | er of N | lon-D   | etects  |      | 4     |
| 372 |                                                                                                             |           |            | Num    | ber of Di      | istinct | Detects   | 4                |                                                              |            |             | N            | umhe    | r of Dist | inct N  | lon-D   | etects  |      | 2     |
| 373 |                                                                                                             |           |            | . turi | Mi             | nimun   | n Detect  | 0.01             |                                                              |            |             |              |         | Mini      | mum     | Non-I   | Detect  | 0    | -     |
| 374 |                                                                                                             |           |            |        | Ma             | ximun   | n Detect  | 0.83             |                                                              |            |             |              |         | Maxi      | mum l   | Non-l   | Detect  | 0    | .005  |
| 3/5 |                                                                                                             |           |            |        | Var            | iance   | Detects   | 0.137            |                                                              |            |             |              |         | Perc      | ent N   | lon-D   | etects  | !    | 50%   |
| 3/6 |                                                                                                             |           |            |        |                | Mean    | Detects   | 0.537            |                                                              |            |             |              |         |           | :       | SD D    | etects  |      | 0.37  |
| 377 |                                                                                                             |           |            |        | М              | edian   | Detects   | 0.653            |                                                              |            |             |              |         |           | (       | CV D    | etects  |      | 0.688 |
| 370 |                                                                                                             |           |            |        | Skev           | vness   | Detects   | -1.469           |                                                              |            |             |              |         |           | Kurto   | sis D   | etects  |      | 1.97  |
| 380 |                                                                                                             |           |            | Μ      | ean of Lo      | ogged   | Detects   | -1.416           |                                                              |            |             |              |         | SD of     | f Logg  | jed D   | etects  |      | 2.133 |
| 381 |                                                                                                             |           |            |        |                |         |           |                  |                                                              |            |             |              |         |           |         |         |         |      |       |
| 382 |                                                                                                             |           | Note: Sa   | ample  | e size is s    | small   | (e.g., <1 | 10), if data aı  | )), if data are collected using ISM approach, you should use |            |             |              |         |           |         |         |         |      |       |
| 383 |                                                                                                             |           | guidance   | prov   | ided in l'     | TRC 1   | Fech Re   | g Guide on I     | SM (ITRC,                                                    | 2012) to   | o com       | pute sta     | atistic | s of inte | erest.  |         |         |      |       |
| 384 |                                                                                                             |           | F          | or ex  | ample, y       | ou ma   | y want i  | to use Cheby     | /shev UCL                                                    | . to estin | nate E      | PC (ITF      | RC, 2   | 012).     |         |         |         |      |       |
| 385 |                                                                                                             |           | Chebys     | hev L  | JCL can        | be co   | mputed    | using the No     | using the Nonparametric and All UCL Options of ProUCL 5.1    |            |             |              |         |           |         |         |         |      |       |
| 386 |                                                                                                             |           |            |        |                |         |           |                  |                                                              |            |             |              |         |           |         |         |         |      |       |
| 387 |                                                                                                             |           |            |        |                |         | Norr      | nal GOF Tes      | t on Detec                                                   | ts Only    |             |              |         |           |         |         |         |      |       |
| 388 |                                                                                                             |           |            | Sha    | piro Wilk      | Test    | Statistic | 0.868            |                                                              |            |             | Shapi        | ro Wi   | k GOF     | Test    |         |         |      |       |
| 389 |                                                                                                             |           | 5%         | 6 Sha  | piro Wilk      | Critic  | al Value  | 0.748            |                                                              | Detected   | l Data      | appear       | Norn    | nal at 5% | ℅ Sigr  | nifical | nce Le  | vel  |       |
| 390 |                                                                                                             |           |            |        | Lilliefors     | Test    | Statistic | 0.272            |                                                              |            |             | Lillie       | efors   | GOF Te    | st      |         |         |      |       |
| 391 |                                                                                                             |           |            | 5%     | Lilliefors     | Critic  | al Value  | 0.375            |                                                              | Detected   | l Data      | appear       | Norn    | nal at 5% | 6 Sigr  | nifica  | nce Le  | vel  |       |
| 392 |                                                                                                             |           |            |        | D              | etecte  | ed Data   | appear Norr      | nal at 5% s                                                  | Significa  | nce Le      | evel         |         |           |         |         |         |      |       |
| 393 |                                                                                                             |           |            |        |                |         |           |                  |                                                              |            |             |              |         |           |         |         |         |      |       |
| 394 |                                                                                                             |           | Kapla      | an-Mo  | eier (KM)      | Stati   | stics usi | ing Normal C     | ritical Val                                                  | ues and    | other       | Nonpar       | ramet   | ric UCL:  | S       |         |         | 1    |       |
| 395 |                                                                                                             |           |            |        |                | K       | M Mean    | 0.27             |                                                              |            |             |              | KN      | 1 Standa  | ard Eri | ror of  | Mean    |      | 0.143 |
| 396 |                                                                                                             |           |            |        |                |         | KM SD     | 0.35             |                                                              |            |             |              |         | 95%       | 6 KM    | (BCA    | ) UCL   | N    | I/A   |
| 397 |                                                                                                             |           |            |        | 95             | % KM    | I (t) UCL | 0.541            |                                                              |            |             | 95% k        | KM (P   | ercentile | e Boot  | tstrap  | ) UCL   | N    | I/A   |
| 398 |                                                                                                             |           |            |        | 959            | % KM    | (z) UCL   | 0.505            |                                                              |            |             |              | (       | 95% KM    | Boot    | strap   | t UCL   | N    | I/A   |
| 399 |                                                                                                             |           |            | 90     | % KM Ch        | lebysh  | nev UCL   | 0.698            |                                                              |            |             |              | g       | 95% KM    | Cheb    | yshe    | v UCL   |      | 0.892 |
| 400 |                                                                                                             |           |            | 97.5   | % KM Ch        | lebysł  | nev UCL   | 1.162            |                                                              |            |             |              | g       | 9% KM     | Cheb    | yshe    | v UCL   |      | 1.69  |
| 401 |                                                                                                             |           |            |        |                | 0       |           |                  |                                                              |            | -           |              |         |           |         |         |         |      |       |
| 402 |                                                                                                             |           |            |        | A              | Gam     |           |                  |                                                              | servatio   | ns On       | ly<br>ndoroo | - Do    |           | T Too   |         |         |      |       |
| 403 |                                                                                                             |           |            |        | A-D            |         | Statistic | 0.743            | Data                                                         | otod Det   |             | Gamme        |         |           | or 189  | Siar    | ificanc | 01-  | vol   |
| 404 |                                                                                                             |           |            |        | 5 /0 A-D       | Teet    | Statistic | 0.07             | Dete                                                         | cieu Dal   |             |              |         | Smirner   |         | Sign    | meane   | e Le |       |
| 405 |                                                                                                             |           |            |        | ת-ט<br>5% גר פ | Critic  |           | 0.413            | Doto                                                         | octed Dot  | r<br>Ia Not | Gamm         |         | ributed   | aUF     | Sign    | ificano |      |       |
| 406 |                                                                                                             |           |            |        | J /0 N-O       |         | ate Not   | Gamma Diet       | ributed at                                                   | 5% Sign    |             |              |         |           | at 070  | Sign    | meane   | e Le |       |
| 407 |                                                                                                             |           |            |        | Delec          | lieu D  |           |                  | induicu al                                                   | o /o Olyfi | medii       |              | /1      |           |         |         |         |      |       |
| 408 |                                                                                                             |           |            |        |                |         | Gamma     | Statistics       | Detected                                                     | Data Or    | nlv         |              |         |           |         |         |         |      |       |
| 409 |                                                                                                             |           |            |        |                | k h     | at (MI E) | 0 754            |                                                              |            | <b>y</b>    |              | k       | tar (bia  | S COrr  | ected   |         |      | 0.355 |
| 410 |                                                                                                             |           |            |        | Тһ             | eta h   | at (MLE)  | 0.734            |                                                              |            |             | т            | heta e  | star (hia | S COrre | ected   |         |      | 1.512 |
| 411 |                                                                                                             | Theta hat |            |        |                |         |           |                  |                                                              |            |             |              |         |           | r (hias | S COrr  |         |      | 2.84  |
| 412 | Mean (de                                                                                                    |           |            |        |                |         |           | 0.537            |                                                              |            |             |              |         | 114 5141  | 15103   |         | 5510U)  |      |       |
| 413 |                                                                                                             |           |            | IV     |                | 0.007   |           |                  |                                                              |            |             |              |         |           |         |         |         |      |       |
| 414 |                                                                                                             |           |            |        |                | Gam     | ma ROS    | Statistics u     | sina Imnut                                                   | ed Non-    | Detect      | ts           |         |           |         |         |         |      |       |
| 415 |                                                                                                             |           | GROS n     | nav n  | ot he use      | ed whe  | en data s | set has $> 50\%$ | NDs with                                                     | manv tie   | ed ohe      | ervation     | ns at i | multinle  | DIs     |         |         |      |       |
| 416 |                                                                                                             | GROS ma   | v not he u | sed w  | hen ksta       | r of de | etects is | small such a     | s <1.0. esr                                                  | becially w | vhen ti     | le sam       | ple si  | ze is sm  | all (A  | a <1    | 15-20)  |      |       |
| 417 |                                                                                                             | 2.100 ma  | ,          | For    | such situr     | ations  | GROS      | method may       | vield incor                                                  | rect valu  | les of l    | JCIsa        | nd R1   | Vs        | (0.     | J., .   |         |      |       |
| 418 |                                                                                                             |           |            |        |                | This    | is esner  | ially true whe   | en the sam                                                   | ble size i | is sma      |              |         |           |         |         |         |      |       |
| 419 | For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates |           |            |        |                |         |           |                  |                                                              |            |             |              |         |           |         |         |         |      |       |
| 420 |                                                                                                             | i ui ya   | ส นเรเป    | BUIE   |                | u udid  | /inimum   |                  | iy be comp                                                   | ateu usii  | ng yai      |              | sandul  |           |         | andl    | Mean    |      | 0 276 |
| 421 |                                                                                                             |           |            |        |                | n.      | mmum      | 0.01             |                                                              |            |             |              |         |           |         |         | wean    |      | 0.270 |

|     | A B C D E                                      | F                                         | G H I J K                                           | L      |  |  |  |  |  |  |  |
|-----|------------------------------------------------|-------------------------------------------|-----------------------------------------------------|--------|--|--|--|--|--|--|--|
| 422 | Maximum                                        | 0.83                                      | Median                                              | 0.0209 |  |  |  |  |  |  |  |
| 423 | SD                                             | 0.369                                     | CV                                                  | 1.337  |  |  |  |  |  |  |  |
| 424 | k hat (MLE)                                    | 0.414                                     | k star (bias corrected MLE)                         | 0.342  |  |  |  |  |  |  |  |
| 425 | Theta hat (MLE)                                | 0.666                                     | Theta star (bias corrected MLE)                     | 0.807  |  |  |  |  |  |  |  |
| 426 | nu hat (MLE)                                   | 6.629                                     | nu star (bias corrected)                            | 5.476  |  |  |  |  |  |  |  |
| 427 | Adjusted Level of Significance (β)             | 0.0195                                    |                                                     |        |  |  |  |  |  |  |  |
| 428 | Approximate Chi Square Value (5.48, $\alpha$ ) | 1.378                                     | Adjusted Chi Square Value (5.48, β)                 | 0.927  |  |  |  |  |  |  |  |
| 429 | 95% Gamma Approximate UCL (use when n>=50)     | 1.097                                     | 95% Gamma Adjusted UCL (use when n<50)              | N/A    |  |  |  |  |  |  |  |
| 430 |                                                |                                           |                                                     |        |  |  |  |  |  |  |  |
| 431 | Estimates of G                                 | iamma Para                                | meters using KM Estimates                           |        |  |  |  |  |  |  |  |
| 432 | Mean (KM)                                      | 0.27                                      | SD (KM)                                             | 0.35   |  |  |  |  |  |  |  |
| 433 | Variance (KM)                                  | 0.122                                     | SE of Mean (KM)                                     | 0.143  |  |  |  |  |  |  |  |
| 434 | k hat (KM)                                     | 0.598                                     | k star (KM)                                         | 0.457  |  |  |  |  |  |  |  |
| 435 | nu hat (KM)                                    | 9.576                                     | nu star (KM)                                        | 7.318  |  |  |  |  |  |  |  |
| 436 | theta hat (KM)                                 | 0.452                                     | theta star (KM)                                     | 0.591  |  |  |  |  |  |  |  |
| 437 | 80% gamma percentile (KM)                      | 0.442                                     | 90% gamma percentile (KM)                           | 0.745  |  |  |  |  |  |  |  |
| 438 | 95% gamma percentile (KM)                      | 1.072                                     | 99% gamma percentile (KM)                           | 1.884  |  |  |  |  |  |  |  |
| 439 |                                                |                                           |                                                     |        |  |  |  |  |  |  |  |
| 440 | Gamm                                           | na Kaplan-M                               | eier (KM) Statistics                                |        |  |  |  |  |  |  |  |
| 441 | Approximate Chi Square Value (7.32, α)         | 2.347                                     | Adjusted Chi Square Value (7.32, β)                 | 1.7    |  |  |  |  |  |  |  |
| 442 | 95% Gamma Approximate KM-UCL (use when n>=50)  | 0.843                                     | 95% Gamma Adjusted KM-UCL (use when n<50)           | 1.164  |  |  |  |  |  |  |  |
| 443 |                                                |                                           |                                                     |        |  |  |  |  |  |  |  |
| 444 | Lognormal GC                                   | OF Test on D                              | etected Observations Only                           |        |  |  |  |  |  |  |  |
| 445 | Shapiro Wilk Test Statistic                    | 0.698                                     | Shapiro Wilk GOF Test                               |        |  |  |  |  |  |  |  |
| 446 | 5% Shapiro Wilk Critical Value                 | 0.748                                     | Detected Data Not Lognormal at 5% Significance Leve | el     |  |  |  |  |  |  |  |
| 447 | Lilliefors Test Statistic                      | 0.401                                     | Lilliefors GOF Test                                 | _      |  |  |  |  |  |  |  |
| 448 | 5% Lilliefors Critical Value                   | 0.375                                     | Detected Data Not Lognormal at 5% Significance Leve | el     |  |  |  |  |  |  |  |
| 449 | Detected Data                                  | Not Lognorn                               | nal at 5% Significance Level                        |        |  |  |  |  |  |  |  |
| 450 |                                                |                                           |                                                     |        |  |  |  |  |  |  |  |
| 451 |                                                |                                           | Using imputed Non-Detects                           | 4.0.40 |  |  |  |  |  |  |  |
| 452 | Mean in Original Scale                         | 0.269                                     | Mean in Log Scale                                   | -4.043 |  |  |  |  |  |  |  |
| 453 | SD in Original Scale                           | 0.374                                     | SD in Log Scale                                     | 3.242  |  |  |  |  |  |  |  |
| 454 | 95% t UCL (assumes normality of RUS data)      | 0.52                                      | 95% Percentile Bootstrap UCL                        | 0.48   |  |  |  |  |  |  |  |
| 455 | 95% BCA Bootstrap UCL                          | 0.501                                     | 95% Bootstrap t UCL                                 | 0.646  |  |  |  |  |  |  |  |
| 456 | 95% H-UCL (L0g RUS)                            | 494796                                    |                                                     |        |  |  |  |  |  |  |  |
| 457 | Otobiation union (/M. antimatoo                |                                           |                                                     |        |  |  |  |  |  |  |  |
| 458 | Statistics using KM estimates                  |                                           |                                                     | 0.0212 |  |  |  |  |  |  |  |
| 459 | KM Mean (logged)                               | -3.409                                    | NM Geo Mean                                         | 0.0312 |  |  |  |  |  |  |  |
| 460 | KM Standard Error of Moon (lagged)             | 2.433                                     |                                                     | 7.37   |  |  |  |  |  |  |  |
| 461 |                                                | 0.993                                     |                                                     | 527.5  |  |  |  |  |  |  |  |
| 462 | KM Standard Ever of Maan (larged)              | 2.400                                     | 95% Chucai n Value (Kivi-Log)                       | 1.31   |  |  |  |  |  |  |  |
| 463 | Kini Stanuaru Error of Mean (logged)           | 0.993                                     |                                                     |        |  |  |  |  |  |  |  |
| 464 |                                                | 0.0                                       | tatistics                                           |        |  |  |  |  |  |  |  |
| 465 | DI /2 Normal                                   | 0023                                      | DI /2 Log-Transformed                               |        |  |  |  |  |  |  |  |
| 466 | Moon in Original Socia                         | 0 260                                     | Moon in Log Social                                  | -3 787 |  |  |  |  |  |  |  |
| 467 | SD in Original Scale                           | 0.209                                     |                                                     | 2 805  |  |  |  |  |  |  |  |
| 468 |                                                | 0.574                                     |                                                     | 2.035  |  |  |  |  |  |  |  |
| 469 | DI /2 is not a recommended m                   | ethod provid                              | ded for comparisons and historical reasons          |        |  |  |  |  |  |  |  |
| 470 |                                                |                                           |                                                     |        |  |  |  |  |  |  |  |
| 471 | Nonorom                                        | rametric Distribution Free UCL Statistics |                                                     |        |  |  |  |  |  |  |  |
| 472 |                                                |                                           | atributed at 5% Significance Level                  |        |  |  |  |  |  |  |  |
| 473 |                                                |                                           |                                                     |        |  |  |  |  |  |  |  |
| 474 |                                                | Suggested                                 |                                                     |        |  |  |  |  |  |  |  |
| 475 |                                                |                                           |                                                     |        |  |  |  |  |  |  |  |
| 476 | 95% KWI (I) UCL                                | UCL 0.541                                 |                                                     |        |  |  |  |  |  |  |  |

|     | A                                                                                                                                         | В                                                                          | С | D | E | F | G | H |  | J | K | L |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|---|---|---|---|---|--|---|---|---|--|
| 477 |                                                                                                                                           |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 478 | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.              |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 479 |                                                                                                                                           | Recommendations are based upon data size, data distribution, and skewness. |   |   |   |   |   |   |  |   |   |   |  |
| 480 | These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).                  |                                                                            |   |   |   |   |   |   |  |   |   |   |  |
| 481 | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. |                                                                            |   |   |   |   |   |   |  |   |   |   |  |

|     | A        | В       | С             | D             | E          |          | F             | G                                | Н              |           |                     | J                   | K                      | L                 |  |  |  |
|-----|----------|---------|---------------|---------------|------------|----------|---------------|----------------------------------|----------------|-----------|---------------------|---------------------|------------------------|-------------------|--|--|--|
| 482 | Chrysens |         |               |               |            |          |               |                                  |                |           |                     |                     |                        |                   |  |  |  |
| 483 | Cnrysene |         |               |               |            |          |               |                                  |                |           |                     |                     |                        |                   |  |  |  |
| 484 |          |         |               |               |            |          | Ganaral       | Statistics                       |                |           |                     |                     |                        |                   |  |  |  |
| 485 |          |         | Total         | Number of     | Obsony     | ations   |               | Sidustics                        |                | NIU       | umbo                | r of Dictinct       | Observation            | 5                 |  |  |  |
| 486 |          |         | TULAI         |               |            |          | 0             |                                  |                | INU       | innbe               | Number of           |                        | , J               |  |  |  |
| 487 |          |         | N             |               | stinct D   |          | 4             |                                  |                | N         | umbo                | r of Distinct       | Non Detect             | , 4               |  |  |  |
| 488 |          |         |               |               |            |          | 4             |                                  |                | IN        | unibe               | Minimur             | n Non Dotor            | , 2<br>+ 0.004    |  |  |  |
| 489 |          |         |               | IVII<br>Ma    |            |          | 0.005         |                                  |                |           |                     | Maximur             | n Non-Detec            | t 0.004           |  |  |  |
| 490 |          |         |               | Var           | ianco De   |          | 0.007         |                                  |                |           |                     | Percent             |                        | 50%               |  |  |  |
| 491 |          |         |               | vai           |            |          | 0.0731        |                                  |                |           |                     | Feiceni             | SD Detecti             | , JU //           |  |  |  |
| 492 |          |         |               | М             |            |          | 0.340         |                                  |                |           |                     |                     | CV Detects             | , 0.27<br>. 0.781 |  |  |  |
| 493 |          |         |               | Skow          |            |          | _0.225        |                                  |                |           |                     | Kur                 |                        | , 1,526           |  |  |  |
| 494 |          |         |               | Mean of Lo    |            |          | -0.223        |                                  |                |           |                     | SD of Lo            |                        | 2 2 257           |  |  |  |
| 495 |          |         |               |               | iggeu De   | Elecis   | -1.342        |                                  |                |           |                     | 3D 01 L0            | ggeu Delecti           | , 2.237           |  |  |  |
| 496 |          |         | Note: Sam     | nla siza is ( | mall (a    | a <10    | 0) if data ar | e collected                      | using ISM a    | nnroach   |                     | should use          |                        |                   |  |  |  |
| 497 |          |         | quidance pr   | rovided in I  | RC Ter     | h Rea    | Guide on I    |                                  | 2012) to corr  |           | n, you              | s of interes        | ,<br>t                 |                   |  |  |  |
| 498 |          |         | For           |               |            | want to  |               |                                  | to estimate F  |           |                     |                     |                        |                   |  |  |  |
| 499 |          |         | Chebysher     | v UCL can     |            |          | sing the No   | nnarametri                       | c and All LIC  |           | 10, 2<br>ne of      | $\frac{1012}{1000}$ |                        |                   |  |  |  |
| 500 |          |         | Chebyshe      |               |            |          |               | nparametri                       |                |           | 13 01               | 110002 0.1          |                        |                   |  |  |  |
| 501 |          |         |               |               |            | Norm     | al GOF Tes    | t on Detect                      | s Only         |           |                     |                     |                        |                   |  |  |  |
| 502 |          |         | 9             | Shaniro Wilk  | Test St    | atistic  | 0.946         |                                  |                | Shanir    | ro Wi               | lk GOF Tes          | t                      |                   |  |  |  |
| 503 |          |         | 5% S          | hapiro Wilk   | Critical   | Value    | 0 748         | Г                                | etected Data   | annear    | evel                |                     |                        |                   |  |  |  |
| 504 |          |         |               | Lilliefors    | Test St    | atistic  | 0.261         |                                  |                | l illie   | Lilliefors GOF Test |                     |                        |                   |  |  |  |
| 505 |          |         | 5             | 5% Lilliefors | Critical   | Value    | 0.375         | Г                                | etected Data   | appear    | evel                |                     |                        |                   |  |  |  |
| 506 |          |         |               |               | etected    | Data a   | appear Norn   | nal at 5% S                      | ignificance l  | evel      |                     |                     | grinioanoo E           |                   |  |  |  |
| 507 |          |         |               |               |            | Data c   |               |                                  |                |           |                     |                     |                        |                   |  |  |  |
| 508 |          |         | Kaplan-       | Meier (KM)    | Statistic  | cs usir  | na Normal C   | ritical Valu                     | es and other   | Nonpar    | ame                 | ric UCLs            |                        |                   |  |  |  |
| 509 |          |         |               |               | KM         | Mean     | 0.175         |                                  |                |           | KN                  | / Standard F        | Error of Mea           | 0.0972            |  |  |  |
| 510 |          |         |               |               | K          | M SD     | 0.238         |                                  |                |           |                     | 95% KI              | M (BCA) UCI            | N/A               |  |  |  |
| 511 |          |         |               | 95            | % KM (t)   | ) UCL    | 0.359         |                                  |                | 95% K     | (M (F               | ercentile Bo        | otstrap) UCI           | N/A               |  |  |  |
| 512 |          |         |               | 959           | % KM (z)   | ) UCL    | 0.335         |                                  |                |           | (.                  | 95% KM Bo           | otstrap t UCI          | N/A               |  |  |  |
| 513 |          |         |               | 90% KM Ch     | ebyshev    | / UCL    | 0.467         |                                  |                |           | ę                   | 95% KM Che          | ebyshev UCI            | 0.599             |  |  |  |
| 514 |          |         | 97            | 7.5% KM Ch    | ebvshev    | / UCL    | 0.782         |                                  |                |           | (                   | 99% KM Che          | ebvshev UCI            | 1.142             |  |  |  |
| 515 |          |         |               |               | - <b>,</b> |          |               |                                  |                |           |                     |                     | ··· <b>,</b> · · · · · |                   |  |  |  |
| 516 |          |         |               |               | Gamma      | GOF      | Tests on De   | on Detected Observations Only    |                |           |                     |                     |                        |                   |  |  |  |
| 517 |          |         |               | A-D           | Test Sta   | atistic  | 0.617         | Anderson-Darling GOF Test        |                |           |                     |                     |                        |                   |  |  |  |
| 518 |          |         |               | 5% A-D        | Critical   | Value    | 0.673         | Detecte                          | ed data appe   | ar Gamr   | na Di               | stributed at        | 5% Significa           | nce Level         |  |  |  |
| 519 |          |         |               | K-S           | Test Sta   | atistic  | 0.414         |                                  |                | Kolmog    | orov-               | Smirnov GC          | OF                     |                   |  |  |  |
| 520 |          |         |               | 5% K-S        | Critical   | Value    | 0.406         | Detec                            | ted Data Not   | Gamma     | a Dis               | tributed at 5       | % Significan           | ce Level          |  |  |  |
| 521 |          |         |               | Detected of   | lata follo | ow App   | pr. Gamma     | Distribution                     | at 5% Signi    | ficance   | Leve                |                     | -                      |                   |  |  |  |
| 522 |          |         |               |               |            |          |               |                                  |                |           |                     |                     |                        |                   |  |  |  |
| 523 |          |         |               |               | Ga         | amma     | Statistics or | Detected                         | Data Only      |           |                     |                     |                        |                   |  |  |  |
| 525 |          |         |               |               | k hat (    | MLE)     | 0.688         | 688 k star (bias corrected MLE   |                |           |                     |                     |                        |                   |  |  |  |
| 525 |          |         |               | Th            | eta hat (  | MLE)     | 0.503         | 3 Theta star (bias corrected MLE |                |           |                     |                     |                        |                   |  |  |  |
| 520 |          |         |               |               | nu hat (   | (MLE)    | 5.502         | 02 nu star (bias correcte        |                |           |                     |                     |                        | ) 2.709           |  |  |  |
| 527 |          |         |               | N             | lean (de   | tects)   | cts) 0.346    |                                  |                |           |                     |                     |                        |                   |  |  |  |
| 520 |          |         |               |               |            | ,        |               |                                  |                |           |                     |                     |                        |                   |  |  |  |
| 529 |          |         |               |               | Gamma      | ROS      | Statistics us | sing Impute                      | d Non-Detec    | cts       |                     |                     |                        |                   |  |  |  |
| 521 |          |         | GROS may      | / not be use  | d when o   | data se  | et has > 50%  | NDs with r                       | many tied obs  | servatior | ns at               | multiple DLs        | 5                      |                   |  |  |  |
| 527 |          | GROS ma | y not be used | d when ksta   | r of dete  | cts is s | small such a  | s <1.0, espe                     | ecially when   | the sam   | ple si              | ze is small (       | e.g., <15-20           | )                 |  |  |  |
| 522 |          |         | Fc            | or such situa | itions, G  | iROS r   | method may    | ,<br>yield incorr                | ect values of  | UCLs a    | nd B                | TVs                 |                        |                   |  |  |  |
| 533 |          |         |               |               | This is e  | especia  | ally true whe | n the samp                       | le size is sma | all.      |                     |                     |                        |                   |  |  |  |
| 534 |          | For ga  | mma distribu  | ted detected  | d data, B  | STVs a   | nd UCLs ma    | iy be compl                      | ited using ga  | mma dis   | stribu              | tion on KM e        | estimates              |                   |  |  |  |
| 535 |          | 0.1     |               |               | Min        | imum     | 0.005         |                                  | 0.0*           |           |                     |                     | Mear                   | ı 0.178           |  |  |  |
| 530 | I        |         |               |               |            |          |               |                                  |                |           |                     |                     | -                      | 1                 |  |  |  |

|             | A B C D E                                      | F              | G H I J K                                          | L      |
|-------------|------------------------------------------------|----------------|----------------------------------------------------|--------|
| <u>53</u> 7 | Maximum                                        | 0.667          | Median                                             | 0.01   |
| 538         | SD                                             | 0.252          | CV                                                 | 1.417  |
| 539         | k hat (MLE)                                    | 0.422          | k star (bias corrected MLE)                        | 0.347  |
| 540         | Theta hat (MLE)                                | 0.422          | Theta star (bias corrected MLE)                    | 0.513  |
| 541         | nu hat (MLE)                                   | 6.746          | nu star (bias corrected)                           | 5.549  |
| 542         | Adjusted Level of Significance (β)             | 0.0195         |                                                    |        |
| 543         | Approximate Chi Square Value (5.55, $\alpha$ ) | 1.414          | Adjusted Chi Square Value (5.55, β)                | 0.955  |
| 544         | 95% Gamma Approximate UCL (use when n>=50)     | 0.699          | 95% Gamma Adjusted UCL (use when n<50)             | N/A    |
| 545         |                                                |                | · · · · · · · · · · · · · · · · · · ·              |        |
| 546         | Estimates of G                                 | amma Para      | meters using KM Estimates                          |        |
| 547         | Mean (KM)                                      | 0.175          | SD (KM)                                            | 0.238  |
| 548         | Variance (KM)                                  | 0.0567         | SE of Mean (KM)                                    | 0.0972 |
| 549         | k hat (KM)                                     | 0.541          | k star (KM)                                        | 0.421  |
| 550         | nu hat (KM)                                    | 8.649          | nu star (KM)                                       | 6.739  |
| 551         | theta hat (KM)                                 | 0.324          | theta star (KM)                                    | 0.416  |
| 552         | 80% gamma percentile (KM)                      | 0.284          | 90% gamma percentile (KM)                          | 0.49   |
| 553         | 95% gamma percentile (KM)                      | 0.714          | 99% gamma percentile (KM)                          | 1.276  |
| 554         |                                                |                |                                                    |        |
| 555         | Gamm                                           | na Kaplan-M    | eier (KM) Statistics                               |        |
| 556         | Approximate Chi Square Value (6.74, α)         | 2.028          | Adjusted Chi Square Value (6.74, β)                | 1.441  |
| 557         | 95% Gamma Approximate KM-UCL (use when n>=50)  | 0.581          | 95% Gamma Adjusted KM-UCL (use when n<50)          | 0.819  |
| 558         |                                                |                |                                                    |        |
| 559         | Lognormal GC                                   | OF Test on D   | etected Observations Only                          |        |
| 560         | Shapiro Wilk Test Statistic                    | 0.741          | Shapiro Wilk GOF Test                              |        |
| 561         | 5% Shapiro Wilk Critical Value                 | 0.748          | Detected Data Not Lognormal at 5% Significance Lev | el     |
| 562         | Lillietors Test Statistic                      | 0.405          | Lilliefors GOF Test                                |        |
| 563         | 5% Lilliefors Critical Value                   | 0.375          | Detected Data Not Lognormal at 5% Significance Lev | el     |
| 564         | Detected Data                                  | Not Lognorn    | nal at 5% Significance Level                       |        |
| 565         |                                                | O Otatiatian   |                                                    |        |
| 566         | Lognormal ROS                                  |                | Using imputed Non-Detects                          | 4.000  |
| 567         | Mean In Original Scale                         | 0.173          | Mean In Log Scale                                  | -4.826 |
| 568         | SD in Original Scale                           | 0.200          | SD IN Log Scale                                    | 3.535  |
| 569         | 95% t OCL (assumes normality of ROS data)      | 0.345          | 95% Percentile Boolstrap OCL                       | 0.333  |
| 570         |                                                | 0.344          | 95% Boolstrap t OCL                                | 0.430  |
| 571         | 33 % H-UCL (LUY KUS)                           | 5007850        |                                                    |        |
| 572         | Statistics using KM estimates                  | on Logged I    | Data and Assuming Lognormal Distribution           |        |
| 573         | KM Mean (logged)                               |                | KM Geo Mean                                        | 0.024  |
| 574         | KM SD (logged)                                 | 2 261          | 95% Critical H Value (KM-Log)                      | 6.877  |
| 575         | KM Standard Error of Mean (logged)             | 0.923          | 95% H-LICL (KM -Log)                               | 110.2  |
| 576         | KM SD (logged)                                 | 2.261          | 95% Critical H Value (KM-Log)                      | 6.877  |
| 5/7         | KM Standard Error of Mean (logged)             | 0.923          |                                                    | ,      |
| 578         |                                                | 0.020          |                                                    |        |
| 579         |                                                | DL/2 S         | tatistics                                          |        |
| 580         | DL/2 Normal                                    | 2220           | DL/2 Loa-Transformed                               |        |
| 581         | Mean in Original Scale                         | 0.174          | Mean in Log Scale                                  | -4.05  |
| 582         | SD in Original Scale                           | 0.255          | SD in Log Scale                                    | 2.696  |
| 503         | 95% t UCL (Assumes normality)                  | 0.345          | 95% H-Stat UCL                                     | 2605   |
| 584         | DL/2 is not a recommended me                   | ethod. provid  | ded for comparisons and historical reasons         | -      |
| 585         |                                                | -, P 1         | • • • • • • • • • • • • • • • • • • • •            |        |
| 507         | Nonparame                                      | etric Distribu | tion Free UCL Statistics                           |        |
| 500         | Detected Data appea                            | r Normal Dis   | stributed at 5% Significance Level                 |        |
| 200         | <b></b>                                        |                | • • • • • •                                        |        |
| 509         |                                                | Suggested      | UCL to Use                                         |        |
| 590         | 95% KM (t) UCL                                 | 0.359          |                                                    |        |
| 591         |                                                |                |                                                    |        |

|     | A | В                                                                                                                            | С              | D              | E             | F              | G               | Н               |               | J            | K               | L    |  |  |
|-----|---|------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------|----------------|-----------------|-----------------|---------------|--------------|-----------------|------|--|--|
| 592 |   |                                                                                                                              |                |                |               |                |                 |                 |               |              |                 |      |  |  |
| 593 |   | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. |                |                |               |                |                 |                 |               |              |                 |      |  |  |
| 594 |   | Recommendations are based upon data size, data distribution, and skewness.                                                   |                |                |               |                |                 |                 |               |              |                 |      |  |  |
| 595 |   | These reco                                                                                                                   | mmendations    | s are based u  | pon the resu  | Its of the sin | nulation studi  | es summariz     | zed in Singh, | Maichle, and | I Lee (2006)    |      |  |  |
| 596 | F | owever, simu                                                                                                                 | lations result | s will not cov | er all Real V | Vorld data se  | ts; for additio | onal insight th | ne user may   | want to cons | ult a statistic | ian. |  |  |

|            | A           | В           | С             | D               | E               | F              | G              | Н               |               | J                | K            | L               |
|------------|-------------|-------------|---------------|-----------------|-----------------|----------------|----------------|-----------------|---------------|------------------|--------------|-----------------|
| 597        | Dibenz/o h  | )anthracene |               |                 |                 |                |                |                 |               |                  |              |                 |
| 598        | Dibeliz(a,f | Janunacene  |               |                 |                 |                |                |                 |               |                  |              |                 |
| 599        |             |             |               |                 |                 | Gamaral        | Statiation     |                 |               |                  |              |                 |
| 600        |             |             | Total         | Number of C     | beenvotions     | general        | SIGUSUCS       |                 | Numbo         | or of Dictingt C | beenvotions  | F               |
| 601        |             |             | I Otal        |                 | ar of Dotooto   | 0              |                |                 | NUMDE         |                  |              | Э<br>Б          |
| 602        |             |             | K1            |                 |                 | ა<br>ე         |                |                 | Nimme         | or of Dictingt ! |              | ว<br>ว          |
| 603        |             |             | N             |                 |                 | 3<br>0 0777    |                |                 | INUMD         |                  | Non Detects  | 2               |
| 604        |             |             |               |                 | mum Detect      | 0.0777         |                |                 |               | Movimum          | Non Detect   | 0.004           |
| 605        |             |             |               | Wax             |                 |                |                |                 |               | Porcont          |              | 0.003<br>62 E0/ |
| 606        |             |             |               | varia           | ean Dotooto     | 0.0070E-4      |                |                 |               | reicenti         | SD Dotooto   | 02.3%           |
| 607        |             |             |               | ۱۷<br>Ma        | dian Detects    | 0.103          |                |                 |               |                  | CV Detects   | 0.0241          |
| 608        |             |             |               | Skowr           | and Delects     | -1 695         |                |                 |               | Kurt             | neis Detects | 0.223<br>N/A    |
| 609        |             |             |               | Mean of Loc     | aed Detects     | -2.269         |                |                 |               | SD of Log        | aed Detects  | 0.248           |
| 610        |             |             |               |                 | J 2010013       | 2.200          |                |                 |               | 55 0, LUY        | Jer 2010013  | 0.2-10          |
| 611        |             |             |               |                 | Warnina: D      | ata set has    | only 3 Deter   | ted Values.     |               |                  |              |                 |
| 612        |             |             | т             | his is not en   | ough to com     | oute meanin    | gful or reliat | ole statistics  | and estimat   | tes.             |              |                 |
| 614        |             |             | •<br>•        |                 | <b>U</b>        |                |                |                 | ///           |                  |              |                 |
| 615        |             |             |               |                 |                 |                |                |                 |               |                  |              |                 |
| 616        |             |             | Note: Sam     | ple size is sr  | nall (e.g., <1  | 0), if data ar | e collected    | using ISM ap    | proach, yo    | u should use     |              |                 |
| 617        |             |             | guidance pi   | rovided in ITI  | RC Tech Reg     | g Guide on Is  | SM (ITRC, 2    | .012) to com    | pute statisti | cs of interest   |              |                 |
| 618        |             |             | For           | example, yo     | u may want t    | o use Cheby    | shev UCL t     | o estimate E    | PC (ITRC, 2   | 2012).           |              |                 |
| 619        |             |             | Chebyshe      | v UCL can be    | e computed u    | using the No   | nparametric    | and All UCL     | . Options of  | ProUCL 5.1       |              |                 |
| 620        |             |             |               |                 |                 |                |                |                 |               |                  |              |                 |
| 621        |             |             |               |                 | Norm            | nal GOF Tes    | t on Detects   | s Only          |               |                  |              |                 |
| 622        |             |             | S             | Shapiro Wilk    | est Statistic   | 0.807          |                |                 | Shapiro W     | ilk GOF Test     |              |                 |
| 623        |             |             | 5% S          | hapiro Wilk C   | Critical Value  | 0.767          | D              | etected Data    | appear Nor    | mal at 5% Sig    | nificance Le | vel             |
| 624        |             |             |               | Lilliefors      | est Statistic   | 0.361          |                |                 | Lilliefors    | GOF Test         |              |                 |
| 625        |             |             | 5             | 5% Lilliefors C | Critical Value  | 0.425          | D              | etected Data    | appear Nor    | mal at 5% Sig    | nificance Le | vel             |
| 626        |             |             |               | De              | tected Data a   | appear Norn    | nal at 5% Sig  | gnificance Le   | evel          |                  |              |                 |
| 627        |             |             |               |                 |                 |                |                |                 |               |                  |              |                 |
| 628        |             |             | Kaplan-       | Meier (KM)      | Statistics usi  | ng Normal C    | ritical Value  | es and other    | Nonparame     | tric UCLs        |              |                 |
| 629        |             |             |               |                 | KM Mean         | 0.042          |                |                 | K             | M Standard E     | rror of Mean | 0.0219          |
| 630        |             |             |               |                 | KM SD           | 0.0506         |                |                 |               | 95% KM           | (BCA) UCL    | N/A             |
| 631        |             |             |               | 95%             | KM (t) UCL      | 0.0835         |                |                 | 95% KM (F     | Percentile Boo   | otstrap) UCL | N/A             |
| 632        |             |             |               | 95%             | KM (z) UCL      | 0.078          |                |                 |               | 95% KM Boo       | tstrap t UCL | N/A             |
| 633        |             |             |               | 90% KM Che      | byshev UCL      | 0.108          |                |                 |               | 95% KM Che       | byshev UCL   | 0.137           |
| 634        |             |             | 97            | 7.5% KM Che     | bysnev UCL      | 0.1/9          |                |                 |               | ษษ% KM Che       | oysnev UCL   | 0.26            |
| 635        |             |             |               |                 | amme 005        | Tests or D     | tootod Oba     | notions O-      | hz.           |                  |              |                 |
| 636        |             |             |               | (               |                 |                |                | OF Test         | iiy           |                  |              |                 |
| 637        |             |             |               |                 | NOL EN          |                |                |                 |               |                  |              |                 |
| 638        |             |             |               |                 | Gamma           | Statistice or  | Detected F     | )ata Only       |               |                  |              |                 |
| 639        |             |             |               |                 | k hat (MLE)     | 25 84          |                |                 | ۲             | star (hias cor   | rected MI E  | N/A             |
| 640        |             |             |               | The             | ta hat (MLE)    | 0 00408        |                |                 | K<br>Theta    | star (bias cor   | rected MI E  | N/A             |
| 641        |             |             |               |                 | u hat (MLE)     | 155            |                |                 | i netd        | nu star (hia     | s corrected) | N/A             |
| 642        |             |             |               | Mc              | an (detects)    | 0.105          |                |                 |               |                  |              |                 |
| 643        |             |             |               |                 |                 | 5.100          |                |                 |               |                  |              |                 |
| 644        |             |             |               | (               | amma ROS        | Statistics us  | sing Impute    | d Non-Detec     | ts            |                  |              |                 |
| 645        |             |             | GROS may      | / not be used   | when data s     | et has > 50%   | NDs with m     | nany tied obs   | ervations at  | multiple DLs     |              |                 |
| 646        |             | GROS may    | y not be used | d when kstar    | of detects is s | small such a   | s <1.0, espe   | cially when the | ne sample s   | ize is small (e  | .g., <15-20) |                 |
| 640        |             |             | Fc            | or such situat  | ons, GROS I     | method mav     | yield incorre  | ect values of   | UCLs and B    | TVs              | 5,,          |                 |
| 648        |             |             |               | 1               | his is especi   | ally true whe  | n the sample   | e size is sma   | II.           |                  |              |                 |
| 049<br>650 |             | For gar     | nma distribu  | ted detected    | data, BTVs a    | ind UCLs ma    | y be compu     | ted using gar   | nma distribu  | ution on KM es   | stimates     |                 |
| 050        |             | 0.1         | -             |                 | Minimum         | 0.01           |                | 0.0*            |               |                  | Mean         | 0.0607          |
| 001        | 1           |             |               |                 |                 |                |                |                 |               |                  |              | 1               |

|                          | A      | В        |        | C       | D         | E                           | F                          | G            | н          |       |          |         | J          | K              |          | L      |
|--------------------------|--------|----------|--------|---------|-----------|-----------------------------|----------------------------|--------------|------------|-------|----------|---------|------------|----------------|----------|--------|
| 652                      |        |          |        |         |           | Maximun                     | n 0.121                    |              |            |       |          |         |            | Media          | in       | 0.0496 |
| 653                      |        |          |        |         |           | SE                          | 0.0414                     |              |            |       |          |         |            | С              | V        | 0.682  |
| 654                      |        |          |        |         |           | k hat (MLE                  | ) 2.095                    |              |            |       |          | k st    | ar (bias d | corrected MLE  | =)       | 1.392  |
| 655                      |        |          |        |         |           | Theta hat (MLE              | ) 0.029                    |              |            |       | T۲       | neta st | ar (bias o | corrected MLE  | E)       | 0.0436 |
| 656                      |        |          |        |         |           | nu hat (MLE                 | ) 33.51                    |              |            |       |          |         | nu star (  | bias corrected | (t       | 22.28  |
| 657                      |        |          | A      | djusted | Levelo    | f Significance (β           | ) 0.0195                   |              |            |       |          |         |            |                |          |        |
| 658                      |        | Ар       | proxim | nate Ch | i Square  | Value (22.28, α             | ) 12.55                    |              |            | A     | djuste   | d Chi S | Square V   | alue (22.28,   | 3)       | 10.75  |
| 659                      | 95     | 5% Gamm  | а Аррі | roximat | e UCL (ι  | use when n>=50              | ) 0.108                    |              | 95%        | 5 Gar | nma A    | djuste  | d UCL (u   | se when n<50   | D)       | N/A    |
| 660                      |        |          |        |         |           |                             |                            |              |            |       |          |         |            |                |          |        |
| 661                      |        |          |        |         |           | Estimates of                | Gamma Para                 | meters usin  | g KM Est   | imate | es       |         |            |                |          |        |
| 662                      |        |          |        |         |           | Mean (KM                    | ) 0.042                    |              |            |       |          |         |            | SD (KN         | 1)       | 0.0506 |
| 663                      |        |          |        |         |           | Variance (KM                | ) 0.00256                  |              |            |       |          |         | SE         | E of Mean (KN  | 1)       | 0.0219 |
| 664                      |        |          |        |         |           | k hat (KM                   | ) 0.691                    |              |            |       |          |         |            | k star (KN     | 1)       | 0.515  |
| 665                      |        |          |        |         |           | nu hat (KM                  | ) 11.06                    |              |            |       |          |         |            | nu star (KN    | 1)       | 8.246  |
| 666                      |        |          |        |         |           | theta hat (KM               | ) 0.0608                   |              |            |       |          |         |            | theta star (KN | 1)       | 0.0816 |
| 667                      |        |          |        | 80%     | 6 gamma   | a percentile (KM            | ) 0.0691                   |              |            |       |          | 90%     | gamma į    | percentile (KN | 1)       | 0.113  |
| 668                      |        |          |        | 95%     | 6 gamma   | a percentile (KM            | ) 0.16                     |              |            |       |          | 99%     | gamma j    | percentile (KN | 1)       | 0.274  |
| 669                      |        |          |        |         |           |                             | 14 I M                     |              |            |       |          |         |            |                |          |        |
| 670                      |        |          |        |         | h: 0      | Gam                         | ma Kapian-M                | eier (KM) Si | atistics   |       | A        |         | 0          |                | 2)       | 0.100  |
| 671                      | 059/ ( | A        | pproxi | mate C  | ni Squar  |                             | ) 2.878                    |              | 05% 0-     |       | Adjust   |         |            |                | 5)<br>2) | 2.139  |
| 672                      | 95%(   | Jamma Ap | pioxii |         |           | ise when h>=50              | ) 0.12                     |              | 95% Ga     | шпа   | Aujus    |         | 1-00L (u   |                | )        | 0.162  |
| 673                      |        |          |        |         |           | Lognormal G                 | OF Toot on D               | atacted Ob   | onation    | 0 O n | hr       |         |            |                |          |        |
| 674                      |        |          |        |         | honiro V  | Lognormal G                 |                            |              | servation  | son   | Shopir   |         |            | ot             |          |        |
| 675                      |        |          |        | 5% 9    |           | VIIK Test Statistic         | 0.797                      | Dot          | octod Da   | ta an | onapir   |         |            | Significance   |          | (ol    |
| 676                      |        |          |        | 57651   |           |                             | - 0.707                    | Dei          |            | ia ap |          |         |            |                | Lev      |        |
| 677                      |        |          |        | 5       |           | ore Critical Value          | 0.303                      | Dot          |            | ta an |          |         | nol at 5%  | Significance   |          | (ol    |
| 678                      |        |          |        | 5       |           | Detected Data a             |                            | rmal at 5% ( |            |       |          | ognon   |            | olgrinicarice  | Lev      |        |
| 679                      |        |          |        |         |           |                             |                            |              | Signinical |       |          |         |            |                |          |        |
| 680                      |        |          |        |         |           | Lognormal RC                | OS Statistics              | Usina Imput  | ed Non-D   | Detec | ts       |         |            |                |          |        |
| 681                      |        |          |        |         | Mean      | in Original Scale           | e 0.0686                   |              |            |       |          |         | Меа        | an in Log Sca  | le       | -2.783 |
| 682                      |        |          |        |         | SD        | in Original Scale           | e 0.0341                   |              |            |       |          |         | S          | D in Log Sca   | le       | 0.482  |
| 083                      |        | 95% t    | UCL (a | assume  | s norma   | lity of ROS data            | ) 0.0914                   |              |            |       | 9        | 95% Pe  | ercentile  | Bootstrap UC   | L        | 0.0869 |
| 604<br>605               |        |          |        |         | 95% BC    | A Bootstrap UCI             | 0.0903                     |              |            |       |          |         | 95% E      | ootstrap t UC  | L.       | 0.105  |
| 696                      |        |          |        |         | 95% H     | -UCL (Log ROS               | ) 0.106                    |              |            |       |          |         |            |                |          |        |
| 697                      |        |          |        |         |           |                             |                            |              |            |       |          |         |            |                |          |        |
| 688                      |        |          |        | Statis  | stics usi | ng KM estimates             | s on Logged I              | Data and As  | suming L   | ogno  | ormal [  | Distrib | ution      |                |          |        |
| 689                      |        |          |        |         | K         | M Mean (logged              | ) -4.302                   |              |            |       |          |         |            | KM Geo Mea     | in       | 0.0135 |
| 690                      |        |          |        |         |           | KM SD (logged               | ) 1.579                    |              |            |       | 9        | 95% Ci  | itical H \ | /alue (KM-Log  | g)       | 4.958  |
| 691                      |        |          | KM     | Standa  | rd Error  | of Mean (logged             | ) 0.684                    |              |            |       |          |         | 95% H-     | JCL (KM -Log   | g)       | 0.909  |
| 692                      |        |          |        |         |           | KM SD (logged               | ) 1.579                    |              |            |       | 9        | 5% Cı   | itical H V | alue (KM-Lo    | g)       | 4.958  |
| 693                      |        |          | KM     | Standa  | rd Error  | of Mean (logged             | ) 0.684                    |              |            |       |          |         |            |                |          |        |
| 694                      |        |          |        |         |           |                             |                            |              |            |       |          |         |            |                |          |        |
| 695                      |        |          |        |         |           |                             | DL/2 S                     | tatistics    |            |       |          |         |            |                |          |        |
| 696                      |        |          |        | DL/2    | Normal    |                             |                            |              |            |       | DL/2 L   | .og-Tr  | ansform    | ed             |          |        |
| 697                      |        |          |        |         | Mean      | in Original Scale           | e 0.0408                   |              |            |       |          |         | Mea        | an in Log Sca  | le       | -4.707 |
| 698                      |        |          |        |         | SD        | in Original Scale           | e 0.055                    |              |            |       |          |         | S          | D in Log Sca   | le       | 2.025  |
| <u>69</u> 9              |        |          |        | 95% t L | JCL (Ass  | sumes normality             | ) 0.0777                   |              |            |       |          |         | 95         | 5% H-Stat UC   | Ľ        | 8.084  |
| 700                      |        |          |        | DL/2 i  | is not a  | recommended r               | nethod, provi              | ded for com  | parisons   | and   | historio | cal rea | sons       |                |          |        |
| 701                      |        |          |        |         |           |                             |                            |              |            |       |          |         |            |                |          |        |
|                          |        |          |        |         |           |                             | etric Distribu             | tion Free U  | CL Statist | tics  |          |         |            |                |          |        |
| 702                      |        |          |        |         |           | Nonparam                    |                            |              |            |       |          |         |            |                |          |        |
| 702<br>703               |        |          |        |         | Dete      | Nonparam<br>ected Data appe | ar Normal Dis              | stributed at | 5% Signi   | fican | ce Lev   | el      |            |                |          |        |
| 702<br>703<br>704        |        |          |        |         | Dete      | Nonparam                    | ar Normal Dis              | stributed at | 5% Signi   | fican | ce Lev   | vel     |            |                |          |        |
| 702<br>703<br>704<br>705 |        |          |        |         | Dete      | Nonparam                    | ar Normal Dis<br>Suggested | stributed at | 5% Signi   | fican | ce Lev   | 'el     |            |                |          |        |

|     | A | В                                                                                                                            | С              | D              | E             | F              | G               | H              |               | J             | K               | L    |  |  |
|-----|---|------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------|----------------|-----------------|----------------|---------------|---------------|-----------------|------|--|--|
| 707 |   |                                                                                                                              |                |                |               |                |                 |                |               |               |                 |      |  |  |
| 708 |   | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. |                |                |               |                |                 |                |               |               |                 |      |  |  |
| 709 |   | Recommendations are based upon data size, data distribution, and skewness.                                                   |                |                |               |                |                 |                |               |               |                 |      |  |  |
| 710 |   | These record                                                                                                                 | mmendations    | are based u    | pon the resu  | Its of the sim | nulation studi  | es summariz    | zed in Singh, | Maichle, and  | Lee (2006)      |      |  |  |
| 711 | H | owever, simu                                                                                                                 | lations result | s will not cov | er all Real V | /orld data se  | ts; for additio | nal insight th | ne user may   | want to consi | ult a statistic | ian. |  |  |

|     | A          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | С            |               | D           |                   | E                                                                                                                                                        | F             | G          |               | H            |         |          | J         |              |         | K                    |          |            |
|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|---------------|-------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|---------------|--------------|---------|----------|-----------|--------------|---------|----------------------|----------|------------|
| 712 | Chunne - M |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             |                   |                                                                                                                                                          |               |            |               |              |         |          |           |              |         |                      |          |            |
| 713 | riuoranth  | ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |              |               |             |                   |                                                                                                                                                          |               |            |               |              |         |          |           |              |         |                      |          |            |
| 714 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             |                   |                                                                                                                                                          | General       | Statistics |               |              |         |          |           |              |         |                      |          |            |
| 715 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Tota         | l Nu          | mber of (   | Ohean             | vations                                                                                                                                                  | Qeneral       | Statistics |               |              | N       | umbo     | r of Dist | tinct (      | Ohea    | nyations             |          | 6          |
| 716 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | TULA         |               | Numb        |                   |                                                                                                                                                          | 0             |            |               |              | IN      | unne     | Numb      |              | Non     |                      |          | 0          |
| 717 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | N            | lum           |             |                   |                                                                                                                                                          | 4             |            |               |              | N       | lumbe    |           |              | Non-    |                      |          | 4<br>2     |
| 718 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | um            |             |                   | Dotoct                                                                                                                                                   | 4             |            |               |              | 1       | vunnoe   | Min       |              |         |                      |          | 2          |
| 719 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | Max         | imum              | Detect                                                                                                                                                   | 1 / 20        |            |               |              |         |          | Mox       | imun         |         |                      |          | 0.005      |
| 720 | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | Vari        | anco F            | Detect                                                                                                                                                   | 0 330         |            |               |              |         |          | Doi       |              | Non     |                      | +        | 50%        |
| 721 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | N           |                   |                                                                                                                                                          | 0.559         |            |               |              |         |          |           | Cent         |         |                      |          | 0.582      |
| 722 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | Me          | dian F            |                                                                                                                                                          | 0.073         |            |               |              |         |          |           |              |         | Detects              | -        | 0.362      |
| 723 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | Skow        | ness F            |                                                                                                                                                          | 0.051         |            |               |              |         |          |           | Kuri         |         | Detects              | <u> </u> | 1 523      |
| 724 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | Me            | an of Loo   |                   |                                                                                                                                                          | -1 20/        |            |               |              |         |          | 50/       |              |         |                      | -        | 2 242      |
| 725 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | IVIC          |             | ggeu L            | Jelecis                                                                                                                                                  | -1.234        |            |               |              |         |          | 501       |              | Jyeu    |                      | 1        | 2.242      |
| 726 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Note: Sam    | nla           | eizo ie e   | mall (d           | on <1                                                                                                                                                    | 0) if data ar | o collecte | d us          | sing ISM ar  | nroac   | h voi    | , should  | d uso        |         |                      |          |            |
| 727 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | rovi          | ded in IT   |                   | c.y., <i< th=""><th></th><th></th><th>v 20</th><th>12) to com</th><th></th><th>tatietia</th><th></th><th></th><th>+</th><th></th><th></th><th></th></i<> |               |            | v 20          | 12) to com   |         | tatietia |           |              | +       |                      |          |            |
| 728 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | For          |               |             |                   |                                                                                                                                                          |               |            | , 20<br>1 to  | estimate E   |         |          | 25 01 111 | .61631       | L.      |                      |          |            |
| 729 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Chebyshe     |               | CL can b    |                   | muted i                                                                                                                                                  | using the No  | nnaramet   | L IO          |              |         | no, z    | Prol IC   | 151          |         |                      |          |            |
| 730 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Chebyshe     | W U           |             | e com             | iputeu t                                                                                                                                                 |               | nparamet   |               |              |         |          | 1000      | L J. I       |         |                      |          |            |
| 731 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             |                   | Norm                                                                                                                                                     |               | t on Dete  | cte (         | Only         |         |          |           |              |         |                      |          |            |
| 732 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | Shai          | niro Wilk   | Test S            | Statistic                                                                                                                                                |               |            |               | Jilly        | Shan    | iro Wi   |           | Toel         | +       |                      |          |            |
| 733 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 5% 5         | Shar          | biro Wilk ( | Critica           |                                                                                                                                                          | 0.30          |            | Det           | ected Data   | annea   | r Norr   | nal at 5  |              | anific  | ance l 6             |          |            |
| 734 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 570 C        | Juah          |             |                   |                                                                                                                                                          | 0.740         |            | Dei           |              |         |          |           |              |         |                      |          |            |
| 735 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | 5%            | illiefors ( | <sup>ritica</sup> |                                                                                                                                                          | 0.200         |            | Det           | ected Data   | annea   | r Norr   | nal at 5  |              | anific  | ance I 6             |          |            |
| 736 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | J /0 I        |             |                   | d Data                                                                                                                                                   | annear Norn   | nal at 5%  | Sig           |              |         |          | nai at 5  |              | <u></u> |                      |          |            |
| 737 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             |                   |                                                                                                                                                          |               |            | Oigi          |              |         |          |           |              |         |                      |          |            |
| 738 |            | Normal GOF Test on Detects Only           Shapiro Wilk Test Statistic         0.96         Shapiro Wilk GOF Test           5% Shapiro Wilk Critical Value         0.748         Detected Data appear Normal at 5% Significance Leve           Lilliefors Test Statistic         0.253         Lilliefors GOF Test           5% Lilliefors Critical Value         0.375         Detected Data appear Normal at 5% Significance Leve           Detected Data appear Normal at 5% Significance Level         Detected Data appear Normal at 5% Significance Level           Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs         KM Mean         0.339         KM Standard Error of Mean           KM SD         0.49         95% KM (BCA) UCL         95% KM (t) UCL         0.718         95% KM (Percentile Bootstrap) UCL           95% KM (z) UCL         0.668         95% KM Bootstrap t UCL         0.668         95% KM Bootstrap t UCL |       |              |               |             |                   |                                                                                                                                                          |               |            |               |              |         |          |           |              |         |                      |          |            |
| 739 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Каріан       | -1410         |             | KM                | I Mean                                                                                                                                                   | 0 339         |            | lues          |              | Nonpa   | KN       | A Stand   | Lo<br>lard F | Frror   | of Mear              |          | 0.2        |
| 740 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             |                   |                                                                                                                                                          | 0.000         |            |               |              |         |          | 95        |              |         |                      | +        | 0.2<br>N/Δ |
| 741 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | 95%         | 6 KM (            |                                                                                                                                                          | 0.43          |            |               |              | 95%     | KM (F    | Percenti  |              |         | an) UCI              | +        |            |
| 742 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | 95%         |                   |                                                                                                                                                          | 0.668         |            |               |              | 5570    |          | 95% KI    | M Bor        |         | an t UCI             | +        | N/A        |
| 743 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | 90%           | 6 KM Che    | hvshe             |                                                                                                                                                          | 0.000         |            |               |              |         |          | 95% KN    | A Che        | hvst    |                      | +        | 1 211      |
| 744 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | <u>ð.</u>    | 7 5%          | 6 KM Che    | hvshe             |                                                                                                                                                          | 1 588         |            |               |              |         |          | 99% KN    | A Che        | hvst    |                      |          | 2 328      |
| 745 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | ,             |             | byone             | U UUL                                                                                                                                                    | 1.000         |            |               |              |         |          | 0070 TA   |              | .0 9 01 |                      | ·        | 2.020      |
| 746 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | (           | Gamm              | a GOF                                                                                                                                                    | Tests on De   | etected O  | hser          | vations Or   | lv      |          |           |              |         |                      |          |            |
| 747 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | A-D         | Test S            | Statistic                                                                                                                                                | 0 493         |            |               | A            | nderso  | on-Da    | rlina G   |              | est     |                      |          |            |
| /48 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | 5% A-D (    | Critica           | I Value                                                                                                                                                  | 0.673         | Detec      | cted          | data appea   | r Gam   | ma Di    | istribute | ad at !      | 5% S    | Significa            | nce      | level      |
| /49 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | K-S         | Test S            | Statistic                                                                                                                                                | 0.371         | 2 010      |               |              | Colmor  | norov-   | Smirno    | w GC         | )F      |                      |          |            |
| 750 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | 5% K-S (    | Critica           | I Value                                                                                                                                                  | 0.407         | Deteo      | cted          | data appea   | r Gam   | ma Di    | istribute | ed at {      | 5% S    | Significa            | nce      | Level      |
| 751 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | Detected    | d data            | appea                                                                                                                                                    | r Gamma Di    | stributed  | at 5º         | % Significa  | nce Le  | evel     |           |              |         |                      |          |            |
| 752 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             |                   |                                                                                                                                                          |               |            |               | <b>.</b>     |         |          |           |              |         |                      |          |            |
| 753 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             | G                 | amma                                                                                                                                                     | Statistics or | Detecte    | d Da          | ta Only      |         |          |           |              |         |                      |          |            |
| 754 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             | k hat             | (MLF)                                                                                                                                                    | 0.675         |            |               |              |         | k        | star (bia | as cor       | rrecto  | ed MI F              |          | 0.335      |
| /55 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | The         | eta hat           | (MLE)                                                                                                                                                    | 1.001         |            |               |              | 7       | [heta    | star (bia |              | rrecto  | $\frac{1}{1}$ ed MLE | <u> </u> | 2.013      |
| /56 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             | nu hat            | (MLF)                                                                                                                                                    | 5.397         |            |               |              |         |          | nu sta    | ar (biz      | as co   | prrected             | <u> </u> | 2.683      |
| /5/ | Mean (d    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             |                   |                                                                                                                                                          | 0.675         |            |               |              |         |          |           |              |         |                      | +        |            |
| /58 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               | 141         | (u                | 5.0000)                                                                                                                                                  | 5.676         |            |               |              |         |          |           |              |         |                      |          |            |
| /59 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             | Gamm              |                                                                                                                                                          | Statistics    | sina Imnu  | Ited          | Non-Detec    | ts      |          |           |              |         |                      |          |            |
| 760 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | GROS ma      | v no          | t be user   | wher              | n data e                                                                                                                                                 | et has > 50%  | NDs with   | h ma          | inv tied obs | ervatio | ons at   | multinle  | e DI e       |         |                      |          |            |
| /61 |            | GROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Smay  | not be use   | d wł          | nen kstar   | of det            | ects is                                                                                                                                                  | small such a  | s <1.0 es  | peri          | ally when t  | hesan   | nple si  | ize is sr | nall (       | e.a     | <15-20)              |          |            |
| 762 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | E            | 0r SI         | uch situat  | tions             | GROS                                                                                                                                                     | method may    | vield inco | rrec          | t values of  |         | and R    | TVs       |              | a.,     |                      |          |            |
| 763 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 1            | 51 31         |             | This is           | esneri                                                                                                                                                   | ally true whe | n the sam  | nle           | size is ema  | <u></u> |          | . • 3     |              |         |                      |          |            |
| 764 |            | Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n uan | nma distribu | Ited          | detected    | data              | BTVe a                                                                                                                                                   | Ind UCI e me  |            | סיקי<br>סוודם |              | nma di  | istrihu  | tion on   | KM و         | stim    | ates                 |          |            |
| 765 |            | гU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n yan |              | <del></del> u |             | uaid,<br>M:       | nimum                                                                                                                                                    |               |            | Pule          | a asing gal  | und u   | ISUIDU   |           | 17101 6      | June    | Moor                 |          | 0 3/13     |
| 766 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |               |             | IVI               | mmum                                                                                                                                                     | 0.01          |            |               |              |         |          |           |              |         | weah                 | "        | 0.342      |

|     | A B C D E                                      | F              | G H I J K                                             | L      |
|-----|------------------------------------------------|----------------|-------------------------------------------------------|--------|
| 767 | Maximum                                        | 1.429          | Median                                                | 0.01   |
| 768 | SD                                             | 0.521          | CV                                                    | 1.522  |
| 769 | k hat (MLE)                                    | 0.357          | k star (bias corrected MLE)                           | 0.306  |
| 770 | Theta hat (MLE)                                | 0.96           | Theta star (bias corrected MLE)                       | 1.118  |
| 771 | nu hat (MLE)                                   | 5.711          | nu star (bias corrected)                              | 4.903  |
| 772 | Adjusted Level of Significance (β)             | 0.0195         |                                                       |        |
| 773 | Approximate Chi Square Value (4.90, $\alpha$ ) | 1.108          | Adjusted Chi Square Value (4.90, $\beta$ )            | 0.721  |
| 774 | 95% Gamma Approximate UCL (use when n>=50)     | 1.516          | 95% Gamma Adjusted UCL (use when n<50)                | N/A    |
| 775 |                                                | •              |                                                       |        |
| 776 | Estimates of G                                 | iamma Para     | meters using KM Estimates                             |        |
| 777 | Mean (KM)                                      | 0.339          | SD (KM)                                               | 0.49   |
| 778 | Variance (KM)                                  | 0.24           | SE of Mean (KM)                                       | 0.2    |
| 779 | k hat (KM)                                     | 0.481          | k star (KM)                                           | 0.384  |
| 780 | nu hat (KM)                                    | 7.693          | nu star (KM)                                          | 6.142  |
| 781 | theta hat (KM)                                 | 0.706          | theta star (KM)                                       | 0.884  |
| 782 | 80% gamma percentile (KM)                      | 0.545          | 90% gamma percentile (KM)                             | 0.966  |
| 783 | 95% gamma percentile (KM)                      | 1.431          | 99% gamma percentile (KM)                             | 2.605  |
| 784 |                                                |                |                                                       |        |
| 785 | Gamm                                           | na Kaplan-M    | eier (KM) Statistics                                  |        |
| 786 | Approximate Chi Square Value (6.14, α)         | 1.713          | Adjusted Chi Square Value (6.14, β)                   | 1.188  |
| 787 | 95% Gamma Approximate KM-UCL (use when n>=50)  | 1.217          | 95% Gamma Adjusted KM-UCL (use when n<50)             | 1.755  |
| 788 |                                                |                |                                                       |        |
| 789 | Lognormal GC                                   | OF Test on D   | etected Observations Only                             |        |
| 790 | Shapiro Wilk Test Statistic                    | 0.781          | Shapiro Wilk GOF Test                                 |        |
| 791 | 5% Shapiro Wilk Critical Value                 | 0.748          | Detected Data appear Lognormal at 5% Significance Lev | vel    |
| 792 | Lilliefors Test Statistic                      | 0.384          | Lilliefors GOF Test                                   | -      |
| 793 | 5% Lilliefors Critical Value                   | 0.375          | Detected Data Not Lognormal at 5% Significance Leve   | el     |
| 794 | Detected Data appear A                         | Approximate    | Lognormal at 5% Significance Level                    |        |
| 795 |                                                | O Otatiatian   |                                                       |        |
| 796 | Lognormal Ro-                                  |                |                                                       | 4.059  |
| 797 | Mean in Original Scale                         | 0.338          | Mean in Log Scale                                     | -4.208 |
| 798 | SD In Original Scale                           | 0.524          |                                                       | 3.014  |
| 799 | 95% LOCE (assumes normality of ROS data)       | 0.009          |                                                       | 0.003  |
| 800 |                                                | 0.740          | 95% Boolstrap t OCL                                   | 0.990  |
| 801 | 95 % H-UCE (LUG KUS)                           | 24363129       |                                                       |        |
| 802 | Statistics using KM estimates                  |                | Data and Assuming Lognormal Distribution              |        |
| 803 | KM Mean (logged)                               |                | KM Geo Mean                                           | 0.0331 |
| 804 | KM SD (logged)                                 | 2 521          | 95% Critical H Value (KM-Log)                         | 7 622  |
| 805 | KM Standard Error of Mean (logged)             | 1 029          | 95% H-LICL (KM-Log)                                   | 1131   |
| 806 | KM SD (logged)                                 | 2.521          | 95% Critical H Value (KM-Log)                         | 7.622  |
| 807 | KM Standard Error of Mean (logged)             | 1.029          |                                                       |        |
| 808 |                                                | 1.020          |                                                       |        |
| 809 |                                                | DL/2 S         | tatistics                                             |        |
| 810 | DL/2 Normal                                    |                | DL/2 Log-Transformed                                  |        |
| 811 | Mean in Original Scale                         | 0.339          | Mean in Log Scale                                     | -3.726 |
| 812 | SD in Original Scale                           | 0.524          | SD in Log Scale                                       | 2.987  |
| 813 | 95% t UCL (Assumes normality)                  | 0.69           | 95% H-Stat UCI / 5                                    | 52063  |
| 814 | DL/2 is not a recommended m                    | ethod. provid  | ded for comparisons and historical reasons            |        |
| 815 |                                                |                |                                                       |        |
| 010 | Nonparame                                      | etric Distribu | tion Free UCL Statistics                              |        |
| ×1/ | Detected Data appea                            | r Normal Dis   | stributed at 5% Significance Level                    |        |
| 818 |                                                |                |                                                       |        |
| 019 |                                                | Suggested      | UCL to Use                                            |        |
| 82U | 95% KM (t) UCL                                 | 0.718          |                                                       |        |
| 821 | ·····(·) •••=                                  |                |                                                       |        |

|     | A | В                                                                                                                            | С              | D              | E             | F              | G               | Н               |               | J            | K               | L    |  |  |
|-----|---|------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------|----------------|-----------------|-----------------|---------------|--------------|-----------------|------|--|--|
| 822 |   |                                                                                                                              |                |                |               |                |                 |                 |               |              |                 |      |  |  |
| 823 |   | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. |                |                |               |                |                 |                 |               |              |                 |      |  |  |
| 824 |   | Recommendations are based upon data size, data distribution, and skewness.                                                   |                |                |               |                |                 |                 |               |              |                 |      |  |  |
| 825 |   | These reco                                                                                                                   | mmendations    | s are based u  | pon the resu  | Its of the sin | nulation studi  | es summariz     | zed in Singh, | Maichle, and | I Lee (2006)    |      |  |  |
| 826 | F | owever, simu                                                                                                                 | lations result | s will not cov | er all Real V | Vorld data se  | ts; for additio | onal insight th | ne user may   | want to cons | ult a statistic | ian. |  |  |

|     | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С             | D               | E              | F              | G             | Н              | I         |         | J             | K            |        | L       |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|----------------|----------------|---------------|----------------|-----------|---------|---------------|--------------|--------|---------|--|
| 827 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 828 | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 829 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 830 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                | General        | Statistics    |                |           |         |               |              |        |         |  |
| 831 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total         | Number of C     | bservations)   | 8              |               |                | Νι        | umbei   | of Distinct   | Observation  | s      | 5       |  |
| 832 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Numbe           | er of Detects  | 3              |               |                |           |         | Number of     | Non-Detect   | S      | 5       |  |
| 833 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A         B         C         D         E         F         G         H         I         J         K           uorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 834 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A         B         C         D         E         F         G         H         I         J         K           General Statistics           General Statistics           Total Number of Observations         8         Number of Distinct Observations           Number of Distinct Detects         3         Number of Distinct Non-Detect           Number of Distinct Detects         3         Number of Distinct Non-Detect           Maximum Detect         0.0235         Minimum Non-Detect           Variance Detects         6.2128-5         Percent Non-Detects           Warning Detect         0.0337         CV Detects           Mean Detects         0.0337         CV Detects           Mean of Logged Detects         -3.461         SD of Logged Detects           Mean of Logged Detects         -3.461         SD of Logged Detects           Warning: Data set has only 3 Detected Values.         This is not enough to compute meaningful or reliable statistics and estimates.           Variance be computed using the Nonparametric and All UCL Options of ProUCL 5.1         For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012);           Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1         Shapiro Wilk Test Statistic           Shapiro Wilk Test Statistic </th |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 835 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A       B       C       D       E       F       G       H       I       J       K         iorene         iorene         Ceneral Statistics         Total Number of Distinct Observations         Number of Distinct Detects       3       Number of Distinct Observations         Number of Distinct Detects       3       Number of Distinct Non-Detects         Maximum Detect       0.0235       Minimum Non-Detect         Maximum Detect       0.0331       Maximum Non-Detect         Mean Detects       0.0321       SD Detects         Mean Detects       0.0337       CV Detects         Mean of Logged Detects       -3.461       SD of Logged Detects         Mean of Logged Detects       -3.461       SD of Logged Detects         Mean of Logged Detects       -3.461       SD of Logged Detects         Mean of Logged Detects       -3.461       SD of Logged Detects         Mean of Logged Detects       -3.461       SD of Logged Detects         Mean of Logged Detects       -3.461       SD of Logged Detects         SD of Logged Detects       -3.461       SD of Logged Detects         Gamber Sample size is small (e.g., -10), if data are collected values.       -                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 836 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Varia           | nce Detects    | 6.2123E-5      |               |                |           |         | Percent       | Non-Detect   | s      | 62.5%   |  |
| 837 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A         B         C         D         E         F         G         H         I         J         K           uorene         Ceneral Statistics         Ceneral Statistics         Number of Distinct Observations         8         Number of Distinct Observations         8         Number of Distinct Observations           Number of Distinct Detects         3         Number of Distinct Non-Detects         3         Number of Distinct Non-Detects           Maximum Detect         0.025         Minimum Non-Detect         0.039         Maximum Non-Detect           Variance Detects         6.2123E-5         Percent Non-Detects         0.0321         SD Detects           Median Detects         0.037         CV Detects         CV Detects         Kutosis Detects           Median Detects         0.037         Kutosis Detects         SD of Logged Detects         -3.461         SD of Logged Detects           Warning: Data set has only 3 Detected Values.         This is not enough to compute meaningful or reliable statistics and estimates.            Volts: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use                                                                                                                                                                            |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 838 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Med             | dian Detects   | 0.0337         |               |                |           |         |               | CV Detect    | s      | 0.246   |  |
| 839 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Skewn           | ess Detects    | -0.876         |               |                |           |         | Kur           | tosis Detect | s      | N/A     |  |
| 840 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Mean of Log     | ged Detects    | -3.461         |               |                |           |         | SD of Lo      | gged Detect  | s      | 0.261   |  |
| 841 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                | I              | I             |                |           |         |               |              |        |         |  |
| 842 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 | Warning: D     | ata set has    | only 3 Dete   | cted Values    | •         |         |               |              |        |         |  |
| 843 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | т             | his is not end  | ough to com    | pute meanin    | gful or relia | ble statistics | s and est | timate  | es.           |              |        |         |  |
| 844 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 845 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 846 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Note: Sam     | ple size is sr  | nall (e.g., <1 | 0), if data ar | e collected   | using ISM a    | pproach   | n, you  | should use    | )            |        |         |  |
| 847 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | guidance pr   | ovided in ITF   | RC Tech Re     | g Guide on I   | SM (ITRC,     | 2012) to con   | npute sta | atistic | s of interes  | t.           |        |         |  |
| 848 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For           | example, you    | u may want t   | o use Cheby    | shev UCL      | to estimate l  | EPC (ITI  | RC, 2   | 012).         |              |        |         |  |
| 849 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chebyshev     | v UCL can be    | e computed     | using the No   | nparametri    | c and All UC   | L Optio   | ns of   | ProUCL 5.1    |              |        |         |  |
| 850 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 851 | For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).         Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1         Normal GOF Test on Detects Only         Shapiro Wilk Test Statistic       0.969       Shapiro Wilk GOF Test         Shapiro Wilk Critical Value       0.767       Detected Data appear Normal at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 852 | Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use         guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.         For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).         Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1         Normal GOF Test on Detects Only         Shapiro Wilk Test Statistic       0.969       Shapiro Wilk GOF Test         5% Shapiro Wilk Critical Value       0.767       Detected Data appear Normal at 5% Significance Level         Lilliefors Critical Value       0.425       Detected Data appear Normal at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 853 | Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use         guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.         For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).         Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1         Normal GOF Test on Detects Only         Shapiro Wilk Test Statistic       0.969         Shapiro Wilk Critical Value       0.767         Detected Data appear Normal at 5% Significance Leve         Lilliefors Test Statistic       0.247         Lilliefors GOF Test       Detected Data appear Normal at 5% Significance Leve         Detected Data appear Normal at 5% Significance Leve       Detected Data appear Normal at 5% Significance Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 854 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use         guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.         For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).         Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1         Normal GOF Test on Detects Only         Shapiro Wilk Test Statistic       0.969       Shapiro Wilk GOF Test         5% Shapiro Wilk Critical Value       0.767       Detected Data appear Normal at 5% Significance Leve         Lilliefors Test Statistic       0.247       Lilliefors GOF Test         5% Lilliefors Critical Value       0.425       Detected Data appear Normal at 5% Significance Leve         Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs         KM Mean       0.0145       KM Standard Error of Mean                                                                                                                                                                                                                                                                                                                                                                                             |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 855 | Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use         guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.         For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).         Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1         Normal GOF Test on Detects Only         Shapiro Wilk Test Statistic       0.969       Shapiro Wilk GOF Test         5% Shapiro Wilk Critical Value       0.767       Detected Data appear Normal at 5% Significance Leve         Lilliefors Test Statistic       0.247       Lilliefors GOF Test         5% Lilliefors Critical Value       0.425       Detected Data appear Normal at 5% Significance Leve         Kaplan-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs         KM Mean       0.0145       KM Standard Error of Mean         KM SD       0.0142       95% KM (BCA) UCL       95% KM (C) UCL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 856 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 857 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 858 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kaplan-       | Meier (KM) S    | Statistics usi | ng Normal C    | ritical Valu  | es and othei   | r Nonpar  | ramet   | ric UCLs      |              |        |         |  |
| 859 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 | KM Mean        | 0.0145         |               |                |           | KN      | I Standard E  | Error of Mea | n      | 0.00613 |  |
| 860 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 | KM SD          | 0.0142         |               |                |           |         | 95% KN        | M (BCA) UC   | L      | N/A     |  |
| 861 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 95%             | KM (t) UCL     | 0.0261         |               |                | 95% k     | KM (P   | ercentile Bo  | otstrap) UC  | L      | N/A     |  |
| 862 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 95%             | KM (z) UCL     | 0.0246         |               |                |           | 9       | 95% KM Bo     | otstrap t UC | L      | N/A     |  |
| 863 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ę             | 90% KM Che      | byshev UCL     | 0.0329         |               |                |           | ç       | 95% KM Che    | ebyshev UC   | L      | 0.0413  |  |
| 864 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97            | .5% KM Che      | byshev UCL     | 0.0528         |               |                |           | ç       | 99% KM Che    | ebyshev UC   | L      | 0.0755  |  |
| 865 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 866 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | G               | iamma GOF      | Tests on De    | etected Obs   | servations O   | nly       |         |               |              |        |         |  |
| 867 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 | Not En         | ough Data to   | Perform C     | OF Test        |           |         |               |              |        |         |  |
| 868 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                |               |                |           |         |               |              |        |         |  |
| 869 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 | Gamma          | Statistics or  | Detected      | Data Only      |           |         |               |              |        |         |  |
| 870 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 | k hat (MLE)    | 23.14          |               |                |           | k۶      | star (bias co | rrected MLE  | E)     | N/A     |  |
| 871 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | The             | ta hat (MLE)   | 0.00139        |               |                | Т         | heta s  | star (bias co | rrected MLE  | -)     | N/A     |  |
| 872 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | r               | u hat (MLE)    | 138.8          |               |                |           |         | nu star (bi   | as corrected | I)     | N/A     |  |
| 873 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Ме              | an (detects)   | 0.0321         |               |                |           |         |               |              | $\top$ |         |  |
| 874 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |                |                | ·             |                |           |         |               |              |        |         |  |
| 875 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | G               | amma ROS       | Statistics u   | sing Impute   | ed Non-Dete    | cts       |         |               |              |        |         |  |
| 876 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GROS may      | not be used     | when data s    | et has > 50%   | NDs with      | many tied ob   | servatio  | ns at   | multiple DLs  | 6            |        |         |  |
| 877 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GROS mag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y not be used | d when kstar o  | of detects is  | small such a   | s <1.0, esp   | ecially when   | the sam   | ple si  | ze is small ( | e.g., <15-20 | )      |         |  |
| 878 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fc            | or such situati | ons, GROS      | method may     | yield incorr  | ect values of  | f UCLs a  | ind B   | ۲Vs           |              |        |         |  |
| 879 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Т               | his is especi  | ially true whe | n the samp    | le size is sm  | all.      |         |               |              |        |         |  |
| 880 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | For gar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mma distribu  | ted detected    | data, BTVs a   | and UCLs ma    | y be compu    | uted using ga  | amma dis  | stribu  | tion on KM e  | estimates    |        |         |  |
| 881 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 | Minimum        | 0.01           |               |                |           |         |               | Mea          | n      | 0.0188  |  |

|              | A   | В        |        | C         | D         | E                               | F              | G           |          | Н       |        |         |         | J          |         | ĸ          | L       |
|--------------|-----|----------|--------|-----------|-----------|---------------------------------|----------------|-------------|----------|---------|--------|---------|---------|------------|---------|------------|---------|
| 882          |     |          |        |           |           | Maximum                         | 0.039          |             |          |         |        |         |         |            |         | Median     | 0.0121  |
| 883          |     |          |        |           |           | SD                              | 0.0119         |             |          |         |        |         |         |            |         | CV         | 0.63    |
| 884          |     |          |        |           |           | k hat (MLE)                     | 3.308          |             |          |         |        |         | k sta   | ar (bias o | correct | ted MLE)   | 2.151   |
| 885          |     |          |        |           |           | Theta hat (MLE)                 | 0.00569        |             |          |         |        | The     | eta sta | ar (bias o | correct | ted MLE)   | 0.00875 |
| 886          |     |          |        |           |           | nu hat (MLE)                    | 52.92          |             |          |         |        |         |         | nu star (  | bias c  | orrected)  | 34.41   |
| 887          |     |          | 1      | Adjusted  | l Level o | f Significance (β)              | 0.0195         |             |          |         |        |         |         |            |         |            |         |
| 888          |     | Ap       | proxi  | mate Chi  | i Square  | Value (34.41, α)                | 21.99          |             |          |         | Adj    | usted   | Chi S   | Square V   | /alue ( | 34.41, β)  | 19.52   |
| 889          | 9   | 95% Gamm | na App | proximate | e UCL (ı  | use when n>=50)                 | 0.0294         |             | !        | 95% G   | Gamn   | na Ad   | justec  | UCL (u     | ise wh  | en n<50)   | N/A     |
| 890          |     |          |        |           |           |                                 | I              |             |          |         |        |         |         |            |         |            |         |
| 891          |     |          |        |           |           | Estimates of G                  | iamma Parai    | neters usi  | ng KM    | Estim   | ates   |         |         |            |         |            |         |
| 892          |     |          |        |           |           | Mean (KM)                       | 0.0145         |             |          |         |        |         |         |            |         | SD (KM)    | 0.0142  |
| 893          |     |          |        |           |           | Variance (KM)                   | 2.0044E-4      |             |          |         |        |         |         | SE         | E of Me | ean (KM)   | 0.00613 |
| 894          |     |          |        |           |           | k hat (KM)                      | 1.054          |             |          |         |        |         |         |            | k۶      | star (KM)  | 0.742   |
| 895          |     |          |        |           |           | nu hat (KM)                     | 16.86          |             |          |         |        |         |         |            | nu s    | star (KM)  | 11.87   |
| 896          |     |          |        |           |           | theta hat (KM)                  | 0.0138         |             |          |         |        |         |         |            | theta s | star (KM)  | 0.0196  |
| 897          |     |          |        | 80%       | % gamma   | a percentile (KM)               | 0.0238         |             |          |         |        |         | 90% (   | gamma      | percer  | ntile (KM) | 0.036   |
| 898          |     |          |        | 95%       | % gamma   | a percentile (KM)               | 0.0484         |             |          |         |        |         | 99% (   | gamma      | percer  | ntile (KM) | 0.078   |
| 899          |     |          |        |           |           |                                 |                |             |          |         |        |         |         |            |         |            |         |
| 900          |     |          |        |           |           | Gamm                            | na Kaplan-Mo   | eier (KM) S | Statisti | cs      |        |         |         |            |         |            |         |
| 901          |     | Ар       | proxi  | mate Chi  | i Square  | Value (11.87, α)                | 5.142          |             |          |         | Adj    | usted   | Chi S   | Square V   | /alue ( | 11.87, β)  | 4.079   |
| 902          | 95% | Gamma Ap | pproxi | mate KN   | Λ-UCL (ι  | use when n>=50)                 | 0.0336         |             | 95%      | Gam     | ma A   | djuste  | ed KM   | I-UCL (u   | ise wh  | en n<50)   | 0.0423  |
| 903          |     |          |        |           |           |                                 |                |             |          |         |        |         |         |            |         |            |         |
| 904          |     |          |        |           |           | Lognormal GC                    | F Test on D    | etected OI  | bserva   | tions ( | Only   |         |         |            |         |            |         |
| 905          |     |          |        | S         | hapiro V  | Vilk Test Statistic             | 0.945          |             |          |         | Sł     | napiro  | Wilk    | GOF Te     | est     |            |         |
| 906          |     |          |        | 5% SI     | hapiro V  | /ilk Critical Value             | 0.767          | De          | etected  | Data    | appe   | ear Lo  | gnorn   | nal at 5%  | 6 Sign  | ificance L | evel    |
| 907          |     |          |        |           | Lillief   | ors Test Statistic              | 0.273          |             |          |         |        | Lillief | ors G   | OF Tes     | t       |            |         |
| 908          |     |          |        | 5         | % Lillief | ors Critical Value              | 0.425          | De          | etected  | Data    | appe   | ear Lo  | gnorn   | nal at 5%  | 6 Sign  | ificance L | evel    |
| 909          |     |          |        |           |           | Detected Data ap                | opear Logno    | rmal at 5%  | 5 Signif | icance  | e Lev  | /el     |         |            |         |            |         |
| 910          |     |          |        |           |           |                                 |                |             |          |         |        |         |         |            |         |            |         |
| 911          |     |          |        |           |           | Lognormal RO                    | S Statistics   | Jsing Imp   | uted No  | on-De   | tects  |         |         |            |         |            |         |
| 912          |     |          |        |           | Mean      | in Original Scale               | 0.0197         |             |          |         |        |         |         | Mea        | an in L | og Scale   | -4.064  |
| 913          |     | 050/ 1   |        | 1         | SD        | In Original Scale               | 0.0113         |             |          |         |        |         | -0/ D   |            |         | og Scale   | 0.561   |
| 914          |     | 95% t    | UCL    | (assume   | es norma  | A D is in the line of ROS data) | 0.0273         |             |          |         |        | 95      | o% Pe   |            | Boots   | trap UCL   | 0.0262  |
| 915          |     |          |        | ;         | 95% BC    | A Bootstrap UCL                 | 0.027          |             |          |         |        |         |         | 95% E      | sootstr | aptUCL     | 0.0303  |
| 916          |     |          |        |           | 95% H     | -UCL (LOG RUS)                  | 0.0339         |             |          |         |        |         |         |            |         |            |         |
| 917          |     |          |        | Statia    |           | ng KM potimotoo                 | on Loggod [    | Note and A  |          |         |        |         | iotribu | ition      |         |            |         |
| 918          |     |          |        | Statis    |           |                                 |                | Jata and A  | ssumi    | ng Loę  | gnorr  | nai D   | ISUIDU  | luon       | KMC     | oo Moon    | 0.00966 |
| 919          |     |          |        |           | ĸ         | KM SD (logged)                  | -4.749         |             |          |         |        | 05      |         |            |         |            | 2 441   |
| 920          |     |          | kM     | Standa    | rd Error  | of Moon (logged)                | 0.436          |             |          |         |        | 90      |         |            |         | KM Log)    | 0.0532  |
| 921          |     |          | NIV    | Janual    |           | KM SD (logged)                  | 1 006          |             |          |         |        | QF      | 5% Cr   | itical H \ | /alue / | (KM-Log)   | 3 441   |
| 922          |     |          | КW     | Standa    | rd Error  | of Mean (logged)                | 0.436          |             |          |         |        | 90      |         |            |         | LOy)       | 5.771   |
| 923          |     |          | I XIV  |           |           | c. mean (loggeu)                | 0.400          |             |          |         |        |         |         |            |         |            |         |
| 924          |     |          |        |           |           |                                 | DI /2 St       | atistics    |          |         |        |         |         |            |         |            |         |
| 925          |     |          |        | DL /2 I   | Normal    |                                 |                |             |          |         | ח      | L/2 I a | og-Tra  | ansform    | ed      |            |         |
| 926          |     |          |        |           | Mean      | in Original Scale               | 0.0133         |             |          |         |        |         |         | Me         | an in l | og Scale   | -5.154  |
| 927          |     |          |        |           | SD        | in Original Scale               | 0.0161         |             |          |         |        |         |         |            | SD in I | og Scale   | 1.411   |
| 928          |     |          |        | 95% t l   | JCL (As   | sumes normality)                | 0.0241         |             |          |         |        |         |         | 9          | 5% H-   | Stat UCL   | 0.172   |
| 929          |     |          |        | DL/2 i    | is not a  | recommended m                   | ethod. provid  | led for cor | mpariso  | ons ar  | nd his | storic  | al rea  | sons       |         |            |         |
| 930          |     |          |        |           |           |                                 | -, p , n       |             |          |         |        |         |         |            |         |            |         |
| 931          |     |          |        |           |           | Nonparame                       | etric Distribu | tion Free l | JCL St   | atistic | S      |         |         |            |         |            |         |
| 932          |     |          |        |           | Dete      | ected Data appea                | r Normal Dis   | stributed a | t 5% S   | ignific | ance   | Leve    | əl      |            |         |            |         |
| 933<br>024   |     |          |        |           |           |                                 |                |             |          |         |        |         |         |            |         |            |         |
| უ <u>ა</u> 4 |     |          |        |           |           |                                 | Suggested      | UCL to Us   | se       |         |        |         |         |            |         |            |         |
| 935          |     |          |        |           |           | 95% KM (t) UCL                  | 0.0261         |             |          |         |        |         |         |            |         |            |         |
| 930          |     |          |        |           |           | () = ) =                        | -              |             |          |         |        |         |         |            |         |            |         |

|     | A | В                                                                                                                            | С              | D              | E             | F              | G               | H              |               | J             | K               | L    |  |  |
|-----|---|------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------|----------------|-----------------|----------------|---------------|---------------|-----------------|------|--|--|
| 937 |   |                                                                                                                              |                |                |               |                |                 |                |               |               |                 |      |  |  |
| 938 |   | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. |                |                |               |                |                 |                |               |               |                 |      |  |  |
| 939 |   | Recommendations are based upon data size, data distribution, and skewness.                                                   |                |                |               |                |                 |                |               |               |                 |      |  |  |
| 940 |   | These record                                                                                                                 | mmendations    | are based u    | pon the resu  | Its of the sin | nulation studi  | es summariz    | zed in Singh, | Maichle, and  | Lee (2006)      |      |  |  |
| 941 | Н | owever, simu                                                                                                                 | lations result | s will not cov | er all Real V | /orld data se  | ts; for additio | nal insight th | ne user may   | want to consi | ult a statistic | ian. |  |  |

|     | A                                                                                                                       | В                                                                      | С           | D             | E            | F                    | G               | Н               |               | J                | K             | L      |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------|---------------|--------------|----------------------|-----------------|-----------------|---------------|------------------|---------------|--------|--|--|--|
| 942 | Naphthalen                                                                                                              | e                                                                      |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 943 |                                                                                                                         | ~                                                                      |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 944 |                                                                                                                         |                                                                        |             |               |              | Genera               | Statistics      |                 |               |                  |               |        |  |  |  |
| 945 |                                                                                                                         |                                                                        | Total       | Number of     | Observatio   | ns 8                 |                 |                 | Numbe         | er of Distinct C | )bservations  | 4      |  |  |  |
| 946 |                                                                                                                         |                                                                        |             | Num           | er of Dete   | ts 2                 |                 |                 |               | Number of I      | Non-Detects   | 6      |  |  |  |
| 947 |                                                                                                                         |                                                                        | N           | umber of Di   | stinct Dete  | cts 2                |                 |                 | Numb          | er of Distinct I | Non-Detects   | 2      |  |  |  |
| 948 |                                                                                                                         |                                                                        |             | Mi            | nimum Dete   | ect 0.0294           |                 |                 |               | Minimum          | Non-Detect    | 0.005  |  |  |  |
| 949 |                                                                                                                         |                                                                        |             | Ma            | kimum Dete   | ect 0.0571           |                 |                 |               | Maximum          | Non-Detect    | 0.0709 |  |  |  |
| 950 |                                                                                                                         |                                                                        |             | Var           | ance Dete    | cts 3.8451E-4        |                 |                 |               | Percent I        | Non-Detects   | 75%    |  |  |  |
| 951 |                                                                                                                         |                                                                        |             |               | Mean Dete    | cts 0.0433           |                 |                 |               |                  | SD Detects    | 0.0196 |  |  |  |
| 952 |                                                                                                                         |                                                                        |             | M             | edian Dete   | cts 0.0433           |                 |                 |               |                  | CV Detects    | 0.453  |  |  |  |
| 955 |                                                                                                                         |                                                                        |             | Skew          | ness Dete    | cts N/A              |                 |                 |               | Kurt             | osis Detects  | N/A    |  |  |  |
| 954 |                                                                                                                         |                                                                        |             | Mean of Lo    | gged Dete    | cts -3.194           |                 |                 |               | SD of Log        | ged Detects   | 0.47   |  |  |  |
| 955 |                                                                                                                         |                                                                        |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 950 |                                                                                                                         |                                                                        |             |               | Warning      | : Data set has       | only 2 Dete     | cted Values.    |               |                  |               |        |  |  |  |
| 958 |                                                                                                                         |                                                                        | т           | his is not er | nough to co  | mpute meani          | ngful or relial | ble statistics  | and estimat   | tes.             |               |        |  |  |  |
| 959 |                                                                                                                         |                                                                        |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 960 |                                                                                                                         |                                                                        |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 961 |                                                                                                                         |                                                                        | Note: Sam   | ple size is s | mall (e.g.,  | <10), if data a      | re collected    | using ISM a     | pproach, yo   | u should use     |               |        |  |  |  |
| 962 |                                                                                                                         |                                                                        | guidance pr | rovided in IT | RC Tech I    | Reg Guide on         | ISM (ITRC, 2    | 2012) to com    | pute statisti | cs of interest   | •             |        |  |  |  |
| 963 |                                                                                                                         |                                                                        | For         | example, yo   | ou may wa    | nt to use Cheb       | yshev UCL t     | o estimate E    | PC (ITRC, 2   | 2012).           |               |        |  |  |  |
| 964 | Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1 Normal GOF Test on Detects Only |                                                                        |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 965 | Normal GOF Test on Detects Only<br>Not Enough Data to Perform GOF Test                                                  |                                                                        |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 966 |                                                                                                                         |                                                                        |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 967 |                                                                                                                         | Normal GOF Test on Detects Only<br>Not Enough Data to Perform GOF Test |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 968 | Not Enough Data to Perform GOF Test                                                                                     |                                                                        |             |               |              |                      |                 |                 |               |                  |               |        |  |  |  |
| 969 |                                                                                                                         |                                                                        | Kaplan-     | Meier (KM)    | Statistics   | using Normal         | Critical Value  | es and other    | Nonparame     | etric UCLs       |               |        |  |  |  |
| 970 |                                                                                                                         |                                                                        |             |               | KM Me        | an 0.0159            |                 |                 | K             | M Standard E     | rror of Mean  | 0.0101 |  |  |  |
| 971 |                                                                                                                         |                                                                        |             |               | KMS          | SD 0.0188            |                 |                 |               | 95% KM           | I (BCA) UCL   | N/A    |  |  |  |
| 972 |                                                                                                                         |                                                                        |             | 95            | % KM (t) U   | CL 0.035             |                 |                 | 95% KM (F     | Percentile Boo   | otstrap) UCL  | N/A    |  |  |  |
| 973 |                                                                                                                         |                                                                        |             | 95%           | 6 KM (z) U   | CL 0.0325            |                 |                 |               | 95% KM Boo       | tstrap t UCL  | N/A    |  |  |  |
| 974 |                                                                                                                         |                                                                        | ę           | 90% KM Ch     | ebyshev U    | CL 0.0461            |                 |                 |               | 95% KM Che       | byshev UCL    | 0.0598 |  |  |  |
| 975 |                                                                                                                         |                                                                        | 97          | 7.5% KM Ch    | ebyshev U    | CL 0.0787            |                 |                 |               | 99% KM Che       | byshev UCL    | 0.116  |  |  |  |
| 976 |                                                                                                                         |                                                                        |             |               |              |                      |                 |                 | -             |                  |               |        |  |  |  |
| 977 |                                                                                                                         |                                                                        |             |               | Gamma G      | OF Tests on D        | etected Obs     | ervations Or    | nly           |                  |               |        |  |  |  |
| 978 |                                                                                                                         |                                                                        |             |               | Not          | Enough Data          | to Perform G    | OF Test         |               |                  |               |        |  |  |  |
| 979 |                                                                                                                         |                                                                        |             |               |              | <b>0</b> , , , , , , |                 |                 |               |                  |               |        |  |  |  |
| 980 |                                                                                                                         |                                                                        |             |               | Gam          | na Statistics o      | on Detected [   | Data Only       |               |                  |               |        |  |  |  |
| 981 |                                                                                                                         |                                                                        |             | <b>T</b> L    | k hat (ML    | E) 9.397             |                 |                 | K<br>Thata    | star (bias cor   | rected MLE)   | N/A    |  |  |  |
| 982 |                                                                                                                         |                                                                        |             | Ih            |              | E) 0.00461           |                 |                 | Ineta         | star (blas cor   |               | IN/A   |  |  |  |
| 983 |                                                                                                                         |                                                                        |             |               |              | E) 37.59             |                 |                 |               | nu star (bia     | is corrected) | N/A    |  |  |  |
| 984 |                                                                                                                         |                                                                        |             | IV            | ean (uetec   | 15) 0.0433           |                 |                 |               |                  |               |        |  |  |  |
| 985 |                                                                                                                         |                                                                        |             | C             | ctimatos a   | f Gamma Par          | motors usin     | a KM Estima     | toc           |                  |               |        |  |  |  |
| 986 |                                                                                                                         |                                                                        |             |               | Mean /K      |                      |                 | a izini ⊏sniijs | 1103          |                  | SU (RW)       | በ በ1ዩዩ |  |  |  |
| 987 |                                                                                                                         |                                                                        |             |               |              | M) 3 5301 1          |                 |                 |               |                  | f Mean (KM)   | 0.0100 |  |  |  |
| 988 |                                                                                                                         |                                                                        |             |               | k hat (K     | M) 0.712             |                 |                 |               | 3⊏0              | k star (KM)   | 0.0101 |  |  |  |
| 989 |                                                                                                                         |                                                                        |             |               | nu hat (K    | M) 11 48             |                 |                 |               |                  | nu star (KM)  | 8 509  |  |  |  |
| 990 |                                                                                                                         |                                                                        |             | +             | heta hat (K  | M) 0.0222            |                 |                 |               | the              | ta star (KM)  | 0.03   |  |  |  |
| 991 |                                                                                                                         |                                                                        | 80%         | aamma ne      | ercentile (K | M) 0.0262            |                 |                 | 90            | % gamma ner      | centile (KM)  | 0.0426 |  |  |  |
| 992 |                                                                                                                         |                                                                        | 95%         | % gamma pr    | ercentile (K | M) 0.0599            |                 |                 | 90            | % gamma ner      | centile (KM)  | 0.102  |  |  |  |
| 993 |                                                                                                                         |                                                                        |             | ganna pe      |              | 0.0000               |                 |                 |               | - gamma per      |               | 0.102  |  |  |  |
| 994 |                                                                                                                         |                                                                        |             |               | Ga           | nma Kanlan-N         | leier (KM) St   | tatistics       |               |                  |               |        |  |  |  |
| 995 |                                                                                                                         |                                                                        |             |               |              |                      |                 |                 | Adjuster      | d Level of Sig   | nificance (R) | 0 0195 |  |  |  |
| 996 |                                                                                                                         |                                                                        |             |               |              |                      |                 |                 | Aujusie       | a Lover of Sig   | (p)           | 0.0130 |  |  |  |
|      | А   | В           | С               | D              | E             | F              | G               | Н             |                 | J               | К                | L       |
|------|-----|-------------|-----------------|----------------|---------------|----------------|-----------------|---------------|-----------------|-----------------|------------------|---------|
| 997  |     | A           | pproximate Cl   | hi Square Va   | lue (8.51, α) | 3.033          |                 |               | Adjusted C      | hi Square Va    | lue (8.51, β)    | 2.269   |
| 998  | 95% | Gamma Ap    | proximate KN    | 1-UCL (use w   | /hen n>=50)   | 0.0447         |                 | 95% Gamm      | na Adjusted k   | M-UCL (use      | when n<50)       | 0.0598  |
| 999  |     |             |                 |                |               |                |                 |               |                 |                 |                  |         |
| 1000 |     |             |                 | Lo             | gnormal GC    | OF Test on D   | etected Obs     | ervations C   | only            |                 |                  |         |
| 1001 |     |             |                 |                | Not En        | ough Data to   | Perform G       | OF Test       |                 |                 |                  |         |
| 1002 |     |             |                 |                |               |                |                 |               |                 |                 |                  |         |
| 1003 |     |             |                 | Lo             | gnormal RO    | S Statistics   | Using Impute    | ed Non-Det    | ects            |                 |                  |         |
| 1004 |     |             |                 | Mean in Or     | iginal Scale  | 0.0151         |                 |               |                 | Mean            | in Log Scale     | -4.849  |
| 1005 |     |             |                 | SD in Or       | iginal Scale  | 0.0192         |                 |               |                 | SDi             | in Log Scale     | 1.24    |
| 1006 |     | 95% t l     | UCL (assume     | s normality o  | f ROS data)   | 0.0279         |                 |               | 95% I           | Percentile Bo   | otstrap UCL      | 0.0254  |
| 1007 |     |             | 9               | 95% BCA Bo     | otstrap UCL   | 0.0303         |                 |               |                 | 95% Boo         | tstrap t UCL     | 0.0699  |
| 1008 |     |             |                 | 95% H-UCL      | (Log ROS)     | 0.112          |                 |               |                 |                 |                  |         |
| 1009 |     |             |                 |                |               |                |                 |               |                 |                 |                  |         |
| 1010 |     |             | Statis          | tics using KI  | V estimates   | on Logged I    | Data and As     | suming Log    | normal Distri   | bution          |                  |         |
| 1011 |     |             |                 | KM Me          | an (logged)   | -4.697         |                 |               |                 | KN              | I Geo Mean       | 0.00912 |
| 1012 |     |             |                 | KM             | SD (logged)   | 0.967          |                 |               | 95% (           | Critical H Valu | ue (KM-Log)      | 3.345   |
| 1013 |     |             | KM Standar      | d Error of Me  | ean (logged)  | 0.517          |                 |               |                 | 95% H-UC        | L (KM -Log)      | 0.0494  |
| 1014 |     |             |                 | KM             | SD (logged)   | 0.967          |                 |               | 95% (           | Critical H Valu | ue (KM-Log)      | 3.345   |
| 1015 |     |             | KM Standar      | d Error of Me  | ean (logged)  | 0.517          |                 |               |                 |                 |                  |         |
| 1016 |     |             |                 |                |               |                |                 |               |                 |                 |                  |         |
| 1017 |     |             |                 |                |               | DL/2 S         | tatistics       |               | -               | -               |                  |         |
| 1018 |     |             | DL/2 N          | Normal         |               | 1              |                 |               | DL/2 Log-1      | ransformed      |                  |         |
| 1019 |     |             |                 | Mean in Or     | iginal Scale  | 0.0168         |                 |               |                 | Meani           | in Log Scale     | -4.961  |
| 1020 |     |             |                 | SD in Or       | iginal Scale  | 0.0212         |                 |               |                 | SDi             | in Log Scale     | 1.434   |
| 1021 |     |             | 95% t U         | JCL (Assume    | s normality)  | 0.031          |                 |               |                 | 95%             | H-Stat UCL       | 0.232   |
| 1022 |     |             | DL/2 i          | s not a recor  | nmended m     | ethod, provi   | ded for com     | parisons and  | d historical re | easons          |                  |         |
| 1023 |     |             |                 |                |               |                |                 |               |                 |                 |                  |         |
| 1024 |     |             |                 | <u> </u>       | Nonparame     | etric Distribu | tion Free UC    | L Statistics  | ,<br>           |                 |                  |         |
| 1025 |     |             |                 | Data do no     | ot follow a D | Iscernible D   | istribution at  | 5% Signific   | ance Level      |                 |                  |         |
| 1026 |     |             |                 |                |               | Overseted      |                 |               |                 |                 |                  |         |
| 1027 |     |             |                 | 050/           |               |                |                 |               |                 |                 | KMULIO           | 0.0404  |
| 1028 |     |             |                 | 95%            |               | 0.035          |                 |               |                 |                 | KM H-UCL         | 0.0494  |
| 1029 |     |             |                 | 95% KM         |               |                | mondedUC        | l (a) not a   |                 |                 |                  |         |
| 1030 |     |             |                 | vvarni         | ny. One of I  | nore Recolf    |                 | L(S) NOT AVA  |                 |                 |                  |         |
| 1031 |     | Note: Sugar | etione rogard   | ing the color  | tion of a QE® |                | ovided to ha    | n the user t  | a salact the m  |                 |                  |         |
| 1032 |     | Note. Sugge |                 | Acommenda      | tions are had |                |                 | distribution  | and skownos     |                 | ale 35 /0 UCL    | •       |
| 1033 |     | These reco  |                 | are based u    | non the resu  | lts of the sim | ulation studi   | es summari    |                 | Maichle and     |                  |         |
| 1034 | На  |             | Ilations result | s will not cov | er all Real M | /orld data se  | ts: for additio | nal insight t | he user may     | want to cons    | ult a statistici | an      |
| 1035 | 110 | mover, sint | anationa reault |                |               |                | io, ioi auuille | nai maiyint t | ne user may     |                 |                  |         |

|      | A         | В       | (         | C        | D        | )       | E          |          | F              | G         |         | H           |          |         |             | J       |          | K         |       | L      |
|------|-----------|---------|-----------|----------|----------|---------|------------|----------|----------------|-----------|---------|-------------|----------|---------|-------------|---------|----------|-----------|-------|--------|
| 1036 | Dhenonth- |         |           |          |          |         |            |          |                |           |         |             |          |         |             |         |          |           |       |        |
| 1037 |           | a le    |           |          |          |         |            |          |                |           |         |             |          |         |             |         |          |           |       |        |
| 1038 |           |         |           |          |          |         |            |          | Ganaral        | Statistic |         |             |          |         |             |         |          |           |       |        |
| 1039 |           |         |           | Total    | Numbe    | ar of C | )hserva    | ations   | 8              | otatistic | .5      |             | N        | umbe    | r of Di     | stinct  | Ohse     | rvations  |       | 6      |
| 1040 |           |         |           | Total    | Numbe    |         | er of De   | etects   | 4              |           |         |             |          | umbe    | Num         | ber of  | f Non    | -Detects  |       | 4      |
| 1041 |           |         |           | Nı       | umber o  | of Dist | tinct De   | etects   | 4              |           |         |             | Ν        | lumbe   | er of D     | istinct | Non      | -Detects  |       | 2      |
| 1042 |           |         |           |          |          | Mini    | mum D      | Detect   | 0.016          |           |         |             |          |         | M           | inimur  | n No     | n-Detect  | t (   | 0.004  |
| 1043 |           |         |           |          |          | Махі    | mum D      | Detect   | 0.667          |           |         |             |          |         | Ма          | aximur  | n No     | n-Detect  | t (   | 0.005  |
| 1044 |           |         |           |          |          | Varia   | ince De    | etects   | 0.0713         |           |         |             |          |         | P           | ercent  | Non      | -Detects  |       | 50%    |
| 1045 |           |         |           |          |          | М       | ean De     | etects   | 0.32           |           |         |             |          |         |             |         | SD       | Detects   | ;     | 0.267  |
| 1040 |           |         |           |          |          | Med     | dian De    | etects   | 0.298          |           |         |             |          |         |             |         | CV       | Detects   | ;     | 0.835  |
| 1047 |           |         |           |          | S        | Skewn   | iess De    | etects   | 0.479          |           |         |             |          |         |             | Kur     | rtosis   | Detects   | ;     | 1.561  |
| 1049 |           |         |           |          | Mean     | of Log  | ged De     | etects   | -1.741         |           |         |             |          |         | SD          | of Lo   | gged     | Detects   | ;     | 1.641  |
| 1050 |           |         |           |          |          |         |            |          |                |           |         |             |          |         |             |         |          |           |       |        |
| 1051 |           |         | Note      | : Samp   | ole size | e is sn | nall (e.   | g., <10  | 0), if data ar | e collec  | ted us  | sing ISM a  | pproac   | h, you  | ı shou      | ld use  | e        |           |       |        |
| 1052 |           |         | guida     | nce pr   | ovided   | in ITF  | RC Tec     | h Reg    | Guide on I     | SM (ITR   | RC, 20  | 12) to com  | npute st | atistic | cs of i     | nteres  | st.      |           |       |        |
| 1053 |           |         |           | For e    | exampl   | le, you | u may v    | want to  | o use Cheby    | shev U    | CL to   | estimate E  | EPC (IT  | RC, 2   | 2012).      |         |          |           |       |        |
| 1054 |           |         | Chet      | oyshev   | UCLo     | can be  | e comp     | uted u   | ising the No   | nparam    | etric a | and All UC  | L Optio  | ns of   | ProU        | CL 5.1  |          |           |       |        |
| 1055 |           |         |           |          |          |         |            |          |                |           |         |             |          |         |             |         |          |           |       |        |
| 1056 |           |         |           |          |          |         |            | Norm     | al GOF Tes     | t on Dei  | tects ( | Only        |          |         |             |         |          |           |       |        |
| 1057 |           |         |           | S        | hapiro   | Wilk T  | est Sta    | atistic  | 0.956          |           |         |             | Shap     | iro Wi  | lk GO       | FTes    | st       |           |       |        |
| 1058 |           |         |           | 5% Sł    | napiro \ | Wilk C  | Critical V | Value    | 0.748          |           | Det     | ected Data  | appea    | r Norr  | nal at      | 5% Si   | ignific  | cance Le  | vel   |        |
| 1059 |           |         |           |          | Lillie   | efors T | est Sta    | atistic  | 0.259          |           |         |             | Lilli    | efors   | GOF         | Test    |          |           |       |        |
| 1060 |           |         |           | 5        | % Lillie | fors C  | Critical   | Value    | 0.375          |           | Det     | ected Data  | appea    | r Norr  | nal at      | 5% Si   | ignifio  | cance Le  | vel   |        |
| 1061 |           |         |           |          |          | Det     | tected     | Data a   | appear Norn    | hal at 5% | % Sigr  | nificance L | evel     |         |             |         |          |           |       |        |
| 1062 |           |         |           |          |          |         | <u></u>    |          |                |           | /-l     |             | N        |         |             | N -     |          |           |       |        |
| 1063 |           |         | Ka        | apian-i  | vieler ( | (КМ) С  | statistic  | cs usir  |                | ritical v | alues   | and other   | Nonpa    |         |             | JLS     | <b>-</b> | of Maar   |       | 0.0000 |
| 1064 |           |         |           |          |          |         |            | MSD      | 0.102          |           |         |             |          | NIV     |             |         |          |           |       | 0.0920 |
| 1065 |           |         |           |          |          | 05%     |            |          | 0.227          |           |         |             | 05%      |         | 9<br>Dorcon | tilo Ro |          |           | · · · |        |
| 1066 |           |         |           |          |          | 95%     | KM (7)     |          | 0.338          |           |         |             | 90 /0    |         | 95% k       |         | otstr    | ap) UCL   | +     |        |
| 1067 |           |         |           | c        | 0% KM    | / Chel  | hvshev     |          | 0.010          |           |         |             |          | (       | 95% K       | M Che   | ehvsl    |           | +     | 0.566  |
| 1068 |           |         |           | 97       | 5% KN    | / Chel  | byshev     |          | 0.741          |           |         |             |          |         | 99% K       | M Che   | ebys     | hev UCI   |       | 1.085  |
| 1069 |           |         |           |          |          |         |            |          |                |           |         |             |          |         |             |         | ,-       |           | 1     |        |
| 1070 |           |         |           |          |          | G       | iamma      | GOF      | Tests on De    | etected   | Obser   | vations O   | nly      |         |             |         |          |           |       |        |
| 1071 |           |         |           |          |          | A-D T   | est Sta    | atistic  | 0.416          |           |         | ŀ           |          | on-Da   | rling C     | GOF T   | est      |           |       |        |
| 1072 |           |         |           |          | 5%       | A-D C   | ritical    | Value    | 0.667          | Det       | ected   | data appe   | ar Gam   | ma Di   | istribu     | ted at  | 5% 5     | Significa | nce   | Level  |
| 1073 |           |         |           |          |          | K-S T   | est Sta    | atistic  | 0.34           |           |         |             | Kolmoç   | jorov-  | Smirn       | iov GC  | OF       |           |       |        |
| 1074 |           |         |           |          | 5%       | K-S C   | critical ` | Value    | 0.403          | Det       | ected   | data appe   | ar Gam   | ma Di   | istribu     | ted at  | 5% 5     | Significa | nce   | Level  |
| 1076 |           |         |           |          | Det      | tected  | data a     | ppear    | Gamma Di       | stributed | d at 59 | % Significa | ance Le  | vel     |             |         |          |           |       |        |
| 1077 |           |         |           |          |          |         |            |          |                |           |         |             |          |         |             |         |          |           |       |        |
| 1078 |           |         |           |          |          |         | Ga         | mma      | Statistics or  | Detect    | ed Da   | ta Only     |          |         |             |         |          |           |       |        |
| 1079 | -         |         |           |          |          |         | k hat (    | MLE)     | 0.965          |           |         |             |          | k :     | star (b     | ias co  | orrect   | ed MLE)   | i     | 0.408  |
| 1080 |           |         |           |          |          | The     | ta hat (   | MLE)     | 0.331          |           |         |             | T        | heta    | star (b     | ias co  | orrect   | ed MLE)   | i     | 0.784  |
| 1081 |           |         |           |          |          | n       | nu hat (   | MLE)     | 7.72           |           |         |             |          |         | nu s        | tar (bi | ias co   | orrected) | i     | 3.263  |
| 1082 |           |         |           |          |          | Ме      | ean (de    | tects)   | 0.32           |           |         |             |          |         |             |         |          |           |       |        |
| 1083 |           |         |           |          |          |         |            |          |                |           |         |             |          |         |             |         |          |           |       |        |
| 1084 |           |         |           |          |          | G       | amma       | ROS      | Statistics u   | sing Imp  | outed   | Non-Detec   | cts      |         |             |         |          |           |       |        |
| 1085 |           |         | GRO       | S may    | not be   | used    | when       | data se  | et has > 50%   | NDs w     | ith ma  | iny tied ob | servatio | ons at  | multip      | le DLs  | s        |           |       |        |
| 1086 |           | GROS ma | ay not be | e used   | when I   | kstar o | of dete    | cts is s | small such a   | s <1.0, e | especi  | ally when   | the sam  | nple si | ze is s     | small ( | (e.g.,   | <15-20)   |       |        |
| 1087 |           |         |           | Fo       | r such : | situati | ons, G     | ROS r    | method may     | yield ind | correc  | t values of | UCLs a   | and B   | TVs         |         |          |           |       |        |
| 1088 |           |         |           |          |          | Т       | his is e   | especia  | ally true whe  | n the sa  | ample   | size is sma | all.     |         |             |         | _        |           |       |        |
| 1089 |           | For ga  | amma di   | istribut | ed dete  | ected   | data, B    | TVs a    | nd UCLs ma     | y be co   | mpute   | d using ga  | mma di   | stribu  | tion o      | n KM e  | estim    | ates      |       |        |
| 1090 |           |         |           |          |          |         | Min        | imum     | 0.01           |           |         |             |          |         |             |         |          | Mean      | 1     | 0.165  |

|      | A B C D E                                      | F              | G H I J K                                             | L             |
|------|------------------------------------------------|----------------|-------------------------------------------------------|---------------|
| 1091 | Maximum                                        | 0.667          | Median                                                | 0.013         |
| 1092 | SD                                             | 0.241          | CV                                                    | 1.461         |
| 1093 | k hat (MLE)                                    | 0.468          | k star (bias corrected MLE)                           | 0.376         |
| 1094 | Theta hat (MLE)                                | 0.352          | Theta star (bias corrected MLE)                       | 0.438         |
| 1095 | nu hat (MLE)                                   | 7.492          | nu star (bias corrected)                              | 6.016         |
| 1096 | Adjusted Level of Significance (β)             | 0.0195         |                                                       |               |
| 1097 | Approximate Chi Square Value (6.02, $\alpha$ ) | 1.648          | Adjusted Chi Square Value (6.02, $\beta$ )            | 1.137         |
| 1098 | 95% Gamma Approximate UCL (use when n>=50)     | 0.602          | 95% Gamma Adjusted UCL (use when n<50)                | N/A           |
| 1099 |                                                |                | L                                                     |               |
| 1100 | Estimates of G                                 | amma Para      | meters using KM Estimates                             |               |
| 1101 | Mean (KM)                                      | 0.162          | SD (KM)                                               | 0.227         |
| 1102 | Variance (KM)                                  | 0.0517         | SE of Mean (KM)                                       | 0.0928        |
| 1103 | k hat (KM)                                     | 0.507          | k star (KM)                                           | 0.4           |
| 1104 | nu hat (KM)                                    | 8.111          | nu star (KM)                                          | 6.403         |
| 1105 | theta hat (KM)                                 | 0.319          | theta star (KM)                                       | 0.404         |
| 1106 | 80% gamma percentile (KM)                      | 0.261          | 90% gamma percentile (KM)                             | 0.457         |
| 1107 | 95% gamma percentile (KM)                      | 0.672          | 99% gamma percentile (KM)                             | 1.214         |
| 1108 |                                                |                |                                                       |               |
| 1109 | Gamm                                           | a Kaplan-M     | eier (KM) Statistics                                  |               |
| 1110 | Approximate Chi Square Value (6.40, $\alpha$ ) | 1.849          | Adjusted Chi Square Value (6.40, $\beta$ )            | 1.297         |
| 1111 | 95% Gamma Approximate KM-UCL (use when n>=50)  | 0.56           | 95% Gamma Adjusted KM-UCL (use when n<50)             | 0.799         |
| 1112 |                                                |                |                                                       |               |
| 1113 | Lognormal GC                                   | F Test on D    | etected Observations Only                             |               |
| 1114 | Shapiro Wilk Test Statistic                    | 0.824          | Shapiro Wilk GOF Test                                 |               |
| 1115 | 5% Shapiro Wilk Critical Value                 | 0.748          | Detected Data appear Lognormal at 5% Significance Lev | vel           |
| 1116 | Lilliefors Test Statistic                      | 0.364          | Lilliefors GOF Test                                   |               |
| 1117 | 5% Lilliefors Critical Value                   | 0.375          | Detected Data appear Lognormal at 5% Significance Lev | vel           |
| 1118 | Detected Data ap                               | opear Logno    | rmal at 5% Significance Level                         |               |
| 1119 |                                                |                |                                                       |               |
| 1120 | Lognormal RO                                   | S Statistics   | Using Imputed Non-Detects                             |               |
| 1121 | Mean in Original Scale                         | 0.161          | Mean in Log Scale                                     | -3.991        |
| 1122 | SD in Original Scale                           | 0.243          | SD in Log Scale                                       | 2.727         |
| 1123 | 95% t UCL (assumes normality of ROS data)      | 0.324          | 95% Percentile Bootstrap UCL                          | 0.321         |
| 1124 | 95% BCA Bootstrap UCL                          | 0.335          | 95% Bootstrap t UCL                                   | 0.46          |
| 1125 | 95% H-UCL (Log ROS)                            | 3625           |                                                       |               |
| 1126 |                                                |                |                                                       |               |
| 1127 | Statistics using KM estimates                  | on Logged I    | Data and Assuming Lognormal Distribution              | 0.0005        |
| 1128 | KM Mean (logged)                               | -3.631         | KM Geo Mean                                           | 0.0265        |
| 1129 | KM SD (logged)                                 | 2.141          | 95% Critical H Value (KM-Log)                         | 6.534         |
| 1130 |                                                | 0.8/4          |                                                       | 01.0<br>6.524 |
| 1131 | KM Standard Error of Maan (laced)              | 2.141<br>0 074 |                                                       | 0.004         |
| 1132 | Nivi Stanuaru Error or Mean (logged)           | 0.074          |                                                       |               |
| 1133 |                                                | 0.0            | tatistics                                             |               |
| 1134 | DI /2 Normal                                   | 0023           | DI /2 Log_Transformed                                 |               |
| 1135 | Mean in Original Scale                         | 0 161          | Mean in Log Scale                                     | -3 95         |
| 1136 | SD in Original Scale                           | 0.244          | SD in Log Scale                                       | 2 595         |
| 1137 | 95% t LICL (Assumes normality)                 | 0.324          |                                                       | 1219          |
| 1138 | DI /2 is not a recommended m                   | ethod provid   | ded for comparisons and historical reasons            |               |
| 1139 |                                                |                |                                                       |               |
| 1140 | Nonnarame                                      | etric Distribu | tion Free UCL Statistics                              |               |
| 1141 | Notipatania<br>Detected Data annea             | r Normal Die   | stributed at 5% Significance Level                    |               |
| 1142 |                                                |                |                                                       |               |
| 1143 |                                                | Suggested      | UCL to Use                                            |               |
| 1144 | 95% KM (t) LICI                                | 0.338          |                                                       |               |
|      |                                                | 0.000          |                                                       |               |

|      | A | В             | С              | D              | E             | F              | G               | H               |               | J              | K               | L    |
|------|---|---------------|----------------|----------------|---------------|----------------|-----------------|-----------------|---------------|----------------|-----------------|------|
| 1146 |   |               |                |                |               |                |                 |                 |               |                |                 |      |
| 1147 |   | Note: Sugge   | stions regard  | ing the selec  | tion of a 95% | 6 UCL are pr   | ovided to hel   | p the user to   | select the m  | iost appropria | ate 95% UCI     |      |
| 1148 |   |               | F              | Recommenda     | tions are ba  | sed upon dat   | ta size, data ( | distribution, a | and skewnes   | S.             |                 |      |
| 1149 |   | These reco    | mmendations    | are based u    | pon the resu  | Its of the sim | nulation studi  | es summariz     | zed in Singh, | Maichle, and   | Lee (2006)      |      |
| 1150 |   | łowever, simu | lations result | s will not cov | er all Real V | Vorld data se  | ts; for additic | nal insight th  | ne user may   | want to consi  | ult a statistic | ian. |

|      | A      | В        | C             | D            |          | E         | F              | G            | Н              |          |         | J             |              | K          | <u> </u> |
|------|--------|----------|---------------|--------------|----------|-----------|----------------|--------------|----------------|----------|---------|---------------|--------------|------------|----------|
| 1151 | Durono |          |               |              |          |           |                |              |                |          |         |               |              |            |          |
| 1152 | ryrene |          |               |              |          |           |                |              |                |          |         |               |              |            |          |
| 1153 |        |          |               |              |          |           | Cororsi        | Statistics   |                |          |         |               |              |            |          |
| 1154 |        |          | Tata          |              | ( Ohaa   |           | General        | Statistics   |                |          |         | r of Disting  | • 0 • • •    | m vetiene  |          |
| 1155 |        |          | lota          | I Number o   | t Obse   | Detecto   | 8              |              |                | IN       | umbe    | Number        | t Obse       | Detecto    | 0        |
| 1156 |        |          | N             |              |          | Detects   | 4              |              |                |          |         | Number (      |              | Detects    | 4        |
| 1157 |        |          | IN            |              | inimun   | Detects   | 4              |              |                | r        | NUMDE   | Minim         |              |            | 2        |
| 1158 |        |          |               |              |          | Detect    | 1.420          |              |                |          |         | Maxim         |              |            | 0.004    |
| 1159 |        |          |               |              | rionoo   | Detect    | 0.227          |              |                |          |         | Doroo         |              | I-Deleci   | 0.005    |
| 1160 |        |          |               | Va           | Moon     | Detects   | 0.337          |              |                |          |         | Percer        |              | Detects    | 0.591    |
| 1161 |        |          |               | Λ            |          | Detects   | 0.077          |              |                |          |         |               |              | Detects    | 0.561    |
| 1162 |        |          |               | Ska          | wnoss    | Detects   | 0.000          |              |                |          |         | K             |              | Detects    | 1 605    |
| 1163 |        |          |               | Moon of L    |          | Detects   | 1 266          |              |                |          |         | SD of I       |              | Detects    | 2 106    |
| 1164 |        |          |               |              | oyyeu    | Delecis   | -1.200         |              |                |          |         | 3D 01 L       | oyyeu        | Delecis    | 2.190    |
| 1165 | -      |          | Note: Sam     | nla eiza ie  | emall    |           | 0) if data a   | o collected  | using ISM a    | nnroac   | h voi   | u should us   | 20           |            |          |
| 1166 |        |          | quidance n    | rovided in l |          | lech Re   | a Guide on I   |              | 2012) to corr  |          | n, you  | r should us   | et           |            |          |
| 1167 |        |          | guiuance pi   |              |          |           |                |              | to estimate F  |          |         | 25 01 III.ere | <i>.</i> σι. |            |          |
| 1168 |        |          | Chebyshe      |              |          |           | using the No   | nnarametri   | c and All LIC  |          | no, z   | ProLICE 5     | 1            |            |          |
| 1169 |        |          | Chebyshe      |              | De COI   | nputeu    |                | nparameur    |                |          |         | FIDUCED       |              |            |          |
| 1170 |        |          |               |              |          | Norn      | nal COF Tee    | t on Detect  |                |          |         |               |              |            |          |
| 1171 |        |          | ç             | Shaniro Wil  | k Test   | Statistic |                | l on Delect  | is only        | Shan     | iro Wi  | Ik GOF Te     | et           |            |          |
| 1172 |        |          | 5% S          | Shaniro Will | Critic   | al Value  | 0.34           | Г            | )etected Data  | annea    | r Norr  | mal at 5% S   | Signific     | ancele     | vel      |
| 1173 |        |          | 5700          |              |          | Statistic | 0.740          | E            |                |          | efore   | GOF Test      | Jighine      |            |          |
| 1174 |        |          | 7             |              | s Critic | al Value  | 0.277          | Г            | )etected Data  | annea    |         | $\frac{1}{1}$ | Signific     | ancele     | vel      |
| 1175 |        |          |               |              |          |           | annear Norr    | hal at 5% S  |                |          |         |               | Jighine      |            |          |
| 1176 |        |          |               | •            |          |           |                |              |                |          |         |               |              |            |          |
| 1177 |        |          | Kanlan-       | -Meier (KM   | ) Stati  | stics usi | ng Normal C    | ritical Valu | es and other   | Nonna    | rame    | tric UCI s    |              |            |          |
| 1178 |        |          | Rupiun        |              | K        | M Mean    | 0.341          |              |                | Nonpa    | K       | A Standard    | Frror        | of Mean    | 0.2      |
| 1179 |        |          |               |              |          | KM SD     | 0.49           |              |                |          |         | 95% k         | CM (BC       | CA) UCI    | N/A      |
| 1180 |        |          |               | 9!           | 5% KM    | (t) UCI   | 0.719          |              |                | 95%      | KM (F   | Percentile F  | Bootstra     | an) UCI    | N/A      |
| 1181 |        |          |               | 95           | % KM     | (r) 001   | 0.669          |              |                |          | (.      | 95% KM B      | ootstra      | apt UCL    | N/A      |
| 1182 |        |          |               | 90% KM C     | hebysh   | nev UCL   | 0.94           |              |                |          | 9       | 95% KM C      | hebysh       | nev UCL    | 1.212    |
| 1183 |        |          | 97            | 7.5% KM C    | hebvsh   | nev UCL   | 1.589          |              |                |          |         | 99% KM C      | hebvsh       | nev UCL    | 2.33     |
| 1184 |        |          |               |              | ,        |           |                |              |                |          |         |               | ,            |            |          |
| 1185 |        |          |               |              | Gamr     | na GOF    | Tests on De    | etected Ob   | servations O   | nly      |         |               |              |            |          |
| 1180 |        |          |               | A-[          | D Test   | Statistic | 0.524          |              | A              |          | on-Da   | rling GOF     | Test         |            |          |
| 1107 |        |          |               | 5% A-D       | ) Critic | al Value  | 0.673          | Detect       | ed data appe   | ar Gam   | ma Di   | istributed a  | t 5% S       | Significan | ce Level |
| 1100 |        |          |               | K-\$         | S Test   | Statistic | 0.387          |              |                | Kolmog   | jorov-  | Smirnov G     | OF           | •          |          |
| 1109 |        |          |               | 5% K-8       | 6 Critic | al Value  | 0.406          | Detect       | ed data appe   | ar Gam   | ma Di   | istributed a  | t 5% S       | Significan | ce Level |
| 1101 |        |          |               | Detect       | ed data  | a appea   | r Gamma Di     | stributed at | 5% Significa   | ance Le  | vel     |               |              | -          |          |
| 1102 | -      |          |               |              |          |           |                |              |                |          |         |               |              |            |          |
| 1192 |        |          |               |              |          | Gamma     | Statistics or  | Detected     | Data Only      |          |         |               |              |            |          |
| 1104 |        |          |               |              | k ha     | at (MLE)  | 0.691          |              |                |          | k       | star (bias c  | orrecte      | ed MLE)    | 0.339    |
| 1105 |        |          |               | T            | heta ha  | at (MLE)  | 0.98           |              |                | ٦        | heta    | star (bias c  | orrecte      | ed MLE)    | 1.995    |
| 1106 |        |          |               |              | nu ha    | at (MLE)  | 5.53           |              |                |          |         | nu star (l    | bias co      | orrected)  | 2.716    |
| 1107 |        |          |               |              | Mean (   | detects)  | 0.677          |              |                |          |         |               |              |            |          |
| 1109 |        |          |               |              |          | ,         | 1              | <u> </u>     |                |          |         |               |              |            |          |
| 1100 |        |          |               |              | Gam      | ma ROS    | Statistics u   | sing Impute  | ed Non-Detec   | cts      |         |               |              |            |          |
| 1200 |        |          | GROS may      | y not be use | ed whe   | en data s | et has > 50%   | NDs with     | many tied obs  | servatio | ons at  | multiple DI   | Ls           |            |          |
| 1200 |        | GROS may | y not be used | d when ksta  | ar of de | etects is | small such a   | s <1.0, esp  | ecially when   | the sam  | nple si | ze is small   | (e.g.,       | <15-20)    |          |
| 1201 |        |          | Fo            | or such situ | ations,  | GROS      | method may     | yield incorr | ect values of  | UCLs a   | and B   | TVs           |              | -          |          |
| 1202 |        |          |               |              | This i   | s espec   | ially true whe | n the samp   | le size is sma | all.     |         |               |              |            |          |
| 1203 |        | For gar  | mma distribu  | ted detecte  | ed data  | , BTVs a  | and UCLs ma    | iy be compi  | uted using ga  | mma d    | istribu | tion on KM    | estima       | ates       |          |
| 1204 |        |          |               |              | N        | 1inimum   | 0.01           | •            |                |          |         |               |              | Mean       | 0.344    |
| 1200 | I      |          |               |              |          |           |                |              |                |          |         |               |              |            |          |

|                                                                                                                                                                                                                      | A    | В        |         | C                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                                                                                                                                                                                   | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | H        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ĸ                                                                                                                                                   |      | L                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------|
| 1206                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | imum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.429                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mediar                                                                                                                                              | 1    | 0.0105                                                                                              |
| 1207                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.521                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C٧                                                                                                                                                  | ′    | 1.517                                                                                               |
| 1208                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k hat (l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.359                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | k s                                                  | tar (bi                                            | as co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orrect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed MLE)                                                                                                                                             |      | 0.308                                                                                               |
| 1209                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ta hat (l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.958                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Т                                    | heta s                                               | tar (bi                                            | as co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orrect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed MLE)                                                                                                                                             |      | 1.117                                                                                               |
| 1210                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nu hat (l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.739                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      | nu st                                              | ar (b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ias co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orrected                                                                                                                                            |      | 4.92                                                                                                |
| 1211                                                                                                                                                                                                                 |      |          | A       | Adjusted                                                                | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l of Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nificano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ce (β)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0195                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |      |                                                                                                     |
| 1212                                                                                                                                                                                                                 |      | A        | pprox   | imate C                                                                 | hi Squ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iare Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alue (4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92, α)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.116                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adjus                                | ted Ch                                               | ii Squ                                             | are V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4.92, β)                                                                                                                                           |      | 0.727                                                                                               |
| 1213                                                                                                                                                                                                                 | 9    | 5% Gamm  | na App  | proximate                                                               | e UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . (use v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | when n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >=50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.516                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 95%      | % Gai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mma A                                | Adjuste                                              | d UC                                               | L (us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | en n<50)                                                                                                                                            | N    | N/A                                                                                                 |
| 1214                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |      |                                                                                                     |
| 1215                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | stimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s of G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | amma Para                                                                                                                                                                                                                                                           | neters us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sing                   | KM Es    | timat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es                                   |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |      |                                                                                                     |
| 1216                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.341                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SD (KM)                                                                                                                                             |      | 0.49                                                                                                |
| 1217                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ariance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.24                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ean (KM)                                                                                                                                            |      | 0.2                                                                                                 |
| 1218                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | k hat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.484                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | star (KM)                                                                                                                                           |      | 0.386                                                                                               |
| 1219                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nu hat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.741                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nu s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | star (KM)                                                                                                                                           |      | 6.171                                                                                               |
| 1220                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eta hat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.704                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | neta s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | star (KM)                                                                                                                                           |      | 0.883                                                                                               |
| 1221                                                                                                                                                                                                                 |      |          |         | 80%                                                                     | 6 gamr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ma per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rcentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.547                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | 90%                                                  | gamr                                               | na pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ercen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tile (KM)                                                                                                                                           |      | 0.968                                                                                               |
| 1222                                                                                                                                                                                                                 |      |          |         | 95%                                                                     | 6 gamr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ma per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rcentile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.433                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | 99%                                                  | gamr                                               | na pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ercen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tile (KM)                                                                                                                                           |      | 2.607                                                                                               |
| 1223                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - K 1 M                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |      |                                                                                                     |
| 1224                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a Kapian-M                                                                                                                                                                                                                                                          | eier (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) Stat                 | ISTICS   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A 11                                 |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.17.0)                                                                                                                                            | 1    | 1 001                                                                                               |
| 1225                                                                                                                                                                                                                 | 050/ | A        |         | imate C                                                                 | ni Squ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iare va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alue (6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17, α)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.728                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adjus                                | ted Cr                                               | i Squ                                              | are v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (6.17, β)                                                                                                                                           | -    | 1.201                                                                                               |
| 1226                                                                                                                                                                                                                 | 95%  | Gamma Ap | pproxii | mate Ki                                                                 | /I-UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . (use v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vnen n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >=50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.216                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                      | 5% Ga    | amma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i Aajus                              | sted KI                                              |                                                    | L (US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | en n<50                                                                                                                                             |      | 1.751                                                                                               |
| 1227                                                                                                                                                                                                                 |      |          |         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E Toot on D                                                                                                                                                                                                                                                         | ata ata d C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ohaa                   | n otion  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h.                                   |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |      |                                                                                                     |
| 1228                                                                                                                                                                                                                 |      |          |         | 6                                                                       | honiro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Juse                   | rvauor   | is On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Shani                                | ro \//ill                                            |                                                    | Too                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |      |                                                                                                     |
| 1229                                                                                                                                                                                                                 |      |          |         |                                                                         | hapiro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.774                                                                                                                                                                                                                                                               | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dotor                  |          | to or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Snapi                                |                                                      |                                                    | + 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6L<br>Ciani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ficanco                                                                                                                                             | 0.10 | 1                                                                                                   |
| 1230                                                                                                                                                                                                                 |      |          |         | 5%31                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.740                                                                                                                                                                                                                                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Delet                  | leu Da   | ala ah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sigili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | licance                                                                                                                                             | Leve | 1                                                                                                   |
| 1231                                                                                                                                                                                                                 |      |          |         | E                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | leiuis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ausuc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.393                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>               | ootod [  | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                      |                                                    | esi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     | wol  |                                                                                                     |
|                                                                                                                                                                                                                      |      |          |         |                                                                         | V/ I III//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oforo (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rition \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /oluo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 275                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 10+                  |          | ואמ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                      |                                                    | 50/ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ianifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nonoo I c                                                                                                                                           |      |                                                                                                     |
| 1232                                                                                                                                                                                                                 |      |          |         | 5                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | efors C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Critical \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.375                                                                                                                                                                                                                                                               | Lognorm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Det                    | 5% Si    | anific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ance                                 |                                                      | al at t                                            | 5% Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ignifio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cance Le                                                                                                                                            | vei  |                                                                                                     |
| 1232<br>1233                                                                                                                                                                                                         |      |          |         | 5                                                                       | <sup>%</sup> Lillie<br>Detec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | efors C<br>cted D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Critical \<br>P <b>ata app</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | √alue<br>Dear A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.375<br>pproximate                                                                                                                                                                                                                                                 | Lognorm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Det<br>nal at          | 5% Si    | gnific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ance                                 | Level                                                | al at t                                            | 5% Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ignifio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cance Le                                                                                                                                            | vei  |                                                                                                     |
| 1232<br>1233<br>1234                                                                                                                                                                                                 |      |          |         | 5                                                                       | % Lillie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | efors C<br>cted D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Critical \<br>ata app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value<br>Dear A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.375<br>pproximate                                                                                                                                                                                                                                                 | Lognorm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Det                    | 5% Si    | gnific<br>Deter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | Level                                                | al at t                                            | 5% Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ignifio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cance Le                                                                                                                                            |      |                                                                                                     |
| 1232<br>1233<br>1234<br>1235                                                                                                                                                                                         |      |          |         | 5                                                                       | Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | efors C<br>cted D<br>Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Critical \<br>ata app<br>gnorma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Value<br>bear A<br>al ROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.375<br>pproximate<br>S Statistics                                                                                                                                                                                                                                 | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Det<br>nal at<br>puteo | 5% Si    | gnific<br>Detec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ance                                 | Level                                                | alatt                                              | 5% Si<br>Mear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ignific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cance Le                                                                                                                                            |      | 4 152                                                                                               |
| 1232<br>1233<br>1234<br>1235<br>1236                                                                                                                                                                                 |      |          |         | 5                                                                       | Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | efors C<br>cted D<br>Lo<br>an in O<br>iD in O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Critical \<br>pata app<br>gnorma<br>riginal {<br>riginal {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Value<br>Dear A<br>al ROS<br>Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524                                                                                                                                                                                                               | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Det<br>nal at          | 5% Si    | gnific<br>Detec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ance                                 | Level                                                | al at t                                            | 5% Si<br>Mear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ignific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | og Scale                                                                                                                                            |      | 4.152                                                                                               |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237                                                                                                                                                                         |      | 95% t    |         | assume                                                                  | Mea<br>Since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>mality c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | critical \<br>pata app<br>gnorma<br>riginal S<br>riginal S<br>of ROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524<br>0.691                                                                                                                                                                                                      | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Det<br>nal at          | 5% Si    | gnific<br>Detec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cts                                  | 95% P                                                | ercen                                              | 5% Si<br>Mear<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ignific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | og Scale                                                                                                                                            |      | 4.152<br>3.522<br>0.618                                                                             |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238                                                                                                                                                                 |      | 95% t    | UCL (   | assume                                                                  | Mea<br>Si<br>95% B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | efors C<br>cted D<br>Lo<br>an in O<br>iD in O<br>mality c<br>3CA Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Critical \<br>ata app<br>gnorma<br>riginal {<br>riginal {<br>of ROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Value<br>bear A<br>al ROS<br>Scale<br>Scale<br>data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.375<br>pproximate<br>S Statistics (<br>0.339<br>0.524<br>0.691<br>0.716                                                                                                                                                                                           | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Det<br>nal at          | 5% Si    | gnific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | 95% P                                                | ercen                                              | 5% Si<br>Mear<br>SD<br>tile B<br>% Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ignific<br>n in Lo<br>0 in Lo<br>0 ootstr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | og Scale<br>og Scale<br>og Scale<br>rap UCL                                                                                                         |      | 4.152<br>3.522<br>0.618<br>0.941                                                                    |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239                                                                                                                                                         |      | 95% t    | UCL (   | assume                                                                  | Mea<br>Si<br>95% B<br>95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>nality c<br>BCA Bo<br>H-UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gnorma<br>riginal s<br>of ROS<br>potstrap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Value<br>bear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.375<br>pproximate<br>5 Statistics<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188                                                                                                                                                                                  | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Det                    | 5% Si    | gnific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cts                                  | 95% P                                                | ercen<br>95                                        | 5% Si<br>Mear<br>SC<br>tile B<br>% Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ignific<br>n in Lo<br>0 in Lo<br>0 otstra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | og Scale<br>og Scale<br>rap UCL<br>ap t UCL                                                                                                         |      | 4.152<br>3.522<br>0.618<br>0.941                                                                    |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240                                                                                                                                                 |      | 95% t    | UCL (   | assume                                                                  | Mea<br>Si<br>95% B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>nality c<br>BCA Bo<br>H-UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Critical \<br>ata app<br>gnorma<br>riginal {<br>of ROS<br>botstrap<br>L (Log F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188                                                                                                                                                                                | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Det                    | 5% Si    | gnific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | 95% P                                                | ercen<br>95                                        | 5% Si<br>Mear<br>SC<br>tile B<br>% Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ignific<br>n in Lo<br>0 in Lo<br>0 ootst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | og Scale<br>og Scale<br>rap UCL<br>ap t UCL                                                                                                         |      | 4.152<br>3.522<br>0.618<br>0.941                                                                    |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241                                                                                                                                         |      | 95% t    | UCL (   | assume                                                                  | Mea<br>S<br>95% B<br>95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | efors C<br>cted D<br>Lo<br>an in O<br>iD in O<br>nality c<br>BCA Bo<br>H-UC<br>H-UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | critical \<br>ata app<br>gnorma<br>riginal \$<br>riginal \$<br>of ROS<br>ootstrap<br>L (Log F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Value<br>bear A<br>al ROS<br>Scale<br>data)<br>UCL<br>ROS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I                                                                                                                                                                   | Lognorm<br>Jsing Imp<br>Data and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Det<br>nal at<br>puteo | 1 Non-l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | 95% P                                                | ercen<br>95                                        | 5% Si<br>Mear<br>SC<br>tile B<br>% Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ignific<br>n in Lo<br>0 in Lo<br>0 otstra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | og Scale<br>og Scale<br>rap UCL<br>ap t UCL                                                                                                         |      | 4.152<br>3.522<br>0.618<br>0.941                                                                    |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242                                                                                                                                 |      | 95% t    | UCL (   | (assume                                                                 | Mea<br>Mea<br>Si<br>es norm<br>95% B<br>95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>nality c<br>BCA Bo<br>H-UC<br>H-UC<br>Sing K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | critical \<br>ata app<br>gnorma<br>riginal \$<br>of ROS<br>ootstrap<br>L (Log F<br>M estin<br>ean (loc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Value<br>pear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>nates<br>gged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394                                                                                                                                                         | Lognorm<br>Jsing Imp<br>Data and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Det hal at             | I Non-l  | gnific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cts                                  | 95% P                                                | ercen<br>95                                        | 5% Si<br>Mear<br>SE<br>tile B<br>% Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ignific<br>n in L<br>) in L<br>) ootstra<br>wotstra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | og Scale<br>og Scale<br>rap UCL<br>ap t UCL                                                                                                         |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336                                                          |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243                                                                                                                         |      | 95% t    | UCL (   | assume                                                                  | Mea<br>Mea<br>Si<br>s norm<br>95% B<br>95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | efors C<br>cted D<br>Lo<br>an in O<br>iD in O<br>iD in O<br>iD in O<br>mality c<br>BCA Bo<br>BCA Bo<br>KA Bo<br>H-UC<br>Sing K<br>KM Mo<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | critical \<br>ata app<br>gnorma<br>riginal \$<br>riginal \$<br>of ROS<br>ootstrap<br>L (Log F<br>L (Log F<br>M estin<br>ean (log<br>SD (log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Value<br>pear A<br>al ROS<br>Scale<br>Scale<br>data)<br>0 UCL<br>ROS)<br>mates<br>gged)<br>gged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517                                                                                                                                                | Lognorm<br>Jsing Imp<br>Data and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Assu                   | I Non-   | gnific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cts                                  | 95% P                                                | ercen<br>95<br>pution                              | Mear<br>SE<br>tile B<br>% Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ignific<br>n in L<br>) in L<br>) ootstr<br>ootstra<br>(M G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>eo Mear<br>KM-Log                                                                                    |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613                                                 |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245                                                                                                         |      | 95% t    | UCL (   | (assume<br>Statis                                                       | Mea<br>Mea<br>Si<br>es norm<br>95% B<br>95%<br>stics us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>D in O<br>Mality C<br>3CA Bo<br>3CA Bo<br>3CA Bo<br>3CA Bo<br>4<br>H-UC<br>Sing K<br>KM Mo<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | critical \<br>ata app<br>gnorma<br>riginal S<br>of ROS<br>ootstrap<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>ean (log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Value<br>pear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>nates<br>gged)<br>gged)<br>gged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028                                                                                                                                     | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | puted                  | I Non-l  | gnific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ormal                                | 95% P                                                | ercen<br>95<br>vution<br>95%                       | Mear<br>SE<br>tile B<br>% Bo<br>k<br>H Va<br>H Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ignific<br>n in Lu<br>) in Lu<br>iootstr<br>otstra<br>k(M G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>eo Mear<br>KM-Log                                                                                    |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613                                                 |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246                                                                                                 |      | 95% t    | UCL (   | assume<br>Statis                                                        | Mea<br>Mea<br>Si<br>s norm<br>95% B<br>95%<br>stics us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | efors C<br>cted D<br>Lo<br>an in O<br>iD in O<br>iD in O<br>iD in O<br>mality c<br>BCA Bo<br>iD in O<br>sing K<br>KM Mi<br>KM<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | critical \<br>ata app<br>gnorma<br>riginal \$<br>of ROS<br>otstrap<br>L (Log F<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>SD (log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>mates<br>gged)<br>gged)<br>gged)<br>gged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517                                                                                                                              | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assu                   | I Non-I  | Detec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 95% P<br>95% C<br>95% C                              | ercen<br>95<br>ution<br>95%<br>ritical             | Mear<br>SC<br>tile B<br>% Bo<br>k<br>H V <i>a</i><br>i H-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ignific<br>n in Lu<br>) in Lu<br>cootst<br>ootstra<br>slue (<br>CL (Y<br>cl (Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | og Scale<br>og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>eo Mear<br>KM-Log)<br>KM-Log)                                                            |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613                                  |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1247                                                                                         |      | 95% t    | UCL (   | Standan<br>Standan                                                      | Mea<br>Mea<br>Si<br>s norm<br>95% B<br>95%<br>stics us<br>rd Erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>D in O<br>D in O<br>C A Bo<br>BCA Bo<br>BCA Bo<br>C A                                                                                                                                                              | Critical \<br>Pata app<br>Ignorma<br>riginal S<br>of ROS<br>ootstrap<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>ean (log<br>SD (log<br>ean (log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>nates<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028                                                                                                                   | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assu                   | I Non-l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormal                                | 95% P<br>95% C<br>95% C                              | ercen<br>95<br>vution<br>95%<br>ritical            | Mear<br>SE<br>tile B<br>% Bo<br>k<br>H Va<br>h H Va<br>h H Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ignific<br>n in Lu<br>) in Lu<br>iootstra<br>otstra<br>alue (<br>CL (/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eo Mear<br>KM-Log<br>KM-Log                                                                                                                         |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613                                  |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1247<br>1248                                                                                 |      | 95% t    | UCL (   | Statis<br>Statis                                                        | Mea<br>Mea<br>Si<br>s norm<br>95% B<br>95%<br>stics us<br>rd Erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>D in O<br>mality c<br>BCA Bo<br>BCA Bo<br>BCA Bo<br>C<br>BCA Bo<br>C<br>M<br>H-UC<br>S<br>KM M<br>KM<br>KM<br>KM<br>C<br>r of M<br>C<br>KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Critical \<br>Pata app<br>Ignorma<br>riginal S<br>of ROS<br>ootstrap<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>ean (log<br>SD (log<br>ean (log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>nates<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028                                                                                                                     | Lognorm<br>Jsing Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assu                   | I Non-I  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormal                                | 95% P<br>95% C<br>95% C                              | ercen<br>95<br>pution<br>ritical                   | Mear<br>SE<br>SE<br>Kitile B<br>% Bo<br>K<br>H Va<br>H Va<br>H Va<br>H Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ignific<br>n in L<br>) in L<br>) in L<br>) ootstra<br>alue (<br>CL (K<br>alue (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eo Mear<br>KM-Log)<br>KM-Log)                                                                                                                       |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613                                  |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1247<br>1248<br>1249                                                                         |      | 95% t    | UCL (   | Standar                                                                 | Mea<br>Mea<br>Si<br>s norm<br>95% B<br>95%<br>Stics us<br>rd Erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>D in O<br>Mality C<br>BCA Bo<br>H-UC<br>Sing K<br>KM Mo<br>KM<br>Fr of Mo<br>KM<br>Fr of Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Critical \<br>Pata app<br>Ignorma<br>riginal S<br>of ROS<br>ootstrap<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>ean (log<br>SD (log<br>ean (log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>nates<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>2.517<br>1.028                                                                                                 | Lognorm<br>Jsing Imp<br>Data and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Assi                   | I Non-l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormal                                | 95% P<br>95% C<br>95% C                              | ercen<br>95<br>vution<br>95%<br>ritical            | Mear<br>SE<br>tile B<br>% Bo<br>k<br>H Va<br>h H Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ignific<br>n in Lu<br>) in Lu<br>iootstra<br>otstra<br>alue (<br>CL (/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eo Mear<br>KM-Log;                                                                                                                                  |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613                                  |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1247<br>1248<br>1249<br>1250                                                                 |      | 95% t    | UCL (   | Statis<br>Statis<br>Standar<br>Standar                                  | Mea<br>Mea<br>Si<br>ss norm<br>95% B<br>95%<br>stics us<br>rd Erro<br>rd Erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>mality c<br>BCA Bo<br>BCA Bo<br>BCA Bo<br>C<br>BCA Bo<br>C<br>BCA Bo<br>C<br>BCA Bo<br>C<br>H-UC<br>S<br>KM Mo<br>KM<br>KM<br>C<br>F<br>O O M<br>C<br>S<br>C<br>A Bo<br>C<br>S<br>C<br>A Bo<br>C<br>S<br>S<br>C<br>A Bo<br>C<br>S<br>S<br>C<br>A Bo<br>C<br>S<br>S<br>C<br>A Bo<br>C<br>S<br>S<br>C<br>A Bo<br>C<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Critical \<br>Pata app<br>Ignorma<br>riginal S<br>of ROS<br>ootstrap<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>ean (log<br>SD (log<br>ean (log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>nates<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>2.517<br>1.028                                                                                                   | Lognorm<br>Jsing Imp<br>Data and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Assu                   | I Non-I  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormal                                | 95% P<br>95% C<br>95% C<br>95% C                     | ercen<br>95<br>oution<br>ritical<br>95%<br>ritical | 5% Si<br>Mear<br>SE<br>tile B<br>% Bo<br>% Bo<br>k<br>H V <i>a</i><br>H V <i>a</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ignific<br>n in L<br>) in L<br>) in L<br>) ootstra<br>alue (<br>CL (ł<br>alue (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eo Mear<br>KM-Log)                                                                                                                                  |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613                                  |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1247<br>1248<br>1249<br>1250                                                                 |      | 95% t    | UCL (   | Standar<br>Standar<br>Standar                                           | Mea<br>Mea<br>Sis norm<br>95% B<br>95%<br>Stics us<br>rd Erro<br>rd Erro<br>Rorma<br>Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>D in O<br>Mality C<br>SCA Bo<br>H-UC<br>Sing K<br>KM Ma<br>KM<br>Fr of Ma<br>KM<br>or of Ma<br>an in O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Critical \<br>Pata app<br>Ignorma<br>riginal S<br>of ROS<br>ootstrap<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>ean (log<br>SD (log<br>ean (log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>nates<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>DL/2 S<br>0.34                                                                                                 | Lognorm<br>Jsing Imp<br>Data and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Assi                   | I Non-l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormal                                | 95% P<br>95% P<br>95% C<br>95% C                     | ercen<br>95<br>vution<br>ritical<br>95%<br>ritical | Mear<br>SE<br>tile B<br>% Bo<br>k<br>H Va<br>h H H H Va<br>h H H H H H H H H H H H H H H H H H H H | ignific<br>n in Lu<br>) in Lu<br>iootstr<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>iotstra<br>i<br>i<br>i | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>eo Mear<br>KM-Log,<br>KM-Log,                                                                        |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613<br>3.712                         |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1247<br>1248<br>1249<br>1250<br>1251<br>1252                                                 |      | 95% t    | UCL (   | Statis<br>Statis<br>Standar<br>Standar                                  | % Line<br>Detect<br>Mea<br>Si<br>ss norm<br>95% B<br>95%<br>stics us<br>rd Erro<br>rd Erro<br>rd Erro<br>Norma<br>Mea<br>Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>BCA Bo<br>CA B                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | riginal S<br>of ROS<br>otstrap<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>ean (log<br>SD (log<br>ean (log<br>riginal S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>aged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>Scale<br>Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>2.517<br>1.028<br>0.34<br>0.34<br>0.34<br>0.524                                                                  | Lognorm<br>Jsing Imp<br>Data and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Assu                   | I Non-l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormal                                | 95% P<br>95% C<br>95% C<br>95% C                     | ercen<br>95<br>oution<br>ritical<br>95%<br>ritical | 5% Si<br>Mear<br>SE<br>tile B<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ignific<br>n in L<br>) in L<br>) in L<br>) in L<br>) in L<br>(<br>CL (f<br>alue (<br>CL (f<br>alue (<br>) in L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>ap t UCL<br>eo Mear<br>KM-Log)<br>KM-Log)<br>KM-Log)                                                 |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613<br>17<br>7.613<br>3.712<br>2.986 |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1247<br>1248<br>1249<br>1250<br>1251<br>1251                                                 |      | 95% t    | UCL (   | Standar<br>Standar<br>Standar<br>DL/2 t                                 | % Line<br>Detect<br>Mea<br>Sis norm<br>95% B<br>95% B<br>95%<br>stics us<br>rd Erro<br>rd Erro<br>rd Erro<br>Norma<br>Mea<br>Si<br>JCL (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>BCA Bo<br>BCA Bo<br>H-UCI<br>Sing K<br>KM Mo<br>F<br>CA Bo<br>H-UCI<br>Sing K<br>KM Mo<br>F<br>O of Mo<br>F<br>C of Mo<br>F<br>O of Mo<br>F<br>D in O<br>Mo<br>F<br>D in O<br>Mo<br>F<br>D in O<br>Scart<br>Sing C<br>K<br>M<br>D or of Mo<br>F<br>D in O<br>Mo<br>F<br>D in O<br>Scart<br>Sing C<br>K<br>M<br>D or of Mo<br>F<br>D in O<br>Scart<br>Sing C<br>K<br>M<br>D or of Mo<br>F<br>D in O<br>Scart<br>Sing C<br>K<br>M<br>D or of Mo<br>F<br>D or of Mo<br>F<br>Scart<br>Sing C<br>K<br>M<br>D or of Mo<br>F<br>Scart<br>Sing C<br>K<br>M<br>D or of Mo<br>F<br>Scart<br>Sing C<br>K<br>K<br>M<br>D or of Mo<br>F<br>Scart<br>Sing C<br>K<br>K<br>M<br>D or of Mo<br>F<br>Scart<br>Sing C<br>K<br>K<br>M<br>D or of Mo<br>F<br>Scart<br>Sing C<br>K<br>Scart<br>Sing C<br>Scart<br>Sing C<br>Scart<br>Scart<br>Sing C<br>Scart<br>Sing C<br>Scart<br>Scart<br>Sing C<br>Scart<br>Scart<br>Sca | Critical \ ata app gnorma riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal { riginal {  | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS) | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>2.517<br>1.028<br>0.34<br>0.524<br>0.34<br>0.524<br>0.691                                                      | Lognorm<br>Jsing Imp<br>Data and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Assi                   | I Non-l  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormal                                | 95% P<br>95% C<br>95% C                              | ercen<br>95<br>pution<br>ritical<br>95%<br>ritical | Mear<br>SE<br>tile B<br>% Bo<br>k<br>H Va<br>h H Va<br>h H Va<br>h H Va<br>SE<br>SE<br>SE<br>SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ignific<br>in Lu<br>in Lu<br>in Lu<br>in Lu<br>in Lu<br>CL (P<br>CL (P))))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>eo Mear<br>KM-Log)<br>KM-Log)<br>KM-Log<br>KM-Log<br>Stale<br>og Scale<br>og Scale                   |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613<br>3.712<br>2.986<br>081         |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1245<br>1248<br>1249<br>1250<br>1251<br>1252<br>1253                                         |      | 95% t    | UCL (   | Standar<br>Standar<br>Standar<br>Standar<br>DL/2 t<br>95% t L<br>DL/2 t | Mea<br>Mea<br>Si<br>s norm<br>95% B<br>95%<br>stics us<br>rd Erro<br>rd Erro<br>rd Erro<br>Norma<br>Mea<br>Si<br>JCL (A<br>is not a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>BCA Bo<br>CA B                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | riginal S<br>of ROS<br>otstrap<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>ean (log<br>SD (log<br>ean (log<br>riginal S<br>riginal S<br>riginal S<br>riginal S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>DUCL<br>ROS)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged<br>gged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>2.517<br>1.028<br>0.34<br>0.34<br>0.524<br>0.691<br>ethod, provis                                              | Lognorm<br>Jsing Imp<br>Data and<br>Data and<br>tatistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Assu                   | I Non-I  | Logn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DL/2                                 | 95% P<br>Distrik<br>95% C<br>95% C<br>95% C          | ercen<br>95<br>oution<br>ritical<br>95%<br>ritical | 5% Si<br>Mear<br>SE<br>tile B<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ignific<br>in in Li<br>in the<br>in he<br>in the<br>in t                                                                                                                                                                                                                                                                     | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>ap t UCL<br>eo Mear<br>KM-Log)<br>KM-Log)<br>KM-Log)<br>KM-Log)<br>cog Scale<br>og Scale<br>og Scale |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613<br>3.712<br>2.986<br>081         |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1245<br>1246<br>1247<br>1248<br>1249<br>1250<br>1251<br>1252<br>1253                         |      | 95% t    | KM      | Statis<br>Statis<br>Standar<br>Standar<br>DL/2 t<br>95% t L<br>DL/2 i   | % Line<br>Detect<br>Mea<br>Sis norm<br>95% B<br>95% B<br>95% B<br>95%<br>stics us<br>rd Erro<br>rd Erro<br>rd Erro<br>rd Erro<br>Norma<br>Mea<br>Si<br>JCL (A<br>is not a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>BCA Bo<br>CA B                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | riginal S<br>riginal S<br>riginal S<br>riginal S<br>of ROS<br>ootstrap<br>L (Log F<br>M estin<br>ean (log<br>SD (log<br>ean (log<br>SD (log<br>ean (log<br>sD (log<br>ean (log<br>riginal S<br>riginal S<br>riginal S<br>riginal S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Value<br>Dear A<br>Scale<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>(UCL<br>ROS)<br>(UCL<br>ROS)<br>(000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.375<br>pproximate<br>S Statistics<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>DL/2 S<br>0.34<br>0.524<br>0.691<br>ethod, provid                                                                | Lognorm<br>Jsing Imp<br>Data and Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assu                   | I Non-I  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ormal<br>DL/2  <br>histori           | 95% P<br>Distrit<br>95% C<br>95% C<br>95% C          | ercen<br>95<br>pution<br>ritical<br>95%<br>ritical | 5% Si<br>Mear<br>SE<br>tile B<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ignific<br>in Lu<br>in Lu<br>in Lu<br>in Lu<br>in Lu<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>co                                                                                                                                                                                                                                                                                                                                                                       | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>eo Mear<br>KM-Log)<br>KM-Log,<br>KM-Log,<br>KM-Log,<br>Stat UCL                                      |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613<br>3.712<br>2.986<br>081         |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1245<br>1246<br>1247<br>1248<br>1249<br>1250<br>1251<br>1252<br>1254<br>1255<br>1256                 |      | 95% t    | UCL (   | Standar<br>Standar<br>Standar<br>DL/2 I<br>95% t L<br>DL/2 i            | % Line<br>Detect<br>Mea<br>Si<br>es norm<br>95% B<br>95% B<br>95%<br>stics us<br>95%<br>stics us<br>95%<br>dtics us<br>95%<br>stics us<br>95% | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>BCA Bo<br>CA B                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Critical \ Pata app gnorma riginal S riginal S of ROS otstrap L (Log F M estin ean (log SD (log ean (log SD (log ean (log SD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log sD (log  | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>DUCL<br>ROS)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged<br>gged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>2.517<br>1.028<br>0.34<br>0.524<br>0.34<br>0.524<br>0.691<br>ethod, provid<br>tric Distribu                    | Lognorm<br>Jsing Imp<br>Data and<br>Data and<br>ded for co<br>tion Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Assu<br>Assu           | I Non-I  | Logn<br>a and<br>stics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ormal<br>DL/2                        | 95% P<br>Distrit<br>95% C<br>95% C<br>95% C          | ercen<br>95<br>oution<br>ritical<br>95%<br>ritical | 5% Si<br>Mear<br>SE<br>tile B<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ignific<br>in in Li<br>in Li<br>in Li<br>in Li<br>in Li<br>in Li<br>ootstra<br>alue (<br>CL (k<br>alue (<br>CL (k<br>alue (<br>CL (k<br>alue (<br>) in Li<br>) in                                                                                                                                                                                                                                                                                                                         | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>ap t UCL<br>eo Mear<br>KM-Log)<br>KM-Log)<br>KM-Log)<br>cog Scale<br>og Scale<br>og Scale            |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613<br>3.712<br>2.986<br>081         |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1247<br>1248<br>1248<br>1248<br>1249<br>1250<br>1251<br>1253<br>1254<br>1255<br>1255         |      | 95% t    | UCL (   | Standar<br>Standar<br>Standar<br>Standar<br>DL/2 t<br>95% t L<br>DL/2 i | % Line<br>Detect<br>Mea<br>Sis norm<br>95% B<br>95%<br>stics us<br>rd Erro<br>rd Erro<br>rd Erro<br>Norma<br>Mea<br>Si<br>JCL (A<br>is not a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | efors C<br>cted D<br>Lo<br>an in O<br>iD in O<br>iD in O<br>iD in O<br>iD in O<br>iD in O<br>iD in O<br>iD in O<br>KM<br>KM<br>or of Ma<br>or of Ma<br>id<br>an in O<br>iD in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id in O<br>id i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Critical \ Pata app gnorma riginal \$ riginal \$ riginal \$ riginal \$ f ROS botstrap L (Log F M estin ean (log SD (log ean (log SD (log ean (log ean (log riginal \$ riginal \$ riginal \$ riginal \$ riginal \$ riginal \$ riginal \$ commend Nonpa I Data a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Value<br>Dear A<br>Dear A<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>UCL<br>ROS)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged<br>gged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>DL/2 S<br>0.34<br>0.524<br>0.691<br>ethod, provid<br>stric Distribu<br>r Normal Dist                           | Lognorm<br>Jsing Imp<br>Data and Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assu<br>ompa           | I Non-I  | Detection<br>Logn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ormal<br>DL/2  <br>histori<br>ce Lev | 95% P<br>Distrit<br>95% C<br>95% C<br>95% C<br>95% C | ercen<br>95<br>pution<br>ritical<br>95%<br>ritical | 5% Si<br>Mear<br>SE<br>tile B<br>% Bo<br>% Bo<br>H Vz<br>H Vz<br>H Vz<br>H Vz<br>S<br>G<br>Mear<br>SE<br>95%<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ignific<br>in Lu<br>in Lu<br>in Lu<br>in Lu<br>in Lu<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>cootstra<br>co                                                                                                                                                                                                                                                                                                                                                                       | cance Le<br>og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>ap t UCL<br>eo Mear<br>KM-Log)<br>KM-Log)<br>KM-Log)<br>KM-Log<br>Stat UCL               |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613<br>3.712<br>2.986<br>081         |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1245<br>1245<br>1246<br>1247<br>1248<br>1249<br>1250<br>1251<br>1252<br>1253<br>1254<br>1255<br>1256 |      | 95% t    |         | Startis<br>Startis<br>Standar<br>Standar<br>DL/2 I<br>95% t U<br>DL/2 i | % Line<br>Detect<br>Mea<br>Si<br>s norm<br>95% B<br>95% B<br>95% B<br>95% B<br>95% B<br>95% C<br>stics us<br>rd Erro<br>rd Erro<br>rd Erro<br>rd Erro<br>Norma<br>Mea<br>Si<br>JCL (A<br>is not a<br>Si<br>JCL (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | efors C<br>cted D<br>Lo<br>an in O<br>D in O<br>D in O<br>anality c<br>CA Bo<br>H-UC<br>Sing K<br>KM Ma<br>KM<br>A<br>CA Bo<br>H-UC<br>Sing K<br>KM Ma<br>A<br>CA Bo<br>H-UC<br>Sing K<br>KM Ma<br>A<br>D in O<br>Ma<br>Sing N<br>CA Bo<br>H-UC<br>Sing N<br>CA Bo<br>CA Bo<br>CA Bo<br>H-UC<br>Sing N<br>CA Bo<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Critical \ Pata app gnorma riginal S riginal S of ROS ootstrap L (Log F M estin ean (log SD (log ean (log SD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log sD (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (log ean (l | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>(UCL<br>ROS)<br>(0000<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0000)<br>(0                                                                                                                                                                                                                                                                                                                                                    | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged I<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>2.517<br>1.028<br>0.34<br>0.524<br>0.691<br>ethod, provid<br>tric Distribu<br>r Normal Distribu                | Lognorm<br>Jsing Imp<br>Data and<br>Data and<br>ded for co<br>tion Free<br>stributed a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assu<br>Assu           | I Non-I  | Detection<br>Detection<br>Logn<br>Stics<br>ifican                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cts                                  | 95% P<br>Distrit<br>95% C<br>95% C<br>95% C<br>95% C | ercen<br>95<br>vution<br>95%<br>ritical            | 5% Si<br>Mear<br>SE<br>tile B<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ignific<br>in in Li<br>in L                                                                                                                                                                                             | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>eo Mear<br>KM-Log)<br>KM-Log)<br>KM-Log)<br>cog Scale<br>og Scale<br>og Scale                        |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613<br>3.712<br>2.986<br>081         |
| 1232<br>1233<br>1234<br>1235<br>1236<br>1237<br>1238<br>1239<br>1240<br>1241<br>1242<br>1243<br>1244<br>1245<br>1246<br>1245<br>1248<br>1248<br>1249<br>1250<br>1251<br>1252<br>1253<br>1254<br>1255<br>1255<br>1255 |      | 95% t    | UCL (   | Standar<br>Standar<br>Standar<br>DL/2 I<br>95% t U<br>DL/2 i            | % Line<br>Detect<br>Mea<br>Si<br>ss norm<br>95% B<br>95%<br>stics us<br>rd Erro<br>rd Erro<br>rd Erro<br>rd Erro<br>Norma<br>Mea<br>Si<br>JCL (A<br>is not a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | efors C<br>cted D<br>Lo<br>an in O<br>iD in O<br>iD in O<br>mality c<br>SCA Bo<br>iD in O<br>SCA Bo<br>iD in O<br>SCA Bo<br>iD in O<br>SCA Bo<br>KM Mi<br>KM<br>or of Mi<br>br of Mi<br>br of Mi<br>con of Mi<br>an in O<br>iD in O<br>sing K<br>KM<br>con of Mi<br>br of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi<br>con of Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Critical \ Pata app gnorma riginal S riginal S of ROS ootstrap L (Log F M estin ean (log SD (log ean (log SD (log ean (log riginal S riginal S riginal S es norm mmend Nonpa I Data a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value<br>Dear A<br>al ROS<br>Scale<br>Scale<br>data)<br>UCL<br>ROS)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged)<br>gged<br>gged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.375<br>pproximate<br>S Statistics 0<br>0.339<br>0.524<br>0.691<br>0.716<br>9460188<br>on Logged 1<br>-3.394<br>2.517<br>1.028<br>2.517<br>1.028<br>DL/2 S <sup>2</sup><br>0.34<br>0.524<br>0.691<br>ethod, provid<br>stric Distribu<br>r Normal Dist<br>Suggested | Lognorm<br>Jsing Imp<br>Data and A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A<br>Data A | Assu<br>ompa<br>at 59  | I Non-I  | Detection<br>Detection<br>Logn<br>Control Control<br>Control Control<br>Control Control<br>Control Control<br>Control Control<br>Control Control<br>Control Control Control Control<br>Control Control Control Control<br>Control Control Control Control Control<br>Control Control Control Control Control Control<br>Control Control Control Control Control Control Control<br>Control Control Contr | brmal                                | 95% P<br>Distrit<br>95% C<br>95% C<br>95% C<br>95% C | ercen<br>95<br>pution<br>ritical<br>95%<br>ritical | 5% Si<br>Mear<br>SE<br>SE<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo<br>% Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ignific<br>in Lu<br>in Lu<br>in Lu<br>in Lu<br>in Lu<br>in Cu<br>in Lu<br>in Lu                                                                                                                                                                                               | og Scale<br>og Scale<br>rap UCL<br>ap t UCL<br>eo Mear<br>KM-Log)<br>KM-Log)<br>KM-Log<br>og Scale<br>Stat UCL                                      |      | 4.152<br>3.522<br>0.618<br>0.941<br>0.0336<br>7.613<br>17<br>7.613<br>3.712<br>2.986<br>081         |

|      | A | В             | С              | D              | E             | F              | G               | H               |               | J              | K               | L    |
|------|---|---------------|----------------|----------------|---------------|----------------|-----------------|-----------------|---------------|----------------|-----------------|------|
| 1261 |   |               |                |                |               |                |                 |                 |               |                |                 |      |
| 1262 |   | Note: Sugge   | stions regard  | ing the selec  | tion of a 95% | 6 UCL are pr   | ovided to hel   | p the user to   | select the m  | iost appropria | ate 95% UCI     |      |
| 1263 |   |               | F              | Recommenda     | tions are ba  | sed upon dat   | ta size, data o | distribution, a | and skewnes   | S.             |                 |      |
| 1264 |   | These record  | mmendations    | are based u    | pon the resu  | Its of the sim | nulation studi  | es summariz     | zed in Singh, | Maichle, and   | Lee (2006)      |      |
| 1265 | - | łowever, simu | lations result | s will not cov | er all Real V | /orld data se  | ts; for additio | nal insight th  | ne user may   | want to consi  | ult a statistic | ian. |

|      | A         | В           | (         | C       |         | D            |         | E         | F              | G         |         | H            |          |         |          | J           |           | K         |                                                  | L         |
|------|-----------|-------------|-----------|---------|---------|--------------|---------|-----------|----------------|-----------|---------|--------------|----------|---------|----------|-------------|-----------|-----------|--------------------------------------------------|-----------|
| 1266 |           | n of total) |           |         |         |              |         |           |                |           |         |              |          |         |          |             |           |           |                                                  |           |
| 1267 | rans (Sul |             |           |         |         |              |         |           |                |           |         |              |          |         |          |             |           |           |                                                  |           |
| 1268 |           |             |           |         |         |              |         |           | General        | Statietia | <u></u> |              |          |         |          |             |           |           |                                                  |           |
| 1269 |           |             |           | Total   | Numł    | her of (     | hsen    | vations   | 8              | Statistic |         |              | Ni       | imhei   | r of Dis | tinct (     | Ohse      | rvations  |                                                  | 6         |
| 1270 |           |             |           | Total   | T UIIII | Numb         | er of F | Detects   | 4              |           |         |              |          |         | Numł     | ner of      | Non-      | -Detects  | +                                                | 4         |
| 1271 |           |             |           | Ni      | umber   | of Dis       | tinct D | Detects   | 4              |           |         |              | N        | umbe    | er of Di | stinct      | Non-      | -Detects  | -                                                | 2         |
| 12/2 |           |             |           |         |         | Min          | imum    | Detect    | 0.079          |           |         |              |          |         | Mir      | nimun       | n Nor     | n-Detect  | (                                                | <br>0.004 |
| 1273 |           |             |           |         |         | Max          | imum    | Detect    | 7.143          |           |         |              |          |         | Мах      | ximun       | n Nor     | n-Detect  | (                                                | 0.005     |
| 1274 |           |             |           |         |         | Varia        | ance D  | Detects   | 10.18          |           |         |              |          |         | Pe       | rcent       | Non-      | -Detects  | -                                                | 50%       |
| 1275 |           |             |           |         |         | N            | lean D  | Detects   | 4.72           |           |         |              |          |         |          |             | SD        | Detects   | 1                                                | 3.191     |
| 1270 |           |             |           |         |         | Me           | dian D  | Detects   | 5.83           |           |         |              |          |         |          |             | CV        | Detects   |                                                  | 0.676     |
| 1278 |           |             |           |         |         | Skewr        | ness D  | Detects   | -1.657         |           |         |              |          |         |          | Kur         | tosis     | Detects   |                                                  | 2.79      |
| 1279 |           |             |           |         | Mean    | of Log       | gged D  | Detects   | 0.736          |           |         |              |          |         | SD       | of Log      | gged      | Detects   |                                                  | 2.187     |
| 1280 |           |             |           |         |         |              |         |           | I              |           |         |              |          |         |          |             |           |           | <u> </u>                                         |           |
| 1281 |           |             | Note      | : Samp  | ple siz | ze is sı     | mall (e | e.g., <1  | 0), if data aı | e collec  | ted us  | sing ISM a   | pproact  | n, you  | I shoul  | d use       | )         |           |                                                  |           |
| 1282 |           |             | guidar    | nce pr  | ovide   | d in ITI     | RC Te   | əch Reç   | g Guide on I   | SM (ITR   | RC, 20  | 12) to com   | pute st  | atistic | s of in  | teres       | t.        |           |                                                  |           |
| 1283 |           |             |           | For e   | examp   | ole, yo      | u may   | / want t  | o use Cheby    | /shev U   | CL to   | estimate E   | PC (IT   | RC, 2   | 2012).   |             |           |           | -                                                |           |
| 1284 |           |             | Cheb      | oyshev  | / UCL   | can b        | e com   | iputed i  | using the No   | nparam    | etric a | and All UC   | L Optio  | ns of   | ProUC    | CL 5.1      |           |           |                                                  |           |
| 1285 |           |             |           |         |         |              |         |           |                |           |         |              |          |         |          |             |           |           |                                                  |           |
| 1286 |           |             |           |         |         |              |         | Norm      | nal GOF Tes    | t on De   | tects   | Only         |          |         |          |             |           |           |                                                  |           |
| 1287 |           |             |           | S       | hapiro  | o Wilk       | Test S  | statistic | 0.835          |           |         |              | Shapi    | ro Wi   | ik gof   | - Test      | t         |           |                                                  |           |
| 1288 |           |             |           | 5% Sł   | hapiro  | Wilk C       | Critica | l Value   | 0.748          |           | Det     | ected Data   | appear   | r Norr  | nal at 5 | 5% Sig      | gnific    | ance Le   | vel                                              |           |
| 1289 |           |             |           |         | Lill    | iefors -     | Test S  | statistic | 0.316          |           |         |              | Lilli    | efors   | GOF 1    | <b>Fest</b> |           |           |                                                  |           |
| 1290 |           |             |           | 5       | % Lilli | efors (      | Critica | I Value   | 0.375          |           | Det     | ected Data   | appear   | r Norr  | nal at 5 | 5% Si       | gnific    | ance Le   | vel                                              |           |
| 1291 |           |             |           |         |         | De           | tected  | d Data a  | appear Norr    | nal at 5% | % Sigi  | nificance L  | evel     |         |          |             |           |           |                                                  |           |
| 1292 |           |             |           |         |         |              | 0       |           |                |           | /-l     |              | N        |         |          |             |           |           |                                                  |           |
| 1293 |           |             | Ka        | apian-i | Meler   | (KM) \$      | Statis  |           |                | ritical v | alues   | and other    | Nonpa    |         |          | LS          |           | -         | <del></del>                                      | 1.05      |
| 1294 |           |             |           |         |         |              |         |           | 2.302          |           |         |              |          | NI      |          |             |           |           | ⊢,                                               | 1.20      |
| 1295 |           |             |           |         |         | 05%          |         |           | 3.003          |           |         |              | 05%      |         | Porcont  |             |           |           | <u> </u>                                         |           |
| 1296 |           |             |           |         |         | 95%          |         |           | 4.731          |           |         |              | 90 /0 I  |         |          | M Bor       | otetra    |           | <u> </u>                                         |           |
| 1297 |           |             |           | c       | 90% K   | M Che        | hvshe   |           | 6 113          |           |         |              |          | (       | 95% KI   | M Che       | hvsh      |           | ⊢ ∙                                              | 7 812     |
| 1298 |           |             |           | 97      | 5% K    | M Che        | byshe   | ev UCI    | 10.17          |           |         |              |          |         | 99% KI   | V Che       | ebysh     |           | +                                                | 14.8      |
| 1299 |           |             |           |         |         |              | -,      |           |                |           |         |              |          |         |          |             |           |           |                                                  |           |
| 1300 |           |             |           |         |         | 0            | amm     | a GOF     | Tests on De    | etected   | Obsei   | vations O    | nly      |         |          |             |           |           |                                                  |           |
| 1202 |           |             |           |         |         | A-D          | Test S  | Statistic | 0.804          |           |         | A            | nderso   | n-Da    | rling G  | OF T        | est       |           |                                                  |           |
| 1302 |           |             |           |         | 5%      | 6 A-D C      | Critica | l Value   | 0.671          | D         | etecte  | d Data Not   | Gamm     | a Dist  | tributed | d at 59     | % Sig     | gnificand | e Le                                             | evel      |
| 1303 |           |             |           |         |         | K-S          | Test S  | Statistic | 0.435          |           |         |              | Kolmog   | orov-   | Smirno   | ov GC       | <b>DF</b> |           |                                                  |           |
| 1305 |           |             |           |         | 5%      | 6 K-S (      | Critica | l Value   | 0.405          | D         | etecte  | d Data Not   | Gamm     | a Dist  | tributed | d at 59     | % Sig     | gnificand | e Le                                             | evel      |
| 1306 |           |             |           |         | [       | Detecte      | ed Da   | ta Not (  | Gamma Dist     | ributed   | at 5%   | Significan   | ce Leve  | əl      |          |             |           |           |                                                  |           |
| 1307 |           |             |           |         |         |              |         |           |                |           |         |              |          |         |          |             |           |           |                                                  |           |
| 1308 |           |             |           |         |         |              | G       | amma      | Statistics or  | n Detect  | ted Da  | ta Only      |          |         |          |             |           |           |                                                  |           |
| 1309 |           |             |           |         |         |              | k hat   | i (MLE)   | 0.736          |           |         |              |          | k s     | star (bi | as co       | rrecte    | ed MLE)   |                                                  | 0.351     |
| 1310 |           |             |           |         |         | The          | eta hat | : (MLE)   | 6.417          |           |         |              | Т        | heta s  | star (bi | as co       | rrecte    | ed MLE)   |                                                  | 13.47     |
| 1311 |           |             |           |         |         | I            | nu hat  | (MLE)     | 5.885          |           |         |              |          |         | nu st    | ar (bia     | as co     | orrected) |                                                  | 2.805     |
| 1312 |           |             |           |         |         | Me           | ean (d  | etects)   | 4.72           |           |         |              |          |         |          |             |           |           |                                                  |           |
| 1313 |           |             |           |         |         |              |         |           |                |           |         |              |          |         |          |             |           |           |                                                  |           |
| 1314 |           |             |           |         |         | C            | Gamm    | າa ROS    | Statistics u   | sing Imp  | puted   | Non-Detec    | cts      |         |          |             |           |           |                                                  |           |
| 1315 |           |             | GRO       | S may   | not b   | e used       | when    | ו data s  | et has > 50%   | 6 NDs w   | vith ma | any tied obs | servatio | ns at   | multipl  | e DLs       | 6         |           |                                                  |           |
| 1316 |           | GROS ma     | ay not be | e used  | l wher  | n kstar      | of det  | ects is s | small such a   | s <1.0, e | especi  | ally when    | the sam  | ple si  | ze is s  | mall (      | e.g.,     | <15-20)   |                                                  |           |
| 1317 |           |             |           | Fo      | r such  | n situat     | ions, ( | GROS      | method may     | yield ind | correc  | t values of  | UCLs a   | ind B   | ۲Vs      |             |           |           |                                                  |           |
| 1318 |           |             |           |         |         | ٦<br>· · · · | his is  | especi    | ally true whe  | en the sa | ample   | size is sma  | əll.     |         |          | 1/1-2       |           | <u> </u>  |                                                  |           |
| 1319 |           | ⊦or ga      | amma di   | stribut | ed de   | tected       | data,   | BIVsa     | IND UCLS Ma    | iy be co  | mpute   | a using ga   | mma di   | stribu  | tion on  | КМ е        | estima    | ates      | <del>т                                    </del> | 0.40      |
| 1320 |           |             |           |         |         |              | Mi      | nimum     | 0.01           |           |         |              |          |         |          |             |           | Mean      |                                                  | 2.43      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>_</b>                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.304                                                                                                                         |
| 1322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.326                                                                                                                         |
| 1323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k hat (MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | k star (bias corrected MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.269                                                                                                                         |
| 1324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Theta hat (MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Theta star (bias corrected MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.037                                                                                                                         |
| 1325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nu hat (MLE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nu star (bias corrected)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.302                                                                                                                         |
| 1326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Adjusted Level of Significance (β)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |
| 1327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approximate Chi Square Value (4.30, $\alpha$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adjusted Chi Square Value (4.30, β)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.529                                                                                                                         |
| 1328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95% Gamma Approximate UCL (use when n>=50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% Gamma Adjusted UCL (use when n<50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                           |
| 1329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |
| 1330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Estimates of G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | amma Parai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | meters using KM Estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               |
| 1331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SD (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.063                                                                                                                         |
| 1332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Variance (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SE of Mean (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25                                                                                                                          |
| 1333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k hat (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | k star (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.455                                                                                                                         |
| 1334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nu hat (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nu star (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.282                                                                                                                         |
| 1335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | theta hat (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.9/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | theta star (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.19                                                                                                                          |
| 1336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.513                                                                                                                         |
| 1337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99% gamma percentile (KM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.5                                                                                                                          |
| 1338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o Konlon M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | olor (KN) Statiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |
| 1339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approvimete Chi Squere Velue (7.29, g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adjusted Chi Square Value (7.28, P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 692                                                                                                                         |
| 1340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approximate Chi Square value (7.26, u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adjusted Chil Square Value (7.26, p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.000                                                                                                                        |
| 1341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.22                                                                                                                         |
| 1342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lognormal GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F Test on D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | etected Observations Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               |
| 1343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shaniro Wilk Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Shaniro Wilk GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |
| 1344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5% Shapiro Wilk Critical Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Detected Data Not Lognormal at 5% Significance Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /el                                                                                                                           |
| 1345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lilliefors Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lilliefors GOF Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |
| 1346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5% Lilliefors Critical Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Detected Data Not Lognormal at 5% Significance Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /el                                                                                                                           |
| 1347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Loanorm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nal at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |
| 1 2/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |
| 1340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |
| 1349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lognormal RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Using Imputed Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               |
| 1348<br>1349<br>1350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lognormal ROS<br>Mean in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S Statistics 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Using Imputed Non-Detects Mean in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.917                                                                                                                        |
| 1349<br>1350<br>1351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lognormal RO<br>Mean in Original Scale<br>SD in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>S Statistics</b><br>2.369<br>3.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.917<br>3.283                                                                                                               |
| 1348<br>1349<br>1350<br>1351<br>1352<br>1353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lognormal RO<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>S Statistics</b><br>2.369<br>3.269<br>4.558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.917<br>3.283<br>4.289                                                                                                      |
| 1349<br>1350<br>1351<br>1352<br>1353<br>1354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S Statistics (<br>2.369<br>3.269<br>4.558<br>4.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.917<br>3.283<br>4.289<br>5.353                                                                                             |
| 1349<br>1350<br>1351<br>1352<br>1353<br>1354<br>1355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lognormal RO<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S Statistics (<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.917<br>3.283<br>4.289<br>5.353                                                                                             |
| 1349<br>1350<br>1351<br>1352<br>1353<br>1354<br>1355<br>1356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S Statistics (<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.917<br>3.283<br>4.289<br>5.353                                                                                             |
| 1349<br>1350<br>1351<br>1352<br>1353<br>1354<br>1355<br>1356<br>1357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S Statistics (<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.917<br>3.283<br>4.289<br>5.353                                                                                             |
| 1349<br>1350<br>1351<br>1352<br>1353<br>1354<br>1355<br>1356<br>1357<br>1358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S Statistics (<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged [<br>-2.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914                                                                                   |
| 1349<br>1350<br>1351<br>1352<br>1353<br>1354<br>1355<br>1356<br>1357<br>1358<br>1359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S Statistics (<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged (<br>-2.393<br>3.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18                                                                          |
| 1349<br>1350<br>1351<br>1352<br>1353<br>1354<br>1355<br>1356<br>1357<br>1358<br>1359<br>1360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                | S Statistics (<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged (<br>-2.393<br>3.403<br>1.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316                                                              |
| 1349           1350           1351           1352           1353           1354           1355           1356           1357           1358           1360           1351                                                                                                                                                                                                                                                                                                                                                                                                                      | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S Statistics (<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged (<br>-2.393<br>3.403<br>1.389<br>3.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18                                                     |
| 1349           1350           1351           1352           1353           1354           1355           1356           1357           1358           1359           1360           1361                                                                                                                                                                                                                                                                                                                                                                                                       | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                              | S Statistics (<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged (<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18                                                     |
| 1349           1350           1351           1352           1353           1354           1355           1356           1357           1358           1359           1360           1361           1362           1363                                                                                                                                                                                                                                                                                                                                                                         | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                        | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18                                                     |
| 1349           1350           1351           1352           1353           1354           1355           1355           1356           1357           1358           1359           1360           1361           1362           1363           1364                                                                                                                                                                                                                                                                                                                                           | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                              | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jsing Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18                                                     |
| 1349           1350           1351           1352           1353           1354           1355           1356           1357           1358           1359           1360           1361           1362           1363           1364           1365                                                                                                                                                                                                                                                                                                                                           | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                  | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>DL/2 St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18                                                     |
| 1349           1350           1351           1352           1353           1354           1355           1355           1356           1357           1358           1359           1360           1361           1362           1363           1364           1365           1366                                                                                                                                                                                                                                                                                                             | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                            | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>2.361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Using Imputed Non-Detects  Using Imputed Non-Detects  Detects  etects  Detects  Detects Detects  Detects  Detects Detects  Detects Detects Detects Detects D                                                                                                                                                                                                                                                                                         | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18<br>10.18                                            |
| 1349           1350           1351           1352           1353           1354           1355           1355           1356           1357           1358           1359           1360           1361           1362           1363           1364           1365           1366           1367                                                                                                                                                                                                                                                                                              | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>CDL/2 Normal                                                                                                                                                                                                                                      | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>DL/2 St<br>2.361<br>3.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Cr                                                                                                                                                 | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18<br>-2.711<br>3.954                                  |
| 1349           1349           1350           1351           1352           1353           1354           1355           1356           1357           1358           1359           1360           1361           1362           1363           1364           1365           1364           1365           1364           1365           1366           1367           1368                                                                                                                                                                                                                   | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>SD in Original Scale<br>95% t UCL (Assumes normality)                                                                           | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>3.275<br>4.555<br>3.55 | Jsing Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% I-UCL (KM -Log)<br>95% DL/2 Log-Transformed<br>Mean in Log Scale<br>SD in Log Scale<br>95% H-Stat UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18<br>14497316<br>10.18<br>-2.711<br>3.954<br>7.385E+9 |
| 1349         1349         1350         1351         1352         1353         1354         1355         1355         1356         1357         1358         1359         1360         1361         1362         1363         1364         1365         1366         1367         1368         1369                                                                                                                                                                                                                                                                                             | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>CDL/2 Normal<br>Mean in Original Scale<br>SD in Original Scale                                                                                                                                                                                    | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>DL/2 St<br>2.361<br>3.275<br>4.555<br>ethod, provid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jsing Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% I-UCL (KM -Log)<br>95% I-UCL (IM -Log)<br>100 II I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18<br>10.18<br>-2.711<br>3.954<br>7.385E+9             |
| 1349           1349           1350           1351           1352           1353           1354           1355           1356           1357           1358           1359           1360           1361           1362           1363           1364           1365           1364           1365           1364           1365           1364           1365           1364           1365           1364           1365           1364           1365           1366           1367           1368           1369           1361                                                             | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>CL/2 Normal<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (Assumes normality)<br>DL/2 is not a recommended me                                                                                                                                        | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>DL/2 St<br>2.361<br>3.275<br>4.555<br>ethod, provid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>05% DL/2 Log-Transformed<br>Mean in Log Scale<br>SD in Log Scale<br>95% H-Stat UCL<br>ded for comparisons and historical reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18<br>-2.711<br>3.954<br>7.385E+9                      |
| 1349           1349           1350           1351           1352           1353           1354           1355           1355           1356           1357           1358           1359           1360           1361           1362           1363           1364           1365           1364           1365           1366           1367           1368           1369           1370           1371                                                                                                                                                                                     | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>CL/2 Normal<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (Assumes normality)<br>DL/2 is not a recommended metal<br>Nonparametal | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>DL/2 St<br>2.361<br>3.275<br>4.555<br>ethod, provide<br>otric Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>Data and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% H-Stat UCL<br>SD in Log Scale<br>95% H-Stat UCL<br>ded for comparisons and historical reasons<br>tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18<br>10.18<br>-2.711<br>3.954<br>7.385E+9             |
| 1349         1349         1350         1351         1352         1353         1354         1355         1356         1357         1358         1357         1358         1359         1360         1361         1362         1363         1364         1365         1364         1365         1364         1365         1364         1365         1364         1365         1364         1365         1366         1367         1368         1370         1371         1372                                                                                                                    | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>CDL/2 Normal<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (Assumes normality)<br>DL/2 is not a recommended me<br>Nonparame                                                                                                                                              | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>DL/2 St<br>2.361<br>3.275<br>4.555<br>ethod, provid<br>ptric Distribur<br>r Normal Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>02ta and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% H-UCL (KM -Log)<br>95% H-Stat UCL<br>100 Scale<br>95% H-Stat UCL<br>100 Scale<br>100 Scale | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18<br>-2.711<br>3.954<br>7.385E+9                      |
| 1349           1350           1351           1352           1353           1354           1355           1355           1354           1355           1355           1356           1357           1358           1359           1360           1361           1362           1363           1364           1365           1364           1365           1364           1365           1364           1365           1364           1365           1364           1365           1366           1367           1368           1369           1370           1371           1372           1373 | Lognormal ROS<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>CL/2 Normal<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (Assumes normality)<br>DL/2 is not a recommended me<br>Nonparame                                                                                                                                               | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>DL/2 St<br>2.361<br>3.275<br>4.555<br>ethod, provide<br>ptric Distribur<br>r Normal Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Using Imputed Non-Detects<br>Mean in Log Scale<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>02ta and Assuming Lognormal Distribution<br>KM Geo Mean<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% Critical H Value (KM-Log)<br>95% H-UCL (KM -Log)<br>95% H-UCL (KM -Log)<br>95% H-UCL (KM -Log)<br>95% H-UCL (KM -Log)<br>100 Scale<br>95% H-Stat UCL<br>100 Jun Log Scale<br>95% H-Stat UCL<br>100 Jun Log Scale<br>95% H-Stat UCL<br>100 Jun Log Scale<br>95% H-Stat UCL<br>100 Jun Log Scale<br>100 Jun Log Scale<br>1                                                                           | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18<br>10.18<br>-2.711<br>3.954<br>7.385E+9             |
| 1349           1349           1350           1351           1352           1353           1354           1355           1354           1355           1355           1356           1357           1358           1359           1360           1361           1362           1363           1364           1365           1366           1367           1368           1369           1370           1371           1372           1373           1374                                                                                                                                        | Lognormal RO:<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (assumes normality of ROS data)<br>95% BCA Bootstrap UCL<br>95% H-UCL (Log ROS)<br>Statistics using KM estimates<br>KM Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM SD (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>KM Standard Error of Mean (logged)<br>CL/2 Normal<br>Mean in Original Scale<br>SD in Original Scale<br>95% t UCL (Assumes normality)<br>DL/2 is not a recommended me<br>Nonparame                                                                                                                                             | S Statistics I<br>2.369<br>3.269<br>4.558<br>4.243<br>6388852<br>on Logged I<br>-2.393<br>3.403<br>1.389<br>3.403<br>1.389<br>3.403<br>1.389<br>DL/2 St<br>2.361<br>3.275<br>4.555<br>ethod, provid<br>stric Distribur<br>r Normal Dist<br>Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Using Imputed Non-Detects<br>SD in Log Scale<br>95% Percentile Bootstrap UCL<br>95% Bootstrap t UCL<br>95% Bootstrap t UCL<br>95% Critical H Value (KM-Log)<br>95% H-Stat UCL<br>100 for comparisons and historical reasons<br>100 Free UCL Statistics<br>100 Free UCL Statistics<br>100 Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.917<br>3.283<br>4.289<br>5.353<br>0.0914<br>10.18<br>14497316<br>10.18<br>-2.711<br>3.954<br>7.385E+9                      |

|      | A | В             | С              | D              | E             | F              | G               | H               |               | J             | K               | L    |
|------|---|---------------|----------------|----------------|---------------|----------------|-----------------|-----------------|---------------|---------------|-----------------|------|
| 1376 |   |               |                |                |               |                |                 |                 |               |               |                 |      |
| 1377 |   | Note: Sugge   | stions regard  | ing the selec  | tion of a 95% | 6 UCL are pr   | ovided to hel   | p the user to   | select the m  | ost appropria | ate 95% UCI     |      |
| 1378 |   |               | F              | Recommenda     | tions are ba  | sed upon dat   | a size, data o  | distribution, a | and skewnes   | S.            |                 |      |
| 1379 |   | These reco    | mmendations    | are based u    | pon the resu  | Its of the sim | nulation studi  | es summariz     | zed in Singh, | Maichle, and  | Lee (2006)      |      |
| 1380 |   | lowever, simu | lations result | s will not cov | er all Real V | /orld data se  | ts; for additio | nal insight th  | ne user may   | want to consi | ult a statistic | ian. |

|      | A         |     | В | С          |                   | D          | E         |         | F               | G            |       | Н            |            |                  | J             |         | K         | L      |    |
|------|-----------|-----|---|------------|-------------------|------------|-----------|---------|-----------------|--------------|-------|--------------|------------|------------------|---------------|---------|-----------|--------|----|
| 1381 |           |     |   |            |                   |            |           |         |                 |              |       |              |            |                  |               |         |           |        |    |
| 1382 | PCBs (Tot | al) |   |            |                   |            |           |         |                 |              |       |              |            |                  |               |         |           |        |    |
| 1383 |           |     |   |            |                   |            |           |         |                 |              |       |              |            |                  |               |         |           |        |    |
| 1384 |           |     |   |            |                   |            |           |         | General         | Statistics   |       |              |            |                  |               |         |           |        |    |
| 1385 |           |     |   | Tota       | al Num            | nber of C  | Observa   | ations  | 8               |              |       |              | Num        | ber              | of Distinct   | Obse    | ervations | 5      |    |
| 1386 |           |     |   |            |                   | Numbe      | er of De  | etects  | 2               |              |       |              |            |                  | Number of     | Non-    | -Detects  | 6      |    |
| 1387 |           |     |   | N          | lumbe             | er of Dist | tinct De  | etects  | 2               |              |       |              | Nun        | nbe              | r of Distinct | Non-    | -Detects  | 3      |    |
| 1388 |           |     |   |            |                   | Mini       | imum D    | Detect  | 0.0645          |              |       |              |            |                  | Minimun       | n Nor   | n-Detect  | 0.0017 | 77 |
| 1389 |           |     |   |            |                   | Maxi       | imum D    | Detect  | 0.102           |              |       |              |            |                  | Maximur       | n Nor   | n-Detect  | 0.0062 | 2  |
| 1390 |           |     |   |            |                   | Varia      | ince De   | etects  | 6.9522E-4       |              |       |              |            |                  | Percent       | Non-    | -Detects  | 75%    |    |
| 1391 |           |     |   |            |                   | Μ          | lean De   | etects  | 0.0831          |              |       |              |            |                  |               | SD      | Detects   | 0.026  | 4  |
| 1392 |           |     |   |            |                   | Me         | dian De   | etects  | 0.0831          |              |       |              |            |                  |               | CV      | Detects   | 0.317  | 1  |
| 1393 |           |     |   |            |                   | Skewr      | iess De   | etects  | N/A             |              |       |              |            |                  | Kur           | tosis   | Detects   | N/A    |    |
| 1394 |           |     |   |            | Mea               | an of Log  | iged De   | etects  | -2.513          |              |       |              |            |                  | SD of Lo      | gged    | Detects   | 0.323  | }  |
| 1395 |           |     |   |            |                   |            |           |         |                 |              |       |              |            |                  |               |         |           |        |    |
| 1396 |           |     |   |            |                   |            | Warn      | ing: D  | ata set has     | only 2 Det   | tecte | ed Values.   |            |                  |               | -       |           |        |    |
| 1397 |           |     |   | Т          | This is           | s not end  | ough to   | o comp  | oute meaning    | gful or reli | iable | e statistics | and estin  | nate             | es.           |         |           |        |    |
| 1398 |           |     |   |            |                   |            |           |         |                 |              |       |              |            |                  |               |         |           |        |    |
| 1399 |           |     |   |            |                   |            |           |         |                 |              |       |              |            |                  |               | -       |           |        |    |
| 1400 |           |     |   | Note: Sam  | nple s            | ize is sr  | nall (e.  | g., <1  | 0), if data ar  | e collecte   | d us  | sing ISM ap  | oproach, y | you              | should use    | ;       |           |        | _  |
| 1401 |           |     |   | guidance p | rovid             | ed in ITF  | RC Teo    | ch Reg  | g Guide on Is   | SM (ITRC,    | , 20  | 12) to com   | pute stati | stic             | s of interes  | it.     |           |        |    |
| 1402 | -         |     |   | For        | exan              | nple, you  | u may v   | want t  | o use Cheby     | shev UCL     | L to  | estimate E   | PC (ITRO   | C, 20            | 012).         |         |           |        |    |
| 1403 |           |     |   | Chebyshe   | ev UC             | L can be   | e comp    | outed u | using the No    | nparamet     | ric a | and All UCL  | . Options  | of               | ProUCL 5.1    | i       |           |        | -  |
| 1404 |           |     |   |            |                   |            |           |         |                 |              |       |              |            |                  |               |         |           |        |    |
| 1405 | -         |     |   |            |                   |            |           | Norm    | nal GOF Tes     | t on Detec   | cts ( | Only         |            |                  |               |         |           |        |    |
| 1406 |           |     |   |            |                   |            | N         | lot End | ough Data to    | Perform      | GO    | F Test       |            |                  |               |         |           |        |    |
| 1407 |           |     |   |            |                   |            |           |         |                 |              |       |              |            |                  |               |         |           |        |    |
| 1408 |           |     |   | Kaplan     | -Meie             | er (KM) S  | Statistic | cs usiı | ng Normal C     | ritical Val  | ues   | and other    | Nonparar   | meti             | ric UCLs      |         |           |        |    |
| 1400 |           |     |   |            |                   |            | KM        | Mean    | 0.0221          |              |       |              |            | ΚM               | I Standard E  | Error   | of Mean   | 0.018  | 2  |
| 1410 |           |     |   |            |                   |            | K         | M SD    | 0.0364          |              |       |              |            |                  | 95% KM        | M (BC   | CA) UCL   | N/A    |    |
| 1411 |           |     |   |            |                   | 95%        | 5 KM (t)  | ) UCL   | 0.0566          |              |       |              | 95% KN     | 1 (Pe            | ercentile Bo  | otstra  | ap) UCL   | N/A    |    |
| 1/12 |           |     |   |            |                   | 95%        | KM (z)    | ) UCL   | 0.0521          |              |       |              |            | ç                | 95% KM Bo     | otstra  | ap t UCL  | N/A    | _  |
| 1412 |           |     |   |            | 90%               | KM Che     | byshev    | / UCL   | 0.0768          |              |       |              |            | 9                | 5% KM Che     | ebysł   | nev UCL   | 0.102  | 2  |
| 1413 |           |     |   | 97         | 7.5%              | KM Che     | byshev    | / UCL   | 0.136           |              |       |              |            | 9                | 9% KM Che     | ebysł   | nev UCL   | 0.203  | 3  |
| 1415 | -         |     |   |            |                   |            |           |         |                 |              |       |              |            |                  |               |         |           |        |    |
| 1415 |           |     |   |            |                   | G          | amma      | GOF     | Tests on De     | etected Ob   | bser  | vations On   | ly         |                  |               |         |           |        |    |
| 1410 |           |     |   |            |                   |            | N         | lot End | ough Data to    | Perform      | GO    | F Test       | -          |                  |               |         |           |        | -  |
| 1417 |           |     |   |            |                   |            |           |         |                 |              |       |              |            |                  |               |         |           |        | _  |
| 1410 |           |     |   |            |                   |            | Ga        | amma    | Statistics or   | Detected     | d Da  | ta Only      |            |                  |               |         |           |        |    |
| 1419 |           |     |   |            |                   |            | k hat (   | MLE)    | 19.54           |              |       |              |            | k s              | tar (bias co  | orrecte | ed MLE)   | N/A    |    |
| 1420 |           |     |   |            |                   | The        | ta hat (  | MLE)    | 0.00425         |              |       |              | The        | eta s            | tar (bias co  | orrecte | ed MLE)   | N/A    | _  |
| 1421 |           |     |   |            |                   | r          | nu hat (  | MLE)    | 78.15           |              |       |              |            |                  | nu star (bi   | as co   | orrected) | N/A    | -  |
| 1422 |           |     |   |            |                   | Ме         | an (de    | tects)  | 0.0831          |              |       |              |            |                  |               |         | ,         |        | -  |
| 1423 |           |     |   |            |                   |            |           | ,       |                 |              |       |              |            |                  |               |         |           |        |    |
| 1424 |           |     |   |            |                   | Es         | timate    | s of G  | amma Parai      | meters usi   | ina   | KM Estima    | tes        |                  |               |         |           |        |    |
| 1425 |           |     |   |            |                   |            | Mean      | (KM)    | 0.0221          |              |       |              |            |                  |               |         | SD (KM)   | 0.036  | 4  |
| 1426 |           |     |   |            |                   | Va         | ariance   | (KM)    | 0.00133         |              |       |              |            |                  | SE            | of Me   | an (KM)   | 0.018  | 2  |
| 1427 |           |     |   |            |                   |            | k hat     | (KM)    | 0.368           |              |       |              |            |                  | 020           | ks      | tar (KM)  | 0.31:  | 3  |
| 1428 |           |     |   |            |                   |            | nu hat    | (KM)    | 5 891           |              |       |              |            |                  |               | nu e    | tar (KM)  | 5 01   | 5  |
| 1429 |           |     |   |            |                   | th         | eta hat   | (KM)    | 0.06            |              |       |              |            |                  | th            | ieta s  | tar (KM)  | 0.010  | 5  |
| 1430 |           |     |   | 200        | % nar             | nma ner    | centile   | (KM)    | 0.0343          |              |       |              |            | 90%              |               | arcent  | tile (KM) | 0.070  | 9  |
| 1431 |           |     |   | 00         | yai               | mma ner    | Centile   | (KM)    | 0.0040          |              |       |              |            | 99.00<br>99.00/2 |               |         | tile (KM) | 0.004  | 5  |
| 1432 |           |     |   | 30         | <sup>70</sup> yai | iiiia hei  | condie    | (1111)  | 0.0337          |              |       |              |            | 00/0             | , gamma pe    |         |           | 0.19   |    |
| 1433 |           |     |   |            |                   |            |           | Gamm    | a Kanlan M      | aiar (KM)    | Stat  | tietice      |            |                  |               |         |           |        |    |
| 1434 |           |     |   |            |                   |            |           | Janin   | ים וזמאומוו-ואו |              | Jid   |              | ۸diua      | ted              | l aval of Ci  | anific  | anco (0)  | 0.010  | 5  |
| 1435 |           |     |   |            |                   |            |           |         |                 |              |       |              | Adjus      | sieŭ             | Level of SI   | JUIIC   | ance (þ)  | 0.019  | 5  |

|      | А   | В           | С               | D              | E             | F              | G               | Н               |                 | J               | K                 | L       |
|------|-----|-------------|-----------------|----------------|---------------|----------------|-----------------|-----------------|-----------------|-----------------|-------------------|---------|
| 1436 |     | A           | pproximate Cl   | ni Square Va   | lue (5.02, α) | 1.159          |                 |                 | Adjusted C      | hi Square Va    | lue (5.02, β)     | 0.76    |
| 1437 | 95% | Gamma Ap    | proximate KM    | 1-UCL (use w   | /hen n>=50)   | 0.0957         |                 | 95% Gamm        | a Adjusted K    | M-UCL (use      | when n<50)        | 0.146   |
| 1438 |     |             |                 |                |               |                |                 |                 |                 |                 |                   |         |
| 1439 |     |             |                 | Lo             | gnormal GC    | F Test on D    | etected Obs     | ervations O     | nly             |                 |                   |         |
| 1440 |     |             |                 |                | Not En        | ough Data to   | Perform G       | OF Test         |                 |                 |                   |         |
| 1441 |     |             |                 |                |               |                |                 |                 |                 |                 |                   |         |
| 1442 |     |             |                 | Loạ            | gnormal RO    | S Statistics   | Jsing Impute    | ed Non-Dete     | ects            |                 |                   |         |
| 1443 |     |             |                 | Mean in Or     | riginal Scale | 0.0333         |                 |                 |                 | Mean i          | n Log Scale       | -3.765  |
| 1444 |     |             |                 | SD in Or       | riginal Scale | 0.033          |                 |                 |                 | SD i            | n Log Scale       | 0.878   |
| 1445 |     | 95% t l     | UCL (assume     | s normality o  | f ROS data)   | 0.0553         |                 |                 | 95% I           | Percentile Bo   | otstrap UCL       | 0.0522  |
| 1446 |     |             | ę               | 95% BCA Bo     | otstrap UCL   | 0.0587         |                 |                 |                 | 95% Boo         | tstrap t UCL      | 0.116   |
| 1447 |     |             |                 | 95% H-UCL      | (Log ROS)     | 0.0962         |                 |                 |                 |                 |                   |         |
| 1448 |     |             |                 |                |               |                |                 |                 |                 |                 |                   |         |
| 1449 |     |             | Statis          | tics using KI  | V estimates   | on Logged I    | Data and As     | suming Logi     | normal Distri   | bution          |                   |         |
| 1450 |     |             |                 | KM Me          | ean (logged)  | -5.38          |                 |                 |                 | KN              | /I Geo Mean       | 0.00461 |
| 1451 |     |             |                 | KM             | SD (logged)   | 1.659          |                 |                 | 95% (           | Critical H Valu | ue (KM-Log)       | 5.178   |
| 1452 |     |             | KM Standar      | d Error of Me  | ean (logged)  | 0.829          |                 |                 |                 | 95% H-UC        | L (KM -Log)       | 0.469   |
| 1453 |     |             |                 | KM             | SD (logged)   | 1.659          |                 |                 | 95% (           | Critical H Valu | ue (KM-Log)       | 5.178   |
| 1454 |     |             | KM Standar      | d Error of Me  | ean (logged)  | 0.829          |                 |                 |                 |                 |                   |         |
| 1455 |     |             |                 |                |               |                |                 |                 |                 |                 |                   |         |
| 1456 |     |             |                 |                |               | DL/2 S         | tatistics       |                 |                 |                 |                   |         |
| 1457 |     |             | DL/2 N          | Normal         |               |                |                 |                 | DL/2 Log-T      | ransformed      |                   |         |
| 1458 |     |             |                 | Mean in Or     | riginal Scale | 0.0225         |                 |                 |                 | Mean i          | n Log Scale       | -5.225  |
| 1459 |     |             |                 | SD in Or       | riginal Scale | 0.0387         |                 |                 |                 | SD i            | n Log Scale       | 1.72    |
| 1460 |     |             | 95% t L         | ICL (Assume    | s normality)  | 0.0485         |                 |                 |                 | 95%             | H-Stat UCL        | 0.766   |
| 1461 |     |             | DL/2 i          | s not a recor  | nmended m     | ethod, provid  | ded for comp    | parisons and    | l historical re | easons          |                   |         |
| 1462 |     |             |                 |                |               |                |                 |                 |                 |                 |                   |         |
| 1463 |     |             |                 |                | Nonparame     | etric Distribu | tion Free UC    | CL Statistics   |                 |                 |                   |         |
| 1464 |     |             |                 | Data do no     | ot follow a D | iscernible Di  | stribution at   | 5% Signific     | ance Level      |                 |                   |         |
| 1465 |     |             |                 |                |               |                |                 |                 |                 |                 |                   |         |
| 1466 |     |             |                 |                |               | Suggested      | UCL to Use      |                 |                 |                 |                   |         |
| 1467 |     |             |                 | 95%            | KM (t) UCL    | 0.0566         |                 |                 |                 |                 | KM H-UCL          | 0.469   |
| 1468 |     |             |                 | 95% KM         | (BCA) UCL     | N/A            |                 |                 |                 |                 |                   |         |
| 1469 |     |             |                 | Warni          | ing: One or ı | nore Recom     | mended UC       | L(s) not ava    | ilable!         |                 |                   |         |
| 1470 |     |             |                 |                |               |                |                 |                 |                 |                 |                   |         |
| 1471 |     | Note: Sugge | estions regard  | ing the selec  | tion of a 95% | UCL are pr     | ovided to hel   | p the user to   | select the m    | lost appropria  | ate 95% UCL       |         |
| 1472 |     |             | R               | ecommenda      | tions are bas | sed upon dat   | a size, data (  | distribution,   | and skewnes     | S.              |                   |         |
| 1473 |     | These reco  | mmendations     | are based u    | pon the resu  | Its of the sim | ulation studi   | es summariz     | zed in Singh,   | Maichle, and    | Lee (2006).       |         |
| 1474 | Ho  | wever, simu | ulations result | s will not cov | er all Real W | /orld data se  | ts; for additic | onal insight th | ne user may     | want to consu   | ult a statisticia | an.     |

|      | A                               | В         | С             | D              | E              | F              | G              | Н              |             | J                | K                           | L         |  |  |
|------|---------------------------------|-----------|---------------|----------------|----------------|----------------|----------------|----------------|-------------|------------------|-----------------------------|-----------|--|--|
| 1475 |                                 |           |               |                |                |                |                |                |             |                  |                             |           |  |  |
| 1476 | TBT                             |           |               |                |                |                |                |                |             |                  |                             |           |  |  |
| 1477 |                                 |           |               |                |                |                |                |                |             |                  |                             |           |  |  |
| 1478 |                                 |           |               |                |                | General        | Statistics     |                |             |                  |                             | -         |  |  |
| 1479 |                                 |           | Total         | Number of C    | bservations    | 8              |                |                | Numl        | ber of Distinct  | Observations                | 4         |  |  |
| 1480 |                                 |           |               | Numbe          | r of Detects   | 3              |                |                |             | Number o         | f Non-Detects               | 5         |  |  |
| 1481 |                                 |           | N             | umber of Dist  | inct Detects   | 3              |                |                | Num         | nber of Distinc  | t Non-Detects               | 1         |  |  |
| 1482 |                                 |           |               | Mini           | mum Detect     | 9.9291E-4      |                |                |             | Minimu           | m Non-Detect                | 5.0000E-4 |  |  |
| 1483 |                                 |           |               | Maxi           | mum Detect     | 0.0203         |                |                |             | Maximu           | m Non-Detect                | 5.0000E-4 |  |  |
| 1484 |                                 |           |               | Varia          | nce Detects    | 1.1886E-4      |                |                |             | Percen           | t Non-Detects               | 62.5%     |  |  |
| 1485 |                                 |           |               | М              | ean Detects    | 0.0136         |                |                |             |                  | SD Detects                  | 0.0109    |  |  |
| 1486 |                                 |           |               | Med            | lian Detects   | 0.0194         |                |                |             |                  | CV Detects                  | 0.803     |  |  |
| 1487 |                                 |           |               | Skewn          | ess Detects    | -1.72          |                |                |             | Ku               | rtosis Detects              | N/A       |  |  |
| 1488 |                                 |           |               | Mean of Log    | ged Detects    | -4.918         |                |                |             | SD of Lo         | gged Detects                | 1.73      |  |  |
| 1489 |                                 |           |               |                |                |                |                |                |             |                  |                             |           |  |  |
| 1490 |                                 |           |               |                | Warning: D     | ata set has    | only 3 Dete    | cted Values.   |             |                  |                             |           |  |  |
| 1491 |                                 |           | Т             | his is not end | ough to comp   | pute meaning   | gful or reliat | ole statistics | and estim   | nates.           |                             |           |  |  |
| 1492 |                                 |           |               |                |                |                |                |                |             |                  |                             |           |  |  |
| 1493 |                                 |           |               |                |                |                |                |                |             |                  |                             |           |  |  |
| 1494 |                                 |           | Note: Sam     | ple size is sn | nall (e.g., <1 | 0), if data ar | e collected    | using ISM ap   | oproach, y  | ou should us     | e                           |           |  |  |
| 1495 |                                 |           | guidance pr   | ovided in ITF  | C Tech Reg     | g Guide on IS  | SM (ITRC, 2    | 2012) to com   | pute statis | stics of interes | st.                         |           |  |  |
| 1496 |                                 |           | For           | example, you   | i may want t   | o use Cheby    | shev UCL t     | o estimate E   | PC (ITRC    | ;, 2012).        |                             |           |  |  |
| 1497 |                                 |           | Chebyshe      | / UCL can be   | computed u     | using the No   | nparametric    | and All UCI    | _ Options   | of ProUCL 5.     | 1                           |           |  |  |
| 1498 | Normal GOF Test on Detects Only |           |               |                |                |                |                |                |             |                  |                             |           |  |  |
| 1499 | Normal GOF Test on Detects Only |           |               |                |                |                |                |                |             |                  |                             |           |  |  |
| 1500 |                                 |           | S             | hapiro Wilk T  | est Statistic  | 0.784          |                |                | Shapiro     | Wilk GOF Te      | st                          |           |  |  |
| 1501 |                                 |           | 5% S          | hapiro Wilk C  | ritical Value  | 0.767          | D              | etected Data   | appear No   | ormal at 5% S    | ignificance Le              | vel       |  |  |
| 1502 |                                 |           |               | Lilliefors T   | est Statistic  | 0.371          |                |                | Lilliefo    | ors GOF Test     |                             |           |  |  |
| 1503 |                                 |           | 5             | % Lilliefors C | ritical Value  | 0.425          | D              | etected Data   | appear No   | ormal at 5% S    | ignificance Le              | vel       |  |  |
| 1504 |                                 |           |               | Det            | ected Data     | appear Norm    | nal at 5% Si   | gnificance Lo  | evel        |                  |                             |           |  |  |
| 1505 |                                 |           | <u> </u>      |                |                |                |                |                |             |                  |                             |           |  |  |
| 1506 |                                 |           | Kaplan-       | Meier (KM) S   | statistics usi | ng Normal C    | ritical Value  | es and other   | Nonparam    | netric UCLs      |                             |           |  |  |
| 1507 |                                 |           |               |                | KM Mean        | 0.0054         |                |                |             | KM Standard      | Error of Mean               | 0.00362   |  |  |
| 1508 |                                 |           |               | 05%            | KM SD          | 0.00835        |                |                | 050/ 1/14   | 95% K            | M (BCA) UCL                 | N/A       |  |  |
| 1509 |                                 |           |               | 95%            | KM (t) UCL     | 0.0123         |                |                | 95% KM      | (Percentile B    | ootstrap) UCL               | N/A       |  |  |
| 1510 |                                 |           |               | 95%            | KM (z) UCL     | 0.0114         |                |                |             | 95% KM Bo        | otstrap t UCL               | N/A       |  |  |
| 1511 |                                 |           |               | JU% KM Chel    | byshev UCL     | 0.0163         |                |                |             | 95% KM Ch        | ebysnev UCL                 | 0.0212    |  |  |
| 1512 |                                 |           | 97            | .5% KW Che     | Sysnev UCL     | 0.028          |                |                |             | 99% KM Ch        | ebysnev UCL                 | 0.0414    |  |  |
| 1513 |                                 |           |               |                |                | Tests on De    | tested Obe     | an ations Or   |             |                  |                             |           |  |  |
| 1514 |                                 |           |               |                |                | Tests on De    |                | OF Teet        | lly         |                  |                             |           |  |  |
| 1515 |                                 |           |               |                |                | ougn Data to   | Periorini G    | OFTest         |             |                  |                             |           |  |  |
| 1516 |                                 |           |               |                |                | Otatiatian an  | Data ata d     | Data Oaki      |             |                  |                             |           |  |  |
| 1517 |                                 |           |               |                |                |                |                | Data Only      |             | la atau (bia a a |                             | N1/A      |  |  |
| 1518 |                                 |           |               | <b></b>        |                | 0.941          |                |                | The         | K star (blas co  |                             | N/A       |  |  |
| 1519 |                                 |           |               |                | a nat (MLE)    | 0.0144         |                |                | Inet        | ta star (blas co |                             | N/A       |  |  |
| 1520 |                                 |           |               | n              |                | 0.0100         |                |                |             | nu star (b       | las corrected)              | IN/A      |  |  |
| 1521 | 21 Mean (detects) 0.0136        |           |               |                |                |                |                |                |             |                  |                             |           |  |  |
| 1522 |                                 |           |               |                | amma DOO       |                |                | d Non Date -   | *0          |                  |                             |           |  |  |
| 1523 |                                 |           | 0000          |                |                |                |                |                |             | ot multiple DI   |                             |           |  |  |
| 1524 |                                 | 6800      |               | when keter     | when data s    |                |                |                |             |                  | $\frac{5}{(0.0.51\pm0.0)}$  |           |  |  |
| 1525 |                                 | GRUS IIIa |               |                |                | mothod mothod  | viold incom    |                |             |                  | ( <del>c</del> .y., <10-20) |           |  |  |
| 1526 |                                 |           | Fo            | such situati   |                | method may     | yieia incorre  | ect values of  |             | DIVS             |                             |           |  |  |
| 1527 |                                 | <b>F</b>  | mmo distuite  | <br>           |                | any true whe   | une sampl      | e size is sma  | 111.        | bution on 1/14   | ootimete -                  |           |  |  |
| 1528 |                                 | ⊢or gai   | mma distribut | .ea aetected   | Jata, BIVs a   |                | y de compu     | tea using gar  | nma distri  | Dution on KM     | esumates                    | 0.0110    |  |  |
| 1529 | 1                               |           |               |                | Minimum        | 9.9291E-4      |                |                |             |                  | Mean                        | 0.0113    |  |  |

|      | A B C D E                                       | F              | G H I J K                                              | L       |
|------|-------------------------------------------------|----------------|--------------------------------------------------------|---------|
| 1530 | Maximum                                         | 0.0203         | Median                                                 | 0.01    |
| 1531 | SD                                              | 0.00611        | CV                                                     | 0.539   |
| 1532 | k hat (MLE)                                     | 2.21           | k star (bias corrected MLE)                            | 1.465   |
| 1533 | Theta hat (MLE)                                 | 0.00513        | Theta star (bias corrected MLE)                        | 0.00774 |
| 1534 | nu hat (MLE)                                    | 35.37          | nu star (bias corrected)                               | 23.44   |
| 1535 | Adjusted Level of Significance (β)              | 0.0195         |                                                        |         |
| 1536 | Approximate Chi Square Value (23.44, $\alpha$ ) | 13.42          | Adjusted Chi Square Value (23.44, β)                   | 11.55   |
| 1537 | 95% Gamma Approximate UCL (use when n>=50)      | 0.0198         | 95% Gamma Adjusted UCL (use when n<50)                 | N/A     |
| 1538 |                                                 | •              |                                                        |         |
| 1539 | Estimates of G                                  | iamma Para     | meters using KM Estimates                              |         |
| 1540 | Mean (KM)                                       | 0.0054         | SD (KM)                                                | 0.00835 |
| 1541 | Variance (KM)                                   | 6.9763E-5      | SE of Mean (KM)                                        | 0.00362 |
| 1542 | k hat (KM)                                      | 0.418          | k star (KM)                                            | 0.345   |
| 1543 | nu hat (KM)                                     | 6.693          | nu star (KM)                                           | 5.516   |
| 1544 | theta hat (KM)                                  | 0.0129         | theta star (KM)                                        | 0.0157  |
| 1545 | 80% gamma percentile (KM)                       | 0.00853        | 90% gamma percentile (KM)                              | 0.0156  |
| 1546 | 95% gamma percentile (KM)                       | 0.0236         | 99% gamma percentile (KM)                              | 0.044   |
| 1547 |                                                 |                |                                                        |         |
| 1548 | Gamm                                            | na Kaplan-M    | eier (KM) Statistics                                   |         |
| 1549 | Approximate Chi Square Value (5.52, α)          | 1.398          | Adjusted Chi Square Value (5.52, β)                    | 0.942   |
| 1550 | 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.0213         | 95% Gamma Adjusted KM-UCL (use when n<50)              | 0.0316  |
| 1551 |                                                 |                |                                                        |         |
| 1552 | Lognormal GC                                    | OF Test on D   | Detected Observations Only                             |         |
| 1553 | Shapiro Wilk Test Statistic                     | 0.761          | Shapiro Wilk GOF Test                                  |         |
| 1554 | 5% Shapiro Wilk Critical Value                  | 0.767          | Detected Data Not Lognormal at 5% Significance Level   |         |
| 1555 | Lilliefors Test Statistic                       | 0.381          | Lilliefors GOF Test                                    |         |
| 1556 | 5% Lilliefors Critical Value                    | 0.425          | Detected Data appear Lognormal at 5% Significance Leve | rel     |
| 1557 | Detected Data appear A                          | Approximate    | Lognormal at 5% Significance Level                     |         |
| 1558 |                                                 |                |                                                        |         |
| 1559 | Lognormal RO                                    | S Statistics   | Using Imputed Non-Detects                              | 0.100   |
| 1560 | Mean in Original Scale                          | 0.00514        | Mean in Log Scale                                      | -8.439  |
| 1561 | SD in Original Scale                            | 0.0091         | SD in Log Scale                                        | 3.4     |
| 1562 | 95% t UCL (assumes normality of ROS data)       | 0.0112         | 95% Percentile Bootstrap UCL                           | 0.0102  |
| 1563 | 95% BCA Bootstrap UCL                           | 0.0124         | 95% Bootstrap t UCL                                    | 0.138   |
| 1564 | 95% H-UCL (Log ROS)                             | 33148          |                                                        |         |
| 1565 |                                                 |                |                                                        |         |
| 1566 | Statistics using KM estimates                   |                |                                                        | 0.00107 |
| 1567 | KM Mean (logged)                                | -0.595         | KM Geo Mean                                            | 0.00137 |
| 1568 | KM SD (logged)                                  | 1.001          |                                                        | 4.907   |
| 1569 |                                                 | 0.070          |                                                        | 0.0035  |
| 1570 | KM Standard Ever of Maan (larged)               | 0.676          | 55% Chucai n Value (KM-LOg)                            | 4.907   |
| 1571 | Kivi Stanuaru Error of Mean (logged)            | 0.070          |                                                        |         |
| 1572 |                                                 | 0 0            | tatistice                                              |         |
| 1573 | DI /2 Normal                                    | 00/2 5         |                                                        |         |
| 1574 | DLZ INOTITIAL<br>Moon in Original Socia         | 0 00525        | DL/2 Log-HallSloffieu                                  | -7 029  |
| 1575 | Mean In Original Scale                          | 0.00020        |                                                        | 1 077   |
| 1576 |                                                 | 0.00903        |                                                        | 0.584   |
| 1577 | DL/2 is not a recommanded m                     | ethod provide  | ded for comparisons and historical reasons             | 0.004   |
| 1578 |                                                 | eniou, provi   |                                                        |         |
| 1579 | Nonsora                                         | atric Distribu | tion Free LICL Statistics                              |         |
| 1580 |                                                 |                | stributed at 5% Significance Level                     |         |
| 1581 |                                                 |                | Sandated at 570 Organicalite Level                     |         |
| 1582 |                                                 | Suggested      |                                                        |         |
| 1583 |                                                 | 0.0122         |                                                        |         |
| 158/ | 95% KIVI (I) UCL                                | 0.0123         |                                                        |         |

|      | A                                                                                                                            | В                                                                          | С              | D              | E             | F              | G               | H              |               | J             | K               | L    |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------|----------------|---------------|----------------|-----------------|----------------|---------------|---------------|-----------------|------|--|--|
| 1585 |                                                                                                                              |                                                                            |                |                |               |                |                 |                |               |               |                 |      |  |  |
| 1586 | Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. |                                                                            |                |                |               |                |                 |                |               |               |                 |      |  |  |
| 1587 |                                                                                                                              | Recommendations are based upon data size, data distribution, and skewness. |                |                |               |                |                 |                |               |               |                 |      |  |  |
| 1588 |                                                                                                                              | These recor                                                                | mmendations    | are based u    | pon the resu  | Its of the sim | nulation studi  | es summariz    | zed in Singh, | Maichle, and  | Lee (2006)      |      |  |  |
| 1589 |                                                                                                                              | However, simu                                                              | lations result | s will not cov | er all Real V | /orld data se  | ts; for additic | nal insight th | ne user may   | want to consu | ult a statistic | ian. |  |  |

|      | A       | В        | С          |          | D         |                  | E          |       | F             | G          |           | H             |         |            | J             |         |             | K                        |             | L           |
|------|---------|----------|------------|----------|-----------|------------------|------------|-------|---------------|------------|-----------|---------------|---------|------------|---------------|---------|-------------|--------------------------|-------------|-------------|
| 1590 | C10-C36 |          |            |          |           |                  |            |       |               |            |           |               |         |            |               |         |             |                          |             |             |
| 1591 | 510-000 |          |            |          |           |                  |            |       |               |            |           |               |         |            |               |         |             |                          |             |             |
| 1592 |         |          |            |          |           |                  |            |       | General       | Statistic  | s         |               |         |            |               |         |             |                          |             |             |
| 1593 |         |          | т          | [otal    | Numbe     | r of O           | )hservati  | one   | 8             |            |           |               | Nu      | Imhor      | of Die        | tinct ( | Ohee        | rvations                 |             | 6           |
| 1594 |         |          |            | otai     | N         |                  | or of Dete |       | 5             |            |           |               | INC     |            | Numb          |         | Non-        |                          |             | 3           |
| 1595 |         |          |            | Nı       | mber o    | of Dist          | inct Dete  |       | 5             |            |           |               | N       | umhe       | r of Dis      | stinct  | Non-        |                          | <u> </u>    | 1           |
| 1596 |         |          |            |          |           | Minii            |            | tect  | 5             |            |           |               |         |            | Min           | himum   |             |                          | -           | י<br>י      |
| 1597 |         |          |            |          |           | Maxi             |            | tect  | 650           |            |           |               |         |            | Max           | /imum   |             | n-Detect                 | r           | 3           |
| 1598 |         |          |            |          |           | Varia            |            |       | 70189         |            |           |               |         |            | Poi           | rcent   | Non-        |                          | -           | 37.5%       |
| 1599 |         |          |            |          |           | M                |            |       | 195.6         |            |           |               |         |            |               |         |             |                          | 2           | 64.9        |
| 1600 |         |          |            |          |           | Mer              | tian Dete  |       | 88            |            |           |               |         |            |               |         | CV          | Detects                  |             | 1 354       |
| 1601 |         |          |            |          | S         | kewn             | ess Dete   | ects  | 1 823         |            |           |               |         |            |               | Kurt    | tosis       | Detects                  |             | 3 358       |
| 1602 |         |          |            |          | Mean o    | flog             |            |       | 4 276         |            |           |               |         |            | SD            |         | hanr        | Detects                  | <u> </u>    | 1 847       |
| 1603 |         |          |            |          |           |                  | geu Dell   | 5013  | 4.270         |            |           |               |         |            | 501           |         | yyeu        | Delecia                  |             | 1.047       |
| 1604 |         |          | Note: 9    | Samr     | محاء مار  | ie en            | nall (o a  | <10   | 0) if data ar | a collect  | tod u     | eing ISM a    | nnroach |            | ebould        | d ueo   |             |                          |             |             |
| 1605 |         |          |            |          | vided i   | in ITE           |            | , > I |               |            |           | (12) to com   |         | i, you     |               | toroct  | •           |                          |             |             |
| 1606 |         |          | guiuaric   | E pro    | vample    |                  |            |       |               |            | C, 20     |               |         |            | -5 01 III     | 101031  | ι.          |                          |             |             |
| 1607 |         |          | Choby      |          |           | <del>,</del> you |            |       | sing the No   |            |           |               |         | $r_{0}, z$ | Drol IC       | 151     |             |                          |             |             |
| 1608 |         |          | Cheby      | Silev    |           |                  | compu      | leu u | Ising the NO  | nparame    |           |               |         | 15 01      | FIUUC         | L 3. I  |             |                          |             |             |
| 1609 |         |          |            |          |           |                  | N          | lorm  |               | t on Dot   | ooto      | Only          |         |            |               |         |             |                          |             |             |
| 1610 |         |          |            | <b>C</b> | aoniro V  |                  | oct Stati  | istic |               | l on Dei   | ICCIS .   | Only          | Shanir  | ro \//i    |               | Tost    | •           |                          |             |             |
| 1611 |         |          | 5          | 0/ 04    |           |                  |            | suc   | 0.765         |            | Det       |               | Shaph   | Norn       |               |         | L<br>anifia |                          |             |             |
| 1612 |         |          | 5          | 70 31    |           |                  |            | atie  | 0.702         |            | Dei       |               |         |            |               |         | gninc       | ance Le                  | ver         |             |
| 1613 |         |          |            | 50       |           |                  |            | suc   | 0.291         |            | Det       |               |         | Norn       |               |         | anifia      |                          |             |             |
| 1614 |         |          |            | 5        | % Liller  |                  | nucal va   |       | 0.343         | al at 50   |           |               |         | NOIT       | nai at o      | ୦% ତାତ୍ | gninc       | ance Le                  | ver         |             |
| 1615 |         |          |            |          |           | Del              |            | ลเลล  | appear Norri  | iai at 5%  | o Sigi    | nincance L    | evei    |            |               |         |             |                          |             |             |
| 1616 |         |          | Kon        | lon I    | Anior (k  |                  | Statiation |       | a Normal C    | ritical \/ | aluaa     | and other     | Nonnor  | omot       |               |         |             |                          |             |             |
| 1617 |         |          | Кар        | nan-r    | vielei (r | (IVI) C          |            | usii  | 122 /         |            | alues     |               | мопра   | amer       |               | LS      | Fror        | of Moon                  |             | 00 70       |
| 1618 |         |          |            |          |           |                  |            | ean   | 200.2         |            |           |               |         | r.w        |               |         |             |                          | 2           | 02.72       |
| 1619 |         |          |            |          |           | 050/             |            | 50    | 209.3         |            |           |               | 050/ 1/ |            | 90<br>oroonti |         |             |                          | 2           | .50.5       |
| 1620 | -       |          |            |          |           | 95%              |            |       | 260.1         |            |           |               | 90% r   |            |               |         | otetra      |                          | 2           | 80.4        |
| 1621 |         |          |            | 0        | 00/ KM    | 90 %             |            |       | 209.0         |            |           |               |         |            | 95 /0 KI      |         | bych        |                          | - 0         | 09.4<br>01  |
| 1622 |         |          |            | 9        | 5% KM     | Chel             |            |       | 640           |            |           |               |         |            |               |         | bysi        |                          | - 4         | -04<br>M6 5 |
| 1623 |         |          |            | 97.      | 5 /6 KIVI | Cher             | bysnev c   | JCL   | 040           |            |           |               |         | 2          | 99 /0 KI      |         | bysi        |                          | 9           | 40.5        |
| 1624 |         |          |            |          |           | 6                | amma (     |       | Tosts on Do   | tootod (   | Oheo      | nuations ()   | alv     |            |               |         |             |                          |             |             |
| 1625 |         |          |            |          |           |                  |            |       | 0 172         |            | Juse      |               | ndoroo  |            | ding C(       |         | 0.01        |                          |             |             |
| 1626 |         |          |            |          | 5% /      |                  |            | suc   | 0.172         | Dot        | octod     | data anno     | ar Comr |            |               |         | 5% C        | ignifica                 | 200         |             |
| 1627 |         |          |            |          | J /0 F    | ч-D С<br>к с т   | oct Stati  | intic | 0.703         | Dell       | ecieu     |               |         |            | Smirne        |         |             | nynnicai                 |             | Level       |
| 1628 |         |          |            |          | 5% k      |                  |            | suc   | 0.142         | Dot        | octod     | data anno     |         |            | stribute      |         | אר<br>5% פ  | ignifica                 | 200         |             |
| 1629 |         |          |            |          | Doto      |                  |            | noor  | Commo Die     |            |           |               |         |            | SIIDUle       |         | 5/0 3       | lynnica                  |             | Levei       |
| 1630 |         |          |            |          | Dele      | SCIEU            | uala ap    | pear  | Gamina Di     | sinduted   | alo       | % Significa   |         |            |               |         |             |                          |             |             |
| 1631 |         |          |            |          |           |                  | Gom        |       | Statiation or | Dotoot     |           | to Only       |         |            |               |         |             |                          |             |             |
| 1632 |         |          |            |          |           |                  |            |       |               | Delect     | eu Da     |               |         | I          | stor /h:-     | 20.00   | rroct       |                          | <u> </u>    | 0 270       |
| 1633 |         |          |            |          |           | That             |            |       | 319           |            |           |               | T       | K S        | star (bi      |         | rrecte      |                          | F           | 0.379       |
| 1634 |         |          |            |          |           | et               |            |       | 6 150         |            |           |               |         | neld S     |               | as COI  |             |                          |             | 3 70/       |
| 1635 |         |          |            |          |           | n<br>            |            |       | 105.6         |            |           |               |         |            | nu sta        |         | as C0       | mected)                  | ⊢           | J.794       |
| 1636 |         |          |            |          |           | we               | an (uete   | 015)  | 0.661         |            |           |               |         |            |               |         |             |                          |             |             |
| 1637 |         |          |            |          |           |                  | amme r     | 000   | Statiation    | ing Im-    | ام مؤر رو | Non Data      | te      |            |               |         |             |                          |             |             |
| 1638 |         |          | CPOS       | movi     | not ha    | USON             |            | 103   |               |            |           | null-Delec    |         |            | multin        |         |             |                          |             |             |
| 1639 |         | CPOS ~-  | GRUS       | may      | NULDE I   | usea             | when aa    |       |               |            |           | inly tied obs |         |            |               |         | ,<br>       | <15 00V                  |             |             |
| 1640 |         | ыкор ma  | IY HOLDE I | used     | when k    | siar o           |            |       | mothed me     | ×1.∪, €    | spec      |               |         |            |               | nali (e | e.g.,       | <ul><li>10-20)</li></ul> |             |             |
| 1641 |         |          |            | FO       | such s    | intuati          | ons, GR    | 05 r  | nethod may    |            | correc    | i values of   |         | na B       | I VS          |         |             |                          |             |             |
| 1642 |         | <b>F</b> | nove '' ·  |          | od -!- '  | <br>             |            | pecia | ally true whe | n the sa   | mple      | size is sma   | 111.    |            | Hor -         | 1/14    |             |                          |             |             |
| 1643 |         | ⊦or ga   | mma dist   | ribut    | ea dete   | cted (           | aata, B M  | vsa   | nd UCLs ma    | y be cor   | npute     | ed using ga   | mma dis | stribut    | uon on        | ĸMe     | estima      | ates                     | <del></del> | 00.0        |
| 1644 |         |          |            |          |           |                  | Minim      | num   | 0.01          |            |           |               |         |            |               |         |             | Mean                     | 1           | 22.3        |

|      | A B C                     | DE                                 | F              | G              | Н            |             | J                | K                      | L      |
|------|---------------------------|------------------------------------|----------------|----------------|--------------|-------------|------------------|------------------------|--------|
| 1645 |                           | Maximum                            | 650            |                |              |             |                  | Median                 | 19.17  |
| 1646 |                           | SD                                 | 224.4          |                |              |             |                  | CV                     | 1.835  |
| 1647 |                           | k hat (MLE)                        | 0.192          |                |              |             | k star (bias co  | orrected MLE)          | 0.203  |
| 1648 |                           | Theta hat (MLE)                    | 637.4          |                |              | The         | ta star (bias co | orrected MLE)          | 601.7  |
| 1649 |                           | nu hat (MLE)                       | 3.069          |                |              |             | nu star (b       | ias corrected)         | 3.252  |
| 1650 | Adjusted                  | Level of Significance (β)          | 0.0195         |                |              |             |                  |                        |        |
| 1651 | Approximate Cl            | ni Square Value (3.25, α)          | 0.451          |                |              | Adjusted    | I Chi Square \   | /alue (3.25, β)        | 0.262  |
| 1652 | 95% Gamma Approximate     | e UCL (use when n>=50)             | 882.2          |                | 95% Ga       | amma Adji   | usted UCL (us    | e when n<50)           | 1518   |
| 1653 |                           |                                    |                |                |              |             |                  |                        |        |
| 1654 |                           | Estimates of G                     | amma Para      | meters using   | KM Estima    | ites        |                  |                        |        |
| 1655 |                           | Mean (KM)                          | 123.4          |                |              |             |                  | SD (KM)                | 209.3  |
| 1656 |                           | Variance (KM)                      | 43793          |                |              |             | SE               | of Mean (KM)           | 82.72  |
| 1657 |                           | k hat (KM)                         | 0.348          |                |              |             |                  | k star (KM)            | 0.301  |
| 1658 |                           | nu hat (KM)                        | 5.564          |                |              |             |                  | nu star (KM)           | 4.811  |
| 1659 |                           | theta hat (KM)                     | 354.9          |                |              |             | ti               | neta star (KM)         | 410.4  |
| 1660 | 80%                       | b gamma percentile (KM)            | 189.4          |                |              |             | 90% gamma p      | ercentile (KM)         | 363.9  |
| 1661 | 95%                       | a gamma percentile (KM)            | 564.1          |                |              | L.          | 99% gamma p      | ercentile (KM)         | 1084   |
| 1662 |                           | 0                                  | a Kanlan M     |                |              |             |                  |                        |        |
| 1663 | Annrovimete Cl            |                                    | 1 066          | eler (KM) Sta  | atistics     | Adjustos    |                  | (alua (1.91.0)         | 0.60   |
| 1664 |                           | The square value (4.81, $\alpha$ ) | 1.000          |                | 050/ 000000  | Adjusted    |                  | /alue (4.81, β)        | 0.69   |
| 1665 | 95% Gamma Approximate Kiv | I-UCL (use when h>=50)             | 557            |                | 95% Gamm     | la Adjuste  |                  | e when h<50)           | 800    |
| 1666 |                           | Lognormal GO                       | E Toot on D    | atacted Oba    | an/ationa O  | nhv         |                  |                        |        |
| 1667 |                           | Lognormal GO                       |                |                | ervations O  | Chapiro     |                  | -+                     |        |
| 1668 | 50/ 24                    | napiro Wilk Test Statistic         | 0.960          | Doto           | otod Doto o  | Shapiro     | normal at 5%     | Significance           | ovol   |
| 1669 | 5 % 31                    |                                    | 0.702          | Dele           |              |             |                  |                        | evei   |
| 1670 | E                         |                                    | 0.143          | Detr           | atad Data a  |             |                  | <u> Cignificanca I</u> | aval   |
| 1671 | 5                         |                                    |                | mal at 5% S    |              |             | jiiuiiiai at 5 % |                        | evei   |
| 1672 |                           |                                    | pear Logilo    |                | nymincance   | Level       |                  |                        |        |
| 1673 |                           | l ognormal ROS                     | S Statistics   | Ising Impute   | d Non-Dete   | orts        |                  |                        |        |
| 1674 |                           | Mean in Original Scale             | 122 5          |                |              |             | Mea              | n in Log Scale         | 2 343  |
| 1675 |                           | SD in Original Scale               | 224.3          |                |              |             | S                | ) in Log Scale         | 3.09   |
| 16/6 | 95% t UCL (assume         | s normality of ROS data)           | 272.7          |                |              | 95          | % Percentile F   | Bootstrap UCI          | 259.8  |
| 16// |                           | 35% BCA Bootstrap UCL              | 316.9          |                |              |             | 95% Bo           | ootstrap t UCI         | 861.8  |
| 1678 |                           | 95% H-UCL (Log ROS)                | 61950364       |                |              |             |                  |                        |        |
| 1679 |                           | ( )                                |                |                |              |             |                  |                        |        |
| 1680 | Statis                    | tics using KM estimates            | on Logged [    | Data and Ass   | suming Logi  | normal Dis  | stribution       |                        |        |
| 1681 |                           | KM Mean (logged)                   | 3.084          |                |              |             |                  | KM Geo Mean            | 21.85  |
| 1602 |                           | KM SD (logged)                     | 2.018          |                |              | 959         | % Critical H Va  | alue (KM-Log)          | 6.186  |
| 1603 | KM Standar                | d Error of Mean (logged)           | 0.798          |                |              |             | 95% H-U          | ICL (KM -Log)          | 18738  |
| 1695 |                           | KM SD (logged)                     | 2.018          |                |              | 959         | % Critical H Va  | alue (KM-Log)          | 6.186  |
| 1696 | KM Standar                | d Error of Mean (logged)           | 0.798          |                |              |             |                  |                        |        |
| 1627 |                           | ,                                  |                |                |              |             |                  |                        |        |
| 1688 |                           |                                    | DL/2 S         | tatistics      |              |             |                  |                        |        |
| 1689 | DL/2 N                    | lormal                             |                |                |              | DL/2 Log    | g-Transforme     | d                      |        |
| 1690 |                           | Mean in Original Scale             | 122.8          |                |              |             | Mear             | n in Log Scale         | 2.824  |
| 1691 |                           | SD in Original Scale               | 224.1          |                |              |             | SE               | ) in Log Scale         | 2.442  |
| 1692 | 95% t U                   | ICL (Assumes normality)            | 272.9          |                |              |             | 95               | % H-Stat UCL           | 305752 |
| 1693 | DL/2 i                    | s not a recommended me             | ethod, provid  | ded for comp   | arisons and  | l historica | l reasons        |                        |        |
| 1694 |                           |                                    |                |                |              |             |                  |                        |        |
| 1695 |                           | Nonparame                          | etric Distribu | tion Free UC   | L Statistics |             |                  |                        |        |
| 1696 |                           | Detected Data appea                | r Normal Dis   | stributed at 5 | i% Significa | nce Level   |                  |                        |        |
| 1697 |                           |                                    |                |                |              |             |                  |                        |        |
| 1698 |                           |                                    | Suggested      | UCL to Use     |              |             |                  |                        |        |
| 1699 |                           | 95% KM (t) UCL                     | 280.1          |                |              |             |                  |                        |        |
|      |                           |                                    |                | 0              |              |             |                  |                        |        |

|      | A | В             | C              | D             | E              | F               | G                 | Н               |               | J             | K              | L     |
|------|---|---------------|----------------|---------------|----------------|-----------------|-------------------|-----------------|---------------|---------------|----------------|-------|
| 1700 |   |               |                |               |                |                 |                   |                 |               |               |                |       |
| 1701 |   | Note: Sugge   | stions regard  | ling the sele | ction of a 95% | % UCL are p     | rovided to hel    | p the user to   | select the m  | nost appropri | ate 95% UC     | CL.   |
| 1702 |   |               | F              | Recommenda    | ations are ba  | sed upon da     | ta size, data     | distribution,   | and skewnes   | S.            |                |       |
| 1703 |   | These record  | mmendation     | s are based   | upon the resi  | ults of the sin | nulation studi    | es summariz     | zed in Singh, | Maichle, and  | d Lee (2006    | ).    |
| 1704 |   | However, simu | lations result | s will not co | ver all Real V | Vorld data se   | ets; for addition | onal insight tl | he user may   | want to cons  | ult a statisti | cian. |
| 1705 |   |               |                |               |                |                 |                   |                 |               |               |                |       |

Appendix E - Laboratory certificates

| ي.<br>19 التاني الم |
|---------------------|
| No 👝 🕅 A            |
| No N/A              |
| c                   |
|                     |
|                     |
| \$                  |
|                     |
| (BCL)-              |
|                     |
|                     |
| Hold                |
|                     |
| x                   |
| x                   |
| - <b>x</b>          |
| x                   |
| x                   |
|                     |
| x                   |
| X                   |
| x                   |
|                     |
| x                   |
| 1                   |
|                     |

Z = Zinc Acetato Preserved Bottle; E = EDTA Preserved Bottles; ST = Stenle Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

| 24-14 1. 4. 5 I                        | CHAIN OF<br>CUSTODY<br>ALS Laboratory.<br>ploase tick →                                                                                                   | CADELA 10<br>Ph: 05 8369<br>DHRIGHAM<br>Ph: 07 3245<br>DGLADSTC<br>Ph: 07 7474              | 21 Burnta Road Poi<br>0890 F: adelaide@al<br>F 32 Shand Straet St<br>7222 E: samplos bits<br>NE 46 Cellemotidah<br>5500 E: gladslone@ | prava SA 2005<br>Itajiolati.com<br>Itafioni QLD 4053<br>sopreggiologiobal.com<br>Drive Chrish QLD 4580<br>alsguobal.com | EMACKAY 78 Hartxie<br>Pix 07 4944 0177 El mi<br>EMELEOURNE 2-4 W<br>Ph: 03 6519 6600 E1 co<br>EMUDGEE 27 Sydney<br>Ph: 07 6172 6735 f., mi | Road Mackay OLI<br>ackay@asguebal o<br>estall Road Sering<br>amplestite pournal<br>Road Mudgee NS<br>angee mail@alsg to | D 4740<br>orn<br>Mole VIC 317<br>@alsglobal o<br>W 2850<br>Ibal.com | DNFWCAST<br>Ph; 02 4908<br>/1 DNOWRU<br>000 Ph; 02442<br>Citiffi<br>Ph; 0 | (LE 5 Rose Gum )<br>9433 Et samples,<br>4443 Geery Pler<br>13 2063 Et now at<br>RTH 10 Hod Way<br>6 9209 7855 Et s | Road Warabroo<br>newcastio@fais<br>w North Nriwin<br>@elsglobal com<br>Mataga WA û<br>amptes.perita@ | ik NSW 2304<br>globa' com<br>NSW 2541<br>-<br>950<br>950<br>950 com |                               | US <sup>V</sup><br>Ph. (<br>UTC<br>Pho<br>Pho<br>Pho<br>Pho | (DNEY 2<br>02 8764 (<br>02 8764 (<br>02 8764 (<br>04 876 (<br>01 6 876 (<br>02 4225 ( | 77-289 V<br>8656 Et:<br>LLE 14 1<br>9600 Et<br>CONG 99<br>3125 Et | Woodpart<br>samples:<br>16 Desma<br>rownes/16<br>9 Kenny (<br>portkern) | k Road S:<br>sydney@;<br>a Court B:<br>lo.chvironik<br>Street Wio<br>bla@atigt | nithfield N<br>alsglobal t<br>the QLD 4<br>tental@to's<br>tongong f<br>total.com | ISW 2164<br>tom<br>4818<br>9-061 com<br>NSW 2501 | і<br>и      |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|-------------|
| CLIENT:                                | GHD Pty Ltd                                                                                                                                               |                                                                                             | TURNAROUN                                                                                                                             |                                                                                                                         | Standard TAT (List                                                                                                                         | due date):                                                                                                              |                                                                     |                                                                           |                                                                                                                    |                                                                                                      | FÖR                                                                 | ABORAT                        | XRY US                                                      | E ÓNI                                                                                 | LY (C                                                             | ircle)                                                                  |                                                                                |                                                                                  |                                                  |             |
| OFFICE:                                | level 15, 133 Castlereagh St, Sydney                                                                                                                      |                                                                                             | (Standard TAT n<br>some tosts e.g.                                                                                                    | nay be longer for                                                                                                       | Non Standard or ur                                                                                                                         | gent TAT (List                                                                                                          | t due date                                                          | ):                                                                        |                                                                                                                    |                                                                                                      | Custo                                                               | dy Seal Intect                | 7                                                           |                                                                                       |                                                                   |                                                                         | Yes                                                                            |                                                                                  | No                                               | (N/A)       |
| PROJECT                                | : 12517048                                                                                                                                                |                                                                                             | ALS QUOTE                                                                                                                             | ND.: S                                                                                                                  | SY-552-19                                                                                                                                  |                                                                                                                         |                                                                     | COC SEQ(                                                                  | JENCE NUMB                                                                                                         | ER (Circle)                                                                                          | F100 1                                                              | 2 / frozen ice                | bneks (                                                     | orasent                                                                               | uponin                                                            | eceipt                                                                  | Yes                                                                            |                                                                                  | No                                               | N/A         |
| ORDER N                                | UMBER:                                                                                                                                                    |                                                                                             |                                                                                                                                       |                                                                                                                         |                                                                                                                                            |                                                                                                                         | {                                                                   | * 1 (2)                                                                   | 34                                                                                                                 | 56                                                                                                   | 7 Rando                                                             | m Sample Te                   | emperati                                                    | ire on R                                                                              | (eccipt:                                                          |                                                                         | 29                                                                             | 1                                                                                | C                                                |             |
| PROJECT                                | MANAGER: Carmen Yi                                                                                                                                        | CONTACT P                                                                                   | 'H: 0451 962 98                                                                                                                       | 8                                                                                                                       |                                                                                                                                            |                                                                                                                         | OF                                                                  | . 1 2                                                                     | 34                                                                                                                 | 5 6                                                                                                  | 7 Solher                                                            | comment.                      | 10 an 19<br>19 an 19                                        |                                                                                       |                                                                   | <u></u>                                                                 | ا <b>ہ</b> ھے                                                                  | <u> </u>                                                                         |                                                  |             |
| SAMPLER                                | : Sarah Eccleshali                                                                                                                                        | SAMPLER N                                                                                   | AOBILE: 0459 5                                                                                                                        | 546 332 RE                                                                                                              | ELINQUISHED BY:                                                                                                                            |                                                                                                                         | REC                                                                 | CEIVED BY:                                                                |                                                                                                                    |                                                                                                      | RELINQUIS                                                           | HED BY:                       |                                                             |                                                                                       |                                                                   | RECE                                                                    | State                                                                          | #Y:<br>•0                                                                        |                                                  |             |
| COC emai                               | led to ALS? ( YES / NO)                                                                                                                                   | EDD FORM/                                                                                   | AT (or default):                                                                                                                      | S.                                                                                                                      | Eccleshall                                                                                                                                 |                                                                                                                         | 5                                                                   | op M.                                                                     |                                                                                                                    |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   |                                                                         | 0,0                                                                            | ት።                                                                               |                                                  |             |
| Email Rep                              | orts to: sarah.eccleshall@ghd.com; carmen                                                                                                                 | .yi@ghd.com; labreprots(                                                                    | Bghd.com                                                                                                                              | DA                                                                                                                      | ATE/TIME:                                                                                                                                  |                                                                                                                         | DAT                                                                 | FE/TIME:                                                                  |                                                                                                                    |                                                                                                      | DATE/TIME                                                           | :                             |                                                             |                                                                                       |                                                                   | DATE                                                                    | TIME:                                                                          | L a                                                                              | . 7                                              |             |
| Email Invo                             | pice to (will default to PM if no other addresse                                                                                                          | as are listed):                                                                             |                                                                                                                                       |                                                                                                                         |                                                                                                                                            |                                                                                                                         |                                                                     |                                                                           |                                                                                                                    |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   | 3                                                                       |                                                                                | <u>s icq</u>                                                                     | <u> </u>                                         | .47         |
| COMMEN                                 | TS/SPECIAL HANDLING/STORAGE OR DIS                                                                                                                        | POSAL: Please inform                                                                        | GHD contacts (                                                                                                                        | of any possible holdir                                                                                                  | ng time issues that a                                                                                                                      | are pecieved                                                                                                            | with thea                                                           | ie samples                                                                |                                                                                                                    |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                |                                                                                  |                                                  |             |
| ALS<br>USE                             | SAMPLE DETAILS                                                                                                                                            | LID (Ŝ) WATER (W)                                                                           |                                                                                                                                       | CONTAINER I                                                                                                             | NEORMATION                                                                                                                                 |                                                                                                                         |                                                                     | ANALY<br>Where Metals                                                     | SIS REQUIRE<br>are required, s                                                                                     | D including<br>pecify Total                                                                          | SUITES (NB. Su<br>unfiltered bottle                                 | ite Codes m<br>required) or l | ist be lis<br>Dissolve                                      | ted to a<br>ad (field                                                                 | ittract si<br>i filterer                                          | uite pric<br>5 bottle r                                                 | :e)<br>required                                                                | <b>)</b> .                                                                       |                                                  |             |
| LABID                                  | SAMPLE ID                                                                                                                                                 | DATE / TIME                                                                                 | MATRIX                                                                                                                                | TYPE & PRESERVA<br>(refer to c<br>below)                                                                                | TOTAL AAL                                                                                                                                  | ASS Field Screen (pH<br>field ad pHfox)                                                                                 | Phenols                                                             | TRH                                                                       | BTEXN                                                                                                              | 100                                                                                                  | TCN                                                                 | OCIOPIPCB                     | РАН                                                         | Total Fluoride                                                                        | vocs                                                              | Particle Size<br>distribution                                           | ICMPS Metals (15<br>metals + Iow level Hg)                                     |                                                                                  |                                                  | Hold        |
| 13                                     | VC03_0.0-0.1                                                                                                                                              | 30/10/2019 22:15                                                                            | S                                                                                                                                     | ASS                                                                                                                     | 1                                                                                                                                          | ×                                                                                                                       |                                                                     |                                                                           |                                                                                                                    |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   | ļ                                                                       |                                                                                |                                                                                  |                                                  | ļ           |
| 14                                     | VC03_0.5-0.6                                                                                                                                              | 30/10/2019 22:1 <del>5</del>                                                                | s                                                                                                                                     | ASS                                                                                                                     | 1                                                                                                                                          | x                                                                                                                       |                                                                     |                                                                           |                                                                                                                    |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                | ľ                                                                                |                                                  | i           |
| 15                                     | VC03_10-1.1                                                                                                                                               | 30/10/2019 22:15                                                                            | S                                                                                                                                     | ASS                                                                                                                     | 1                                                                                                                                          | x                                                                                                                       |                                                                     |                                                                           |                                                                                                                    |                                                                                                      |                                                                     | ,<br>                         |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                |                                                                                  |                                                  |             |
| 116                                    | VC01_0.0-0.1                                                                                                                                              | 30/10/2019 23:45                                                                            | S                                                                                                                                     | ASS                                                                                                                     | ĩ                                                                                                                                          | ×                                                                                                                       |                                                                     |                                                                           |                                                                                                                    | -                                                                                                    |                                                                     |                               | ł                                                           |                                                                                       |                                                                   |                                                                         |                                                                                |                                                                                  | ļ                                                |             |
| 17                                     | vc01_0.5-0.8                                                                                                                                              | 30/10/2019 23:45                                                                            | S S                                                                                                                                   | ASS                                                                                                                     | 1                                                                                                                                          | ×                                                                                                                       |                                                                     |                                                                           |                                                                                                                    |                                                                                                      |                                                                     |                               |                                                             | T                                                                                     |                                                                   |                                                                         |                                                                                |                                                                                  | j                                                |             |
| 12                                     | VC01_1.0-1.1                                                                                                                                              | 30/10/2019 23:45                                                                            | s                                                                                                                                     | ASS                                                                                                                     | 1<br>  _                                                                                                                                   | x                                                                                                                       |                                                                     |                                                                           |                                                                                                                    |                                                                                                      | )                                                                   |                               |                                                             | \<br>\<br>\                                                                           |                                                                   |                                                                         |                                                                                |                                                                                  |                                                  |             |
| (9                                     | VC02_0.0-0.1                                                                                                                                              | 30/10/2019 23:45                                                                            | s                                                                                                                                     | ASS                                                                                                                     | 1                                                                                                                                          | x                                                                                                                       |                                                                     |                                                                           | ļ                                                                                                                  |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                |                                                                                  |                                                  |             |
| 20                                     | VC02_0.5-0.6                                                                                                                                              | 30/10/2019 23:45                                                                            | 5                                                                                                                                     | ASS                                                                                                                     | 1                                                                                                                                          | x                                                                                                                       |                                                                     | ا<br>                                                                     | )<br>l                                                                                                             |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                |                                                                                  |                                                  |             |
| 21                                     | VC02_0.9-1.0                                                                                                                                              | 30/10/2019 23:45                                                                            | s                                                                                                                                     | ASS                                                                                                                     | 1                                                                                                                                          | ×                                                                                                                       |                                                                     |                                                                           |                                                                                                                    |                                                                                                      |                                                                     | [<br>i                        |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                |                                                                                  |                                                  |             |
| 22                                     | VC02_1.5-1.6                                                                                                                                              | 30/10/2019 23:45                                                                            | S                                                                                                                                     | ASS                                                                                                                     | 1                                                                                                                                          | x                                                                                                                       |                                                                     |                                                                           |                                                                                                                    |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                | ]                                                                                |                                                  | ļ           |
| 23                                     | VC10_0.0-0.1                                                                                                                                              | 31/10/2019 0;45                                                                             | S                                                                                                                                     | ASS                                                                                                                     | 1                                                                                                                                          | x                                                                                                                       |                                                                     |                                                                           |                                                                                                                    | l I                                                                                                  |                                                                     |                               |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                |                                                                                  |                                                  |             |
| . 2                                    | VC10_0.5-0.6                                                                                                                                              | 31/10/2019 0:45                                                                             | S                                                                                                                                     | ASS                                                                                                                     | 1                                                                                                                                          | x                                                                                                                       |                                                                     |                                                                           |                                                                                                                    |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                |                                                                                  |                                                  |             |
|                                        |                                                                                                                                                           |                                                                                             |                                                                                                                                       |                                                                                                                         | TOTAL                                                                                                                                      | 12                                                                                                                      | _                                                                   |                                                                           |                                                                                                                    |                                                                                                      |                                                                     |                               |                                                             |                                                                                       |                                                                   |                                                                         |                                                                                |                                                                                  | į                                                |             |
| Water Con<br>V = VOA Vi<br>Z = Zinc Ac | isiner Codes: P = Unpreserved Plastic; N = Nitri<br>al HCI Preserved; VB = VOA Vial Sodium Bisulphal<br>state Preserved Bottle; E = EDTA Preserved Bottle | c Preserved Plastic; ORC =<br>le Preserved; VS = VOA Vial<br>es; ST = Sterile Bottle; ASS = | Nítric Preserved (<br>Sulfuric Preserve<br>- Plastic Bag for A                                                                        | DRC; SH = Sodium Hydro<br>ad; AV = Airfreight Unpresi<br>Add Sulphate Soils; B = Ui                                     | oxide/Cd Preserved; S<br>erved Vial SG = Sulfuri<br>npreserved Bag.                                                                        | = Sodium Hydro<br>c Preserved An                                                                                        | xide Prese<br>nber Glass                                            | rved Plastic; A0<br>; H = HCl pres                                        | 3 = Amber Gla<br>erved Plastic;                                                                                    | ss Unpreserv<br>HS = HCI pre                                                                         | ed; AP - Alrfreig<br>served Speciati                                | ht Unpreserv<br>on bottle; SP | ed Plast<br>= Sulfur                                        | ic<br>ic Prese                                                                        | erved P                                                           | 'lastic; i                                                              | F = Form                                                                       | aldehyd                                                                          | le Presé                                         | rved Glass; |

...**\_** . .

- -

··· ··**·····**··

| 197 P. L.  | C C                              | HAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please tick -> | LIADELA DI,<br>Ph. 08 6559 I<br>UBRISBANE<br>Ph. 07 2243<br>UGLADSTO<br>Ph. 07 7471 | 21 Brieffa Road Por<br>1820 Er arfelakte@yal<br>192 Shand Street St<br>2222 Lr samples.ons<br>NE 46 Collemondoh<br>5600 El gladstona@r | praka SA 3085<br>Isglobal com<br>Isflord QLD 4053<br>stane@alsglobal com<br>Drive Ginton QLD 4680<br>Islaglobal.com | LIMACKAY 78 Herber<br>Pol 07 4944 0177 F :<br>DMELBOURNE 2-4<br>Ph: 03 8649 9000 €<br>DMUDGEE 27 Synhe<br>Ph: 02 6372 6735 b : 1 | nr Road Mackey C<br>mackay@elsp obo<br>Westali Road Spri<br>samples melbourn<br>y Road Mudgee I-<br>nudgee mal@also | () D 4740<br>( con)<br>ngvale VIC 3<br>nggalsglobal<br>46W 2850<br>gkoal 46m | UNEWCAS<br>Ph-16:4998<br>3171 ON096<br>100-11 Ph:0244<br>DP5<br>Ph: | ME 5 Rose Gun<br>194321,1 skmale:<br>A 4/15 Gesky Fo<br>23 2003 8 mows<br>28 TH 10 Hod Wa<br>98 9209 7655 F: | n Road Waraboo<br>s.newcastie(gals<br>aus North Nowna<br>a@alsg15b31.com<br>ay Mologa WA 6<br>samples.penh@ | ok NSVV 2304<br>glopal.com<br>NSVV 2541<br>1<br>080<br>a sglobal.com |                                | ԱՏ՝<br>Բո<br>ՄՈ<br>Քի<br>ԱԿԿ<br>Քո | (ONEY 277-<br>02 6764 855<br>0WA SVILLE<br>07 4786 660<br>011 ONGON<br>02 4225 312 | 289 Woor<br>5 El somo<br>14-15 De<br>6 El towno<br>6 El towno<br>6 El towno<br>6 El towno | park Road<br>Iostsydney<br>sona Conri<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartvo<br>svitetartv | l Smithfield<br>/@alsgroos<br>I Horke Ol<br>onnestel@i<br>Wollongonj<br>Wollongonj<br>splotal.cor | LNSW 21<br>al com<br>D 4658<br>Bisglotiato<br>G NSW 20<br>Th | 154<br>2017<br>560 |
|------------|----------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|
| CLIENT:    | GHD Pty Ltd                      |                                                         |                                                                                     | TURNAROUN                                                                                                                              | ND REQUIREMENT (                                                                                                    | Standard TAT (Lis                                                                                                                | st due date):                                                                                                       |                                                                              |                                                                     |                                                                                                              |                                                                                                             | FOR                                                                  | LABORAT                        | ORY US                             | E ONLY                                                                             | (Circle                                                                                   | <b>r</b> us j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                              |                    |
| OFFICE:    | ievel 15, 133 Castlereagh §      | St, Sydney                                              |                                                                                     | (Standard TAT m<br>some tests e.g.                                                                                                     | nay be longer for<br>Ulira Trace                                                                                    | Non Standard or u                                                                                                                | irgent TAT (Li                                                                                                      | st due dat                                                                   | te):                                                                |                                                                                                              |                                                                                                             | Cust                                                                 | ody Seal Inter                 | <b>t?</b>                          |                                                                                    |                                                                                           | Yés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | () (1997)<br>(1997)                                                                               | No                                                           | (W)                |
| PROJECT    | : 12517048                       |                                                         |                                                                                     | ALS QUOTE                                                                                                                              | NO.:                                                                                                                | SY-552-19                                                                                                                        |                                                                                                                     |                                                                              | COC SEQ                                                             |                                                                                                              | BER (Circle)                                                                                                | Free                                                                 | ice/ frozen io                 | e bricks j                         | present up                                                                         | on receir                                                                                 | r Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>)</b>                                                                                          | No                                                           | N/A                |
| ORDER N    | UMBER:                           |                                                         |                                                                                     | 1                                                                                                                                      |                                                                                                                     |                                                                                                                                  |                                                                                                                     |                                                                              | DC: 1 2                                                             | 3 4                                                                                                          | 56                                                                                                          | 7 Rand                                                               | iom Sample T                   | emperati                           | ire on Rec                                                                         | âipt:                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   | °C                                                           |                    |
| PROJECT    | MANAGER: Carmen Yî               |                                                         | CONTACT P                                                                           | H: 0451 962 98                                                                                                                         | 8                                                                                                                   |                                                                                                                                  |                                                                                                                     | c                                                                            | 0F: 1 2                                                             | 34                                                                                                           | 56                                                                                                          | 7 Other                                                              | r comment:                     |                                    |                                                                                    |                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>                                      </u>                                                     | <u></u>                                                      | <del>_</del>       |
| SAMPLE     | t: Sarah Eccleshall              |                                                         | SAMPLER M                                                                           | OBILE: 0459 5                                                                                                                          | i46 332 R                                                                                                           | ELINQUISHED BY:                                                                                                                  |                                                                                                                     | R                                                                            | ECEIVED BY:                                                         |                                                                                                              |                                                                                                             | RELINQUI                                                             | SHED BY:                       |                                    |                                                                                    | RE                                                                                        | CEIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) BY:                                                                                             |                                                              |                    |
| COC ema    | iled to ALS? (YES / NO)          |                                                         | EDD FORMA                                                                           | T (or default):                                                                                                                        | s                                                                                                                   | . Eccleshall                                                                                                                     |                                                                                                                     |                                                                              | Oep M.                                                              |                                                                                                              |                                                                                                             |                                                                      |                                |                                    |                                                                                    | -                                                                                         | - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - A.                                                                                              | £                                                            |                    |
| Email Rej  | oorts to: sarah.eccleshall@gl    | hd.com; carmen.yi@ghd.c                                 | com; labreprots@                                                                    | )ghd.com                                                                                                                               | P                                                                                                                   | ATE/TIME:                                                                                                                        |                                                                                                                     | DA                                                                           | ATE/TIME:                                                           |                                                                                                              |                                                                                                             | DATE/TIM                                                             | E:                             |                                    |                                                                                    | DA                                                                                        | TE/TIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E:<br>La la                                                                                       | 4 /                                                          | 925                |
| Email Inv  | oice to (will default to PM if n | o other addresses are liste                             | ed):                                                                                |                                                                                                                                        |                                                                                                                     |                                                                                                                                  |                                                                                                                     |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    |                                                                                    |                                                                                           | <u>`\$!</u> {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)                                                                                               | <u> </u>                                                     | <u>د</u> ۲۵        |
| COMMEN     | TS/SPECIAL HANDLING/ST           | ORAGE OR DISPOSAL:                                      | Please inform 0                                                                     | SHD contacts of                                                                                                                        | of any possible holdi                                                                                               | ing time issues that                                                                                                             | are pecieved                                                                                                        | d with the                                                                   | se samples                                                          |                                                                                                              |                                                                                                             |                                                                      |                                |                                    |                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| ALS<br>USE | SAMPLE DETAILS                   | MATRIX SOLID (S) W                                      | ATER (Ŵ)                                                                            |                                                                                                                                        | CONTAINER 1                                                                                                         |                                                                                                                                  |                                                                                                                     |                                                                              | ANALY<br>Where Metals                                               | SIS REQUIRE<br>are required,                                                                                 | ED Including specify Total                                                                                  | SUITES (NB. S<br>(unfiltered bottle                                  | uite Codes m<br>s required) or | ust be lis<br>Dissolve             | ted to attra<br>d (field filt                                                      | ct suite p<br>ered bott                                                                   | rice)<br>le requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed).                                                                                              |                                                              |                    |
| LAB ID     | SAMPLE ID                        | DA DA                                                   | TE / TIME                                                                           | MATRIX                                                                                                                                 | TYPE & PRESERVA<br>(refer to<br>below)                                                                              | CONTAINERS                                                                                                                       | ASS Field Screen (pH<br>field ad pHfox)                                                                             | Phenols                                                                      | Har                                                                 | BTEXN                                                                                                        | 20                                                                                                          | N                                                                    | OC(OP/PCB                      | AH                                 | Total Fluoride                                                                     | Particle Size                                                                             | distribution<br>CMPS Metals (15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              | plot               |
| 25         | VC11 0.0-0.1                     | 30/10                                                   | )/2019 20:00                                                                        | s                                                                                                                                      | ASS                                                                                                                 |                                                                                                                                  |                                                                                                                     |                                                                              |                                                                     | -                                                                                                            |                                                                                                             |                                                                      |                                |                                    |                                                                                    | <u> </u>                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| 26         | VC11_0.5-0.6                     | 30/10                                                   | )/2019 20:00                                                                        | s                                                                                                                                      | AŝS                                                                                                                 | 1                                                                                                                                | ×                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             | - +-<br>L                                                            |                                |                                    | + <u>1</u><br>                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| 27         | VC11_1.0-1.1                     | 30/10                                                   | /2019 20:00                                                                         | s                                                                                                                                      | ASS                                                                                                                 | 1                                                                                                                                | x                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    |                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| B          | VC09_0.0-0.1                     | 30/1D                                                   | )/2019 20:45                                                                        | 5                                                                                                                                      | ASS                                                                                                                 | [<br>; 1                                                                                                                         | x                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             | )<br>.)                                                              |                                |                                    |                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| 29         | VC09_0.5-0.6                     | 30/10                                                   | )/2019 20:45                                                                        | s                                                                                                                                      | A55                                                                                                                 | 1                                                                                                                                | ×                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             | 1                                                                    |                                |                                    |                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| 30         | VC09_0.9-1.0                     | 30/10                                                   | )/2019 20:45                                                                        | s                                                                                                                                      | ASS                                                                                                                 | 1                                                                                                                                | x                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    |                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| 31         | VC07_0.0-0.1                     | 30/10                                                   | 0/2019 21:00                                                                        | s                                                                                                                                      | ASS                                                                                                                 | 1                                                                                                                                | <b>x</b>                                                                                                            |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    |                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| 32         | VC07_0.5-0.8                     | 30/10                                                   | )/2019 21: <b>0</b> 0                                                               | s                                                                                                                                      | ASS                                                                                                                 | 1                                                                                                                                | x                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    | l<br>+                                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   | L                                                            |                    |
| _ 33       | VC07_1.0-1.1                     | 30/10                                                   | )/2019 21:00                                                                        | s                                                                                                                                      | ASS                                                                                                                 | 1                                                                                                                                | ×                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    |                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| 34         | VC05_0.0-0.1                     | 30/10                                                   | )/2019 21:45                                                                        | s                                                                                                                                      | ASS                                                                                                                 | 1                                                                                                                                | ×                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    | ۱<br>۱                                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   | └──┤                                                         |                    |
| - 35       | lvc05_0.5-0.6<br>t               | 30/10                                                   | 0/2019 21:45                                                                        | _ s                                                                                                                                    | ASS                                                                                                                 | 1                                                                                                                                | x                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    | ) ' <br>+                                                                          |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   | <u> </u>                                                     |                    |
| - 36       | VC05_0.8-1.0                     | 30/10                                                   | )/2019 21:45                                                                        | s                                                                                                                                      | ASS                                                                                                                 | 1                                                                                                                                | ×                                                                                                                   |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    |                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |
| *          |                                  |                                                         |                                                                                     |                                                                                                                                        | 5                                                                                                                   | TOTAL                                                                                                                            | 12                                                                                                                  |                                                                              |                                                                     |                                                                                                              |                                                                                                             |                                                                      |                                |                                    |                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                              |                    |

V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Ainfreight Unpreserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

| enu        | CHAIN OF<br>CUSTODY<br>CALFECT FERENCE 1974.3<br>CALFECT FERENCE 1974.3<br>CHAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please tick -><br>CHAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please tick -><br>CHAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please tick -><br>CHAIN OF<br>CUSTODY<br>CHAIN OF<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTODY<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON<br>CUSTON |                        |                         |                                    |                                   | EIMAC<br>Pitt C7<br>Ph. 03<br>Ph. 03<br>Ph. 02<br>Ph. 02 | CKAY 78 Farbour<br>7 4944 0177 Filmse<br>1 KOURNE 2-4 Wi<br>3 8549 8500 Fillsa<br>8 549 8500 Fillsa<br>DGEE 27 Sydney<br>2 5372 6735 Ellmu | Rrad Markay C<br>ickay®eloglobal<br>estali Road Sym<br>mpics moloourn<br>Road Mudgee N<br>idgee.mail@jalsg | () (D 4740<br>com<br>com<br>co@alsglobalic<br>SW 2850<br>jlobal.com | UNEWCA8<br>Ph. 62 4968<br>11 UNOWP<br>6n3 Phy 0244<br>UP5<br>Phy<br>Phy | TLE 5 Rose Gum<br>9433 Et camples<br>A 4/13 Geary Pla<br>23 2063 E rowed<br>RTH 10 Hod Wa<br>93 9209 A655 T | Road Worabrod<br>newcostic@ofs<br>ice Norib Nowra<br>ລີເວລີຍຽງໄປເອ <sup>1</sup> com<br>ທູ Malogal WA ຍີ<br>samplex.cw1ຄຜູ້ | k NSW 2304<br>giobal com<br>NSW 2541<br>090<br>silegiobal com |                                | שטי<br>דה:<br>Ph:<br>שעים<br>Ph: | (DNHY 2<br>52 8784 (<br>DWNSV4<br>07 4790 (<br>OLTONG<br>02 4225 ( | 977-2()9<br>8555 F<br>LLF 14-<br>0600 E<br>SONG 9<br>3125 E | Worktpar<br>seropies<br>to Desno<br>townesti<br>S Kenny (<br>portkem) | ж Road S<br>.sydney@<br>a Court a<br>teteroironr<br>Street Wit<br>Dia@elsgi | m thread NS<br>etsglobel.co<br>onle QLD 4<br>nentalgialsg<br>stongong N<br>bbal.com | SW 2164<br>om<br>816<br>Jobal com<br>ISVY 2500 |                  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|------------------------------------|-----------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------|----------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|------------------|
| CLIËNT:    | GHD Pty Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                         | TURNAROUN                          | ID REQUIREMENT                    | 🗍 Stand                                                  | lard TAT (List                                                                                                                             | due date):                                                                                                 | •                                                                   |                                                                         |                                                                                                             |                                                                                                                            | FØR                                                           | LABORAT                        | ORY US                           | EONL                                                               | LY (C                                                       | ircle)                                                                | ÷.                                                                          |                                                                                     |                                                |                  |
| OFFICE:    | level 15, 133 Castlere:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | agh St, Sydney         |                         | (Slandard TAT n<br>some tests e.g. | nay be longer for<br>Utira Trace  | 🗆 Non S                                                  | Stendard or urg                                                                                                                            | ent TAT (Li                                                                                                | st due date                                                         | ):                                                                      |                                                                                                             |                                                                                                                            | Ċusić                                                         | dy Seal Hiat                   | 17                               |                                                                    |                                                             |                                                                       | Yes                                                                         |                                                                                     | No                                             | (NA              |
| PROJECT    | : 12517046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                         | ALS QUOTE                          | NO.:                              | SY-552-1                                                 | 19                                                                                                                                         |                                                                                                            |                                                                     | COC SEQ                                                                 | UENCE NUMB                                                                                                  | ER (Circle)                                                                                                                | Rec                                                           | Frozen la                      | e bricks j                       | vresent                                                            | upon n                                                      | ecelp                                                                 | Yes                                                                         | 1                                                                                   | No                                             | NA               |
| ORDER N    | UMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                         | 1                                  |                                   |                                                          |                                                                                                                                            |                                                                                                            | coc                                                                 | . 1 2                                                                   | 3 A)                                                                                                        | ) 5 6                                                                                                                      | 7 Rand                                                        | om Sample T                    | emperal                          | ire on R                                                           | eceipt                                                      |                                                                       | d and a                                                                     | ۲ ،                                                                                 |                                                |                  |
| PROJECT    | MANAGER: Carmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yi                     | CONTACT P               | H: 0451 962 98                     | 8                                 |                                                          |                                                                                                                                            |                                                                                                            | OF:                                                                 | 1 2                                                                     | 3 4                                                                                                         | 56                                                                                                                         | 7 Other                                                       | comment.                       |                                  |                                                                    |                                                             |                                                                       | 3-9                                                                         |                                                                                     | N. H. S.<br>Santa                              |                  |
| SAMPLER    | t: Sarah Eccleshali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | SAMPLER N               | OBILE: 0459 5                      | 46 332                            | RELINQUI                                                 | ISHED BY:                                                                                                                                  |                                                                                                            | REC                                                                 | EIVED BY:                                                               |                                                                                                             |                                                                                                                            | RELINQUI                                                      | SHED BY:                       |                                  |                                                                    |                                                             | RECE                                                                  | SIVED                                                                       | ay: J.                                                                              |                                                |                  |
| COC ema    | led to ALS? ( YES /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO)                    | EDD FORM                | AT (or default):                   |                                   | S. Ecclesh                                               | hall                                                                                                                                       |                                                                                                            | 5                                                                   | pM.                                                                     |                                                                                                             |                                                                                                                            | Į                                                             |                                |                                  |                                                                    |                                                             |                                                                       | Sor                                                                         | SH A                                                                                | ,<br>FS                                        |                  |
| Email Rep  | orts to: sarah.ecclesha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | all@ghd.com; carmen.   | yi@ghd.com; labreprots( | @ghd.com                           |                                   | DATE/TIM                                                 | IE:                                                                                                                                        |                                                                                                            | ГАО <sup>(</sup>                                                    | e/TIME;                                                                 |                                                                                                             |                                                                                                                            | DATE/TIM                                                      | E:                             |                                  |                                                                    |                                                             | DATE                                                                  | STIME:                                                                      |                                                                                     |                                                |                  |
| Email Inve | bice to (will default to Pf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M if no other addresse | s are listed):          |                                    |                                   |                                                          |                                                                                                                                            |                                                                                                            |                                                                     |                                                                         |                                                                                                             |                                                                                                                            |                                                               |                                |                                  |                                                                    |                                                             | -                                                                     | 31 (1                                                                       | 0 19                                                                                | 1849                                           | 5                |
| ALS<br>USE | SAMPLE DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MATRIX: SO             | LID (S) WATER (W)       |                                    | CONTAINE                          | R INFORM                                                 | ATION                                                                                                                                      |                                                                                                            |                                                                     | ANAL 1<br>Where Metals                                                  | SIS REQUIRE<br>are required, a                                                                              | D including<br>specify Total (                                                                                             | SUITES (NB. S                                                 | ulte Codes m<br>e required) or | ust be lis<br>Dissolvé           | ted to at<br>koi (ficio)                                           | ttract s<br>filterec                                        | uite pric<br>I bottle i                                               | :e)<br>required                                                             | ().                                                                                 |                                                |                  |
| LAB IO     | SAMPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LE ID                  | DATE / TIME             | MATRIX                             | TYPE & PRESER<br>(refer<br>below) | VATIVE<br>to codes                                       | TOTAL                                                                                                                                      | ASS Field Screen (pH<br>field ad pHfox)                                                                    | Phenols                                                             | TRH                                                                     | BTEXN                                                                                                       | Toc                                                                                                                        | TCN                                                           | OC(OP/PCB                      | РАН                              | Total Fiuoride                                                     | VOCs                                                        | Particle Size<br>distribution                                         | ICMPS Metals (15<br>metals + Iow level Hg)                                  |                                                                                     | <br> <br> <br> <br>                            | Hold             |
| 27         | VC04_0.0-0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 31/10/2019 1:00         | s                                  | ASS                               |                                                          | 1                                                                                                                                          | x                                                                                                          |                                                                     |                                                                         |                                                                                                             |                                                                                                                            |                                                               |                                |                                  |                                                                    |                                                             |                                                                       |                                                                             |                                                                                     | ļ                                              |                  |
| 38         | VC04_0.9-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l                      | 31/10/2019 1:00         | S                                  | ASS                               |                                                          | 1                                                                                                                                          | x                                                                                                          |                                                                     | +                                                                       |                                                                                                             |                                                                                                                            |                                                               | +<br> <br>                     |                                  |                                                                    |                                                             |                                                                       |                                                                             |                                                                                     | - 4                                            |                  |
| 39         | VC11_0.0-0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 30/10/2019 20:0D        |                                    | JAR                               |                                                          | 1                                                                                                                                          |                                                                                                            |                                                                     |                                                                         |                                                                                                             |                                                                                                                            |                                                               | ↓<br>┿╌╸                       |                                  |                                                                    |                                                             |                                                                       |                                                                             |                                                                                     |                                                |                  |
| 40         | VG11_0.5-0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 30/10/2019 20:00        | s                                  | JAR                               |                                                          | 1                                                                                                                                          | <b>_</b> ·                                                                                                 |                                                                     | <br>X                                                                   | ×                                                                                                           | ×                                                                                                                          |                                                               | x                              | ×                                | x                                                                  | x                                                           |                                                                       | ×                                                                           |                                                                                     | <u> </u>                                       | <b>*</b>         |
| ù          | VC11_1.0-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 30/10/2019 20:00        | s                                  | JAR                               |                                                          |                                                                                                                                            |                                                                                                            |                                                                     |                                                                         |                                                                                                             |                                                                                                                            |                                                               |                                |                                  | +                                                                  |                                                             |                                                                       | ┿╼╼┤                                                                        |                                                                                     | <u> </u>                                       | +                |
| 42         | VC11 0.0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 3D/10/2019 20:00        |                                    | JAR                               |                                                          | 3                                                                                                                                          |                                                                                                            |                                                                     |                                                                         | +                                                                                                           | ↓                                                                                                                          | - +                                                           |                                | +                                |                                                                    |                                                             |                                                                       | $\left  \right $                                                            |                                                                                     | <u> </u>                                       | - <del>x</del> - |
| 1.2        | VC11 0.5-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 38/10/2019 20:00        | s                                  |                                   |                                                          | 3                                                                                                                                          |                                                                                                            |                                                                     |                                                                         |                                                                                                             | 1<br> <br>                                                                                                                 |                                                               |                                |                                  |                                                                    |                                                             |                                                                       | $\left  \right $                                                            |                                                                                     |                                                | <b>x</b>         |
| 4          | VC07 02-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                         | 5                                  | JAR                               |                                                          | 1                                                                                                                                          |                                                                                                            |                                                                     |                                                                         |                                                                                                             |                                                                                                                            | _                                                             |                                | -                                |                                                                    |                                                             | <u> </u>                                                              | i                                                                           |                                                                                     |                                                | <u>x</u>         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                         |                                    |                                   |                                                          |                                                                                                                                            | _                                                                                                          |                                                                     | -                                                                       |                                                                                                             | <u> </u>                                                                                                                   | +                                                             |                                | +                                | -                                                                  |                                                             | -                                                                     | +                                                                           |                                                                                     | +                                              | <b></b> ×        |
|            | · · · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                         |                                    |                                   |                                                          |                                                                                                                                            | ·,                                                                                                         |                                                                     |                                                                         | +                                                                                                           | !                                                                                                                          |                                                               |                                | +                                |                                                                    | <br>                                                        |                                                                       | ι<br>τ                                                                      |                                                                                     |                                                | -                |
|            | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |                                    |                                   |                                                          |                                                                                                                                            |                                                                                                            |                                                                     | -                                                                       |                                                                                                             | +                                                                                                                          | -                                                             |                                | _                                | -                                                                  |                                                             | <u> </u>                                                              | <u>}</u>                                                                    |                                                                                     | -+-                                            |                  |
| -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                         |                                    |                                   |                                                          |                                                                                                                                            |                                                                                                            |                                                                     |                                                                         |                                                                                                             | -                                                                                                                          | +                                                             |                                |                                  |                                                                    | ,<br> <br>i                                                 | <u> </u>                                                              | 1<br>                                                                       |                                                                                     |                                                |                  |
| s;         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                         |                                    |                                   | TOTAL                                                    | -                                                                                                                                          |                                                                                                            |                                                                     | 1                                                                       |                                                                                                             |                                                                                                                            |                                                               |                                |                                  |                                                                    | 1                                                           |                                                                       |                                                                             |                                                                                     |                                                |                  |

Z - Zinc Acetale Preserved Bottle; E = EDTA Preserved Bottles; ST = Starile Bottle; ASS = Plastic Bag for Add Sulphate Soils; B = Unpreserved Bag.

| ***F116.2  | ALS.                        | CHAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please lick -> | UADELAID<br>Philos da International<br>OBRISSAN<br>Philos 244<br>OGLADSTO<br>Philos 7471 | E 21 Buima Roed Pe<br>(1994) F: acteratie@<br>(1994) F: acteratie@<br>(1994) F: Samples br<br>2022 E: samples br<br>2015 46 Gallemondal<br>(19600 F: gladstore § | corava 3A 5005<br>xr%gintext error<br>5ta/fund QLD 4053<br>isbana@alsglobal.com<br>h Drive C.ktion QLD 4680<br>@alsglobal.com | ບMAC<br>ການເປັ<br>Ph 0<br>ຜິທນ<br>Ph: 02 | CKAY 70 Harbour<br>2 4944 0177 Linn<br>3 8549 8500 Fills<br>13 8549 8500 Fills<br>15 6549 8500 Fills<br>15 6572 6735 Birm | Road Mackay QL<br>8 Key@alagintratio<br>estall Road Spring<br>Mplesimethourned<br>Road Modgae NS<br>Xigoolimata@alsgic | 0 4740<br>om<br>Vale VSC 31.<br>Balsglobal.c<br>W 2850<br>bal.com | CNEWCAST<br>Ph: 02 4968 :<br>71 CNOWR<br>201 Ph: 02442<br>CIPE<br>Ph: 0 | FLE 5 Ruse Gum<br>9433 E: samples,<br>A-M13 Geary Plac<br>33 2063 E: nowing<br>FCTH 10 Hort Way<br>9 9209 7655 E: s | Road Warabror<br>newcasile@als<br>te North Nowra<br>@alsg obal.com<br>/ Malaga - WA 6<br>antoles perth@ | x NSW 2304<br>q(95a) com<br>NSW 2541<br>1<br>1<br>0<br>1901<br>olsg(95a) com |                              | US<br>Pir<br>UN<br>Pir<br>UW<br>(Pir | YONEY :<br>n2 8784<br>DWNSV<br>ID 4798<br>(OLLON)<br>02 4225 | 877-289 V<br>8555 E ()<br>ILLE 14-1<br>0600 F ()<br>GONG 90<br>3125 F () | Woodpark<br>samplet.6<br>15 Desma<br>16wnesvile<br>) Korwy S<br>podkembi | : Roarl Snt<br>ydney@al<br>Courl Bc/<br>Senvionax<br>troet Wok<br>la@alsg.ol | itht eid NS/⊍<br>isglobal.com<br>n'e QLD 451;<br>antal@alsg.oc<br>ongorig NSV<br>ba.com | (2164)<br>8<br>.aleem<br>V 2500 |
|------------|-----------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|--------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|
| CLIENT:    | GHD Pty Ltd                 |                                                          |                                                                                          | TURNAROU                                                                                                                                                         | ND REQUIREMENT                                                                                                                | T 🗆 Stand                                | dard TAT (List                                                                                                            | due date):                                                                                                             |                                                                   |                                                                         |                                                                                                                     |                                                                                                         | FOR                                                                          | LABORAT                      | ÖRY U                                | SE ON                                                        | LY (CI                                                                   | ircle)                                                                   |                                                                              |                                                                                         |                                 |
| OFFICE:    | level 15, 133 Castlero      | agh St, Sydney                                           |                                                                                          | (Standard 1A f i<br>some tests e.g.,                                                                                                                             | may be longer for<br>. Ultra Trace                                                                                            | 🗆 Non S                                  | Slandard or ur                                                                                                            | gent TAT (List                                                                                                         | due date                                                          | s):                                                                     |                                                                                                                     |                                                                                                         | Custo                                                                        | idy Seal Intac               | 49                                   |                                                              |                                                                          |                                                                          | Y <b>e</b> 5                                                                 | No                                                                                      |                                 |
| PROJECT    | r: 12517046                 |                                                          |                                                                                          | ALS QUOTE                                                                                                                                                        | NO.:                                                                                                                          | SY-552-1                                 | 19                                                                                                                        |                                                                                                                        |                                                                   | COC SEQL                                                                | JENCE NUMB                                                                                                          | ER (Circle)                                                                                             | Free                                                                         | Ze / frozen ic               | e bricks                             | present                                                      | ирол ге                                                                  | eccipt?                                                                  | Yes                                                                          | No                                                                                      | N                               |
| ORDER N    | IUMBER:                     |                                                          |                                                                                          |                                                                                                                                                                  |                                                                                                                               |                                          |                                                                                                                           |                                                                                                                        | 000                                                               | : 1 2                                                                   | 34                                                                                                                  | 5 6                                                                                                     | 7 Rand                                                                       | ora Sample T                 | emperat                              | ure on l                                                     | Receipt:                                                                 |                                                                          |                                                                              | .с                                                                                      |                                 |
| PROJECT    | MANAGER: Carmen             | Yi                                                       | CONTACT F                                                                                | PH: 0451 962 98                                                                                                                                                  | 88                                                                                                                            |                                          |                                                                                                                           |                                                                                                                        | OF                                                                | : 12                                                                    | 34                                                                                                                  | 56                                                                                                      | 7 Other                                                                      | comment:                     |                                      |                                                              |                                                                          |                                                                          | ટ્રે કે                                                                      |                                                                                         |                                 |
| SAMPLER    | R: Sarah Eccleshall         |                                                          | SAMPLER N                                                                                | MOBILE: 0459 (                                                                                                                                                   | 546 332                                                                                                                       | RELINQU                                  | ISHED BY:                                                                                                                 |                                                                                                                        | REC                                                               | CEIVED BY:                                                              |                                                                                                                     |                                                                                                         | RELINQUIS                                                                    | SHED BY:                     |                                      |                                                              |                                                                          | RECE                                                                     | IVED B                                                                       | ¥:                                                                                      |                                 |
| COC ema    | illed to ALS? (YES /        | NO)                                                      | EDD FORM                                                                                 | AT (or default):                                                                                                                                                 | :                                                                                                                             | S. Ecclesi                               | hali                                                                                                                      |                                                                                                                        |                                                                   | Sep M.                                                                  |                                                                                                                     |                                                                                                         |                                                                              |                              |                                      |                                                              |                                                                          | 30%                                                                      | 346 n                                                                        | A-J                                                                                     |                                 |
| Email Rep  | ports to: sarah.ecclesha    | all@ghd.com; carmen.y                                    | yi@ghd.com; labreprots(                                                                  | @ghd.com                                                                                                                                                         |                                                                                                                               |                                          | 1E:                                                                                                                       |                                                                                                                        | DAT                                                               | fe/time;                                                                |                                                                                                                     |                                                                                                         | DATE/TIME                                                                    | E:                           |                                      |                                                              |                                                                          | DATE/                                                                    | TIME:                                                                        | -                                                                                       |                                 |
| Email Inv  | oice to (will default to Pl | M if no other addresses                                  | are listed):                                                                             |                                                                                                                                                                  |                                                                                                                               |                                          |                                                                                                                           |                                                                                                                        |                                                                   |                                                                         |                                                                                                                     |                                                                                                         |                                                                              |                              |                                      |                                                              |                                                                          | `                                                                        | <u> 31   1</u>                                                               | 0 114                                                                                   | 1845                            |
| COMMEN     | ITS/SPECIAL HANDLIN         | G/STORAGE OR DIS                                         | POSAL:                                                                                   |                                                                                                                                                                  |                                                                                                                               |                                          |                                                                                                                           |                                                                                                                        |                                                                   |                                                                         |                                                                                                                     |                                                                                                         |                                                                              |                              |                                      |                                                              |                                                                          |                                                                          |                                                                              |                                                                                         |                                 |
| ALS<br>USE | SAMPLE DETAILS              | MATRIX: SOL                                              | ID.(S) WATER.(W)                                                                         |                                                                                                                                                                  | CONTAINE                                                                                                                      | R INFORM                                 | ATION 1                                                                                                                   |                                                                                                                        |                                                                   | ANALY:<br>Where Metals                                                  | SIS REQUIRE<br>are required, s                                                                                      | D including<br>pecily Total (                                                                           | SUITES (NB. Si<br>(unfiltered bottle                                         | uite Codes m<br>required) or | ust be lis<br>Dissolv                | ited to a<br>ad (field                                       | ittract su<br>d filtered                                                 | uite price<br>I bottle re                                                | })<br>equired}.                                                              |                                                                                         |                                 |
| LAB ID     | SAMP                        | LE ID                                                    | DATE / TIME                                                                              | MATRIX                                                                                                                                                           | TYPE & PRESER<br>(refer<br>below)                                                                                             | <b>VATIVE</b><br>to codes                | TOTAL                                                                                                                     | ASS Field Screen (pH<br>field ad pHfox)                                                                                | Phenols                                                           | TRH                                                                     | BTEXN                                                                                                               | 20                                                                                                      |                                                                              | OC/OP/PCB                    | РАН                                  | Fotal Fluoride                                               | vocs                                                                     | Particle Size<br>distribution                                            | CMPS Metals (15 1<br>metals + Iow level Hg)                                  |                                                                                         | 막대                              |
| 45         | VC05_0.0-0.1                |                                                          | 30/10/2019 21:45                                                                         | \$                                                                                                                                                               | jar                                                                                                                           |                                          | 1                                                                                                                         | i                                                                                                                      |                                                                   |                                                                         |                                                                                                                     |                                                                                                         | í<br>· t                                                                     |                              |                                      |                                                              |                                                                          |                                                                          |                                                                              |                                                                                         | ×                               |
| hb         | VC05_0.5-0.7                |                                                          | 30/10/2019 21:45                                                                         | s                                                                                                                                                                | jar                                                                                                                           |                                          | 1                                                                                                                         | i                                                                                                                      |                                                                   |                                                                         |                                                                                                                     |                                                                                                         | l                                                                            |                              |                                      |                                                              |                                                                          |                                                                          |                                                                              |                                                                                         | x                               |
| 47         | VC05_0.8-0.9                |                                                          | 30/10/2019 21:45                                                                         | 8                                                                                                                                                                | jar                                                                                                                           |                                          | 1                                                                                                                         | [                                                                                                                      | x                                                                 | ×                                                                       | ×                                                                                                                   | ×                                                                                                       | l x                                                                          | ×                            | ×                                    | x                                                            | x                                                                        | ,                                                                        | ×                                                                            |                                                                                         |                                 |
| 48         | VC05_0.0-0.5                |                                                          | 30/10/2019 21:45                                                                         | 8                                                                                                                                                                | jar                                                                                                                           |                                          | 3                                                                                                                         | l                                                                                                                      |                                                                   |                                                                         |                                                                                                                     |                                                                                                         | i<br>1                                                                       |                              |                                      |                                                              |                                                                          |                                                                          | -                                                                            |                                                                                         | x                               |
| 49         | VC05_0.5-0.9                | .                                                        | 30/10/2019 21:45                                                                         | ŝ                                                                                                                                                                | jar                                                                                                                           |                                          | 3                                                                                                                         | l<br>                                                                                                                  |                                                                   |                                                                         |                                                                                                                     |                                                                                                         |                                                                              |                              |                                      |                                                              |                                                                          |                                                                          |                                                                              |                                                                                         | ×                               |
| 50         | VC03_0.0-0.2                |                                                          | 30/10/2019 22:15                                                                         | s                                                                                                                                                                | jar                                                                                                                           |                                          | 1                                                                                                                         | ا<br>ا                                                                                                                 |                                                                   |                                                                         |                                                                                                                     | <br>                                                                                                    |                                                                              |                              |                                      |                                                              |                                                                          |                                                                          |                                                                              |                                                                                         | <b>x</b>                        |
| 51         | VC03_0.3-0.4                | <br> <br>                                                | 30/10/2019 22:15                                                                         | s                                                                                                                                                                | Jar                                                                                                                           |                                          | 1                                                                                                                         | ر<br>ا<br>ا                                                                                                            | ×                                                                 | ×                                                                       | x                                                                                                                   | x                                                                                                       | ×                                                                            | x                            | x                                    | x                                                            | ×                                                                        | ,<br>,                                                                   | ×                                                                            |                                                                                         | × <br>×                         |
| 52         | VC03_0.4-0.6                | = -+                                                     | 30/10/2019 22:15                                                                         | s                                                                                                                                                                | Jar                                                                                                                           |                                          | 1                                                                                                                         |                                                                                                                        |                                                                   |                                                                         |                                                                                                                     | 1                                                                                                       |                                                                              |                              |                                      |                                                              |                                                                          |                                                                          |                                                                              |                                                                                         | <br> x                          |
| 53         | VC03_0.6-0.7                |                                                          | 30/10/2019 22:15                                                                         | s                                                                                                                                                                | Jat                                                                                                                           |                                          | 1                                                                                                                         |                                                                                                                        |                                                                   | -                                                                       |                                                                                                                     |                                                                                                         |                                                                              |                              |                                      |                                                              |                                                                          |                                                                          |                                                                              |                                                                                         | ,<br>x'                         |
| _54        | VC03_1.0-1.2                |                                                          | 30/10/2019 22:15                                                                         | s                                                                                                                                                                | Jar                                                                                                                           |                                          | 1                                                                                                                         |                                                                                                                        |                                                                   |                                                                         |                                                                                                                     |                                                                                                         |                                                                              |                              |                                      |                                                              |                                                                          |                                                                          |                                                                              |                                                                                         | x<br>                           |
| 55         | VC03_0.0-0.5                | ו<br> <br>                                               | 30/10/2019 22:15                                                                         | s                                                                                                                                                                | jar & B                                                                                                                       |                                          | 4                                                                                                                         |                                                                                                                        | x                                                                 | ×                                                                       | ×                                                                                                                   | x                                                                                                       | ×                                                                            | ×                            | x _                                  | <u> </u>                                                     |                                                                          | x ;                                                                      | ×                                                                            |                                                                                         |                                 |
| - 54       | VC03_0.5-1.0                |                                                          | 30/10/2019 22:15                                                                         | s                                                                                                                                                                | jar                                                                                                                           |                                          | 3                                                                                                                         |                                                                                                                        |                                                                   |                                                                         |                                                                                                                     |                                                                                                         |                                                                              |                              |                                      | <u> </u>                                                     |                                                                          |                                                                          |                                                                              |                                                                                         | ×                               |
|            |                             |                                                          |                                                                                          |                                                                                                                                                                  |                                                                                                                               | τοτα                                     | L                                                                                                                         | ļ                                                                                                                      |                                                                   |                                                                         |                                                                                                                     |                                                                                                         |                                                                              |                              |                                      |                                                              |                                                                          |                                                                          |                                                                              |                                                                                         |                                 |

V = VOA Vial HCI Preserved, VB = VOA Vial Sodium Bisulphate Preserved; AV = VOA Vial Sulfuric Preserved Vial SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag

· ·-

.....

| : En las                                  | ALS varmenter                                                                      | CHAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please tick →                      | DADELAIDE<br>Phr. 06.8359<br>UBRISBAN<br>Ph. 07.3243<br>UGLADSTO<br>Phr. 07.7471              | : 21 Burna Road Poo<br>0890 F: Helaite@al<br>E 32 Shend Street St<br>7222 F semples.brs<br>XE 46 Calcmondon<br>5800 F gladstore@ | oraka SA 5095<br>Isglebat.com<br>Isglebat.com<br>Isglebat.gol<br>Isbane@galsglobat.com<br>Drive Ginton QLD 4080<br>Isrieg skal.com | LIMAC<br>Ph. 07<br>DMEL<br>Ph' 00<br>Ciraus<br>Phy 02 | 26AY 76 Parbour<br>14944 D177 Firm<br>LBOURNE 2-1 W<br>3 6549 9500 Elis<br>3 6549 9500 Elis<br>3 6549 9500 Elis<br>3 6549 9500 Elis<br>3 6549 9500 Elis | Road Markey OLL<br>ackoy@ofsgfobalicc<br>estall Road Symrys<br>mpfes.metbourneg<br>Road Mudgee NSt<br>udges.mail@alsgtol | ) 4740<br>oni<br>vale VIC 313<br>galsglobal c<br>W 2850<br>bateoin | UNEWEAST<br>Ph. 02 4988 :<br>71 UNOWRA<br>cm Ph. 02442<br>OPEL<br>Ph. 0 | LE 5 Rose Gura<br>9433 El semples<br>44/13 Geary Pla<br>3 2063 E: marre<br>8 9209 7655 El s | Knarf Waraproo<br>newcastle@alw<br>© Norin Nowra<br>@aleglopat.com<br>Malaga WA 6<br>amples perfu@ | k NSW 2304<br>global.com<br>NSW 2541<br>SU0<br>asglobal.com |                                | LLS:<br>LPs:<br>LLR<br>Ph<br>LLW<br>Ph: | YDNEY 2<br>02 8784<br>0WNSV:1<br>07 4796<br>1<br>01LONC<br>02 4225 | 77-289<br>8555 L.<br>LUE 14-1<br>0600 F:<br>SONG 05<br>3125 F: | Woodpari<br>samples a<br>15 Desmo<br>townerval<br>5 Konny 7<br>portkenst | k Road Sm<br>sydney(@a<br>3 Court Bol<br>Ie.eav/topm<br>Stroet Wol<br>5 st@alsglo | nifikiaid NS<br>Isglobal co<br>NS QLD 41<br>Shtal@alogi<br>Iongong Ni<br>Dal.com | 9W 2164<br>pm<br>818<br>Nocalcom<br>18W 2500 |                      |
|-------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|-----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|----------------------|
| CLIENT:                                   | GHD Pty Ltd                                                                        |                                                                              |                                                                                               | TURNAROUN                                                                                                                        | D REQUIREMEN                                                                                                                       | T 🗆 Stand                                             | lard TAT (Lisi                                                                                                                                          | due date):                                                                                                               |                                                                    |                                                                         | ·                                                                                           |                                                                                                    | FOR                                                         | LABORAT                        | ORY US                                  | IE ONI                                                             | Y (C                                                           | (rcle)                                                                   |                                                                                   |                                                                                  |                                              | 200                  |
| OFFICE:                                   | level 15, 133 Castlerea                                                            | igh St, Sydney                                                               |                                                                                               | (Standard TAT n<br>some tests e.g.,                                                                                              | nay be longer for<br>Ultra Trace                                                                                                   | 🛛 Non S                                               | Standard or ur                                                                                                                                          | gent TA'l (List                                                                                                          | due date                                                           | ı):                                                                     |                                                                                             |                                                                                                    | Cust                                                        | xly Seal Inter                 | <b>7</b>                                |                                                                    |                                                                |                                                                          | Yes                                                                               | -<br>                                                                            | 10                                           | (NA)                 |
| PROJECT                                   | 12517046                                                                           |                                                                              |                                                                                               | ALS QUOTE                                                                                                                        | NO.:                                                                                                                               | SY-552-1                                              | 9                                                                                                                                                       |                                                                                                                          | ĺ                                                                  | COC SEQU                                                                | SENCE NUMB                                                                                  | ER (Circle)                                                                                        | Pree                                                        | ice / trozen ic                | e bricke (                              | present                                                            | uponin                                                         | eccipt?                                                                  | $\bigcirc$                                                                        | - 18 · . N                                                                       | 10                                           | N/A                  |
| ORDER N                                   | JMBER:                                                                             |                                                                              |                                                                                               |                                                                                                                                  |                                                                                                                                    |                                                       | -                                                                                                                                                       |                                                                                                                          | coc                                                                | 5:1 <b>2</b>                                                            | 34                                                                                          | 5 (6                                                                                               | 7 Rand                                                      | lom Sample T                   | emperati                                | ure on F                                                           | lecelpt                                                        |                                                                          |                                                                                   | <b>.</b>                                                                         |                                              | 이 사용되었<br>11 년       |
| PROJECT                                   | MANAGER: Carmen                                                                    | rî                                                                           | CONTACT P                                                                                     | PH: 0451 962 98                                                                                                                  | 8                                                                                                                                  |                                                       |                                                                                                                                                         |                                                                                                                          | <u>ା</u>                                                           | : 1 2                                                                   | 3 4                                                                                         | 56                                                                                                 | 7 Othe                                                      | r comment:                     |                                         |                                                                    |                                                                |                                                                          | 34                                                                                | i Arenari<br>Arian<br>Lauta Ar                                                   |                                              | 1993)<br>1983 - 1984 |
| SAMPLER                                   | : Sarah Eccleshall                                                                 |                                                                              | SAMPLER N                                                                                     | OBILE: 0459 5                                                                                                                    | 46 332                                                                                                                             | RELINQUI                                              | SHED BY:                                                                                                                                                | -                                                                                                                        | REC                                                                | CEIVED BY:                                                              |                                                                                             |                                                                                                    | RELINQUI                                                    | SHED BY:                       |                                         |                                                                    |                                                                | RECĘ                                                                     |                                                                                   | Jak                                                                              | e                                            |                      |
| COC emai                                  | led to ALS? ( YES /                                                                | NO}                                                                          | EDD FORMA                                                                                     | AT (or defauit):                                                                                                                 |                                                                                                                                    | S. Ecclesh                                            | nati                                                                                                                                                    |                                                                                                                          | 8                                                                  | ep Mr                                                                   |                                                                                             |                                                                                                    |                                                             |                                |                                         |                                                                    |                                                                | د                                                                        | ~~ <del>7</del> ~                                                                 | TA                                                                               | ಸರ                                           |                      |
| Email Rep                                 | orts to: sarah.ecclesha                                                            | l@ghd.com; carmen                                                            | .yi@ghd.com; labreprots@                                                                      | @ghd.com                                                                                                                         |                                                                                                                                    |                                                       | E:                                                                                                                                                      |                                                                                                                          | DAT                                                                | TE/TIME:                                                                |                                                                                             |                                                                                                    | DATE/TIM                                                    | E;                             |                                         |                                                                    |                                                                | DATE                                                                     | 7TIME:                                                                            |                                                                                  |                                              |                      |
| Email Invo                                | <b>ice to (will default to P</b> N                                                 | l if no other addresse                                                       | es are listed):                                                                               |                                                                                                                                  |                                                                                                                                    |                                                       |                                                                                                                                                         |                                                                                                                          |                                                                    |                                                                         |                                                                                             |                                                                                                    |                                                             |                                |                                         |                                                                    |                                                                |                                                                          | 311                                                                               | (0)(                                                                             | 9 18                                         | sec 5                |
| COMMEN                                    | S/SPECIAL HANDLIN                                                                  | G/STORAGE OR DIS                                                             | POSAL                                                                                         |                                                                                                                                  |                                                                                                                                    |                                                       |                                                                                                                                                         |                                                                                                                          |                                                                    |                                                                         |                                                                                             |                                                                                                    |                                                             |                                |                                         |                                                                    |                                                                |                                                                          |                                                                                   |                                                                                  |                                              |                      |
| ALS<br>USE                                | SAMPLE DETAILS                                                                     | MATRIX: SO                                                                   | LID (S) WATER (W)                                                                             |                                                                                                                                  | CONTAINE                                                                                                                           | RINFORM                                               | ATION                                                                                                                                                   |                                                                                                                          |                                                                    | <b>ANALY:</b><br>Where <b>Metals</b> :                                  | SIS REQUIRE<br>are required, s                                                              | D including S<br>pecify Total (                                                                    | SUITES (NB. S<br>unfiltered bottle                          | uite Codes m<br>e required) or | ust be lis<br>Dissolw                   | ited to a<br>ed (field                                             | ttract si<br>filtered                                          | ulte pric<br>i bottle r                                                  | e)<br>required).                                                                  |                                                                                  |                                              |                      |
| LABID                                     | SAMPL                                                                              | E ID                                                                         | DATE / TIME                                                                                   | MATRIX                                                                                                                           | TYPE & PRESER<br>(refer<br>below;                                                                                                  | RVATIVE<br>to codes                                   | TOTAL                                                                                                                                                   | ASS Field Screen (pH<br>field ad pHfox)                                                                                  | Phenois                                                            | TRH                                                                     | BTEXN                                                                                       | Toc                                                                                                | TCN                                                         | OC/OP/PCB                      | PAH                                     | Total Fluoride                                                     | vocs                                                           | Particle Size<br>distribution                                            | ICMPS Metals (15<br>metals + Iow level Hg)                                        |                                                                                  |                                              | Hold                 |
| 57                                        | VC04_0.0-0.1                                                                       |                                                                              | 31/10/2019 1:00                                                                               | s                                                                                                                                | jar                                                                                                                                |                                                       | 1                                                                                                                                                       | ĺ                                                                                                                        |                                                                    |                                                                         |                                                                                             |                                                                                                    |                                                             |                                |                                         | {                                                                  |                                                                |                                                                          |                                                                                   |                                                                                  |                                              | ,×                   |
| 58                                        | VC04_0.4-0.5                                                                       |                                                                              | 31/10/2019 1:00                                                                               | s                                                                                                                                | jar                                                                                                                                |                                                       | 1                                                                                                                                                       |                                                                                                                          | x                                                                  | x                                                                       | x                                                                                           | x                                                                                                  | x                                                           | x                              | x                                       | )<br>;<br>                                                         |                                                                |                                                                          | x                                                                                 |                                                                                  |                                              |                      |
| 59                                        | VC04_0.5-0.6                                                                       |                                                                              | 31/10/2019 1:0D                                                                               | s                                                                                                                                | jar                                                                                                                                |                                                       | 1                                                                                                                                                       |                                                                                                                          |                                                                    |                                                                         |                                                                                             | ]                                                                                                  |                                                             |                                |                                         | ]                                                                  |                                                                |                                                                          |                                                                                   |                                                                                  |                                              | x                    |
| 60                                        | VC04_0.7-0.8                                                                       | <u>.</u>                                                                     | 31/10/2019 1:DD                                                                               | \$                                                                                                                               | jar                                                                                                                                |                                                       | 1                                                                                                                                                       |                                                                                                                          |                                                                    |                                                                         |                                                                                             |                                                                                                    |                                                             |                                |                                         | 1                                                                  |                                                                |                                                                          |                                                                                   |                                                                                  |                                              | ×                    |
| 61                                        | VC04_0.9-1.0                                                                       |                                                                              | 31/10/2019 1:00                                                                               | s                                                                                                                                | jar                                                                                                                                |                                                       | 1                                                                                                                                                       | Í                                                                                                                        |                                                                    | 1                                                                       |                                                                                             |                                                                                                    |                                                             |                                | •                                       |                                                                    | 1                                                              |                                                                          |                                                                                   |                                                                                  |                                              | ×                    |
| 62                                        | VC04_0.0-0.5                                                                       |                                                                              | 31/10/2019 1:00                                                                               | s                                                                                                                                | jar                                                                                                                                |                                                       | 3                                                                                                                                                       |                                                                                                                          |                                                                    |                                                                         |                                                                                             |                                                                                                    |                                                             |                                | _                                       |                                                                    |                                                                |                                                                          |                                                                                   |                                                                                  |                                              |                      |
| 63                                        | VC04_0.5-1.0                                                                       |                                                                              | 31/10/2019 1:00                                                                               | s                                                                                                                                | jar and t                                                                                                                          | 0ag                                                   | 4                                                                                                                                                       |                                                                                                                          | ×                                                                  | ×                                                                       | x                                                                                           | ×                                                                                                  | x                                                           | ×                              | x                                       |                                                                    |                                                                | ×                                                                        | ×                                                                                 |                                                                                  |                                              |                      |
| 64                                        | VC02_0.0-0.2                                                                       |                                                                              | 30/10/2019 23:45                                                                              | S                                                                                                                                | jar                                                                                                                                |                                                       | 1                                                                                                                                                       |                                                                                                                          |                                                                    |                                                                         |                                                                                             | `<br>}                                                                                             | _                                                           |                                |                                         |                                                                    |                                                                |                                                                          |                                                                                   |                                                                                  |                                              | ×                    |
| 65                                        | VC02_0.5-0.6                                                                       |                                                                              | 30/10/2019 23:45                                                                              | S                                                                                                                                | jar                                                                                                                                |                                                       | 1                                                                                                                                                       |                                                                                                                          |                                                                    | _                                                                       |                                                                                             | 1                                                                                                  |                                                             |                                |                                         |                                                                    |                                                                |                                                                          |                                                                                   |                                                                                  |                                              | ×                    |
| 66                                        | VC02_1.0-1.2                                                                       |                                                                              | 30/10/2019 23:45                                                                              | s                                                                                                                                | jar                                                                                                                                |                                                       | 1                                                                                                                                                       |                                                                                                                          |                                                                    |                                                                         | ļ                                                                                           | <br>                                                                                               |                                                             | \                              |                                         |                                                                    |                                                                |                                                                          |                                                                                   |                                                                                  |                                              | ×                    |
| 67                                        | VC02_1.5-1.6                                                                       |                                                                              | 30/10/2019 23:45                                                                              | s                                                                                                                                | ļa.                                                                                                                                |                                                       | ) 1<br>+                                                                                                                                                |                                                                                                                          | x                                                                  | ×                                                                       | x                                                                                           | x                                                                                                  | x                                                           | ) ×                            | ×                                       |                                                                    |                                                                |                                                                          | ×                                                                                 |                                                                                  |                                              |                      |
| ·60                                       | VC02_1.0-1.5                                                                       |                                                                              | 30/10/2019 23:45                                                                              | S                                                                                                                                | jar                                                                                                                                |                                                       | 3                                                                                                                                                       |                                                                                                                          |                                                                    |                                                                         | Ļ                                                                                           | <u> </u>                                                                                           |                                                             | !<br>                          | 1                                       | <u> </u>                                                           |                                                                | <u> </u>                                                                 |                                                                                   |                                                                                  |                                              | ×                    |
|                                           |                                                                                    |                                                                              |                                                                                               |                                                                                                                                  |                                                                                                                                    | τοται                                                 |                                                                                                                                                         |                                                                                                                          |                                                                    |                                                                         |                                                                                             |                                                                                                    |                                                             |                                |                                         |                                                                    |                                                                |                                                                          |                                                                                   |                                                                                  |                                              |                      |
| Water Cont<br>V = VOA Via<br>Z = Zine Ace | ainer Codes: P = Unpres<br>I HCI Preserved; VB = VO.<br>Nate Preserved Bottle, E = | erved Plastic; N = Nitri<br>A Vial Sodium Bisulphal<br>EDTA Preserved Bottle | c Preserved Plastic; ORC = I<br>te Preserved; VS = VOA Vial<br>es: ST = Sterile Bottle; ASS = | Nitric Preserved C<br>Sulfuric Preserve<br>Plastic Bag for A                                                                     | DRC; SH = Sodium H<br>d; AV = Airfreight Ung<br>cid Sulphate Soils; B                                                              | lydroxide/Cd F<br>preserved Vial<br>= Unpreserve      | Preserved; S *<br>  SG = Sulfunic<br>ed Bao.                                                                                                            | Sodium Hydrox<br>Preserved Am                                                                                            | cide Presè<br>ber Glass;                                           | rved Plastic; AC<br>; H = HCl prese                                     | i = Amber Gla<br>erved Plastic;                                                             | is Unpreserv<br>HS = HCl pre                                                                       | ed; AP - Airfrei<br>served Special                          | ht Unpresention bottle; SP     | red Plast<br>= Sulfuri                  | ic Prese                                                           | rved Pl                                                        | lastic; F                                                                | = Forma                                                                           | aldehydo                                                                         | Preserv                                      | ed Glass;            |

. . .

-----

| ಚಾರ್ವ      | ALS.                        | CHAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please lick → | □ADELADE<br>Ph. 08 8036 (2)<br>□BRISBANE<br>Ph. 07 3243<br>□CI AL(310)<br>Ph: 07 7471 ( | 21 Burne Road Poo<br>3890 E: ede a de(ijia)<br>32 Shand Street St<br>7222 E: samples bus<br>NE 46 Callemoniah<br>5600 E: gladstone (ijia) | oraita SA 5096<br>feglobal.com<br>alford QLD 4053<br>sbano@alsplobal.com<br>Drive Clinton QLD 468(:<br>alsglobal.com | ШМАСК<br>Ph. 07-4<br>QMRL8<br>Ph. 03-6<br>Ph. 02-6 | AY /8 Harbour<br>944 0177 F im<br>80URNE 2-4 W<br>5549 5600 F is<br>955 27 Symmetry<br>1372 6735 E: m | - Roart Mackay (2) I<br>sekay@a'sgkbbl.c<br>lestal, Road Spring<br>amples, melbournet<br>(Road Mudgee NS<br>udgee, mail@a'sgk | 5 4740<br>vini<br>vale VIC 317<br>Balsgiobalic<br>M 2850<br>bal.com | UNEWCASI<br>Philo2 4964<br>71 EINÓWR<br>973 Philo2442<br>EIN<br>Philo<br>Philo | ILE 5 Rose Gum I<br>9433 /·· sampha<br>A 4/13 Ceary Plac<br>33 2063 E: nowra,<br>RTH 16 Nod Way<br>IB 9209 7855 F: s | Road Watabroo<br>newcastle@e'w<br>co Noth Nowre<br>@a sglobal com<br>/ Mologa - WA %<br>amples.porth@ | k NSW 2304<br>Jiotal (com<br>NSW 2541<br>280<br>afsglobal com |                             | US<br>Phr<br>Phr<br>Phr<br>UW<br>Phr | YONEY 2<br>02 0784 1<br>07WNSVII<br>07 4798 1<br>10LEONG<br>02 4225 1 | 77-209 W<br>8565 E. s<br>LLE 14 15<br>0600 Fr o<br>30NG 59<br>3125 Fr p | Voodpark I<br>Rampies sy<br>5 Doshaa (<br>pwnoovlig,<br>I Kenny Si<br>Rockemb ( | Road Sm<br>/dney(@al<br>Court Bol<br>covinom/<br>Incet Wolf<br>a@alsglol | v(h(leidi NSV<br>Isploba) čon<br>nto OLD 48°<br>ontoi@alsgio<br>longong NS<br>toistiom | N 2164<br>n<br>18<br>Walcom<br>W 2500 |      |
|------------|-----------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|--------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|------|
| CLIENT:    | GHD Pty Ltd                 |                                                         |                                                                                         | TURNAROUN                                                                                                                                 | ID REQUIREMENT                                                                                                       | 🗋 Standa                                           | rd TAT (List                                                                                          | t due date):                                                                                                                  |                                                                     |                                                                                |                                                                                                                      |                                                                                                       | FOR                                                           | LABORAT                     | ORY US                               | SË ONL                                                                | .¥ {Gli                                                                 | rcle)                                                                           |                                                                          |                                                                                        |                                       |      |
| OFFICE:    | level 15, 133 Castlerea     | gh St, Sydney                                           |                                                                                         | (Standard TAT m<br>some tests e.g.,                                                                                                       | nay be longer for<br>Ultra Trace                                                                                     | Non Sta                                            | andard or ur                                                                                          | gent TAT (List                                                                                                                | due date                                                            | ):                                                                             |                                                                                                                      |                                                                                                       | Custo                                                         | ly Seal Intec               | <b>1</b> 9 (17.5                     |                                                                       |                                                                         | Y                                                                               | /e8                                                                      | N                                                                                      | o 1                                   | N/A  |
| PROJECT    | : 12517046                  |                                                         |                                                                                         | ALS QUOTE I                                                                                                                               | NO,:                                                                                                                 | SY-552-19                                          |                                                                                                       |                                                                                                                               |                                                                     | COC SEQ                                                                        | JENCE NUMB                                                                                                           | ER (Circle)                                                                                           | A Free *                                                      | sê / frozen io              | e bricks                             | pre <b>sent</b>                                                       | upon re                                                                 | cei <b>p(</b> ? Y                                                               | فعا                                                                      | N                                                                                      | <b>)</b>                              | N/A  |
| ORDER N    | UMBER:                      |                                                         |                                                                                         |                                                                                                                                           |                                                                                                                      |                                                    |                                                                                                       |                                                                                                                               | cod                                                                 | :: 1 2                                                                         | 34                                                                                                                   | 56                                                                                                    | (7) Renda                                                     | m Sample T                  | emperati                             | ure on R                                                              | tecelpt                                                                 |                                                                                 | 20                                                                       | ìċ                                                                                     |                                       |      |
| PROJECT    | MANAGER: Carmen             | /i                                                      | CONTACT P                                                                               | H: 0451 962 98                                                                                                                            | B                                                                                                                    |                                                    |                                                                                                       |                                                                                                                               | OF:                                                                 | 1 2                                                                            | 3 4                                                                                                                  | 5 6                                                                                                   | 7 Other                                                       | comment.                    |                                      |                                                                       | <u>) , : : (</u><br>1                                                   | <u></u>                                                                         |                                                                          | <u></u>                                                                                |                                       |      |
| SAMPLEN    | Had to ALS2 / YES (         | 101                                                     |                                                                                         |                                                                                                                                           | 45 332                                                                                                               | RELINQUIS                                          | HED BY:                                                                                               |                                                                                                                               |                                                                     |                                                                                |                                                                                                                      |                                                                                                       | RELINGUIS                                                     | HED BY:                     |                                      |                                                                       |                                                                         | RECEN<br>S                                                                      | sery)                                                                    | the                                                                                    |                                       |      |
| Email Ren  | norta to: sarah ecclesha    | i@abd.com:_carmeo.y                                     | vi@obd.com: labrenrots@                                                                 | and com                                                                                                                                   |                                                                                                                      | DATE/TIME                                          |                                                                                                       |                                                                                                                               | DAT                                                                 | FUTIME                                                                         |                                                                                                                      |                                                                                                       | DATE/TIME                                                     |                             |                                      |                                                                       |                                                                         | DATE                                                                            | TIME                                                                     | UA                                                                                     | -5                                    |      |
| Email Inve | pice to (will default to PN | A if no other addresses                                 | are listed):                                                                            | sgriaroom                                                                                                                                 |                                                                                                                      |                                                    | •                                                                                                     |                                                                                                                               |                                                                     |                                                                                |                                                                                                                      |                                                                                                       |                                                               |                             |                                      |                                                                       |                                                                         | 1                                                                               | 311                                                                      | 10/19                                                                                  | 18                                    | 45   |
| COMMEN     |                             |                                                         | POSAL                                                                                   |                                                                                                                                           |                                                                                                                      |                                                    |                                                                                                       |                                                                                                                               |                                                                     |                                                                                |                                                                                                                      |                                                                                                       |                                                               |                             |                                      |                                                                       | l                                                                       |                                                                                 |                                                                          |                                                                                        |                                       |      |
| ALS        | SAMPLE DETAILS              | MATRIX SQL                                              | ID (S) WATER (W)                                                                        |                                                                                                                                           | CONTAINE                                                                                                             | R INFORMA                                          | TION                                                                                                  |                                                                                                                               |                                                                     | ANALY<br>Where Metals                                                          | SIS REQUIRE<br>are required, s                                                                                       | D including specify Total (                                                                           | BUITES (NB. Su<br>Junfiltered bottle                          | lte Codes m<br>required) or | ust be lis<br>Dissolv                | ted to a<br>ad (field                                                 | tirect su<br>i filtered                                                 | ite price)<br>bottle re                                                         | )<br>squiređ).                                                           |                                                                                        |                                       |      |
| LAB ID     | SAMPL                       | EID                                                     | DATE / TIME                                                                             | MATRIX                                                                                                                                    | TYPE & PRESER<br>(refer<br>below)                                                                                    | VATIVE :<br>to codes                               | TOTAL<br>CONTAINERS                                                                                   | AS3 Field Screen (pH<br>field ad pHfox)                                                                                       | Phentols                                                            | IRH                                                                            | atexn                                                                                                                | 100                                                                                                   | C                                                             | OC/OP/PCB                   | АН                                   | Fotal Fluoride                                                        | /OCs                                                                    | Particle Size<br>Jistribution                                                   | CMPS Metals (15<br>netals + low level Hg)                                |                                                                                        |                                       | told |
| 69         | VC01_0.0-0.2                |                                                         | 30/10/2019 23:45                                                                        | s                                                                                                                                         | jar                                                                                                                  |                                                    | 1                                                                                                     |                                                                                                                               |                                                                     |                                                                                | 1                                                                                                                    |                                                                                                       | 1                                                             |                             | 1                                    |                                                                       |                                                                         |                                                                                 |                                                                          |                                                                                        | 1                                     | x    |
| -10        | vc01_0.4-0.6                |                                                         | 30/10/2019 23:45                                                                        | s                                                                                                                                         | jar                                                                                                                  |                                                    | 1                                                                                                     |                                                                                                                               |                                                                     |                                                                                |                                                                                                                      |                                                                                                       |                                                               | ł                           |                                      |                                                                       | 1                                                                       | - · ·                                                                           | •                                                                        | •                                                                                      |                                       | ×    |
| 71         | VC01_1.0-1.1                |                                                         | 30/10/2019 23:45                                                                        | 5                                                                                                                                         | jar                                                                                                                  |                                                    | 1                                                                                                     |                                                                                                                               |                                                                     | x                                                                              | x                                                                                                                    | x                                                                                                     |                                                               | <br>x                       | x                                    |                                                                       |                                                                         | ,                                                                               | к                                                                        | .                                                                                      |                                       |      |
| 72         | VC01_0.0-0.5                |                                                         | 30/10/2019 23:45                                                                        | s                                                                                                                                         | jar                                                                                                                  |                                                    | 3                                                                                                     |                                                                                                                               |                                                                     | -                                                                              |                                                                                                                      | -                                                                                                     |                                                               |                             |                                      |                                                                       |                                                                         |                                                                                 |                                                                          |                                                                                        |                                       |      |
| -73        | VC01_0,5-1.0                |                                                         | 30/10/2019 23:45                                                                        | s                                                                                                                                         | jar and b                                                                                                            | ag                                                 | 4                                                                                                     | _                                                                                                                             | ×                                                                   | ×                                                                              | ×                                                                                                                    | ×                                                                                                     | ×                                                             | x                           | ×                                    |                                                                       |                                                                         | × >                                                                             | x                                                                        |                                                                                        |                                       | ×    |
| 74         | VC10_0                      | .0-0.2                                                  | 31/10/2019 0:45                                                                         | S                                                                                                                                         | jar                                                                                                                  |                                                    | 1                                                                                                     |                                                                                                                               |                                                                     |                                                                                |                                                                                                                      |                                                                                                       |                                                               |                             |                                      |                                                                       |                                                                         | }                                                                               |                                                                          |                                                                                        |                                       | x    |
| 75         | VC10_0                      | .5-0.6                                                  | 31/10/2019 0:45                                                                         | s                                                                                                                                         | jar                                                                                                                  |                                                    | 1                                                                                                     | -                                                                                                                             |                                                                     |                                                                                |                                                                                                                      | 1                                                                                                     |                                                               |                             |                                      |                                                                       |                                                                         |                                                                                 | ↓                                                                        |                                                                                        |                                       | ×    |
| 76         | VC10_0                      | .7-0.8                                                  | 31/10/2019 0:45                                                                         | s                                                                                                                                         | jar                                                                                                                  | 1<br>                                              | 1                                                                                                     |                                                                                                                               | x                                                                   | x                                                                              | ×                                                                                                                    | ×                                                                                                     | ×                                                             | x                           | x                                    |                                                                       |                                                                         |                                                                                 | <b>c</b>                                                                 |                                                                                        |                                       | j    |
| 77         | VC10_0                      | .8-0.5                                                  | 31/10/2019 0:45                                                                         | 5                                                                                                                                         | jar ad t                                                                                                             | •                                                  | 4                                                                                                     |                                                                                                                               | x                                                                   | x                                                                              | ×                                                                                                                    | x                                                                                                     | x                                                             | ×                           | ×                                    |                                                                       |                                                                         | ××                                                                              | •                                                                        |                                                                                        |                                       |      |
| 78         | VC10_0                      | .5-1.0                                                  | 31/10/2019 0:45                                                                         | S                                                                                                                                         | jar                                                                                                                  |                                                    | 3                                                                                                     | [ ]                                                                                                                           |                                                                     |                                                                                |                                                                                                                      |                                                                                                       |                                                               |                             |                                      |                                                                       |                                                                         |                                                                                 |                                                                          |                                                                                        |                                       | x }  |
| 79         | VC02_0.0-0.5                |                                                         | 30/10/2019 23:45                                                                        | S                                                                                                                                         | j                                                                                                                    | jar and b                                          | 4                                                                                                     |                                                                                                                               | x                                                                   | x                                                                              | x                                                                                                                    | ×                                                                                                     | x                                                             | x                           | ×                                    |                                                                       |                                                                         | x )                                                                             | ĸ                                                                        |                                                                                        | ļ                                     |      |
| -80        | VC02_0.5-1.0                |                                                         | 30/10/2019 23:45                                                                        | \$                                                                                                                                        | jar                                                                                                                  |                                                    | 3                                                                                                     |                                                                                                                               |                                                                     |                                                                                | <u> </u>                                                                                                             |                                                                                                       |                                                               |                             |                                      |                                                                       | l                                                                       |                                                                                 |                                                                          |                                                                                        | i .                                   | ×    |
| Weter C    | laipar Codoer - D = Linear  | opund Plantini, Mir Mirin                               | Prosperie OPC -                                                                         |                                                                                                                                           |                                                                                                                      | TOTAL                                              | Mennual C                                                                                             | = Sodium Huder                                                                                                                | de Dene                                                             | nind Disslar Af                                                                | 3 - Amber Ola                                                                                                        |                                                                                                       | ad AD - Alatantal                                             |                             | ind Black                            |                                                                       | }<br>                                                                   |                                                                                 |                                                                          |                                                                                        |                                       |      |

V = VOA Viel HCI Preserved; VB = VOA Viel Sodium Bisulphate Preserved; VS = VOA Viel Sulfuric Preserved Viel France Viel SC = Sulfuric Preserved Viel SC = Sulfuric Preserved Viel SC = Sulfuric Preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic; H = HCI preserved Plastic

·· -

· - · ---

.\_.. \_ -

| Kii ya Are  | ALS.                        | CHAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please tick -> | LIADELAIDI<br>Ph. DR 5359<br>LIBRISBAN<br>Ph. 07 3243<br>LIGLADSTC<br>Ph. 07 7471 | . 21 Burna Road Po<br>0890 E: addin de@a<br>E 32 Shand Stroet St<br>/222 E. samplestori<br>NRE 46 Col emoncola<br>5800 E. gladatora@ | xoraka SA 5095<br>Isigloba icom<br>talford QLD 4053<br>spane (t)al global com<br>i Crive Clinton QLD 4680<br>paleg obel com | LDM,<br>Phil<br>Phi<br>Phi<br>Phil<br>Phil | ACK AY 78 Harbour<br>07 4944 6477 s | - Roart Maskey QLD<br>ankay@eksplobal.co<br>(estail Road Spring-<br>amples.melbournag<br>Road Mudgee, NG<br>udgoe.mail@o.sglo | 0 474f:<br>oni<br>Wale VIC 3 I<br>Ralsgloba d<br>W 2850<br>bal com | UNEWCAS?<br>Ph 02 4908 5<br>71 UNOWKA<br>Xm Ph: 02442<br>UP66<br>Ph: 0/ | LE 5 Rose Gun F<br>8430 E: samplest<br>4412 Geery Plac<br>3 2063 E : how/a(<br>87H 10 Hod Way<br>5 8208 7655 E: s | Road Watabioo<br>tewcast ແຟັດໄລ່<br>e North Nowra<br>ĝalsgloba .com<br>Malaga WA Bi<br>amples penhiĝa | k NSW 2304<br>global com<br>NGW 2541<br>300<br>a sglobal com |                             | ບຮ<br>Pi<br>ບກ<br>Ph<br>ບທ<br>Ph | YDNEY 5<br>02 6784<br>DWNSVI<br>07 4795<br>/OFFON0<br>02 4225 | 977-228 1<br>8555 E<br>911- 14-1<br>6600 É.<br>300KS &<br>3125 E | Wondpar<br>samples.<br>15 Desna<br>Townesw!<br>8 Kenty :<br>portkemi | rk Road (<br>.sydney@<br>a Cruch F<br>teleaviron<br>Struet W<br>6 A@alsg | Smithfie d<br>ğalaştıza<br>totka QLL<br>novrdalğa<br>foliongon;<br>şiolkai oos | l NSW Z<br>ala om<br>D 4810<br>aisglobal<br>g NSW :<br>n | :154<br>com<br>2506                              |          |
|-------------|-----------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------|
| CLIENT:     | GHD Pty Ltd                 |                                                          |                                                                                   | TURNAROUN                                                                                                                            |                                                                                                                             | T 🔲 Star                                   | ndard TAT (Lisi                     | t due date):                                                                                                                  |                                                                    |                                                                         |                                                                                                                   |                                                                                                       | FOR                                                          | ABORAT                      | ORY U                            | SE ON                                                         | LY (C                                                            | ircle)                                                               |                                                                          |                                                                                | 4                                                        |                                                  |          |
| OFFICE:     | level 15, 133 Castlerea     | gh St, Sydney                                            |                                                                                   | (Standard TAT n<br>some tests e.g.,                                                                                                  | may be longer for<br>Ultra Trace                                                                                            | 🗋 Non                                      | Slandard or ur                      | gent TAT (List                                                                                                                | due date                                                           | :):                                                                     |                                                                                                                   |                                                                                                       | Custor                                                       | ly Seal Inlac               | R                                |                                                               |                                                                  |                                                                      | Yes                                                                      |                                                                                | No                                                       | 1992 - 1993<br>1993 - 1995<br>1995 - 1995 - 1995 | (N/A)    |
| PROJECT     | 12517046                    |                                                          |                                                                                   | ALS QUOTE                                                                                                                            | NO.:                                                                                                                        | SY-552                                     | -19                                 |                                                                                                                               | <u> </u>                                                           | COC SEQU                                                                |                                                                                                                   | ER (Circle)                                                                                           | Free                                                         | )<br>e / trozen ici         | e bricks                         | present                                                       | úpón n                                                           | eceipte                                                              | Yes                                                                      |                                                                                | Na                                                       |                                                  | N/A      |
| ORDERN      | IUMBER:                     |                                                          |                                                                                   |                                                                                                                                      |                                                                                                                             |                                            |                                     |                                                                                                                               | co                                                                 | C: 1 2                                                                  | 34                                                                                                                | 5 6                                                                                                   |                                                              | m Šample T                  | emperat                          | ure on F                                                      | Receipt                                                          |                                                                      |                                                                          |                                                                                | ĉ                                                        |                                                  |          |
| PROJECT     | MANAGER: Carmen Y           | ′i                                                       | CONTACT P                                                                         | H: 0451 962 98                                                                                                                       | 18                                                                                                                          |                                            |                                     |                                                                                                                               | OF                                                                 | : 12                                                                    | 34                                                                                                                | 56                                                                                                    |                                                              | comment:                    | QFIN 4.<br>GTINA                 |                                                               |                                                                  | - 3                                                                  | <u>_</u> 2                                                               |                                                                                |                                                          | 17 N                                             |          |
| SAMPLE      | R: Sarah Eccleshall         |                                                          | SAMPLER N                                                                         | OBILE: 0459 5                                                                                                                        | 546 332                                                                                                                     | RELINQI                                    | UISHED BY;                          |                                                                                                                               | REC                                                                | CEIVED BY:                                                              |                                                                                                                   |                                                                                                       | RELINQUIS                                                    | HED BY:                     |                                  |                                                               |                                                                  | RECE                                                                 | EIVED                                                                    | BY:/                                                                           | ~                                                        |                                                  |          |
| COC ema     | iled to ALS? ( YES /        | NO)                                                      | EDD FORM                                                                          | AT (or default):                                                                                                                     |                                                                                                                             | S. Eccles                                  | shali                               |                                                                                                                               | 8                                                                  | PM.                                                                     |                                                                                                                   |                                                                                                       |                                                              |                             |                                  |                                                               |                                                                  | 50                                                                   | YS                                                                       | for the                                                                        | gut .                                                    |                                                  |          |
| Email Re    | ports to: sarah.eccleshal   | l@ghd.com; carmen                                        | .yi@ghd.com; labreprots@                                                          | @ghd.com                                                                                                                             |                                                                                                                             | DATE/TI                                    | ME:                                 |                                                                                                                               | DAT                                                                | TE/TIME:                                                                |                                                                                                                   |                                                                                                       | DATE/TIME                                                    | :                           |                                  |                                                               |                                                                  | DATE                                                                 | E/TIME                                                                   | ÷.,                                                                            | i                                                        |                                                  |          |
| Email Inv   | oice to (will default to PN | if no other addresse                                     | s are listed):                                                                    |                                                                                                                                      |                                                                                                                             |                                            |                                     |                                                                                                                               |                                                                    |                                                                         |                                                                                                                   |                                                                                                       |                                                              |                             |                                  |                                                               |                                                                  |                                                                      | 311                                                                      | 1/0                                                                            | 19                                                       | ાદ્વેત                                           | 2        |
| COMMEN      | TS/SPECIAL HANDLING         | S/STORAGE OR DIS                                         | POSAL:                                                                            |                                                                                                                                      |                                                                                                                             |                                            |                                     |                                                                                                                               |                                                                    |                                                                         |                                                                                                                   |                                                                                                       |                                                              |                             |                                  |                                                               |                                                                  |                                                                      |                                                                          |                                                                                |                                                          |                                                  |          |
| ALS.<br>USE | SAMPLE DETAILS              | MATRIX: SO                                               | LID (S) WATER (W) >                                                               | r.5                                                                                                                                  | CONTAINE                                                                                                                    | RINFORM                                    | ATION                               |                                                                                                                               |                                                                    | ANALYS<br>Where Metals :                                                | SIS REQUIRED<br>are required, s                                                                                   | ) including {<br>pecify Total (                                                                       | SUITES (NB. Su<br>unfiltered bottle                          | ite Codes m<br>required) or | ust be lis<br>Dissolw            | ited to a<br>ed (field                                        | ltract s<br>filtered                                             | uite pric<br>1 bottle r                                              | ;e)<br>require:                                                          | d).                                                                            |                                                          |                                                  |          |
| LAB ID      | SAMPL                       | EID                                                      | date / Time                                                                       | MATRIX                                                                                                                               | TYPE & PRESER<br>(refer<br>below)                                                                                           | RVATIVE<br>to codes                        | TOTAL<br>CONTAINERS                 | A55 Field Screen (pH<br>field ad pHfox)                                                                                       | Phenals                                                            | ТКН                                                                     | BTEXN                                                                                                             | TOC                                                                                                   | TCN                                                          | OC/OP/PCB                   | PAH                              | Total Fluoride                                                | VOCs                                                             | Particle Size<br>distribution                                        | ICMPS Metals (15<br>metals + Iow level Hg)                               | 8 metais                                                                       | TRH C6-C10                                               | BTEX                                             | Hold     |
| 31          | FD01                        |                                                          | 30/10/2019                                                                        | s                                                                                                                                    | JAR                                                                                                                         |                                            | 1                                   |                                                                                                                               | x                                                                  | x                                                                       | x                                                                                                                 | x                                                                                                     | x                                                            | ×                           | x                                |                                                               | <u> </u>                                                         |                                                                      | ×                                                                        |                                                                                |                                                          |                                                  |          |
| -           | FD02                        |                                                          | 30/10/2019                                                                        | s                                                                                                                                    | JAR                                                                                                                         |                                            | 1                                   |                                                                                                                               | x                                                                  | ×                                                                       | ×                                                                                                                 | x                                                                                                     | <b>X</b>                                                     | ×                           | x                                |                                                               |                                                                  |                                                                      | ×                                                                        | Ple;                                                                           | ase fo                                                   | )<br>prwiare<br>offine                           | d to     |
| 82          | FD03                        |                                                          | 30/10/2019                                                                        | s                                                                                                                                    | JAR                                                                                                                         | ·                                          |                                     |                                                                                                                               |                                                                    | 1                                                                       |                                                                                                                   |                                                                                                       | -                                                            |                             |                                  |                                                               |                                                                  |                                                                      |                                                                          | · ·                                                                            |                                                          |                                                  | ×        |
| 953         | FD05                        |                                                          | 31/10/2019                                                                        | \$                                                                                                                                   | Jar                                                                                                                         |                                            | 1                                   |                                                                                                                               | x                                                                  | x                                                                       | x                                                                                                                 | ×                                                                                                     | ×                                                            | ×                           | ×                                | :                                                             |                                                                  | 1                                                                    | ×                                                                        |                                                                                |                                                          |                                                  |          |
| 84          | RIN_01                      |                                                          | 30/10/2019 0:00                                                                   | w                                                                                                                                    |                                                                                                                             |                                            | 4                                   | _                                                                                                                             |                                                                    | x                                                                       | ×                                                                                                                 |                                                                                                       |                                                              |                             | x                                |                                                               |                                                                  |                                                                      |                                                                          | ×                                                                              |                                                          |                                                  |          |
| 85          | TS1                         |                                                          | 30/10/2019 0:00                                                                   | s                                                                                                                                    | jar                                                                                                                         |                                            |                                     |                                                                                                                               |                                                                    |                                                                         | ×                                                                                                                 |                                                                                                       |                                                              |                             |                                  |                                                               |                                                                  |                                                                      | I                                                                        |                                                                                | L                                                        |                                                  |          |
| 86          | T81                         |                                                          | 30/10/2019 0:00                                                                   | s                                                                                                                                    | jar                                                                                                                         |                                            |                                     |                                                                                                                               |                                                                    |                                                                         |                                                                                                                   |                                                                                                       |                                                              |                             |                                  |                                                               |                                                                  |                                                                      |                                                                          |                                                                                | x                                                        | ×                                                |          |
| 87          | TSC                         |                                                          |                                                                                   |                                                                                                                                      |                                                                                                                             |                                            |                                     |                                                                                                                               |                                                                    |                                                                         |                                                                                                                   |                                                                                                       |                                                              |                             |                                  |                                                               | L                                                                |                                                                      |                                                                          |                                                                                |                                                          |                                                  | <u> </u> |
|             |                             |                                                          | ·                                                                                 | ļ <b>-</b>                                                                                                                           |                                                                                                                             |                                            |                                     |                                                                                                                               |                                                                    |                                                                         |                                                                                                                   |                                                                                                       | · · · · ·                                                    |                             |                                  |                                                               |                                                                  |                                                                      |                                                                          |                                                                                |                                                          | <b></b>                                          |          |
|             |                             |                                                          |                                                                                   |                                                                                                                                      |                                                                                                                             |                                            |                                     |                                                                                                                               |                                                                    | -,                                                                      |                                                                                                                   |                                                                                                       |                                                              |                             | <u> </u>                         |                                                               |                                                                  | <u> </u>                                                             |                                                                          |                                                                                |                                                          |                                                  |          |
|             |                             |                                                          |                                                                                   |                                                                                                                                      |                                                                                                                             |                                            |                                     |                                                                                                                               |                                                                    | :                                                                       |                                                                                                                   |                                                                                                       |                                                              |                             |                                  | :                                                             |                                                                  |                                                                      |                                                                          |                                                                                | 1                                                        |                                                  |          |
| -           | + •·• • · ··                |                                                          |                                                                                   |                                                                                                                                      |                                                                                                                             |                                            |                                     |                                                                                                                               | _                                                                  |                                                                         | +·                                                                                                                |                                                                                                       | <u> </u>                                                     |                             |                                  |                                                               |                                                                  | <u> </u>                                                             | 1                                                                        |                                                                                |                                                          | -                                                | -        |
| Water Con   | tainer Codes: P = Unprese   | erved Plastic; N = Nitric                                | Preserved Plastic; ORC = 1                                                        | Nitric Preserved C                                                                                                                   | DRC; SH = Sodium H                                                                                                          | TOT/<br>ydroxide/Co                        | AL                                  | = Sadium Hydrox                                                                                                               | kide Prese                                                         | rved Plastic; AG                                                        | = Amber Glas                                                                                                      | s Unpreserve                                                                                          | d; AP - Airfreigh                                            | t Unpreserv                 | ed Plast                         |                                                               |                                                                  |                                                                      |                                                                          |                                                                                |                                                          |                                                  |          |
| Z = Zinc Ac | etate Preserved Bottle; E = | EDTA Preserved Bolties                                   | s; ST = Sterile Bottle; ASS =                                                     | Plastic Bag for A                                                                                                                    | c; AV = Ainreight unp<br>cid Sulphate Solls; B :                                                                            | = Unpreserved vi                           | ved Bag.                            | Preserved Am                                                                                                                  | ber Gløss;                                                         | ; H = HCI prese                                                         | rved Plastic; I                                                                                                   | HS = HCI pro                                                                                          | served Specialic                                             | n bottle; SP                | = Sullur                         | c Prese                                                       | erved Pl                                                         | astic; F                                                             | = Form                                                                   | naldehy                                                                        | de Pre                                                   | served                                           | Glass    |

# Allig TBT/ SVOC

# Kim Phan

From:Loren SchiavonSent:Thursday, 7 November 2019 10:26 AMTo:Kim PhanSubject:FW: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:Attachments:image001.png; image002.png; image003.png; image004.png

Hi Kim,

Can I get you to assist with this one?

We need to add in the testing requested below to two active work orders. Please leave the current due dates and email CS to send a prelim - we then need to create the separate batches for the dioxins. Vanessa has confirmed 10 days from receipt for the TBT.

Thanks.

Kind Regards Loren Schiavon Sample Administration Coordinator, Environmental

See how ALS is making sampling easier! Register your interest here.

Subcon / Forward Lab / Split WO Lab / Analysis: <u>B(15banc</u>) Organised By / Date: <u>EBT : 11,63</u>,73. Relinquished By / Date: Connote / Courier: WO No: <u>ESI93607</u> Attach By PO / Internal Sheet:

Anc 7.11.10



Environmental Division

### **Right Solutions • Right Partner**

https://aus01.safelinks.protection.outlook.com/?url=www.alsglobal.com&data=02%7C01%7CKim.Phan%40alsglobal.com%7C822e6d0d1a2e415fdefc08d76310b269%7C485ca04e6f7440509764cdb4bfa89c25%7C0%7C0%7C637086795685299636&sdata=Eyqaw0cQknLkqagzwxAPSDeCzRtw1wXYtpWrHbo9C1E%3D&reserved=0

-----Original Message-----From: Grace White Sent: Thursday, 7 November 2019 8:52 AM To: Loren Schiavon <loren.schiavon@alsglobal.com> Subject: FW: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:

Hey Loren,

.

Can you please organise making the below amendments?

Thank you!

Grace White Client Services Officer, Environmental Sydney

T +61 2 8784 8555 D +61 2 8784 8531 F +61 2 8784 8500 grace.white@alsglobal.com 277-289 Woodpark Road Smithfield, NSW, 2164

Subscribe

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how. We are keen for your feedback! Please click here for your 3 minute survey EnviroMail™ 00 – All EnviroMails™ in one convenient library. Recent releases (click to access directly): EnviroMail™ 124 – PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail™ 127 – Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here. Right Solutions • Right Partner https://aus01.safelinks.protection.outlook.com/?url=www.alsglobal.com&data=02%7C01%7CKim.Phan%40alsglobal.com%7C822e6d0d1a2e415fdefc08d76310b269% 7C485ca04e6f7440509764cdb4bfa89c25%7C0%7C0%7C637086795685299636&sdata=Eyqaw0cQknLkqagzwxAPSDeCzRtw1wXYtpWrHbo9C1E%3D&reserved=0

-----Original Message-----

From: Carmen Yi [mailto:Carmen.Yi@ghd.com] Sent: Wednesday, 6 November 2019 11:07 PM To: ALSEnviro Sydney <ALSEnviro.Sydney@ALSGlobal.com> Cc: Sarah.Eccleshall@ghd.com; Brenda Hong <Brenda.Hong@alsglobal.com> Subject: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

# Hi ALS team,

We have now received approval to go ahead with the TBT, dioxin and SVOC tests for ES1936183 and ES1936029. Would you please test the following samples on standard turnaround time please?

# ES1936183

VC08\_1.0-1.5

VC12\_0.0-0.5

# ES1936029

VC01\_0.5-1.0 (7b) VC04\_0.5-1.0 (b) VC07\_0.0-0.5 (ii)

# Kind regards

Carmen Yi

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

.

.

4

# Vishal Patel

| From:    | Angus Harding                    |
|----------|----------------------------------|
| Sent:    | Tuesday, 3 December 2019 2:21 PM |
| То:      | Vishal Patel                     |
| Če:      | Loren Schiavon                   |
| Subject: | FW: [EXTERNAL] - RE: ES1938004   |

Hey Vishal,

Could you get down sample 055 from ES1936029 (S685-S690) if we still have the jar we will need to send to EB for TBT.

Cheers.

Kind Regards,

## Angus Harding

Client Services Officer, Environmental Sydney



<u>T</u> +61 2 8784 8555 <u>F</u> +61 2 8784 8500 <u>D</u> +61 2 8784 8503 <u>angus.harding@alsglobal.com</u> 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA

Subscribe

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how.





# SAMPLE RECEIPT NOTIFICATION (SRN)

| Work Order                                                                     | ES1936029                                                                                                |                                                       |                                                                                                                                                  |                                                       |  |  |  |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| Client<br>Contact<br>Address                                                   | : GHD PTY LTD<br>: Jessica Watson<br>: LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address                      | <ul> <li>Environmental Division Sydney</li> <li>Customer Services ES</li> <li>277-289 Woodpark Road Smithfield<br/>NSW Australia 2164</li> </ul> |                                                       |  |  |  |  |  |
| E-mail<br>Telephone<br>Facsimile                                               | : jessica.watson@ghd.com<br>:<br>:                                                                       | E-mail<br>Telephone<br>Facsimile                      | : ALSEnviro<br>: +61-2-878<br>: +61-2-878                                                                                                        | viro.Sydney@ALSGlobal.com<br>8784 8555<br>8784 8500   |  |  |  |  |  |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler                     | : 12517046<br>:<br>:<br>:<br>: Sarah Eccleshall                                                          | Page<br>Quote number<br>QC Level                      | : 1 of 6<br>: ES2019GHDSER0030 (SY/522/19)<br>: NEPM 2013 B3 & ALS QC Standard                                                                   |                                                       |  |  |  |  |  |
| Dates<br>Date Samples Received<br>Client Requested Due<br>Date                 | 2 : 31-Oct-2019 17:15<br>: 07-Nov-2019                                                                   | Issue Date<br>Scheduled Reporting                     | Date                                                                                                                                             | : 07-Nov-2019<br>: <b>07-Nov-2019</b>                 |  |  |  |  |  |
| Delivery Details<br>Mode of Delivery<br>No. of coolers/boxes<br>Receipt Detail | : Client Drop Off<br>: 4<br>: ESKIES                                                                     | Security Seal<br>Temperature<br>No. of samples receiv | ved / analysed                                                                                                                                   | : Not Available<br>: 3.9'C - Ice present<br>: 87 / 47 |  |  |  |  |  |

## **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- 1/11/19: This is an updated SRN which indicates the updated analysis as discussed wih Sarah.
- 4/11/19: This is an updated SRN which indicates the updated code for phenol analysis.
- 6/11/19: This is an updated SRN which indicates total metals for the sample RIN\_01.
- FD02 forward to Eurofins.
- Sample with ID VC04\_0.4-0.5 not received but was labelled with ID VC04\_0.3-0.4.
- 07/11/19: This is an updated SRA which indicates TBT and SVOC for the samples VC07\_0.0-0.5 (#11), VC04\_0.5-1.0 (#63), VC01\_0.5-1.0 (#73).
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- ASS Field Screen and TOC analysis will be conducted by ALS Brisbane.
- Fluoride and PSD analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Preliminary results will be available on the scheduled reporting date listed in this report. However the final report with TBT and SVOC analysis will be complete on 21/11/19.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
  analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
  temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
  recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

segmented Flow Analyser

Solids)

on (TOC) in Soil

Sediments

ultra trace

sediments

15 metals + low level Hg)

#### • No sample container / preservation non-compliance exists.

### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

| component                                      |                                |                  | 103<br>ant                              | н<br>С                                                        | Cart                            | in S                                                | SD N                                                    | AH                                                  | NS                                  |
|------------------------------------------------|--------------------------------|------------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------|-----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|-------------------------------------|
| Matrix: SOIL                                   |                                |                  | EA055-                                  | EK026S<br>yanide f                                            | EP003<br>organic C              | EP071 -<br>tra trace                                | EP080-()/BTEXN                                          | SD-02<br>//PCB/P/                                   | SD-03<br>by ICPN                    |
| Laboratory sample<br>ID                        | Client sampling<br>date / time | Client sample ID | SOIL -<br>Moistur                       | SOIL -<br>Total C                                             | SOIL -<br>Total C               | SOIL -<br>TRH uI                                    | SOIL -<br>TRH(V                                         | SOIL -<br>OC/OP                                     | SOIL -<br>Metals                    |
| ES1936029-001                                  | 30-Oct-2019 00:00              | VC09_0.0-0.2     | √                                       | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-007                                  | 30-Oct-2019 00:00              | VC07_0.0-0.2     | ✓                                       | ✓                                                             | ✓                               | ✓                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-011                                  | 30-Oct-2019 00:00              | VC07_0.0-0.5     | ✓                                       | ✓                                                             | ✓                               | ✓                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-040                                  | 30-Oct-2019 00:00              | VC11_0.5-0.7     | ✓                                       | ✓                                                             | ✓                               | ✓                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-047                                  | 30-Oct-2019 00:00              | VC05_0.8-0.9     | <ul> <li>✓</li> </ul>                   | ✓                                                             | ✓                               | ✓                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-051                                  | 30-Oct-2019 00:00              | VC03_0.3-0.4     | <ul> <li>✓</li> </ul>                   | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-055                                  | 30-Oct-2019 00:00              | VC03_0.0-0.5     | <ul> <li>✓</li> </ul>                   | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-058                                  | 30-Oct-2019 00:00              | VC04_0.3-0.4     | <ul> <li>✓</li> </ul>                   | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-063                                  | 30-Oct-2019 00:00              | VC04_0.5-1.0     | <ul> <li>✓</li> </ul>                   | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-067                                  | 30-Oct-2019 00:00              | VC02_1.5-1.6     | <ul> <li>✓</li> </ul>                   | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-071                                  | 30-Oct-2019 00:00              | VC01_1.0-1.1     | <ul> <li>✓</li> </ul>                   | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-073                                  | 30-Oct-2019 00:00              | VC01_0.5-1.0     | 1                                       | ✓                                                             | ✓                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-076                                  | 30-Oct-2019 00:00              | VC10_0.7-0.8     | ✓                                       | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-077                                  | 31-Oct-2019 00:00              | VC10_0.0-0.5     | <ul> <li>✓</li> </ul>                   | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-079                                  | 31-Oct-2019 00:00              | VC02_0.0-0.5     | ✓                                       | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| ES1936029-081                                  | 30-Oct-2019 00:00              | FD01             | <ul> <li>✓</li> </ul>                   | ✓                                                             | 1                               | 1                                                   | ✓                                                       | ✓                                                   | 1                                   |
| ES1936029-083                                  | 31-Oct-2019 00:00              | FD05             | √                                       | ✓                                                             | ✓                               | ✓                                                   | ✓                                                       | ✓                                                   | ✓                                   |
| Matrix: <b>SOIL</b><br>Laboratory sample<br>ID | Client sampling<br>date / time | Client sample ID | (On Hold) SOIL<br>No analysis requested | SOIL - EA150H<br>Particle Size Analysis by Hydrometer: AS1289 | SOIL - EK040T<br>Total Fluoride | SOIL - EP074 (solids)<br>Volatile Organic Compounds | SOIL - EP075 (solids)<br>Semivolatile Organic Compounds | SOIL - EP075 SIM Phenols only<br>SIM - Phenols only | SOIL - EP090 (solids)<br>Organotins |
| ES1936029-001                                  | 30-Oct-2019 00:00              | VC09_0.0-0.2     |                                         |                                                               |                                 |                                                     |                                                         | ✓                                                   |                                     |
| ES1936029-002                                  | 30-Oct-2019 00:00              | VC09_0.4-0.6     | 1                                       |                                                               |                                 |                                                     |                                                         |                                                     |                                     |
| ES1936029-003                                  | 30-Oct-2019 00:00              | VC09_07-0.8      | 1                                       |                                                               |                                 |                                                     |                                                         |                                                     |                                     |
| ES1936029-004                                  | 30-Oct-2019 00:00              | VC09_0.8-1.0     | ✓                                       |                                                               |                                 |                                                     |                                                         |                                                     |                                     |
| ES1936029-005                                  | 30-Oct-2019 00:00              | VC09_0.0-0.5     | ✓                                       |                                                               |                                 |                                                     |                                                         |                                                     |                                     |
| ES1936029-006                                  | 30-Oct-2019 00:00              | VC09_0.5-1.0     | 1                                       |                                                               |                                 |                                                     |                                                         |                                                     |                                     |
| E04000000007                                   |                                |                  |                                         |                                                               |                                 |                                                     |                                                         |                                                     |                                     |

| Issue Date | : 07-Nov-2019         |
|------------|-----------------------|
| Page       | : 3 of 6              |
| Work Order | ES1936029 Amendment 0 |
| Client     | : GHD PTY LTD         |



| Page<br>Work Order<br>Client | 3 of 6<br>ES1936029 Amend<br>GHD PTY LTD | lment 0      |                       |              |                   |                  |                 |             |                 |  |
|------------------------------|------------------------------------------|--------------|-----------------------|--------------|-------------------|------------------|-----------------|-------------|-----------------|--|
|                              |                                          |              |                       |              |                   |                  |                 |             |                 |  |
|                              |                                          |              |                       |              |                   |                  |                 |             |                 |  |
|                              |                                          |              |                       | S 128(       |                   |                  |                 |             |                 |  |
|                              |                                          |              |                       | ter: A       |                   |                  |                 |             |                 |  |
|                              |                                          |              |                       | drome        |                   |                  | spun            | ylno        |                 |  |
|                              |                                          |              |                       | y Hyc        |                   | spuno            | odmo            | sions o     |                 |  |
|                              |                                          |              | ested                 | lysis t      |                   | lids)<br>Comp    | lids)<br>anic C | d Phe<br>ly | lids)           |  |
|                              |                                          |              | OIL                   | 50H<br>e Ana | to T<br>de        | 74 (sc<br>anic ( | 75 (sc<br>Orga  | 75 SIN      | 90 (sc          |  |
|                              |                                          |              | old) S<br>alysis      | - EA1        | - EKO             | e Org            | - EP0           | - EPO       | - EPO           |  |
|                              |                                          |              | On H<br>Vo an         | SOIL -       | SOIL -<br>Total I | SOIL -           | Soll            | SOIL -      | SOIL -<br>Organ |  |
| ES1936029-008                | 30-Oct-2019 00:00                        | VC07_0.5-0.6 | ✓                     | •/ =         |                   |                  |                 |             |                 |  |
| ES1936029-009                | 30-Oct-2019 00:00                        | VC07_0.7-0.8 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-010                | 30-Oct-2019 00:00                        | VC07_1.0-1.2 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-011                | 30-Oct-2019 00:00                        | VC07_0.0-0.5 |                       | ✓            |                   |                  | ✓               | 1           | ✓               |  |
| ES1936029-012                | 30-Oct-2019 00:00                        | VC07_0.5-1.0 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-039                | 30-Oct-2019 00:00                        | VC11_0.0-0.2 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-040                | 30-Oct-2019 00:00                        | VC11_0.5-0.7 |                       |              | ✓                 | ✓                |                 | ✓           |                 |  |
| ES1936029-041                | 30-Oct-2019 00:00                        | VC11_1.0-1.2 | <ul> <li>✓</li> </ul> |              |                   |                  |                 |             |                 |  |
| ES1936029-042                | 30-Oct-2019 00:00                        | VC11_0.0-0.5 | ✓<br>✓                |              |                   |                  |                 |             |                 |  |
| ES1936029-043                | 30-Oct-2019 00:00                        | VC11_0.5-1.0 | ✓<br>✓                |              |                   |                  |                 |             |                 |  |
| ES1936029-044                | 30-Oct-2019 00:00                        | VC07_0.2-0.4 | <b>v</b>              |              |                   |                  |                 |             |                 |  |
| ES1936029-045                | 30-Oct-2019 00:00                        | VC05_0.0-0.1 | ▼<br>√                |              |                   |                  |                 |             |                 |  |
| ES1936029-047                | 30-Oct-2019 00:00                        | VC05_0.8-0.9 | •                     |              | 1                 | 1                |                 | 1           |                 |  |
| ES1936029-048                | 30-Oct-2019 00:00                        | VC05_0.0-0.5 | 1                     |              | •                 | •                |                 | •           |                 |  |
| ES1936029-049                | 30-Oct-2019 00:00                        | VC03 0.5-0.9 | 1                     |              |                   |                  |                 |             |                 |  |
| ES1936029-050                | 30-Oct-2019 00:00                        | VC03_0.0-0.2 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-051                | 30-Oct-2019 00:00                        | VC03_0.3-0.4 |                       |              | ✓                 | ✓                |                 | ✓           |                 |  |
| ES1936029-052                | 30-Oct-2019 00:00                        | VC03_0.4-0.6 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-053                | 30-Oct-2019 00:00                        | VC03_0.6-0.7 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-054                | 30-Oct-2019 00:00                        | VC03_1.0-1.2 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-055                | 30-Oct-2019 00:00                        | VC03_0.0-0.5 |                       | ✓            |                   |                  |                 | ✓           |                 |  |
| ES1936029-056                | 30-Oct-2019 00:00                        | VC03_0.5-1.0 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-057                | 30-Oct-2019 00:00                        | VC04_0.0-0.1 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-058                | 30-Oct-2019 00:00                        | VC04_0.3-0.4 |                       |              |                   |                  |                 | ✓           |                 |  |
| ES1936029-059                | 30-Oct-2019 00:00                        | VC04_0.5-0.6 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-060                | 30-Oct-2019 00:00                        | VC04_0.7-0.8 | <ul> <li>✓</li> </ul> |              |                   |                  |                 |             |                 |  |
| ES1936029-061                | 30-Oct-2019 00:00                        | VC04_0.9-1.0 | ✓<br>✓                |              |                   |                  |                 |             |                 |  |
| ES1936029-062                | 30-Oct-2019 00:00                        | VC04_0.0-0.5 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1036029-063                | 30-Oct-2019 00:00                        | VC04_0.5-1.0 | ./                    | v            |                   |                  | v               | v           | v               |  |
| ES1936029-065                | 30-Oct-2019 00:00                        | VC02_0.5-0.6 | •                     |              |                   |                  |                 |             |                 |  |
| ES1936029-066                | 30-Oct-2019 00:00                        | VC02_1.0-1.2 | •                     |              |                   |                  |                 |             |                 |  |
| ES1936029-067                | 30-Oct-2019 00:00                        | VC02 1.5-1.6 |                       |              |                   |                  |                 | 1           |                 |  |
| ES1936029-068                | 30-Oct-2019 00:00                        | VC02_1.0-1.5 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-069                | 30-Oct-2019 00:00                        | VC01_0.0-0.2 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-070                | 30-Oct-2019 00:00                        | VC01_0.4-0.6 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-071                | 30-Oct-2019 00:00                        | VC01_1.0-1.1 |                       |              |                   |                  |                 | ✓           |                 |  |
| ES1936029-072                | 30-Oct-2019 00:00                        | VC01_0.0-0.5 | ✓                     |              |                   |                  |                 |             |                 |  |
| ES1936029-073                | 30-Oct-2019 00:00                        | VC01_0.5-1.0 |                       | ✓            |                   |                  | ✓               | ✓           | ✓               |  |
| ES1936029-074                | 31-Oct-2019 00:00                        | VC10_0.0-0.2 | ✓                     |              |                   |                  |                 |             |                 |  |

| : 07-Nov-2019         |
|-----------------------|
| : 4 of 6              |
| ES1936029 Amendment 0 |
| : GHD PTY LTD         |
|                       |



|               |                   |              | (On Hold) SOIL<br>No analysis requested | SOIL - EA150H<br>Particle Size Analysis by Hydrometer: AS1289 | SOIL - EK040T<br>Total Fluoride | SOIL - EP074 (solids)<br>Volatile Organic Compounds | SOIL - EP075 (solids)<br>Semivolatile Organic Compounds | SOIL - EP075 SIM Phenols only<br>SIM - Phenols only | SOIL - EP090 (solids)<br>Organotins |
|---------------|-------------------|--------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------|-----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|-------------------------------------|
| ES1936029-075 | 31-Oct-2019 00:00 | VC10_0.5-0.6 | ✓                                       |                                                               |                                 |                                                     |                                                         |                                                     |                                     |
| ES1936029-076 | 30-Oct-2019 00:00 | VC10_0.7-0.8 |                                         |                                                               |                                 |                                                     |                                                         | ✓                                                   |                                     |
| ES1936029-077 | 31-Oct-2019 00:00 | VC10_0.0-0.5 |                                         | ✓                                                             |                                 |                                                     |                                                         | 1                                                   |                                     |
| ES1936029-078 | 31-Oct-2019 00:00 | VC10_0.5-1.0 | ✓                                       |                                                               |                                 |                                                     |                                                         |                                                     |                                     |
| ES1936029-079 | 31-Oct-2019 00:00 | VC02_0.0-0.5 |                                         | ✓                                                             |                                 |                                                     |                                                         | ✓                                                   |                                     |
| ES1936029-080 | 31-Oct-2019 00:00 | VC02_0.5-1.0 | ✓                                       |                                                               |                                 |                                                     |                                                         |                                                     |                                     |
| ES1936029-081 | 30-Oct-2019 00:00 | FD01         |                                         |                                                               |                                 |                                                     |                                                         | 1                                                   |                                     |
| ES1936029-082 | 30-Oct-2019 00:00 | FD03         | ✓                                       |                                                               |                                 |                                                     |                                                         |                                                     |                                     |
| ES1936029-083 | 31-Oct-2019 00:00 | FD05         |                                         |                                                               |                                 |                                                     |                                                         | ✓                                                   |                                     |
|               |                   |              |                                         | e for TBs                                                     |                                 |                                                     |                                                         |                                                     |                                     |

| Matrix: <b>SOIL</b><br>Laboratory sample<br>ID | Client sampling<br>date / time | Client sample ID | SOIL - EA037<br>ASS Field Screening Analysis | SOIL - S-18 (NO MOIST)<br>TRH(C6-C9)/BTEXN with No Moisture |
|------------------------------------------------|--------------------------------|------------------|----------------------------------------------|-------------------------------------------------------------|
| ES1936029-013                                  | 30-Oct-2019 00:00              | VC03_0.0-0.1     | ✓                                            |                                                             |
| ES1936029-014                                  | 30-Oct-2019 00:00              | VC03_0.5-0.6     | ✓                                            |                                                             |
| ES1936029-015                                  | 30-Oct-2019 00:00              | VC03_1.0-1.1     | ✓                                            |                                                             |
| ES1936029-016                                  | 30-Oct-2019 00:00              | VC01_0.0-0.1     | ✓                                            |                                                             |
| ES1936029-017                                  | 30-Oct-2019 00:00              | VC01_0.5-0.6     | ✓                                            |                                                             |
| ES1936029-018                                  | 30-Oct-2019 00:00              | VC01_1.0-1.1     | ✓                                            |                                                             |
| ES1936029-019                                  | 30-Oct-2019 00:00              | VC02_0.0-0.1     | ✓                                            |                                                             |
| ES1936029-020                                  | 30-Oct-2019 00:00              | VC02_0.5-0.6     | ✓                                            |                                                             |
| ES1936029-021                                  | 30-Oct-2019 00:00              | VC02_0.9-1.0     | ✓                                            |                                                             |
| ES1936029-022                                  | 30-Oct-2019 00:00              | VC02_1.5-1.6     | ✓                                            |                                                             |
| ES1936029-023                                  | 31-Oct-2019 00:00              | VC10_0.0-0.1     | ✓                                            |                                                             |
| ES1936029-024                                  | 31-Oct-2019 00:00              | VC10_0.5-0.6     | ✓                                            |                                                             |
| ES1936029-025                                  | 30-Oct-2019 00:00              | VC11_0.0-0.1     | ✓                                            |                                                             |
| ES1936029-026                                  | 30-Oct-2019 00:00              | VC11_0.5-0.6     | ✓                                            |                                                             |
| ES1936029-027                                  | 30-Oct-2019 00:00              | VC11_1.0-1.1     | ✓                                            |                                                             |
| ES1936029-028                                  | 30-Oct-2019 00:00              | VC09_0.0-0.1     | ✓                                            |                                                             |
| ES1936029-029                                  | 30-Oct-2019 00:00              | VC09_0.5-0.6     | ✓                                            |                                                             |
| ES1936029-030                                  | 30-Oct-2019 00:00              | VC09_0.9-1.0     | ✓                                            |                                                             |
| ES1936029-031                                  | 30-Oct-2019 00:00              | VC07_0.0-0.1     | 1                                            |                                                             |
| ES1936029-032                                  | 30-Oct-2019 00:00              | VC07_0.5-0.6     | ✓                                            |                                                             |
| ES1936029-033                                  | 30-Oct-2019 00:00              | VC07_1.0-1.1     | 1                                            |                                                             |


|                                           |                        |                  | SOIL - EA037<br>ASS Field Screening Analysis | SOIL - S-18 (NO MOIST)<br>TRH(C6-C9)/BTEXN with No Moisture for TBs |
|-------------------------------------------|------------------------|------------------|----------------------------------------------|---------------------------------------------------------------------|
| ES1936029-034                             | 30-Oct-2019 00:00      | VC05_0.0-0.1     | ✓                                            |                                                                     |
| ES1936029-035                             | 30-Oct-2019 00:00      | VC05_0.5-0.6     | 1                                            |                                                                     |
| ES1936029-036                             | 30-Oct-2019 00:00      | VC05_0.8-1.0     | 1                                            |                                                                     |
| ES1936029-037                             | 31-Oct-2019 00:00      | VC04_0.0-0.1     | ✓                                            |                                                                     |
| ES1936029-038                             | 31-Oct-2019 00:00      | VC04_0.9-1.0     | ✓                                            |                                                                     |
| ES1936029-085                             | 31-Oct-2019 00:00      | TS1              |                                              | ✓                                                                   |
| ES1936029-086                             | 30-Oct-2019 00:00      | TB1              |                                              | ✓                                                                   |
| ES1936029-087                             | 31-Oct-2019 00:00      | TSC              |                                              | ✓                                                                   |
| Matrix: <b>WATER</b><br>Laboratory sample | <i>Client sampling</i> | Client sample ID | ATER - W-02T<br>netals (Total)               | ATER - W-26<br>RH/BTEXN/PAH/8 Metals                                |
| ID                                        | date / time            |                  | × 20                                         | Ž₽<br>Ž                                                             |
| ES1936029-084                             | 30-Oct-2019 00:00      | RIN 01           | ✓                                            | ✓                                                                   |

# Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### Requested Deliverables



| ACCOUNTS PAYABLE (Hobart)                                                     |       |                           |
|-------------------------------------------------------------------------------|-------|---------------------------|
| - A4 - AU Tax Invoice (INV)                                                   | Email | accountspayableAU@ghd.com |
| Accounts Payable Australia                                                    |       |                           |
| - A4 - AU Tax Invoice (INV)                                                   | Email | accountspayableAU@ghd.com |
| CARMEN YI                                                                     |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | carmen.yi@ghd.com         |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | carmen.yi@ghd.com         |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>         | Email | carmen.yi@ghd.com         |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | carmen.yi@ghd.com         |
| - A4 - AU Tax Invoice (INV)                                                   | Email | carmen.yi@ghd.com         |
| - Chain of Custody (CoC) (COC)                                                | Email | carmen.yi@ghd.com         |
| - EDI Format - ENMRG (ENMRG)                                                  | Email | carmen.yi@ghd.com         |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | carmen.yi@ghd.com         |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>                     | Email | carmen.yi@ghd.com         |
| GHD LAB REPORTS                                                               |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | ghdlabreports@ghd.com     |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)                   | Email | ghdlabreports@ghd.com     |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)                           | Email | ghdlabreports@ghd.com     |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | ghdlabreports@ghd.com     |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | ghdlabreports@ghd.com     |
| - Electronic SRN for ESdat (ESRN_ESDAT)                                       | Email | ghdlabreports@ghd.com     |
| SARAH ECCLESHALL                                                              |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | sarah.eccleshall@ghd.com  |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)                           | Email | sarah.eccleshall@ghd.com  |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | sarah.eccleshall@ghd.com  |
| - Chain of Custody (CoC) (COC)                                                | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ENMRG (ENMRG)                                                  | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | sarah.eccleshall@ghd.com  |
| - Electronic SRN for ESdat (ESRN_ESDAT)                                       | Email | sarah.eccleshall@ghd.com  |



#### **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1936029                          | Page                    | : 1 of 60                                             |
|-------------------------|------------------------------------|-------------------------|-------------------------------------------------------|
| Amendment               | :1                                 |                         |                                                       |
| Client                  | : GHD PTY LTD                      | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : Jessica Watson                   | Contact                 | : Customer Services ES                                |
| Address                 | : LEVEL 15, 133 CASTLEREAGH STREET | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|                         | SYDNEY NSW, AUSTRALIA 2000         |                         |                                                       |
| Telephone               | :                                  | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                         | Date Samples Received   | : 31-Oct-2019 17:15                                   |
| Order number            | :                                  | Date Analysis Commenced | : 01-Nov-2019                                         |
| C-O-C number            | :                                  | Issue Date              | : 10-Dec-2019 16:51                                   |
| Sampler                 | : Sarah Eccleshall                 |                         | Hac-MRA NAIA                                          |
| Site                    | :                                  |                         |                                                       |
| Quote number            | : SY/522/19                        |                         | Accordition No. 235                                   |
| No. of samples received | : 87                               |                         | Accredited for compliance with                        |
| No. of samples analysed | : 47                               |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                         | Accreditation Category                      |  |
|--------------------|----------------------------------|---------------------------------------------|--|
| Ankit Joshi        | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |  |
| Ben Felgendrejeris | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |  |
| Diana Mesa         | 2IC Organic Chemist              | Brisbane Organics, Stafford, QLD            |  |
| Dianne Blane       | Laboratory Coordinator (2IC)     | Newcastle - Inorganics, Mayfield West, NSW  |  |
| Edwandy Fadjar     | Organic Coordinator              | Sydney Inorganics, Smithfield, NSW          |  |
| Edwandy Fadjar     | Organic Coordinator              | Sydney Organics, Smithfield, NSW            |  |
| Ivan Taylor        | Analyst                          | Sydney Inorganics, Smithfield, NSW          |  |
| Merrin Avery       | Supervisor - Inorganic           | Newcastle - Inorganics, Mayfield West, NSW  |  |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075(SIM) : LOR has been raised due to high amount of moisture present.
- EA150H: Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1 2006 was not requested by the client. Typical sediment SPD values used for calculations and consequently NATA endorsement does not apply to hydrometer results.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP131B : Positive PCB result for particular sample ES1936029\_011 is confirmed by re-extraction and re-analysis.
- EP132B-SD and EP131B : Particular sample raised LOR due to high amount of moistures is present.
- EG020: Poor precision was obtained for some Copper, Lead and Zinc on sample EM1918213-#002. Results have been confirmed by re-extraction and reanalysis.
- EP075: LOR for sample raised due to high amount of moisture present.
- EG035: Positive Hg results for ES1936029 #7,11,79 have been confirmed by reanalysis.
- EP074: Poor matrix spike recovery due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EP080: The trip spike and its control have been analysed for volatile TPH and BTEX only. The trip spike and control were prepared in the lab using reagent grade sand spiked with petrol. The spike was dispatched from the lab and the control retained.
- EP132B-SD : Particular samples required dilution due to sample matrix . LOR values have been adjusted accordingly.
- EP090 Organotin: Particular sample shows poor matrix spike recovery due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EP090 Organotin: Particular sample shows poor matrix spike recovery for MBT due to matrix interference.
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.
- EP075: 'Sum of PAH' is the sum of the USEPA 16 priority PAHs

| Page       | 3 of 60               |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | : 12517046            |



Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

| Page       | : 4 of 60             |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)         | Client sample ID            |      |                   | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6  |  |
|--------------------------------------------|-----------------------------|------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|--|
|                                            | Client sampling date / time |      | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |               |  |
| Compound                                   | CAS Number                  | LOR  | Unit              | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014 |  |
|                                            |                             |      |                   | Result            | Result            | Result            | Result            | Result        |  |
| EA037: Ass Field Screening Analysis        |                             |      |                   |                   |                   |                   |                   |               |  |
| ø pH (F)                                   |                             | 0.1  | pH Unit           |                   |                   |                   | 7.9               | 7.5           |  |
| øpH (Fox)                                  |                             | 0.1  | pH Unit           |                   |                   |                   | 6.2               | 5.7           |  |
| ø Reaction Rate                            |                             | 1    | -                 |                   |                   |                   | 2                 | 3             |  |
| EA055: Moisture Content (Dried @ 105-11    | 0°C)                        |      |                   |                   |                   |                   |                   |               |  |
| Moisture Content                           |                             | 1.0  | %                 | 34.5              | 1.5               | 31.3              |                   |               |  |
| EA150: Particle Sizing                     |                             |      |                   |                   |                   |                   |                   |               |  |
| +75μm                                      |                             | 1    | %                 |                   |                   | 68                |                   |               |  |
| +150μm                                     |                             | 1    | %                 |                   |                   | 63                |                   |               |  |
| +300µm                                     |                             | 1    | %                 |                   |                   | 47                |                   |               |  |
| +425µm                                     |                             | 1    | %                 |                   |                   | 31                |                   |               |  |
| +600µm                                     |                             | 1    | %                 |                   |                   | 16                |                   |               |  |
| +1180µm                                    |                             | 1    | %                 |                   |                   | 8                 |                   |               |  |
| +2.36mm                                    |                             | 1    | %                 |                   |                   | 4                 |                   |               |  |
| +4.75mm                                    |                             | 1    | %                 |                   |                   | 2                 |                   |               |  |
| +9.5mm                                     |                             | 1    | %                 |                   |                   | <1                |                   |               |  |
| +19.0mm                                    |                             | 1    | %                 |                   |                   | <1                |                   |               |  |
| +37.5mm                                    |                             | 1    | %                 |                   |                   | <1                |                   |               |  |
| +75.0mm                                    |                             | 1    | %                 |                   |                   | <1                |                   |               |  |
| EA150: Soil Classification based on Partic | cle Size                    |      |                   |                   |                   |                   |                   |               |  |
| Clay (<2 μm)                               |                             | 1    | %                 |                   |                   | 22                |                   |               |  |
| Silt (2-60 µm)                             |                             | 1    | %                 |                   |                   | 9                 |                   |               |  |
| Sand (0.06-2.00 mm)                        |                             | 1    | %                 |                   |                   | 64                |                   |               |  |
| Gravel (>2mm)                              |                             | 1    | %                 |                   |                   | 5                 |                   |               |  |
| Cobbles (>6cm)                             |                             | 1    | %                 |                   |                   | <1                |                   |               |  |
| EG005(ED093)-SD: Total Metals in Sedime    | ents by ICP-AES             | 3    |                   |                   |                   |                   |                   |               |  |
| Aluminium                                  | 7429-90-5                   | 50   | mg/kg             | 8120              | 3930              | 5550              |                   |               |  |
| Iron                                       | 7439-89-6                   | 50   | mg/kg             | 4720              | 11800             | 15600             |                   |               |  |
| EG020-SD: Total Metals in Sediments by I   | CPMS                        |      |                   |                   |                   |                   |                   |               |  |
| Antimony                                   | 7440-36-0                   | 0.50 | mg/kg             | <0.50             | <0.50             | <0.50             |                   |               |  |
| Arsenic                                    | 7440-38-2                   | 1.00 | mg/kg             | 1.74              | 6.28              | 9.04              |                   |               |  |
| Cadmium                                    | 7440-43-9                   | 0.1  | mg/kg             | <0.1              | <0.1              | <0.1              |                   |               |  |
| Chromium                                   | 7440-47-3                   | 1.0  | mg/kg             | 10.3              | 12.5              | 16.6              |                   |               |  |
| Copper                                     | 7440-50-8                   | 1.0  | mg/kg             | <1.0              | 38.2              | 189               |                   |               |  |
| Cobalt                                     | 7440-48-4                   | 0.5  | mg/kg             | 0.8               | 1.4               | 2.4               |                   |               |  |

| Page       | 5 of 60               |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                       | Client sample ID            |      |                   | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6  |  |  |
|----------------------------------------------------------|-----------------------------|------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|--|--|
|                                                          | Client sampling date / time |      | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |               |  |  |
| Compound                                                 | CAS Number                  | LOR  | Unit              | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014 |  |  |
|                                                          |                             |      |                   | Result            | Result            | Result            | Result            | Result        |  |  |
| EG020-SD: Total Metals in Sediments by ICPMS - Continued |                             |      |                   |                   |                   |                   |                   |               |  |  |
| Lead                                                     | 7439-92-1                   | 1.0  | mg/kg             | 10.7              | 67.7              | 110               |                   |               |  |  |
| Manganese                                                | 7439-96-5                   | 10   | mg/kg             | 20                | 34                | 37                |                   |               |  |  |
| Nickel                                                   | 7440-02-0                   | 1.0  | mg/kg             | 1.8               | 3.0               | 4.4               |                   |               |  |  |
| Selenium                                                 | 7782-49-2                   | 0.1  | mg/kg             | 0.2               | 0.2               | 0.3               |                   |               |  |  |
| Silver                                                   | 7440-22-4                   | 0.1  | mg/kg             | 0.1               | 0.3               | 1.5               |                   |               |  |  |
| Vanadium                                                 | 7440-62-2                   | 2.0  | mg/kg             | 15.4              | 11.9              | 16.2              |                   |               |  |  |
| Zinc                                                     | 7440-66-6                   | 1.0  | mg/kg             | 2.9               | 96.6              | 158               |                   |               |  |  |
| EG035T: Total Recoverable Mercur                         | ry by FIMS                  |      |                   |                   |                   |                   |                   |               |  |  |
| Mercury                                                  | 7439-97-6                   | 0.01 | mg/kg             | 0.02              | 0.84              | 1.61              |                   |               |  |  |
| EK026SF: Total CN by Segmented                           | Flow Analyser               |      |                   |                   |                   |                   |                   |               |  |  |
| Total Cyanide                                            | 57-12-5                     | 1    | mg/kg             | <1                | <1                | <1                |                   |               |  |  |
| EK040T: Fluoride Total                                   |                             |      |                   |                   |                   |                   |                   |               |  |  |
| Fluoride                                                 | 16984-48-8                  | 40   | mg/kg             |                   | 80                |                   |                   |               |  |  |
| EP003: Total Organic Carbon (TOC)                        | ) in Soil                   |      |                   |                   |                   |                   |                   |               |  |  |
| Total Organic Carbon                                     |                             | 0.02 | %                 | 0.08              | 1.28              | 1.05              |                   |               |  |  |
| EP074A: Monocyclic Aromatic Hyd                          | rocarbons                   |      |                   |                   |                   |                   |                   |               |  |  |
| Benzene                                                  | 71-43-2                     | 0.2  | mg/kg             |                   | <0.2              |                   |                   |               |  |  |
| Toluene                                                  | 108-88-3                    | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| Ethylbenzene                                             | 100-41-4                    | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| meta- & para-Xylene                                      | 108-38-3 106-42-3           | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| Styrene                                                  | 100-42-5                    | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| ortho-Xylene                                             | 95-47-6                     | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| lsopropylbenzene                                         | 98-82-8                     | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| n-Propylbenzene                                          | 103-65-1                    | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| 1.3.5-Trimethylbenzene                                   | 108-67-8                    | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| sec-Butylbenzene                                         | 135-98-8                    | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| 1.2.4-Trimethylbenzene                                   | 95-63-6                     | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| tert-Butylbenzene                                        | 98-06-6                     | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| p-lsopropyltoluene                                       | 99-87-6                     | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| n-Butylbenzene                                           | 104-51-8                    | 0.5  | mg/kg             |                   | <0.5              |                   |                   |               |  |  |
| EP074B: Oxygenated Compounds                             |                             |      |                   |                   |                   |                   |                   |               |  |  |
| Vinyl Acetate                                            | 108-05-4                    | 5    | mg/kg             |                   | <5                |                   |                   |               |  |  |
| 2-Butanone (MEK)                                         | 78-93-3                     | 5    | mg/kg             |                   | <5                |                   |                   |               |  |  |
| 4-Methyl-2-pentanone (MIBK)                              | 108-10-1                    | 5    | mg/kg             |                   | <5                |                   |                   |               |  |  |

| Page       | : 6 of 60             |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)       | Client sample ID            |     |                   | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6  |  |
|------------------------------------------|-----------------------------|-----|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|--|
|                                          | Client sampling date / time |     | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |               |  |
| Compound                                 | CAS Number                  | LOR | Unit              | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014 |  |
|                                          |                             |     |                   | Result            | Result            | Result            | Result            | Result        |  |
| EP074B: Oxygenated Compounds - Continued |                             |     |                   |                   |                   |                   |                   |               |  |
| 2-Hexanone (MBK)                         | 591-78-6                    | 5   | mg/kg             |                   | <5                |                   |                   |               |  |
| EP074C: Sulfonated Compounds             |                             |     |                   |                   |                   |                   |                   |               |  |
| Carbon disulfide                         | 75-15-0                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| EP074D: Fumigants                        |                             |     |                   |                   |                   |                   |                   |               |  |
| 2.2-Dichloropropane                      | 594-20-7                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.2-Dichloropropane                      | 78-87-5                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| cis-1.3-Dichloropropylene                | 10061-01-5                  | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| trans-1.3-Dichloropropylene              | 10061-02-6                  | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.2-Dibromoethane (EDB)                  | 106-93-4                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| EP074E: Halogenated Aliphatic Compo      | ounds                       |     |                   |                   |                   |                   |                   |               |  |
| Dichlorodifluoromethane                  | 75-71-8                     | 5   | mg/kg             |                   | <5                |                   |                   |               |  |
| Chloromethane                            | 74-87-3                     | 5   | mg/kg             |                   | <5                |                   |                   |               |  |
| Vinyl chloride                           | 75-01-4                     | 5   | mg/kg             |                   | <5                |                   |                   |               |  |
| Bromomethane                             | 74-83-9                     | 5   | mg/kg             |                   | <5                |                   |                   |               |  |
| Chloroethane                             | 75-00-3                     | 5   | mg/kg             |                   | <5                |                   |                   |               |  |
| Trichlorofluoromethane                   | 75-69-4                     | 5   | mg/kg             |                   | <5                |                   |                   |               |  |
| 1.1-Dichloroethene                       | 75-35-4                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| lodomethane                              | 74-88-4                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| trans-1.2-Dichloroethene                 | 156-60-5                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.1-Dichloroethane                       | 75-34-3                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| cis-1.2-Dichloroethene                   | 156-59-2                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.1.1-Trichloroethane                    | 71-55-6                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.1-Dichloropropylene                    | 563-58-6                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| Carbon Tetrachloride                     | 56-23-5                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.2-Dichloroethane                       | 107-06-2                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| Trichloroethene                          | 79-01-6                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| Dibromomethane                           | 74-95-3                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.1.2-Trichloroethane                    | 79-00-5                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.3-Dichloropropane                      | 142-28-9                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| Tetrachloroethene                        | 127-18-4                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.1.1.2-Tetrachloroethane                | 630-20-6                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| trans-1.4-Dichloro-2-butene              | 110-57-6                    | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| cis-1.4-Dichloro-2-butene                | 1476-11-5                   | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |
| 1.1.2.2-Tetrachloroethane                | 79-34-5                     | 0.5 | mg/kg             |                   | <0.5              |                   |                   |               |  |

| Page       | : 7 of 60             |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                  | Client sample ID |             |                | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6      |  |
|-----------------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                     | Cli              | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                                            | CAS Number       | LOR         | Unit           | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014     |  |
|                                                     |                  |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EP074E: Halogenated Aliphatic Compounds - Continued |                  |             |                |                   |                   |                   |                   |                   |  |
| 1.2.3-Trichloropropane                              | 96-18-4          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| Pentachloroethane                                   | 76-01-7          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| 1.2-Dibromo-3-chloropropane                         | 96-12-8          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| Hexachlorobutadiene                                 | 87-68-3          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| EP074F: Halogenated Aromatic Compounds              |                  |             |                |                   |                   |                   |                   |                   |  |
| Chlorobenzene                                       | 108-90-7         | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| Bromobenzene                                        | 108-86-1         | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| 2-Chlorotoluene                                     | 95-49-8          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| 4-Chlorotoluene                                     | 106-43-4         | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| 1.3-Dichlorobenzene                                 | 541-73-1         | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| 1.4-Dichlorobenzene                                 | 106-46-7         | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| 1.2-Dichlorobenzene                                 | 95-50-1          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| 1.2.4-Trichlorobenzene                              | 120-82-1         | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| 1.2.3-Trichlorobenzene                              | 87-61-6          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| EP074G: Trihalomethanes                             |                  |             |                |                   |                   |                   |                   |                   |  |
| Chloroform                                          | 67-66-3          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| Bromodichloromethane                                | 75-27-4          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| Dibromochloromethane                                | 124-48-1         | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| Bromoform                                           | 75-25-2          | 0.5         | mg/kg          |                   | <0.5              |                   |                   |                   |  |
| EP074H: Naphthalene                                 |                  |             |                |                   |                   |                   |                   |                   |  |
| Naphthalene                                         | 91-20-3          | 1           | mg/kg          |                   | <1                |                   |                   |                   |  |
| EP075(SIM)A: Phenolic Compounds                     |                  |             |                |                   |                   |                   |                   |                   |  |
| Phenol                                              | 108-95-2         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2-Chlorophenol                                      | 95-57-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2-Methylphenol                                      | 95-48-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 3- & 4-Methylphenol                                 | 1319-77-3        | 1           | mg/kg          | <1                | <1                | <1                |                   |                   |  |
| 2-Nitrophenol                                       | 88-75-5          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.4-Dimethylphenol                                  | 105-67-9         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.4-Dichlorophenol                                  | 120-83-2         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.6-Dichlorophenol                                  | 87-65-0          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 4-Chloro-3-methylphenol                             | 59-50-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.4.6-Trichlorophenol                               | 88-06-2          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.4.5-Trichlorophenol                               | 95-95-4          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| Pentachlorophenol                                   | 87-86-5          | 2           | mg/kg          | <2                | <2                | <2                |                   |                   |  |

| Page       | : 8 of 60             |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID            |     |       | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6      |
|------------------------------------|-----------------------------|-----|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Client sampling date / time |     |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                           | CAS Number                  | LOR | Unit  | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014     |
|                                    |                             |     |       | Result            | Result            | Result            | Result            | Result            |
| EP075A: Phenolic Compounds         |                             |     |       |                   |                   |                   |                   |                   |
| Phenol                             | 108-95-2                    | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2-Chlorophenol                     | 95-57-8                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2-Methylphenol                     | 95-48-7                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 3- & 4-Methylphenol                | 1319-77-3                   | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2-Nitrophenol                      | 88-75-5                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2.4-Dimethylphenol                 | 105-67-9                    | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2.4-Dichlorophenol                 | 120-83-2                    | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2.6-Dichlorophenol                 | 87-65-0                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 4-Chloro-3-methylphenol            | 59-50-7                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2.4.6-Trichlorophenol              | 88-06-2                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2.4.5-Trichlorophenol              | 95-95-4                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Pentachlorophenol                  | 87-86-5                     | 1   | mg/kg |                   |                   | <1                |                   |                   |
| EP075B: Polynuclear Aromatic Hydro | ocarbons                    |     |       |                   |                   |                   |                   |                   |
| Naphthalene                        | 91-20-3                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2-Methylnaphthalene                | 91-57-6                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| 2-Chloronaphthalene                | 91-58-7                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Acenaphthylene                     | 208-96-8                    | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Acenaphthene                       | 83-32-9                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Fluorene                           | 86-73-7                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Phenanthrene                       | 85-01-8                     | 0.5 | mg/kg |                   |                   | 0.7               |                   |                   |
| Anthracene                         | 120-12-7                    | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Fluoranthene                       | 206-44-0                    | 0.5 | mg/kg |                   |                   | 1.5               |                   |                   |
| Pyrene                             | 129-00-0                    | 0.5 | mg/kg |                   |                   | 1.5               |                   |                   |
| N-2-Fluorenyl Acetamide            | 53-96-3                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Benz(a)anthracene                  | 56-55-3                     | 0.5 | mg/kg |                   |                   | 0.8               |                   |                   |
| Chrysene                           | 218-01-9                    | 0.5 | mg/kg |                   |                   | 0.7               |                   |                   |
| Benzo(b+j) &                       | 205-99-2 207-08-9           | 1   | mg/kg |                   |                   | 1                 |                   |                   |
| Benzo(k)fluoranthene               |                             |     |       |                   |                   |                   |                   |                   |
| 7.12-Dimethylbenz(a)anthracene     | 57-97-6                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Benzo(a)pyrene                     | 50-32-8                     | 0.5 | mg/kg |                   |                   | 0.8               |                   |                   |
| 3-Methylcholanthrene               | 56-49-5                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Indeno(1.2.3.cd)pyrene             | 193-39-5                    | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Dibenz(a.h)anthracene              | 53-70-3                     | 0.5 | mg/kg |                   |                   | <0.5              |                   |                   |
| Benzo(g.h.i)perylene               | 191-24-2                    | 0.5 | mg/kg |                   |                   | 0.5               |                   |                   |
| ^ Sum of PAHs                      |                             | 0.5 | mg/kg |                   |                   | 7.5               |                   |                   |

| Page       | : 9 of 60               |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID    |                             |       | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6      |
|------------------------------------|---------------------|-----------------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli                 | Client sampling date / time |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                           | CAS Number          | LOR                         | Unit  | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014     |
|                                    |                     |                             |       | Result            | Result            | Result            | Result            | Result            |
| EP075B: Polynuclear Aromatic Hydro | carbons - Continued |                             |       |                   |                   |                   |                   |                   |
| ^ Benzo(a)pyrene TEQ (zero)        |                     | 0.5                         | mg/kg |                   |                   | 1.0               |                   |                   |
| ^ Benzo(a)pyrene TEQ (half LOR)    |                     | 0.5                         | mg/kg |                   |                   | 1.3               |                   |                   |
| ^ Benzo(a)pyrene TEQ (LOR)         |                     | 0.5                         | mg/kg |                   |                   | 1.5               |                   |                   |
| EP075C: Phthalate Esters           |                     |                             |       |                   |                   |                   |                   |                   |
| Dimethyl phthalate                 | 131-11-3            | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| Diethyl phthalate                  | 84-66-2             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| Di-n-butyl phthalate               | 84-74-2             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| Butyl benzyl phthalate             | 85-68-7             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| bis(2-ethylhexyl) phthalate        | 117-81-7            | 5.0                         | mg/kg |                   |                   | <5.0              |                   |                   |
| Di-n-octylphthalate                | 117-84-0            | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| EP075D: Nitrosamines               |                     |                             |       |                   |                   |                   |                   |                   |
| N-Nitrosomethylethylamine          | 10595-95-6          | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| N-Nitrosodiethylamine              | 55-18-5             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| N-Nitrosopyrrolidine               | 930-55-2            | 1.0                         | mg/kg |                   |                   | <1.0              |                   |                   |
| N-Nitrosomorpholine                | 59-89-2             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| N-Nitrosodi-n-propylamine          | 621-64-7            | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| N-Nitrosopiperidine                | 100-75-4            | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| N-Nitrosodibutylamine              | 924-16-3            | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| N-Nitrosodiphenyl &                | 86-30-6 122-39-4    | 1.0                         | mg/kg |                   |                   | <1.0              |                   |                   |
| Diphenylamine                      |                     |                             |       |                   |                   |                   |                   |                   |
| Methapyrilene                      | 91-80-5             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| EP075E: Nitroaromatics and Ketones |                     |                             |       |                   |                   |                   |                   |                   |
| 2-Picoline                         | 109-06-8            | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| Acetophenone                       | 98-86-2             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| Nitrobenzene                       | 98-95-3             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| Isophorone                         | 78-59-1             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| 2.6-Dinitrotoluene                 | 606-20-2            | 1.0                         | mg/kg |                   |                   | <1.0              |                   |                   |
| 2.4-Dinitrotoluene                 | 121-14-2            | 1.0                         | mg/kg |                   |                   | <1.0              |                   |                   |
| 1-Naphthylamine                    | 134-32-7            | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| 4-Nitroquinoline-N-oxide           | 56-57-5             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| 5-Nitro-o-toluidine                | 99-55-8             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| Azobenzene                         | 103-33-3            | 1                           | mg/kg |                   |                   | <1                |                   |                   |
| 1.3.5-Trinitrobenzene              | 99-35-4             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |
| Phenacetin                         | 62-44-2             | 0.5                         | mg/kg |                   |                   | <0.5              |                   |                   |

| Page       | : 10 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID |             |                | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6      |
|----------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli              | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                               | CAS Number       | LOR         | Unit           | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014     |
|                                        |                  |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075E: Nitroaromatics and Ketones - 0 | Continued        |             |                |                   |                   |                   |                   |                   |
| 4-Aminobiphenyl                        | 92-67-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Pentachloronitrobenzene                | 82-68-8          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Pronamide                              | 23950-58-5       | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Dimethylaminoazobenzene                | 60-11-7          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Chlorobenzilate                        | 510-15-6         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| EP075F: Haloethers                     |                  |             |                |                   |                   |                   |                   |                   |
| Bis(2-chloroethyl) ether               | 111-44-4         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Bis(2-chloroethoxy) methane            | 111-91-1         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Chlorophenyl phenyl ether            | 7005-72-3        | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Bromophenyl phenyl ether             | 101-55-3         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| EP075G: Chlorinated Hydrocarbons       |                  |             |                |                   |                   |                   |                   |                   |
| 1.3-Dichlorobenzene                    | 541-73-1         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 1.4-Dichlorobenzene                    | 106-46-7         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 1.2-Dichlorobenzene                    | 95-50-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachloroethane                       | 67-72-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 1.2.4-Trichlorobenzene                 | 120-82-1         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachloropropylene                    | 1888-71-7        | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachlorobutadiene                    | 87-68-3          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachlorocyclopentadiene              | 77-47-4          | 2.5         | mg/kg          |                   |                   | <2.5              |                   |                   |
| Pentachlorobenzene                     | 608-93-5         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachlorobenzene (HCB)                | 118-74-1         | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| EP075H: Anilines and Benzidines        |                  |             |                |                   |                   |                   |                   |                   |
| Aniline                                | 62-53-3          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Chloroaniline                        | 106-47-8         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2-Nitroaniline                         | 88-74-4          | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| 3-Nitroaniline                         | 99-09-2          | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| Dibenzofuran                           | 132-64-9         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Nitroaniline                         | 100-01-6         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Carbazole                              | 86-74-8          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 3.3`-Dichlorobenzidine                 | 91-94-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| EP075I: Organochlorine Pesticides      |                  |             |                |                   |                   |                   |                   |                   |
| alpha-BHC                              | 319-84-6         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| beta-BHC                               | 319-85-7         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| gamma-BHC                              | 58-89-9          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |

| Page       | : 11 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                | Client sample ID            |           |                   | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6  |
|---------------------------------------------------|-----------------------------|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
|                                                   | Client sampling date / time |           | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |               |
| Compound                                          | CAS Number                  | LOR       | Unit              | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014 |
|                                                   |                             |           |                   | Result            | Result            | Result            | Result            | Result        |
| EP075I: Organochlorine Pesticides - C             | ontinued                    |           |                   |                   |                   |                   |                   |               |
| delta-BHC                                         | 319-86-8                    | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Heptachlor                                        | 76-44-8                     | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Aldrin                                            | 309-00-2                    | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Heptachlor epoxide                                | 1024-57-3                   | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| alpha-Endosulfan                                  | 959-98-8                    | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| 4.4`-DDE                                          | 72-55-9                     | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Dieldrin                                          | 60-57-1                     | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Endrin                                            | 72-20-8                     | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| beta-Endosulfan                                   | 33213-65-9                  | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| 4.4`-DDD                                          | 72-54-8                     | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Endosulfan sulfate                                | 1031-07-8                   | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| 4.4`-DDT                                          | 50-29-3                     | 1.0       | mg/kg             |                   |                   | <1.0              |                   |               |
| ^ Sum of DDD + DDE + DDT                          | 72-54-8/72-55-9/5<br>0-2    | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| ^ Sum of Aldrin + Dieldrin                        | 309-00-2/60-57-1            | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| EP075J: Organophosphorus Pesticide                | es                          |           |                   |                   |                   |                   |                   |               |
| Dichlorvos                                        | 62-73-7                     | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Dimethoate                                        | 60-51-5                     | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Diazinon                                          | 333-41-5                    | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Chlorpyrifos-methyl                               | 5598-13-0                   | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Malathion                                         | 121-75-5                    | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Fenthion                                          | 55-38-9                     | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Chlorpyrifos                                      | 2921-88-2                   | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Pirimphos-ethyl                                   | 23505-41-1                  | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Chlorfenvinphos                                   | 470-90-6                    | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Prothiofos                                        | 34643-46-4                  | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| Ethion                                            | 563-12-2                    | 0.5       | mg/kg             |                   |                   | <0.5              |                   |               |
| EP080/071: Total Recoverable Hydroc               | arbons - NEPM 201           | 3 Fractio | าร                |                   |                   |                   |                   |               |
| >C10 - C16 Fraction                               |                             | 3         | mg/kg             | <3                | 4                 | 7                 |                   |               |
| >C16 - C34 Fraction                               |                             | 3         | mg/kg             | <3                | 122               | 176               |                   |               |
| >C34 - C40 Fraction                               |                             | 5         | mg/kg             | <5                | 49                | 69                |                   |               |
| >C10 - C40 Fraction (sum)                         |                             | 3         | mg/kg             | <3                | 175               | 252               |                   |               |
| >C10 - C16 Fraction minus Naphthalene             |                             | 3         | mg/kg             | <3                | 4                 | 7                 |                   |               |
| (F2)                                              |                             |           |                   |                   |                   |                   |                   |               |
| EP080-SD / EP071-SD: Total Petroleum Hydrocarbons |                             |           |                   |                   |                   |                   |                   |               |

| Page       | : 12 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID    |             |                | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6      |
|-------------------------------------|---------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cli                 | ent sampliı | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                            | CAS Number          | LOR         | Unit           | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014     |
|                                     |                     |             |                | Result            | Result            | Result            | Result            | Result            |
| EP080-SD / EP071-SD: Total Petroleu | ım Hydrocarbons - C | ontinued    |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                    |                     | 3           | mg/kg          | <3                | <3                | <3                |                   |                   |
| C10 - C14 Fraction                  |                     | 3           | mg/kg          | <3                | <3                | <3                |                   |                   |
| C15 - C28 Fraction                  |                     | 3           | mg/kg          | <3                | 68                | 101               |                   |                   |
| C29 - C36 Fraction                  |                     | 5           | mg/kg          | <5                | 79                | 111               |                   |                   |
| ^ C10 - C36 Fraction (sum)          |                     | 3           | mg/kg          | <3                | 147               | 212               |                   |                   |
| EP080-SD / EP071-SD: Total Recover  | able Hydrocarbons   |             |                |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                   | C6_C10              | 3           | mg/kg          | <3                | <3                | <3                |                   |                   |
| C6 - C10 Fraction minus BTEX        | C6_C10-BTEX         | 3.0         | mg/kg          | <3.0              | <3.0              | <3.0              |                   |                   |
| (F1)                                |                     |             |                |                   |                   |                   |                   |                   |
| EP080-SD: BTEXN                     |                     |             |                |                   |                   |                   |                   |                   |
| Benzene                             | 71-43-2             | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| Toluene                             | 108-88-3            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| Ethylbenzene                        | 100-41-4            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| meta- & para-Xylene                 | 108-38-3 106-42-3   | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| ortho-Xylene                        | 95-47-6             | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| ^ Total Xylenes                     |                     | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |
| ^ Sum of BTEX                       |                     | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| Naphthalene                         | 91-20-3             | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| EP090: Organotin Compounds          |                     |             |                |                   |                   |                   |                   |                   |
| Tributyltin                         | 56573-85-4          | 0.5         | µgSn/kg        |                   |                   | 20.4              |                   |                   |
| EP130A: Organophosphorus Pesticio   | des (Ultra-trace)   |             |                |                   |                   |                   |                   |                   |
| Bromophos-ethyl                     | 4824-78-6           | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Carbophenothion                     | 786-19-6            | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Chlorfenvinphos (E)                 | 18708-86-6          | 10.0        | µg/kg          | <10.0             | <10.0             | <10.0             |                   |                   |
| Chlorfenvinphos (Z)                 | 18708-87-7          | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Chlorpyrifos                        | 2921-88-2           | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Chlorpyrifos-methyl                 | 5598-13-0           | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Demeton-S-methyl                    | 919-86-8            | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Diazinon                            | 333-41-5            | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Dichlorvos                          | 62-73-7             | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Dimethoate                          | 60-51-5             | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Ethion                              | 563-12-2            | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Fenamiphos                          | 22224-92-6          | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Fenthion                            | 55-38-9             | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |

| Page       | : 13 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                            | Client sample ID            |      |       | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6      |  |  |
|---------------------------------------------------------------|-----------------------------|------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                                               | Client sampling date / time |      |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |  |
| Compound                                                      | CAS Number                  | LOR  | Unit  | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014     |  |  |
|                                                               |                             |      |       | Result            | Result            | Result            | Result            | Result            |  |  |
| EP130A: Organophosphorus Pesticides (Ultra-trace) - Continued |                             |      |       |                   |                   |                   |                   |                   |  |  |
| Malathion                                                     | 121-75-5                    | 10   | µg/kg | <10               | <10               | <10               |                   |                   |  |  |
| Azinphos Methyl                                               | 86-50-0                     | 10   | µg/kg | <10               | <10               | <10               |                   |                   |  |  |
| Monocrotophos                                                 | 6923-22-4                   | 10   | µg/kg | <10               | <10               | <10               |                   |                   |  |  |
| Parathion                                                     | 56-38-2                     | 10   | µg/kg | <10               | <10               | <10               |                   |                   |  |  |
| Parathion-methyl                                              | 298-00-0                    | 10   | µg/kg | <10               | <10               | <10               |                   |                   |  |  |
| Pirimphos-ethyl                                               | 23505-41-1                  | 10   | µg/kg | <10               | <10               | <10               |                   |                   |  |  |
| Prothiofos                                                    | 34643-46-4                  | 10   | µg/kg | <10               | <10               | <10               |                   |                   |  |  |
| EP131A: Organochlorine Pesticides                             |                             |      |       |                   |                   |                   |                   |                   |  |  |
| Aldrin                                                        | 309-00-2                    | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| alpha-BHC                                                     | 319-84-6                    | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| beta-BHC                                                      | 319-85-7                    | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| delta-BHC                                                     | 319-86-8                    | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| 4.4`-DDD                                                      | 72-54-8                     | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| 4.4`-DDE                                                      | 72-55-9                     | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| 4.4`-DDT                                                      | 50-29-3                     | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| ^ Sum of DDD + DDE + DDT                                      | 72-54-8/72-55-9/5           | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
|                                                               | 0-2                         |      |       |                   |                   |                   |                   |                   |  |  |
| Dieldrin                                                      | 60-57-1                     | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| alpha-Endosulfan                                              | 959-98-8                    | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| beta-Endosulfan                                               | 33213-65-9                  | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Endosulfan sulfate                                            | 1031-07-8                   | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| ^ Endosulfan (sum)                                            | 115-29-7                    | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Endrin                                                        | 72-20-8                     | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Endrin aldehyde                                               | 7421-93-4                   | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Endrin ketone                                                 | 53494-70-5                  | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Heptachlor                                                    | 76-44-8                     | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Heptachlor epoxide                                            | 1024-57-3                   | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Hexachlorobenzene (HCB)                                       | 118-74-1                    | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| gamma-BHC                                                     | 58-89-9                     | 0.25 | µg/kg | <0.25             | <0.25             | <0.25             |                   |                   |  |  |
| Methoxychlor                                                  | 72-43-5                     | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| cis-Chlordane                                                 | 5103-71-9                   | 0.25 | µg/kg | <0.25             | <0.25             | <0.25             |                   |                   |  |  |
| trans-Chlordane                                               | 5103-74-2                   | 0.25 | µg/kg | <0.25             | <0.25             | <0.25             |                   |                   |  |  |
| ^ Total Chlordane (sum)                                       |                             | 0.25 | µg/kg | <0.25             | <0.25             | <0.25             |                   |                   |  |  |
| Oxychlordane                                                  | 27304-13-8                  | 0.50 | µg/kg | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| EP131B: Polychlorinated Biphenyls (a                          | as Aroclors)                |      |       |                   |                   |                   |                   |                   |  |  |

| Page       | : 14 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                          | Client sample ID            |     |       | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6      |  |
|-------------------------------------------------------------|-----------------------------|-----|-------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                             | Client sampling date / time |     |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                                                    | CAS Number                  | LOR | Unit  | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014     |  |
|                                                             |                             |     |       | Result            | Result            | Result            | Result            | Result            |  |
| EP131B: Polychlorinated Biphenyls (as Aroclors) - Continued |                             |     |       |                   |                   |                   |                   |                   |  |
| ^ Total Polychlorinated biphenyls                           |                             | 5.0 | µg/kg | <5.0              | <5.0              | 67.7              |                   |                   |  |
| Aroclor 1016                                                | 12674-11-2                  | 5.0 | µg/kg | <5.0              | <5.0              | <5.0              |                   |                   |  |
| Aroclor 1221                                                | 11104-28-2                  | 5.0 | µg/kg | <5.0              | <5.0              | <5.0              |                   |                   |  |
| Aroclor 1232                                                | 11141-16-5                  | 5.0 | µg/kg | <5.0              | <5.0              | <5.0              |                   |                   |  |
| Aroclor 1242                                                | 53469-21-9                  | 5.0 | µg/kg | <5.0              | <5.0              | <5.0              |                   |                   |  |
| Aroclor 1248                                                | 12672-29-6                  | 5.0 | µg/kg | <5.0              | <5.0              | <5.0              |                   |                   |  |
| Aroclor 1254                                                | 11097-69-1                  | 5.0 | µg/kg | <5.0              | <5.0              | 67.7              |                   |                   |  |
| Aroclor 1260                                                | 11096-82-5                  | 5.0 | µg/kg | <5.0              | <5.0              | <5.0              |                   |                   |  |
| EP132B: Polynuclear Aromatic Hydr                           | ocarbons                    |     |       |                   |                   |                   |                   |                   |  |
| Naphthalene                                                 | 91-20-3                     | 5   | µg/kg | <5                | 46                | 60                |                   |                   |  |
| 2-Methylnaphthalene                                         | 91-57-6                     | 5   | µg/kg | <5                | <25               | <25               |                   |                   |  |
| Acenaphthylene                                              | 208-96-8                    | 4   | µg/kg | <4                | 132               | 202               |                   |                   |  |
| Acenaphthene                                                | 83-32-9                     | 4   | µg/kg | <4                | <25               | <25               |                   |                   |  |
| Fluorene                                                    | 86-73-7                     | 4   | µg/kg | <4                | <25               | 41                |                   |                   |  |
| Phenanthrene                                                | 85-01-8                     | 4   | µg/kg | <4                | 226               | 243               |                   |                   |  |
| Anthracene                                                  | 120-12-7                    | 4   | µg/kg | <4                | 103               | 116               |                   |                   |  |
| Fluoranthene                                                | 206-44-0                    | 4   | µg/kg | <4                | 595               | 594               |                   |                   |  |
| Pyrene                                                      | 129-00-0                    | 4   | µg/kg | <4                | 639               | 646               |                   |                   |  |
| Benz(a)anthracene                                           | 56-55-3                     | 4   | µg/kg | <4                | 417               | 542               |                   |                   |  |
| Chrysene                                                    | 218-01-9                    | 4   | µg/kg | <4                | 378               | 473               |                   |                   |  |
| Benzo(b+j)fluoranthene                                      | 205-99-2 205-82-3           | 4   | µg/kg | <4                | 606               | 799               |                   |                   |  |
| Benzo(k)fluoranthene                                        | 207-08-9                    | 4   | µg/kg | <4                | 304               | 375               |                   |                   |  |
| Benzo(e)pyrene                                              | 192-97-2                    | 4   | µg/kg | <4                | 307               | 373               |                   |                   |  |
| Benzo(a)pyrene                                              | 50-32-8                     | 4   | µg/kg | <4                | 627               | 872               |                   |                   |  |
| Perylene                                                    | 198-55-0                    | 4   | µg/kg | <4                | 136               | 174               |                   |                   |  |
| Benzo(g.h.i)perylene                                        | 191-24-2                    | 4   | µg/kg | <4                | 483               | 663               |                   |                   |  |
| Dibenz(a.h)anthracene                                       | 53-70-3                     | 4   | µg/kg | <4                | 89                | 127               |                   |                   |  |
| Indeno(1.2.3.cd)pyrene                                      | 193-39-5                    | 4   | µg/kg | <4                | 375               | 517               |                   |                   |  |
| Coronene                                                    | 191-07-1                    | 5   | µg/kg | <5                | 256               | 250               |                   |                   |  |
| ^ Sum of PAHs                                               |                             | 4   | µg/kg | <4                | 5720              | 7070              |                   |                   |  |
| EP074S: VOC Surrogates                                      |                             |     |       |                   |                   |                   |                   |                   |  |
| 1.2-Dichloroethane-D4                                       | 17060-07-0                  | 0.5 | %     |                   | 95.2              |                   |                   |                   |  |
| Toluene-D8                                                  | 2037-26-5                   | 0.5 | %     |                   | 102               |                   |                   |                   |  |
| 4-Bromofluorobenzene                                        | 460-00-4                    | 0.5 | %     |                   | 97.1              |                   |                   |                   |  |

| Page       | : 15 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)          | Client sample ID |             |                | VC09_0.0-0.2      | VC07_0.0-0.2      | VC07_0.0-0.5      | VC03_0.0-0.1      | VC03_0.5-0.6      |  |
|---------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                             | Cli              | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                                    | CAS Number       | LOR         | Unit           | ES1936029-001     | ES1936029-007     | ES1936029-011     | ES1936029-013     | ES1936029-014     |  |
|                                             |                  |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EP075(SIM)S: Phenolic Compound Surrogates   |                  |             |                |                   |                   |                   |                   |                   |  |
| Phenol-d6                                   | 13127-88-3       | 0.5         | %              | 86.1              | 82.5              | 82.9              |                   |                   |  |
| 2-Chlorophenol-D4                           | 93951-73-6       | 0.5         | %              | 96.0              | 92.4              | 92.6              |                   |                   |  |
| 2.4.6-Tribromophenol                        | 118-79-6         | 0.5         | %              | 66.6              | 71.8              | 73.3              |                   |                   |  |
| EP075(SIM)T: PAH Surrogates                 |                  |             |                |                   |                   |                   |                   |                   |  |
| 2-Fluorobiphenyl                            | 321-60-8         | 0.5         | %              | 116               | 111               | 111               |                   |                   |  |
| Anthracene-d10                              | 1719-06-8        | 0.5         | %              | 101               | 99.2              | 99.3              |                   |                   |  |
| 4-Terphenyl-d14                             | 1718-51-0        | 0.5         | %              | 105               | 95.6              | 95.8              |                   |                   |  |
| EP075S: Acid Extractable Surrogates         |                  |             |                |                   |                   |                   |                   |                   |  |
| 2-Fluorophenol                              | 367-12-4         | 0.5         | %              |                   |                   | 121               |                   |                   |  |
| Phenol-d6                                   | 13127-88-3       | 0.5         | %              |                   |                   | 106               |                   |                   |  |
| 2-Chlorophenol-D4                           | 93951-73-6       | 0.5         | %              |                   |                   | 111               |                   |                   |  |
| 2.4.6-Tribromophenol                        | 118-79-6         | 0.5         | %              |                   |                   | 68.6              |                   |                   |  |
| EP075T: Base/Neutral Extractable Surrogates |                  |             |                |                   |                   |                   |                   |                   |  |
| Nitrobenzene-D5                             | 4165-60-0        | 0.5         | %              |                   |                   | 88.6              |                   |                   |  |
| 1.2-Dichlorobenzene-D4                      | 2199-69-1        | 0.5         | %              |                   |                   | 83.1              |                   |                   |  |
| 2-Fluorobiphenyl                            | 321-60-8         | 0.5         | %              |                   |                   | 91.3              |                   |                   |  |
| Anthracene-d10                              | 1719-06-8        | 0.5         | %              |                   |                   | 84.8              |                   |                   |  |
| 4-Terphenyl-d14                             | 1718-51-0        | 0.5         | %              |                   |                   | 90.0              |                   |                   |  |
| EP080-SD: TPH(V)/BTEX Surrogates            |                  |             |                |                   |                   |                   |                   |                   |  |
| 1.2-Dichloroethane-D4                       | 17060-07-0       | 0.2         | %              | 112               | 109               | 105               |                   |                   |  |
| Toluene-D8                                  | 2037-26-5        | 0.2         | %              | 125               | 98.4              | 93.0              |                   |                   |  |
| 4-Bromofluorobenzene                        | 460-00-4         | 0.2         | %              | 116               | 103               | 100               |                   |                   |  |
| EP090S: Organotin Surrogate                 |                  |             |                |                   |                   |                   |                   |                   |  |
| Tripropyltin                                |                  | 0.5         | %              |                   |                   | 44.5              |                   |                   |  |
| EP130S: Organophosphorus Pesticide Su       | urrogate         |             |                |                   |                   |                   |                   |                   |  |
| DEF                                         | 78-48-8          | 10          | %              | 51.4              | 71.9              | 60.2              |                   |                   |  |
| EP131S: OC Pesticide Surrogate              |                  |             |                |                   |                   |                   |                   |                   |  |
| Dibromo-DDE                                 | 21655-73-2       | 0.50        | %              | 68.3              | 52.3              | 48.7              |                   |                   |  |
| EP131T: PCB Surrogate                       |                  |             |                |                   |                   |                   |                   |                   |  |
| Decachlorobiphenyl                          | 2051-24-3        | 0.5         | %              | 65.4              | 81.6              | 76.8              |                   |                   |  |
| EP132T: Base/Neutral Extractable Surrog     | ates             |             |                |                   |                   |                   |                   |                   |  |
| 2-Fluorobiphenyl                            | 321-60-8         | 10          | %              | 108               | 103               | 84.6              |                   |                   |  |
| Anthracene-d10                              | 1719-06-8        | 10          | %              | 116               | 107               | 81.2              |                   |                   |  |
| 4-Terphenyl-d14                             | 1718-51-0        | 10          | %              | 110               | 112               | 85.4              |                   |                   |  |

| Page       | : 16 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  |            | Clie         | ent sample ID  | VC03_1.0-1.1      | VC01_0.0-0.1      | VC01_0.5-0.6      | VC01_1.0-1.1      | VC02_0.0-0.1      |
|-------------------------------------|------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | C          | lient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                            | CAS Number | LOR          | Unit           | ES1936029-015     | ES1936029-016     | ES1936029-017     | ES1936029-018     | ES1936029-019     |
|                                     |            |              |                | Result            | Result            | Result            | Result            | Result            |
| EA037: Ass Field Screening Analysis |            |              |                |                   |                   |                   |                   |                   |
| ø pH (F)                            |            | 0.1          | pH Unit        | 7.4               | 8.5               | 7.7               | 7.3               | 8.8               |
| øpH (Fox)                           |            | 0.1          | pH Unit        | 5.4               | 6.2               | 5.7               | 5.2               | 6.0               |
| Ø Reaction Rate                     |            | 1            | -              | 3                 | 3                 | 3                 | 3                 | 3                 |

| Page       | : 17 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  |            | Clie         | ent sample ID  | VC02_0.5-0.6      | VC02_0.9-1.0      | VC02_1.5-1.6      | VC10_0.0-0.1      | VC10_0.5-0.6      |
|-------------------------------------|------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | C          | lient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                            | CAS Number | LOR          | Unit           | ES1936029-020     | ES1936029-021     | ES1936029-022     | ES1936029-023     | ES1936029-024     |
|                                     |            |              |                | Result            | Result            | Result            | Result            | Result            |
| EA037: Ass Field Screening Analysis |            |              |                |                   |                   |                   |                   |                   |
| øpH (F)                             |            | 0.1          | pH Unit        | 8.8               | 7.8               | 7.4               | 7.7               | 7.5               |
| øpH (Fox)                           |            | 0.1          | pH Unit        | 6.3               | 6.3               | 5.9               | 6.4               | 5.8               |
| Ø Reaction Rate                     |            | 1            | -              | 3                 | 3                 | 3                 | 3                 | 3                 |

| Page       | : 18 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  |            | Clie                | ent sample ID  | VC11_0.0-0.1      | VC11_0.5-0.6      | VC11_1.0-1.1      | VC09_0.0-0.1      | VC09_0.5-0.6      |
|-------------------------------------|------------|---------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | CI         | lient sampli        | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                            | CAS Number | CAS Number LOR Unit |                | ES1936029-025     | ES1936029-026     | ES1936029-027     | ES1936029-028     | ES1936029-029     |
|                                     |            |                     |                | Result            | Result            | Result            | Result            | Result            |
| EA037: Ass Field Screening Analysis |            |                     |                |                   |                   |                   |                   |                   |
| øpH (F)                             |            | 0.1                 | pH Unit        | 8.8               | 8.8               | 8.9               | 8.8               | 8.0               |
| øpH (Fox)                           |            | 0.1                 | pH Unit        | 6.2               | 6.4               | 6.3               | 6.4               | 6.0               |
| Ø Reaction Rate                     |            | 1                   | -              | 3                 | 3                 | 3                 | 3                 | 3                 |

| Page       | : 19 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  |                     | Clie        | ent sample ID  | VC09_0.9-1.0      | VC07_0.0-0.1      | VC07_0.5-0.6      | VC07_1.0-1.1      | VC05_0.0-0.1      |
|-------------------------------------|---------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | CI                  | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                            | CAS Number LOR Unit |             | ES1936029-030  | ES1936029-031     | ES1936029-032     | ES1936029-033     | ES1936029-034     |                   |
|                                     |                     |             |                | Result            | Result            | Result            | Result            | Result            |
| EA037: Ass Field Screening Analysis |                     |             |                |                   |                   |                   |                   |                   |
| ø pH (F)                            |                     | 0.1         | pH Unit        | 8.1               | 8.6               | 8.3               | 7.9               | 8.3               |
| ø pH (Fox)                          |                     | 0.1         | pH Unit        | 5.6               | 6.3               | 6.2               | 5.9               | 6.2               |
| Ø Reaction Rate                     |                     | 1           | -              | 3                 | 3                 | 3                 | 3                 | 3                 |

| Page       | : 20 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)          | Client sample ID            |      |         | VC05_0.5-0.6      | VC05_0.8-1.0      | VC04_0.0-0.1      | VC04_0.9-1.0      | VC11_0.5-0.7      |
|---------------------------------------------|-----------------------------|------|---------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                             | Client sampling date / time |      |         | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                                    | CAS Number                  | LOR  | Unit    | ES1936029-035     | ES1936029-036     | ES1936029-037     | ES1936029-038     | ES1936029-040     |
|                                             |                             |      |         | Result            | Result            | Result            | Result            | Result            |
| EA037: Ass Field Screening Analysis         |                             |      |         |                   |                   |                   |                   |                   |
| ø pH (F)                                    |                             | 0.1  | pH Unit | 8.0               | 7.4               | 7.5               | 7.4               |                   |
| ø pH (Fox)                                  |                             | 0.1  | pH Unit | 6.0               | 5.3               | 5.8               | 5.6               |                   |
| Ø Reaction Rate                             |                             | 1    | -       | 3                 | 3                 | 3                 | 3                 |                   |
| EA055: Moisture Content (Dried @ 105-110°C) |                             |      |         |                   |                   |                   |                   |                   |
| Moisture Content                            |                             | 1.0  | %       |                   |                   |                   |                   | 28.4              |
| EG005(ED093)-SD: Total Metals in Sedim      | ents by ICP-AES             | 5    |         |                   |                   |                   |                   |                   |
| Aluminium                                   | 7429-90-5                   | 50   | mg/kg   |                   |                   |                   |                   | 6760              |
| Iron                                        | 7439-89-6                   | 50   | mg/kg   |                   |                   |                   |                   | 17800             |
| EG020-SD: Total Metals in Sediments by      | ICPMS                       |      |         |                   |                   |                   |                   |                   |
| Antimony                                    | 7440-36-0                   | 0.50 | mg/kg   |                   |                   |                   |                   | <0.50             |
| Arsenic                                     | 7440-38-2                   | 1.00 | mg/kg   |                   |                   |                   |                   | 8.73              |
| Cadmium                                     | 7440-43-9                   | 0.1  | mg/kg   |                   |                   |                   |                   | <0.1              |
| Chromium                                    | 7440-47-3                   | 1.0  | mg/kg   |                   |                   |                   |                   | 12.2              |
| Copper                                      | 7440-50-8                   | 1.0  | mg/kg   |                   |                   |                   |                   | 3.2               |
| Cobalt                                      | 7440-48-4                   | 0.5  | mg/kg   |                   |                   |                   |                   | 1.4               |
| Lead                                        | 7439-92-1                   | 1.0  | mg/kg   |                   |                   |                   |                   | 7.0               |
| Manganese                                   | 7439-96-5                   | 10   | mg/kg   |                   |                   |                   |                   | 28                |
| Nickel                                      | 7440-02-0                   | 1.0  | mg/kg   |                   |                   |                   |                   | 4.3               |
| Selenium                                    | 7782-49-2                   | 0.1  | mg/kg   |                   |                   |                   |                   | 0.4               |
| Silver                                      | 7440-22-4                   | 0.1  | mg/kg   |                   |                   |                   |                   | 0.4               |
| Vanadium                                    | 7440-62-2                   | 2.0  | mg/kg   |                   |                   |                   |                   | 13.6              |
| Zinc                                        | 7440-66-6                   | 1.0  | mg/kg   |                   |                   |                   |                   | 14.0              |
| EG035T: Total Recoverable Mercury by F      | IMS                         |      |         |                   |                   |                   |                   |                   |
| Mercury                                     | 7439-97-6                   | 0.01 | mg/kg   |                   |                   |                   |                   | 0.03              |
| EK026SF: Total CN by Segmented Flow         | Analyser                    |      |         |                   |                   |                   |                   |                   |
| Total Cyanide                               | 57-12-5                     | 1    | mg/kg   |                   |                   |                   |                   | <1                |
| EK040T: Fluoride Total                      |                             |      |         |                   |                   |                   |                   |                   |
| Fluoride                                    | 16984-48-8                  | 40   | mg/kg   |                   |                   |                   |                   | 150               |
| EP003: Total Organic Carbon (TOC) in So     | bil                         |      |         |                   |                   |                   |                   |                   |
| Total Organic Carbon                        |                             | 0.02 | %       |                   |                   |                   |                   | 0.53              |
| EP074A: Monocyclic Aromatic Hydrocart       | oons                        |      |         |                   |                   |                   |                   |                   |
| Benzene                                     | 71-43-2                     | 0.2  | mg/kg   |                   |                   |                   |                   | <0.2              |
| Toluene                                     | 108-88-3                    | 0.5  | mg/kg   |                   |                   |                   |                   | <0.5              |
| Ethylbenzene                                | 100-41-4                    | 0.5  | mg/kg   |                   |                   |                   |                   | <0.5              |

| Page       | : 21 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                             | Clie | ent sample ID | VC05_0.5-0.6      | VC05_0.8-1.0      | VC04_0.0-0.1      | VC04_0.9-1.0      | VC11_0.5-0.7      |
|------------------------------------|-----------------------------|------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Client sampling date / time |      |               | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                           | CAS Number                  | LOR  | Unit          | ES1936029-035     | ES1936029-036     | ES1936029-037     | ES1936029-038     | ES1936029-040     |
|                                    |                             |      |               | Result            | Result            | Result            | Result            | Result            |
| EP074A: Monocyclic Aromatic Hydro  | carbons - Continued         |      |               |                   |                   |                   |                   |                   |
| meta- & para-Xylene                | 108-38-3 106-42-3           | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| Styrene                            | 100-42-5                    | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| ortho-Xylene                       | 95-47-6                     | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| Isopropylbenzene                   | 98-82-8                     | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| n-Propylbenzene                    | 103-65-1                    | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| 1.3.5-Trimethylbenzene             | 108-67-8                    | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| sec-Butylbenzene                   | 135-98-8                    | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| 1.2.4-Trimethylbenzene             | 95-63-6                     | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| tert-Butylbenzene                  | 98-06-6                     | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| p-lsopropyltoluene                 | 99-87-6                     | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| n-Butylbenzene                     | 104-51-8                    | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| EP074B: Oxygenated Compounds       |                             |      |               |                   |                   |                   |                   |                   |
| Vinyl Acetate                      | 108-05-4                    | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| 2-Butanone (MEK)                   | 78-93-3                     | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| 4-Methyl-2-pentanone (MIBK)        | 108-10-1                    | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| 2-Hexanone (MBK)                   | 591-78-6                    | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| EP074C: Sulfonated Compounds       |                             |      |               |                   |                   |                   |                   |                   |
| Carbon disulfide                   | 75-15-0                     | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| EP074D: Fumigants                  |                             |      |               |                   |                   |                   |                   |                   |
| 2.2-Dichloropropane                | 594-20-7                    | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| 1.2-Dichloropropane                | 78-87-5                     | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| cis-1.3-Dichloropropylene          | 10061-01-5                  | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| trans-1.3-Dichloropropylene        | 10061-02-6                  | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| 1.2-Dibromoethane (EDB)            | 106-93-4                    | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| EP074E: Halogenated Aliphatic Com  | pounds                      |      |               |                   |                   |                   |                   |                   |
| Dichlorodifluoromethane            | 75-71-8                     | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| Chloromethane                      | 74-87-3                     | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| Vinyl chloride                     | 75-01-4                     | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| Bromomethane                       | 74-83-9                     | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| Chloroethane                       | 75-00-3                     | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| Trichlorofluoromethane             | 75-69-4                     | 5    | mg/kg         |                   |                   |                   |                   | <5                |
| 1.1-Dichloroethene                 | 75-35-4                     | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| lodomethane                        | 74-88-4                     | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |
| trans-1.2-Dichloroethene           | 156-60-5                    | 0.5  | mg/kg         |                   |                   |                   |                   | <0.5              |

| Page       | : 22 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID            |     |       | VC05_0.5-0.6      | VC05_0.8-1.0      | VC04_0.0-0.1      | VC04_0.9-1.0      | VC11_0.5-0.7      |
|-------------------------------------|-----------------------------|-----|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Client sampling date / time |     |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                            | CAS Number                  | LOR | Unit  | ES1936029-035     | ES1936029-036     | ES1936029-037     | ES1936029-038     | ES1936029-040     |
|                                     |                             |     |       | Result            | Result            | Result            | Result            | Result            |
| EP074E: Halogenated Aliphatic Compo | ounds - Continued           |     |       |                   |                   |                   |                   |                   |
| 1.1-Dichloroethane                  | 75-34-3                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| cis-1.2-Dichloroethene              | 156-59-2                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.1.1-Trichloroethane               | 71-55-6                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.1-Dichloropropylene               | 563-58-6                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Carbon Tetrachloride                | 56-23-5                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.2-Dichloroethane                  | 107-06-2                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Trichloroethene                     | 79-01-6                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Dibromomethane                      | 74-95-3                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.1.2-Trichloroethane               | 79-00-5                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.3-Dichloropropane                 | 142-28-9                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Tetrachloroethene                   | 127-18-4                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.1.1.2-Tetrachloroethane           | 630-20-6                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| trans-1.4-Dichloro-2-butene         | 110-57-6                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| cis-1.4-Dichloro-2-butene           | 1476-11-5                   | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.1.2.2-Tetrachloroethane           | 79-34-5                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.2.3-Trichloropropane              | 96-18-4                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Pentachloroethane                   | 76-01-7                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.2-Dibromo-3-chloropropane         | 96-12-8                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Hexachlorobutadiene                 | 87-68-3                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| EP074F: Halogenated Aromatic Compo  | ounds                       |     |       |                   |                   |                   |                   |                   |
| Chlorobenzene                       | 108-90-7                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Bromobenzene                        | 108-86-1                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 2-Chlorotoluene                     | 95-49-8                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 4-Chlorotoluene                     | 106-43-4                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.3-Dichlorobenzene                 | 541-73-1                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.4-Dichlorobenzene                 | 106-46-7                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.2-Dichlorobenzene                 | 95-50-1                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.2.4-Trichlorobenzene              | 120-82-1                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| 1.2.3-Trichlorobenzene              | 87-61-6                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| EP074G: Trihalomethanes             |                             |     |       |                   |                   |                   |                   |                   |
| Chloroform                          | 67-66-3                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Bromodichloromethane                | 75-27-4                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Dibromochloromethane                | 124-48-1                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |
| Bromoform                           | 75-25-2                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.5              |

| Page       | : 23 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     |                             | Clie      | ent sample ID | VC05_0.5-0.6      | VC05_0.8-1.0      | VC04_0.0-0.1      | VC04_0.9-1.0      | VC11_0.5-0.7      |
|----------------------------------------|-----------------------------|-----------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Client sampling date / time |           |               | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                               | CAS Number                  | LOR       | Unit          | ES1936029-035     | ES1936029-036     | ES1936029-037     | ES1936029-038     | ES1936029-040     |
|                                        |                             |           |               | Result            | Result            | Result            | Result            | Result            |
| EP074H: Naphthalene                    |                             |           |               |                   |                   |                   |                   |                   |
| Naphthalene                            | 91-20-3                     | 1         | mg/kg         |                   |                   |                   |                   | <1                |
| EP075(SIM)A: Phenolic Compounds        |                             |           |               |                   |                   |                   |                   |                   |
| Phenol                                 | 108-95-2                    | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| 2-Chlorophenol                         | 95-57-8                     | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| 2-Methylphenol                         | 95-48-7                     | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| 3- & 4-Methylphenol                    | 1319-77-3                   | 1         | mg/kg         |                   |                   |                   |                   | <1                |
| 2-Nitrophenol                          | 88-75-5                     | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| 2.4-Dimethylphenol                     | 105-67-9                    | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| 2.4-Dichlorophenol                     | 120-83-2                    | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| 2.6-Dichlorophenol                     | 87-65-0                     | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| 4-Chloro-3-methylphenol                | 59-50-7                     | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| 2.4.6-Trichlorophenol                  | 88-06-2                     | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| 2.4.5-Trichlorophenol                  | 95-95-4                     | 0.5       | mg/kg         |                   |                   |                   |                   | <0.5              |
| Pentachlorophenol                      | 87-86-5                     | 2         | mg/kg         |                   |                   |                   |                   | <2                |
| EP080/071: Total Recoverable Hydrocarl | bons - NEPM 201             | 3 Fractio | ns            |                   |                   |                   |                   |                   |
| >C10 - C16 Fraction                    |                             | 3         | mg/kg         |                   |                   |                   |                   | <3                |
| >C16 - C34 Fraction                    |                             | 3         | mg/kg         |                   |                   |                   |                   | 6                 |
| >C34 - C40 Fraction                    |                             | 5         | mg/kg         |                   |                   |                   |                   | <5                |
| >C10 - C40 Fraction (sum)              |                             | 3         | mg/kg         |                   |                   |                   |                   | 6                 |
| >C10 - C16 Fraction minus Naphthalene  |                             | 3         | mg/kg         |                   |                   |                   |                   | <3                |
| (F2)                                   |                             |           |               |                   |                   |                   |                   |                   |
| EP080-SD / EP071-SD: Total Petroleum H | Hydrocarbons                |           |               |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                       |                             | 3         | mg/kg         |                   |                   |                   |                   | <3                |
| C10 - C14 Fraction                     |                             | 3         | mg/kg         |                   |                   |                   |                   | <3                |
| C15 - C28 Fraction                     |                             | 3         | mg/kg         |                   |                   |                   |                   | 4                 |
| C29 - C36 Fraction                     |                             | 5         | mg/kg         |                   |                   |                   |                   | <5                |
| ^ C10 - C36 Fraction (sum)             |                             | 3         | mg/kg         |                   |                   |                   |                   | 4                 |
| EP080-SD / EP071-SD: Total Recoverable | e Hydrocarbons              |           |               |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                      | C6_C10                      | 3         | mg/kg         |                   |                   |                   |                   | <3                |
| C6 - C10 Fraction minus BTEX           | C6_C10-BTEX                 | 3.0       | mg/kg         |                   |                   |                   |                   | <3.0              |
| (F1)                                   |                             |           |               |                   |                   |                   |                   |                   |
| EP080-SD: BTEXN                        |                             |           |               |                   |                   |                   |                   |                   |
| Benzene                                | 71-43-2                     | 0.2       | mg/kg         |                   |                   |                   |                   | <0.2              |
| Toluene                                | 108-88-3                    | 0.2       | mg/kg         |                   |                   |                   |                   | <0.2              |

| Page       | : 24 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID            |      |       | VC05_0.5-0.6      | VC05_0.8-1.0      | VC04_0.0-0.1      | VC04_0.9-1.0      | VC11_0.5-0.7      |
|------------------------------------|-----------------------------|------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Client sampling date / time |      |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                           | CAS Number                  | LOR  | Unit  | ES1936029-035     | ES1936029-036     | ES1936029-037     | ES1936029-038     | ES1936029-040     |
|                                    |                             |      |       | Result            | Result            | Result            | Result            | Result            |
| EP080-SD: BTEXN - Continued        |                             |      |       |                   |                   |                   |                   |                   |
| Ethylbenzene                       | 100-41-4                    | 0.2  | mg/kg |                   |                   |                   |                   | <0.2              |
| meta- & para-Xylene                | 108-38-3 106-42-3           | 0.2  | mg/kg |                   |                   |                   |                   | <0.2              |
| ortho-Xylene                       | 95-47-6                     | 0.2  | mg/kg |                   |                   |                   |                   | <0.2              |
| ^ Total Xylenes                    |                             | 0.5  | mg/kg |                   |                   |                   |                   | <0.5              |
| ^ Sum of BTEX                      |                             | 0.2  | mg/kg |                   |                   |                   |                   | <0.2              |
| Naphthalene                        | 91-20-3                     | 0.2  | mg/kg |                   |                   |                   |                   | <0.2              |
| EP130A: Organophosphorus Pestic    | cides (Ultra-trace)         |      |       |                   |                   |                   |                   |                   |
| Bromophos-ethyl                    | 4824-78-6                   | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Carbophenothion                    | 786-19-6                    | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Chlorfenvinphos (E)                | 18708-86-6                  | 10.0 | µg/kg |                   |                   |                   |                   | <10.0             |
| Chlorfenvinphos (Z)                | 18708-87-7                  | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Chlorpyrifos                       | 2921-88-2                   | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Chlorpyrifos-methyl                | 5598-13-0                   | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Demeton-S-methyl                   | 919-86-8                    | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Diazinon                           | 333-41-5                    | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Dichlorvos                         | 62-73-7                     | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Dimethoate                         | 60-51-5                     | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Ethion                             | 563-12-2                    | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Fenamiphos                         | 22224-92-6                  | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Fenthion                           | 55-38-9                     | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Malathion                          | 121-75-5                    | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Azinphos Methyl                    | 86-50-0                     | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Monocrotophos                      | 6923-22-4                   | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Parathion                          | 56-38-2                     | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Parathion-methyl                   | 298-00-0                    | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Pirimphos-ethyl                    | 23505-41-1                  | 10   | µg/kg |                   |                   |                   |                   | <10               |
| Prothiofos                         | 34643-46-4                  | 10   | µg/kg |                   |                   |                   |                   | <10               |
| EP131A: Organochlorine Pesticides  | s                           |      |       |                   |                   |                   |                   |                   |
| Aldrin                             | 309-00-2                    | 0.50 | µg/kg |                   |                   |                   |                   | <0.50             |
| alpha-BHC                          | 319-84-6                    | 0.50 | µg/kg |                   |                   |                   |                   | <0.50             |
| beta-BHC                           | 319-85-7                    | 0.50 | µg/kg |                   |                   |                   |                   | <0.50             |
| delta-BHC                          | 319-86-8                    | 0.50 | µg/kg |                   |                   |                   |                   | <0.50             |
| 4.4`-DDD                           | 72-54-8                     | 0.50 | µg/kg |                   |                   |                   |                   | <0.50             |
| 4.4`-DDE                           | 72-55-9                     | 0.50 | µg/kg |                   |                   |                   |                   | <0.50             |

| Page       | : 25 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                        | Clie         | ent sample ID  | VC05_0.5-0.6      | VC05_0.8-1.0      | VC04_0.0-0.1      | VC04_0.9-1.0      | VC11_0.5-0.7      |
|------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli                    | ient samplii | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                           | CAS Number             | LOR          | Unit           | ES1936029-035     | ES1936029-036     | ES1936029-037     | ES1936029-038     | ES1936029-040     |
|                                    |                        |              |                | Result            | Result            | Result            | Result            | Result            |
| EP131A: Organochlorine Pesticides  | - Continued            |              |                |                   |                   |                   |                   |                   |
| 4.4`-DDT                           | 50-29-3                | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| ^ Sum of DDD + DDE + DDT           | 72-54-8/72-55-9/5      | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| Dioldrin                           | 0-2                    | 0.50         | ua/ka          |                   |                   |                   |                   | <0.50             |
| alnha-Endosulfan                   | 00-57-1                | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| bota Endosulfan                    | 909-90-0<br>22212 CE 0 | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| Endocultan sulfato                 | 33213-05-9             | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
|                                    | 1031-07-8              | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| Endosunan (sum)                    | 115-29-7               | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| Enarin<br>Endein eldekede          | 72-20-8                | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| Endrin aldenyde                    | 7421-93-4              | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| Endrin ketone                      | 53494-70-5             | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| Heptachlor                         | 76-44-8                | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| Heptachlor epoxide                 | 1024-57-3              | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| Hexachlorobenzene (HCB)            | 118-74-1               | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| gamma-BHC                          | 58-89-9                | 0.25         | µg/kg          |                   |                   |                   |                   | <0.25             |
| Methoxychlor                       | 72-43-5                | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| cis-Chlordane                      | 5103-71-9              | 0.25         | µg/kg          |                   |                   |                   |                   | <0.25             |
| trans-Chlordane                    | 5103-74-2              | 0.25         | µg/kg          |                   |                   |                   |                   | <0.25             |
| ^ Total Chlordane (sum)            |                        | 0.25         | µg/kg          |                   |                   |                   |                   | <0.25             |
| Oxychlordane                       | 27304-13-8             | 0.50         | µg/kg          |                   |                   |                   |                   | <0.50             |
| EP131B: Polychlorinated Biphenyls  | (as Aroclors)          |              |                |                   |                   |                   |                   |                   |
| ^ Total Polychlorinated biphenyls  |                        | 5.0          | µg/kg          |                   |                   |                   |                   | <5.0              |
| Aroclor 1016                       | 12674-11-2             | 5.0          | µg/kg          |                   |                   |                   |                   | <5.0              |
| Aroclor 1221                       | 11104-28-2             | 5.0          | µg/kg          |                   |                   |                   |                   | <5.0              |
| Aroclor 1232                       | 11141-16-5             | 5.0          | µg/kg          |                   |                   |                   |                   | <5.0              |
| Aroclor 1242                       | 53469-21-9             | 5.0          | µg/kg          |                   |                   |                   |                   | <5.0              |
| Aroclor 1248                       | 12672-29-6             | 5.0          | µg/kg          |                   |                   |                   |                   | <5.0              |
| Aroclor 1254                       | 11097-69-1             | 5.0          | µg/kg          |                   |                   |                   |                   | <5.0              |
| Aroclor 1260                       | 11096-82-5             | 5.0          | µg/kg          |                   |                   |                   |                   | <5.0              |
| EP132B: Polynuclear Aromatic Hydro | ocarbons               |              |                |                   |                   |                   |                   |                   |
| Naphthalene                        | 91-20-3                | 5            | µg/kg          |                   |                   |                   |                   | <5                |
| 2-Methylnaphthalene                | 91-57-6                | 5            | µg/kg          |                   |                   |                   |                   | <5                |
| Acenaphthylene                     | 208-96-8               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Acenaphthene                       | 83-32-9                | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Fluorene                           | 86-73-7                | 4            | µg/kg          |                   |                   |                   |                   | <4                |

| Page       | : 26 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                        | Clie         | ent sample ID  | VC05_0.5-0.6      | VC05_0.8-1.0      | VC04_0.0-0.1      | VC04_0.9-1.0      | VC11_0.5-0.7      |
|------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli                    | ient samplii | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                           | CAS Number             | LOR          | Unit           | ES1936029-035     | ES1936029-036     | ES1936029-037     | ES1936029-038     | ES1936029-040     |
|                                    |                        |              |                | Result            | Result            | Result            | Result            | Result            |
| EP132B: Polynuclear Aromatic Hyd   | drocarbons - Continued |              |                |                   |                   |                   |                   |                   |
| Phenanthrene                       | 85-01-8                | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Anthracene                         | 120-12-7               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Fluoranthene                       | 206-44-0               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Pyrene                             | 129-00-0               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Benz(a)anthracene                  | 56-55-3                | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Chrysene                           | 218-01-9               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Benzo(b+j)fluoranthene             | 205-99-2 205-82-3      | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Benzo(k)fluoranthene               | 207-08-9               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Benzo(e)pyrene                     | 192-97-2               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Benzo(a)pyrene                     | 50-32-8                | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Perylene                           | 198-55-0               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Benzo(g.h.i)perylene               | 191-24-2               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Dibenz(a.h)anthracene              | 53-70-3                | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Indeno(1.2.3.cd)pyrene             | 193-39-5               | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| Coronene                           | 191-07-1               | 5            | µg/kg          |                   |                   |                   |                   | <5                |
| ^ Sum of PAHs                      |                        | 4            | µg/kg          |                   |                   |                   |                   | <4                |
| EP074S: VOC Surrogates             |                        |              |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4              | 17060-07-0             | 0.5          | %              |                   |                   |                   |                   | 90.8              |
| Toluene-D8                         | 2037-26-5              | 0.5          | %              |                   |                   |                   |                   | 93.9              |
| 4-Bromofluorobenzene               | 460-00-4               | 0.5          | %              |                   |                   |                   |                   | 87.2              |
| EP075(SIM)S: Phenolic Compound     | Surrogates             |              |                |                   |                   |                   |                   |                   |
| Phenol-d6                          | 13127-88-3             | 0.5          | %              |                   |                   |                   |                   | 83.5              |
| 2-Chlorophenol-D4                  | 93951-73-6             | 0.5          | %              |                   |                   |                   |                   | 92.3              |
| 2.4.6-Tribromophenol               | 118-79-6               | 0.5          | %              |                   |                   |                   |                   | 64.3              |
| EP075(SIM)T: PAH Surrogates        |                        |              |                |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                   | 321-60-8               | 0.5          | %              |                   |                   |                   |                   | 113               |
| Anthracene-d10                     | 1719-06-8              | 0.5          | %              |                   |                   |                   |                   | 102               |
| 4-Terphenyl-d14                    | 1718-51-0              | 0.5          | %              |                   |                   |                   |                   | 104               |
| EP080-SD: TPH(V)/BTEX Surrogate    | s                      |              |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4              | 17060-07-0             | 0.2          | %              |                   |                   |                   |                   | 110               |
| Toluene-D8                         | 2037-26-5              | 0.2          | %              |                   |                   |                   |                   | 99.6              |
| 4-Bromofluorobenzene               | 460-00-4               | 0.2          | %              |                   |                   |                   |                   | 109               |
| EP130S: Organophosphorus Pestic    | cide Surrogate         |              |                |                   |                   |                   |                   |                   |
| DEF                                | 78-48-8                | 10           | %              |                   |                   |                   |                   | 46.4              |
|                                    |                        |              |                |                   |                   |                   |                   |                   |

| Page       | : 27 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)          | Client sample ID |            |                | VC05_0.5-0.6      | VC05_0.8-1.0      | VC04_0.0-0.1      | VC04_0.9-1.0      | VC11_0.5-0.7      |
|---------------------------------------------|------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                             | Cli              | ent sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                                    | CAS Number       | LOR        | Unit           | ES1936029-035     | ES1936029-036     | ES1936029-037     | ES1936029-038     | ES1936029-040     |
|                                             |                  |            |                | Result            | Result            | Result            | Result            | Result            |
| EP131S: OC Pesticide Surrogate              |                  |            |                |                   |                   |                   |                   |                   |
| Dibromo-DDE                                 | 21655-73-2       | 0.50       | %              |                   |                   |                   |                   | 46.9              |
| EP131T: PCB Surrogate                       |                  |            |                |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                          | 2051-24-3        | 0.5        | %              |                   |                   |                   |                   | 86.6              |
| EP132T: Base/Neutral Extractable Surrogates |                  |            |                |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                            | 321-60-8         | 10         | %              |                   |                   |                   |                   | 108               |
| Anthracene-d10                              | 1719-06-8        | 10         | %              |                   |                   |                   |                   | 113               |
| 4-Terphenyl-d14                             | 1718-51-0        | 10         | %              |                   |                   |                   |                   | 112               |

| Page       | : 28 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)          | Client sample ID |              |                | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |  |  |
|---------------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                             | Cl               | ient samplii | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |  |
| Compound                                    | CAS Number       | LOR          | Unit           | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |  |  |
|                                             |                  |              |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EA055: Moisture Content (Dried @ 105-110°C) |                  |              |                |                   |                   |                   |                   |                   |  |  |
| Moisture Content                            |                  | 1.0          | %              | 4.3               | 12.1              | 13.1              | 17.1              | 64.3              |  |  |
| EA150: Particle Sizing                      |                  |              |                |                   |                   |                   |                   |                   |  |  |
| +75µm                                       |                  | 1            | %              |                   |                   | 48                |                   | 80                |  |  |
| +150μm                                      |                  | 1            | %              |                   |                   | 42                |                   | 72                |  |  |
| +300µm                                      |                  | 1            | %              |                   |                   | 27                |                   | 36                |  |  |
| +425μm                                      |                  | 1            | %              |                   |                   | 14                |                   | 16                |  |  |
| +600µm                                      |                  | 1            | %              |                   |                   | 4                 |                   | 3                 |  |  |
| +1180µm                                     |                  | 1            | %              |                   |                   | <1                |                   | <1                |  |  |
| +2.36mm                                     |                  | 1            | %              |                   |                   | <1                |                   | <1                |  |  |
| +4.75mm                                     |                  | 1            | %              |                   |                   | <1                |                   | <1                |  |  |
| +9.5mm                                      |                  | 1            | %              |                   |                   | <1                |                   | <1                |  |  |
| +19.0mm                                     |                  | 1            | %              |                   |                   | <1                |                   | <1                |  |  |
| +37.5mm                                     |                  | 1            | %              |                   |                   | <1                |                   | <1                |  |  |
| +75.0mm                                     |                  | 1            | %              |                   |                   | <1                |                   | <1                |  |  |
| EA150: Soil Classification based on Part    | icle Size        |              |                |                   |                   |                   |                   |                   |  |  |
| Clay (<2 μm)                                |                  | 1            | %              |                   |                   | 37                |                   | 16                |  |  |
| Silt (2-60 μm)                              |                  | 1            | %              |                   |                   | 12                |                   | 4                 |  |  |
| Sand (0.06-2.00 mm)                         |                  | 1            | %              |                   |                   | 51                |                   | 80                |  |  |
| Gravel (>2mm)                               |                  | 1            | %              |                   |                   | <1                |                   | <1                |  |  |
| Cobbles (>6cm)                              |                  | 1            | %              |                   |                   | <1                |                   | <1                |  |  |
| EG005(ED093)-SD: Total Metals in Sedim      | ents by ICP-AES  | 5            |                |                   |                   |                   |                   |                   |  |  |
| Aluminium                                   | 7429-90-5        | 50           | mg/kg          | 4150              | 11800             | 11300             | 14800             | 14600             |  |  |
| Iron                                        | 7439-89-6        | 50           | mg/kg          | 3840              | 1240              | 1290              | 2510              | 3080              |  |  |
| EG020-SD: Total Metals in Sediments by      | ICPMS            |              |                |                   |                   |                   |                   |                   |  |  |
| Antimony                                    | 7440-36-0        | 0.50         | mg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Arsenic                                     | 7440-38-2        | 1.00         | mg/kg          | 3.22              | <1.00             | <1.00             | <1.00             | <1.00             |  |  |
| Cadmium                                     | 7440-43-9        | 0.1          | mg/kg          | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |  |  |
| Chromium                                    | 7440-47-3        | 1.0          | mg/kg          | 4.3               | 12.5              | 10.7              | 13.2              | 12.0              |  |  |
| Copper                                      | 7440-50-8        | 1.0          | mg/kg          | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |  |  |
| Cobalt                                      | 7440-48-4        | 0.5          | mg/kg          | <0.5              | <0.5              | 0.5               | <0.5              | <0.5              |  |  |
| Lead                                        | 7439-92-1        | 1.0          | mg/kg          | 1.6               | 13.5              | 33.6              | 28.0              | 4.9               |  |  |
| Manganese                                   | 7439-96-5        | 10           | mg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Nickel                                      | 7440-02-0        | 1.0          | mg/kg          | <1.0              | 1.9               | 2.0               | 2.0               | 1.6               |  |  |
| Selenium                                    | 7782-49-2        | 0.1          | mg/kg          | <0.1              | <0.1              | 0.1               | 0.2               | 0.1               |  |  |

| Page       | : 29 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                       | Client sample ID  |             |                | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |
|----------------------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                          | Cli               | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                                                 | CAS Number        | LOR         | Unit           | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |
|                                                          |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EG020-SD: Total Metals in Sediments by ICPMS - Continued |                   |             |                |                   |                   |                   |                   |                   |
| Silver                                                   | 7440-22-4         | 0.1         | mg/kg          | 0.1               | 0.1               | <0.1              | 0.1               | 0.3               |
| Vanadium                                                 | 7440-62-2         | 2.0         | mg/kg          | 15.6              | 5.1               | 5.5               | 10.4              | 8.9               |
| Zinc                                                     | 7440-66-6         | 1.0         | mg/kg          | 1.5               | 6.2               | 16.7              | 3.4               | 2.3               |
| EG035T: Total Recoverable Mercury                        | / by FIMS         |             |                |                   |                   |                   |                   |                   |
| Mercury                                                  | 7439-97-6         | 0.01        | mg/kg          | <0.01             | 0.04              | 0.05              | <0.01             | <0.01             |
| EK026SF: Total CN by Segmented F                         | low Analyser      |             |                |                   |                   |                   |                   |                   |
| Total Cyanide                                            | 57-12-5           | 1           | mg/kg          | <1                | <1                | <1                | <1                | <1                |
| EK040T: Fluoride Total                                   |                   |             |                |                   |                   |                   |                   |                   |
| Fluoride                                                 | 16984-48-8        | 40          | mg/kg          | <40               | 40                |                   |                   |                   |
| EP003: Total Organic Carbon (TOC) in Soil                |                   |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                                     |                   | 0.02        | %              | 0.11              | 0.16              | 0.15              | 0.10              | 0.05              |
| EP074A: Monocyclic Aromatic Hydrocarbons                 |                   |             |                |                   |                   |                   |                   |                   |
| Benzene                                                  | 71-43-2           | 0.2         | mg/kg          | <0.2              | <0.2              |                   |                   |                   |
| Toluene                                                  | 108-88-3          | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Ethylbenzene                                             | 100-41-4          | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| meta- & para-Xylene                                      | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Styrene                                                  | 100-42-5          | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| ortho-Xylene                                             | 95-47-6           | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Isopropylbenzene                                         | 98-82-8           | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| n-Propylbenzene                                          | 103-65-1          | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.3.5-Trimethylbenzene                                   | 108-67-8          | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| sec-Butylbenzene                                         | 135-98-8          | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.2.4-Trimethylbenzene                                   | 95-63-6           | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| tert-Butylbenzene                                        | 98-06-6           | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| p-lsopropyltoluene                                       | 99-87-6           | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| n-Butylbenzene                                           | 104-51-8          | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| EP074B: Oxygenated Compounds                             |                   |             |                |                   |                   |                   |                   |                   |
| Vinyl Acetate                                            | 108-05-4          | 5           | mg/kg          | <5                | <5                |                   |                   |                   |
| 2-Butanone (MEK)                                         | 78-93-3           | 5           | mg/kg          | <5                | <5                |                   |                   |                   |
| 4-Methyl-2-pentanone (MIBK)                              | 108-10-1          | 5           | mg/kg          | <5                | <5                |                   |                   |                   |
| 2-Hexanone (MBK)                                         | 591-78-6          | 5           | mg/kg          | <5                | <5                |                   |                   |                   |
| EP074C: Sulfonated Compounds                             |                   |             |                |                   |                   |                   |                   |                   |
| Carbon disulfide                                         | 75-15-0           | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| EP074D: Fumigants                                        |                   |             |                |                   |                   |                   |                   |                   |

| Page       | : 30 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID |              |                | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |
|-------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cli              | ient sampliı | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                            | CAS Number       | LOR          | Unit           | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |
|                                     |                  |              |                | Result            | Result            | Result            | Result            | Result            |
| EP074D: Fumigants - Continued       |                  |              |                |                   |                   |                   |                   |                   |
| 2.2-Dichloropropane                 | 594-20-7         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.2-Dichloropropane                 | 78-87-5          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| cis-1.3-Dichloropropylene           | 10061-01-5       | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| trans-1.3-Dichloropropylene         | 10061-02-6       | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.2-Dibromoethane (EDB)             | 106-93-4         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| EP074E: Halogenated Aliphatic Compo | ounds            |              |                |                   |                   |                   |                   |                   |
| Dichlorodifluoromethane             | 75-71-8          | 5            | mg/kg          | <5                | <5                |                   |                   |                   |
| Chloromethane                       | 74-87-3          | 5            | mg/kg          | <5                | <5                |                   |                   |                   |
| Vinyl chloride                      | 75-01-4          | 5            | mg/kg          | <5                | <5                |                   |                   |                   |
| Bromomethane                        | 74-83-9          | 5            | mg/kg          | <5                | <5                |                   |                   |                   |
| Chloroethane                        | 75-00-3          | 5            | mg/kg          | <5                | <5                |                   |                   |                   |
| Trichlorofluoromethane              | 75-69-4          | 5            | mg/kg          | <5                | <5                |                   |                   |                   |
| 1.1-Dichloroethene                  | 75-35-4          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| lodomethane                         | 74-88-4          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| trans-1.2-Dichloroethene            | 156-60-5         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1-Dichloroethane                  | 75-34-3          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| cis-1.2-Dichloroethene              | 156-59-2         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1.1-Trichloroethane               | 71-55-6          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1-Dichloropropylene               | 563-58-6         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Carbon Tetrachloride                | 56-23-5          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.2-Dichloroethane                  | 107-06-2         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Trichloroethene                     | 79-01-6          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Dibromomethane                      | 74-95-3          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1.2-Trichloroethane               | 79-00-5          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.3-Dichloropropane                 | 142-28-9         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Tetrachloroethene                   | 127-18-4         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1.1.2-Tetrachloroethane           | 630-20-6         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| trans-1.4-Dichloro-2-butene         | 110-57-6         | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| cis-1.4-Dichloro-2-butene           | 1476-11-5        | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1.2.2-Tetrachloroethane           | 79-34-5          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.2.3-Trichloropropane              | 96-18-4          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Pentachloroethane                   | 76-01-7          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.2-Dibromo-3-chloropropane         | 96-12-8          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Hexachlorobutadiene                 | 87-68-3          | 0.5          | mg/kg          | <0.5              | <0.5              |                   |                   |                   |

| Page       | : 31 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID            |     |       | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |  |
|-------------------------------------|-----------------------------|-----|-------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                     | Client sampling date / time |     |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                            | CAS Number                  | LOR | Unit  | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |  |
|                                     |                             |     |       | Result            | Result            | Result            | Result            | Result            |  |
| EP074F: Halogenated Aromatic Compou | inds                        |     |       |                   |                   |                   |                   |                   |  |
| Chlorobenzene                       | 108-90-7                    | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| Bromobenzene                        | 108-86-1                    | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| 2-Chlorotoluene                     | 95-49-8                     | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| 4-Chlorotoluene                     | 106-43-4                    | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| 1.3-Dichlorobenzene                 | 541-73-1                    | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| 1.4-Dichlorobenzene                 | 106-46-7                    | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| 1.2-Dichlorobenzene                 | 95-50-1                     | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| 1.2.4-Trichlorobenzene              | 120-82-1                    | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| 1.2.3-Trichlorobenzene              | 87-61-6                     | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| EP074G: Trihalomethanes             |                             |     |       |                   |                   |                   |                   |                   |  |
| Chloroform                          | 67-66-3                     | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| Bromodichloromethane                | 75-27-4                     | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| Dibromochloromethane                | 124-48-1                    | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| Bromoform                           | 75-25-2                     | 0.5 | mg/kg | <0.5              | <0.5              |                   |                   |                   |  |
| EP074H: Naphthalene                 |                             |     |       |                   |                   |                   |                   |                   |  |
| Naphthalene                         | 91-20-3                     | 1   | mg/kg | <1                | <1                |                   |                   |                   |  |
| EP075(SIM)A: Phenolic Compounds     |                             |     |       |                   |                   |                   |                   |                   |  |
| Phenol                              | 108-95-2                    | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| 2-Chlorophenol                      | 95-57-8                     | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| 2-Methylphenol                      | 95-48-7                     | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| 3- & 4-Methylphenol                 | 1319-77-3                   | 1   | mg/kg | <1                | <1                | <1                | <1                | <2                |  |
| 2-Nitrophenol                       | 88-75-5                     | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| 2.4-Dimethylphenol                  | 105-67-9                    | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| 2.4-Dichlorophenol                  | 120-83-2                    | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| 2.6-Dichlorophenol                  | 87-65-0                     | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| 4-Chloro-3-methylphenol             | 59-50-7                     | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| 2.4.6-Trichlorophenol               | 88-06-2                     | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| 2.4.5-Trichlorophenol               | 95-95-4                     | 0.5 | mg/kg | <0.5              | <0.5              | <0.5              | <0.5              | <0.8              |  |
| Pentachlorophenol                   | 87-86-5                     | 2   | mg/kg | <2                | <2                | <2                | <2                | <2                |  |
| EP075A: Phenolic Compounds          |                             |     |       |                   |                   |                   |                   |                   |  |
| Phenol                              | 108-95-2                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |  |
| 2-Chlorophenol                      | 95-57-8                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |  |
| 2-Methylphenol                      | 95-48-7                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |  |
| 3- & 4-Methylphenol                 | 1319-77-3                   | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |  |

| Page       | : 32 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID  |                             |       | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |
|------------------------------------|-------------------|-----------------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                | Client sampling date / time |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                           | CAS Number        | LOR                         | Unit  | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |
|                                    |                   |                             |       | Result            | Result            | Result            | Result            | Result            |
| EP075A: Phenolic Compounds - Con   | tinued            |                             |       |                   |                   |                   |                   |                   |
| 2-Nitrophenol                      | 88-75-5           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| 2.4-Dimethylphenol                 | 105-67-9          | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| 2.4-Dichlorophenol                 | 120-83-2          | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| 2.6-Dichlorophenol                 | 87-65-0           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| 4-Chloro-3-methylphenol            | 59-50-7           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| 2.4.6-Trichlorophenol              | 88-06-2           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| 2.4.5-Trichlorophenol              | 95-95-4           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Pentachlorophenol                  | 87-86-5           | 1                           | mg/kg |                   |                   |                   |                   | <1                |
| EP075B: Polynuclear Aromatic Hydr  | ocarbons          |                             |       |                   |                   |                   |                   |                   |
| Naphthalene                        | 91-20-3           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| 2-Methylnaphthalene                | 91-57-6           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| 2-Chloronaphthalene                | 91-58-7           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Acenaphthylene                     | 208-96-8          | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Acenaphthene                       | 83-32-9           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Fluorene                           | 86-73-7           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Phenanthrene                       | 85-01-8           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Anthracene                         | 120-12-7          | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Fluoranthene                       | 206-44-0          | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Pyrene                             | 129-00-0          | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| N-2-Fluorenyl Acetamide            | 53-96-3           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Benz(a)anthracene                  | 56-55-3           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Chrysene                           | 218-01-9          | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Benzo(b+j) &                       | 205-99-2 207-08-9 | 1                           | mg/kg |                   |                   |                   |                   | <1                |
| Benzo(k)fluoranthene               |                   |                             |       |                   |                   |                   |                   |                   |
| 7.12-Dimethylbenz(a)anthracene     | 57-97-6           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Benzo(a)pyrene                     | 50-32-8           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| 3-Methylcholanthrene               | 56-49-5           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Indeno(1.2.3.cd)pyrene             | 193-39-5          | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Dibenz(a.h)anthracene              | 53-70-3           | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| Benzo(g.h.i)perylene               | 191-24-2          | 0.5                         | mg/kg |                   |                   |                   |                   | <0.6              |
| ^ Sum of PAHs                      |                   | 0.5                         | mg/kg |                   |                   |                   |                   | <0.5              |
| ^ Benzo(a)pyrene TEQ (zero)        |                   | 0.5                         | mg/kg |                   |                   |                   |                   | <0.5              |
| ^ Benzo(a)pyrene TEQ (half LOR)    |                   | 0.5                         | mg/kg |                   |                   |                   |                   | 0.7               |
| ^ Benzo(a)pyrene TEQ (LOR)         |                   | 0.5                         | mg/kg |                   |                   |                   |                   | 1.4               |
| EP075C: Phthalate Esters           |                   |                             |       |                   |                   |                   |                   |                   |

| Page       | : 33 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   | Client sample ID            |     |       | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |
|--------------------------------------|-----------------------------|-----|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Client sampling date / time |     |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                             | CAS Number                  | LOR | Unit  | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |
|                                      |                             |     |       | Result            | Result            | Result            | Result            | Result            |
| EP075C: Phthalate Esters - Continued |                             |     |       |                   |                   |                   |                   |                   |
| Dimethyl phthalate                   | 131-11-3                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Diethyl phthalate                    | 84-66-2                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Di-n-butyl phthalate                 | 84-74-2                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Butyl benzyl phthalate               | 85-68-7                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| bis(2-ethylhexyl) phthalate          | 117-81-7                    | 5.0 | mg/kg |                   |                   |                   |                   | <5.0              |
| Di-n-octylphthalate                  | 117-84-0                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| EP075D: Nitrosamines                 |                             |     |       |                   |                   |                   |                   |                   |
| N-Nitrosomethylethylamine            | 10595-95-6                  | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| N-Nitrosodiethylamine                | 55-18-5                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| N-Nitrosopyrrolidine                 | 930-55-2                    | 1.0 | mg/kg |                   |                   |                   |                   | <1.0              |
| N-Nitrosomorpholine                  | 59-89-2                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| N-Nitrosodi-n-propylamine            | 621-64-7                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| N-Nitrosopiperidine                  | 100-75-4                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| N-Nitrosodibutylamine                | 924-16-3                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| N-Nitrosodiphenyl &                  | 86-30-6 122-39-4            | 1.0 | mg/kg |                   |                   |                   |                   | <1.2              |
| Diphenylamine                        |                             |     |       |                   |                   |                   |                   |                   |
| Methapyrilene                        | 91-80-5                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| EP075E: Nitroaromatics and Ketones   | ;                           |     |       |                   |                   |                   |                   |                   |
| 2-Picoline                           | 109-06-8                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Acetophenone                         | 98-86-2                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Nitrobenzene                         | 98-95-3                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Isophorone                           | 78-59-1                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 2.6-Dinitrotoluene                   | 606-20-2                    | 1.0 | mg/kg |                   |                   |                   |                   | <1.0              |
| 2.4-Dinitrotoluene                   | 121-14-2                    | 1.0 | mg/kg |                   |                   |                   |                   | <1.0              |
| 1-Naphthylamine                      | 134-32-7                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 4-Nitroquinoline-N-oxide             | 56-57-5                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 5-Nitro-o-toluidine                  | 99-55-8                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Azobenzene                           | 103-33-3                    | 1   | mg/kg |                   |                   |                   |                   | <1                |
| 1.3.5-Trinitrobenzene                | 99-35-4                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Phenacetin                           | 62-44-2                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 4-Aminobiphenyl                      | 92-67-1                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Pentachloronitrobenzene              | 82-68-8                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Pronamide                            | 23950-58-5                  | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Dimethylaminoazobenzene              | 60-11-7                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Chlorobenzilate                      | 510-15-6                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |

| Page       | : 34 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID            |     |       | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |
|----------------------------------------|-----------------------------|-----|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Client sampling date / time |     |       | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                               | CAS Number                  | LOR | Unit  | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |
|                                        |                             |     |       | Result            | Result            | Result            | Result            | Result            |
| EP075E: Nitroaromatics and Ketones - C | Continued                   |     |       |                   |                   |                   |                   |                   |
| EP075F: Haloethers                     |                             |     |       |                   |                   |                   |                   |                   |
| Bis(2-chloroethyl) ether               | 111-44-4                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Bis(2-chloroethoxy) methane            | 111-91-1                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 4-Chlorophenyl phenyl ether            | 7005-72-3                   | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 4-Bromophenyl phenyl ether             | 101-55-3                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| EP075G: Chlorinated Hydrocarbons       |                             |     |       |                   |                   |                   |                   |                   |
| 1.3-Dichlorobenzene                    | 541-73-1                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 1.4-Dichlorobenzene                    | 106-46-7                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 1.2-Dichlorobenzene                    | 95-50-1                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Hexachloroethane                       | 67-72-1                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 1.2.4-Trichlorobenzene                 | 120-82-1                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Hexachloropropylene                    | 1888-71-7                   | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Hexachlorobutadiene                    | 87-68-3                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Hexachlorocyclopentadiene              | 77-47-4                     | 2.5 | mg/kg |                   |                   |                   |                   | <2.5              |
| Pentachlorobenzene                     | 608-93-5                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Hexachlorobenzene (HCB)                | 118-74-1                    | 1.0 | mg/kg |                   |                   |                   |                   | <1.0              |
| EP075H: Anilines and Benzidines        |                             |     |       |                   |                   |                   |                   |                   |
| Aniline                                | 62-53-3                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 4-Chloroaniline                        | 106-47-8                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 2-Nitroaniline                         | 88-74-4                     | 1.0 | mg/kg |                   |                   |                   |                   | <1.0              |
| 3-Nitroaniline                         | 99-09-2                     | 1.0 | mg/kg |                   |                   |                   |                   | <1.0              |
| Dibenzofuran                           | 132-64-9                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 4-Nitroaniline                         | 100-01-6                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Carbazole                              | 86-74-8                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| 3.3`-Dichlorobenzidine                 | 91-94-1                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| EP075I: Organochlorine Pesticides      |                             |     |       |                   |                   |                   |                   |                   |
| alpha-BHC                              | 319-84-6                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| beta-BHC                               | 319-85-7                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| gamma-BHC                              | 58-89-9                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| delta-BHC                              | 319-86-8                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Heptachlor                             | 76-44-8                     | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Aldrin                                 | 309-00-2                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Heptachlor epoxide                     | 1024-57-3                   | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| alpha-Endosulfan                       | 959-98-8                    | 0.5 | mg/kg |                   |                   |                   |                   | <0.6              |
| Page       | : 35 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID  |             |                | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |
|----------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli               | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                               | CAS Number        | LOR         | Unit           | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |
|                                        |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075I: Organochlorine Pesticides - Co | ontinued          |             |                |                   |                   |                   |                   |                   |
| 4.4`-DDE                               | 72-55-9           | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Dieldrin                               | 60-57-1           | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Endrin                                 | 72-20-8           | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| beta-Endosulfan                        | 33213-65-9        | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| 4.4`-DDD                               | 72-54-8           | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Endosulfan sulfate                     | 1031-07-8         | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| 4.4`-DDT                               | 50-29-3           | 1.0         | mg/kg          |                   |                   |                   |                   | <1.0              |
| ^ Sum of DDD + DDE + DDT               | 72-54-8/72-55-9/5 | 0.5         | mg/kg          |                   |                   |                   |                   | <0.5              |
| ∧ Sum of Aldrin + Dioldrin             | 0-2               | 0.5         | ma/ka          |                   |                   |                   |                   | <0.5              |
|                                        | 309-00-2/60-57-1  | 0.5         | ilig/kg        |                   |                   |                   |                   | <b>~0.0</b>       |
| EP075J: Organophosphorus Pesticide     | S                 | 0.5         | malka          |                   |                   |                   |                   | <0.6              |
| Diciliorvos                            | 62-73-7           | 0.5         | mg/kg          |                   |                   |                   |                   | <0.0              |
| Dimethoate                             | 60-51-5           | 0.5         | mg/kg          |                   |                   |                   |                   | <0.0              |
|                                        | 333-41-5          | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Chiorpyritos-metnyi                    | 5598-13-0         | 0.5         | mg/kg          |                   |                   |                   |                   | <0.0              |
|                                        | 121-75-5          | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Fentnion                               | 55-38-9           | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Chiorpyritos                           | 2921-88-2         | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Pirimpnos-etnyi                        | 23505-41-1        | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Chiorfenvinphos                        | 470-90-6          | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Prothiofos                             | 34643-46-4        | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| Ethion                                 | 563-12-2          | 0.5         | mg/kg          |                   |                   |                   |                   | <0.6              |
| EP080/071: Total Recoverable Hydroca   | arbons - NEPM 201 | 3 Fractio   | ns             |                   |                   |                   |                   |                   |
| >C10 - C16 Fraction                    |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| >C16 - C34 Fraction                    |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | 4                 |
| >C34 - C40 Fraction                    |                   | 5           | mg/kg          | <5                | <5                | <5                | <5                | <5                |
| >C10 - C40 Fraction (sum)              |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | 4                 |
| >C10 - C16 Fraction minus Naphthalene  |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| (F2)                                   |                   |             |                |                   |                   |                   |                   |                   |
| EP080-SD / EP071-SD: Total Petroleum   | n Hydrocarbons    | _           | -              |                   | -                 | -                 | -                 | -                 |
| C6 - C9 Fraction                       |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| C10 - C14 Fraction                     |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| C15 - C28 Fraction                     |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | 5                 |
| C29 - C36 Fraction                     |                   | 5           | mg/kg          | <5                | <5                | <5                | <5                | <5                |
| ^ C10 - C36 Fraction (sum)             |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | 5                 |

| Page       | : 36 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                            | Client sample ID   |             |                | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |  |  |
|---------------------------------------------------------------|--------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                                               | Cli                | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |  |
| Compound                                                      | CAS Number         | LOR         | Unit           | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |  |  |
|                                                               |                    |             |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EP080-SD / EP071-SD: Total Petroleum Hydrocarbons - Continued |                    |             |                |                   |                   |                   |                   |                   |  |  |
| EP080-SD / EP071-SD: Total Recover                            | rable Hydrocarbons |             |                |                   |                   |                   |                   |                   |  |  |
| C6 - C10 Fraction                                             | C6_C10             | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |  |  |
| C6 - C10 Fraction minus BTEX                                  | C6_C10-BTEX        | 3.0         | mg/kg          | <3.0              | <3.0              | <3.0              | <3.0              | <3.0              |  |  |
| (F1)                                                          |                    |             |                |                   |                   |                   |                   |                   |  |  |
| EP080-SD: BTEXN                                               |                    |             |                |                   |                   |                   |                   |                   |  |  |
| Benzene                                                       | 71-43-2            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |  |  |
| Toluene                                                       | 108-88-3           | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |  |  |
| Ethylbenzene                                                  | 100-41-4           | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |  |  |
| meta- & para-Xylene                                           | 108-38-3 106-42-3  | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |  |  |
| ortho-Xylene                                                  | 95-47-6            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |  |  |
| ^ Total Xylenes                                               |                    | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |  |
| ^ Sum of BTEX                                                 |                    | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |  |  |
| Naphthalene                                                   | 91-20-3            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |  |  |
| EP090: Organotin Compounds                                    |                    |             |                |                   |                   |                   |                   |                   |  |  |
| Monobutyltin                                                  | 78763-54-9         | 1           | µgSn/kg        |                   |                   | <1                |                   |                   |  |  |
| Dibutyltin                                                    | 1002-53-5          | 1           | µgSn/kg        |                   |                   | <1                |                   |                   |  |  |
| Tributyltin                                                   | 56573-85-4         | 0.5         | µgSn/kg        |                   |                   | <0.5              |                   | <0.5              |  |  |
| EP130A: Organophosphorus Pestici                              | des (Ultra-trace)  |             |                |                   |                   |                   |                   |                   |  |  |
| Bromophos-ethyl                                               | 4824-78-6          | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Carbophenothion                                               | 786-19-6           | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Chlorfenvinphos (E)                                           | 18708-86-6         | 10.0        | µg/kg          | <10.0             | <10.0             | <10.0             | <10.0             | <10.0             |  |  |
| Chlorfenvinphos (Z)                                           | 18708-87-7         | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Chlorpyrifos                                                  | 2921-88-2          | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Chlorpyrifos-methyl                                           | 5598-13-0          | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Demeton-S-methyl                                              | 919-86-8           | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Diazinon                                                      | 333-41-5           | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Dichlorvos                                                    | 62-73-7            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Dimethoate                                                    | 60-51-5            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Ethion                                                        | 563-12-2           | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Fenamiphos                                                    | 22224-92-6         | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Fenthion                                                      | 55-38-9            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Malathion                                                     | 121-75-5           | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Azinphos Methyl                                               | 86-50-0            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Monocrotophos                                                 | 6923-22-4          | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |

| Page       | : 37 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                            | Client sample ID  |              |                | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |  |  |
|---------------------------------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                                               | Cli               | ient sampliı | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |  |
| Compound                                                      | CAS Number        | LOR          | Unit           | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |  |  |
|                                                               |                   |              |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EP130A: Organophosphorus Pesticides (Ultra-trace) - Continued |                   |              |                |                   |                   |                   |                   |                   |  |  |
| Parathion                                                     | 56-38-2           | 10           | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Parathion-methyl                                              | 298-00-0          | 10           | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Pirimphos-ethyl                                               | 23505-41-1        | 10           | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| Prothiofos                                                    | 34643-46-4        | 10           | µg/kg          | <10               | <10               | <10               | <10               | <10               |  |  |
| EP131A: Organochlorine Pesticides                             |                   |              |                |                   |                   |                   |                   |                   |  |  |
| Aldrin                                                        | 309-00-2          | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| alpha-BHC                                                     | 319-84-6          | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| beta-BHC                                                      | 319-85-7          | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| delta-BHC                                                     | 319-86-8          | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| 4.4`-DDD                                                      | 72-54-8           | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| 4.4`-DDE                                                      | 72-55-9           | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| 4.4`-DDT                                                      | 50-29-3           | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| ^ Sum of DDD + DDE + DDT                                      | 72-54-8/72-55-9/5 | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
|                                                               | 0-2               |              |                |                   |                   |                   |                   |                   |  |  |
| Dieldrin                                                      | 60-57-1           | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| alpha-Endosulfan                                              | 959-98-8          | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| beta-Endosulfan                                               | 33213-65-9        | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Endosulfan sulfate                                            | 1031-07-8         | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| ^ Endosulfan (sum)                                            | 115-29-7          | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Endrin                                                        | 72-20-8           | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Endrin aldehyde                                               | 7421-93-4         | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Endrin ketone                                                 | 53494-70-5        | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Heptachlor                                                    | 76-44-8           | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Heptachlor epoxide                                            | 1024-57-3         | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Hexachlorobenzene (HCB)                                       | 118-74-1          | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| gamma-BHC                                                     | 58-89-9           | 0.25         | µg/kg          | <0.25             | <0.25             | <0.25             | <0.25             | <0.25             |  |  |
| Methoxychlor                                                  | 72-43-5           | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| cis-Chlordane                                                 | 5103-71-9         | 0.25         | µg/kg          | <0.25             | <0.25             | <0.25             | <0.25             | <0.25             |  |  |
| trans-Chlordane                                               | 5103-74-2         | 0.25         | µg/kg          | <0.25             | <0.25             | <0.25             | <0.25             | <0.25             |  |  |
| ^ Total Chlordane (sum)                                       |                   | 0.25         | µg/kg          | <0.25             | <0.25             | <0.25             | <0.25             | <0.25             |  |  |
| Oxychlordane                                                  | 27304-13-8        | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| EP131B: Polychlorinated Biphenyls (                           | as Aroclors)      |              |                |                   |                   |                   |                   |                   |  |  |
| ^ Total Polychlorinated biphenyls                             |                   | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <6.2              |  |  |
| Aroclor 1016                                                  | 12674-11-2        | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <6.2              |  |  |
| Aroclor 1221                                                  | 11104-28-2        | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <6.2              |  |  |

| Page       | : 38 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                          | Client sample ID  |             |                | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |  |  |
|-------------------------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                                             | Cli               | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |  |
| Compound                                                    | CAS Number        | LOR         | Unit           | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |  |  |
|                                                             |                   |             |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EP131B: Polychlorinated Biphenyls (as Aroclors) - Continued |                   |             |                |                   |                   |                   |                   |                   |  |  |
| Aroclor 1232                                                | 11141-16-5        | 5.0         | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <6.2              |  |  |
| Aroclor 1242                                                | 53469-21-9        | 5.0         | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <6.2              |  |  |
| Aroclor 1248                                                | 12672-29-6        | 5.0         | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <6.2              |  |  |
| Aroclor 1254                                                | 11097-69-1        | 5.0         | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <6.2              |  |  |
| Aroclor 1260                                                | 11096-82-5        | 5.0         | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <6.2              |  |  |
| EP132B: Polynuclear Aromatic Hyd                            | rocarbons         |             |                |                   |                   |                   |                   |                   |  |  |
| Naphthalene                                                 | 91-20-3           | 5           | µg/kg          | <5                | <5                | <5                | <5                | <5                |  |  |
| 2-Methylnaphthalene                                         | 91-57-6           | 5           | µg/kg          | <5                | <5                | <5                | <5                | <5                |  |  |
| Acenaphthylene                                              | 208-96-8          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Acenaphthene                                                | 83-32-9           | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Fluorene                                                    | 86-73-7           | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Phenanthrene                                                | 85-01-8           | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Anthracene                                                  | 120-12-7          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Fluoranthene                                                | 206-44-0          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Pyrene                                                      | 129-00-0          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Benz(a)anthracene                                           | 56-55-3           | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Chrysene                                                    | 218-01-9          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Benzo(b+j)fluoranthene                                      | 205-99-2 205-82-3 | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Benzo(k)fluoranthene                                        | 207-08-9          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Benzo(e)pyrene                                              | 192-97-2          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Benzo(a)pyrene                                              | 50-32-8           | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Perylene                                                    | 198-55-0          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Benzo(g.h.i)perylene                                        | 191-24-2          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Dibenz(a.h)anthracene                                       | 53-70-3           | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Indeno(1.2.3.cd)pyrene                                      | 193-39-5          | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| Coronene                                                    | 191-07-1          | 5           | µg/kg          | <5                | <5                | <5                | <5                | <5                |  |  |
| ^ Sum of PAHs                                               |                   | 4           | µg/kg          | <4                | <4                | <4                | <4                | <5                |  |  |
| EP074S: VOC Surrogates                                      |                   |             |                |                   |                   |                   |                   |                   |  |  |
| 1.2-Dichloroethane-D4                                       | 17060-07-0        | 0.5         | %              | 109               | 107               |                   |                   |                   |  |  |
| Toluene-D8                                                  | 2037-26-5         | 0.5         | %              | 113               | 112               |                   |                   |                   |  |  |
| 4-Bromofluorobenzene                                        | 460-00-4          | 0.5         | %              | 105               | 104               |                   |                   |                   |  |  |
| EP075(SIM)S: Phenolic Compound                              | Surrogates        |             |                |                   |                   |                   |                   |                   |  |  |
| Phenol-d6                                                   | 13127-88-3        | 0.5         | %              | 83.7              | 85.4              | 84.1              | 84.2              | 86.6              |  |  |
| 2-Chlorophenol-D4                                           | 93951-73-6        | 0.5         | %              | 91.9              | 95.7              | 92.8              | 93.7              | 94.7              |  |  |

| Page       | : 39 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID       |             |                 | VC05_0.8-0.9      | VC03_0.3-0.4      | VC03_0.0-0.5      | VC04_0.3-0.4      | VC04_0.5-1.0      |
|-------------------------------------|------------------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cl                     | ient sampli | ing date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                            | CAS Number             | LOR         | Unit            | ES1936029-047     | ES1936029-051     | ES1936029-055     | ES1936029-058     | ES1936029-063     |
|                                     |                        |             |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound S    | Surrogates - Continued | ł           |                 |                   |                   |                   |                   |                   |
| 2.4.6-Tribromophenol                | 118-79-6               | 0.5         | %               | 59.3              | 62.6              | 61.8              | 60.6              | 60.8              |
| EP075(SIM)T: PAH Surrogates         |                        |             |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                    | 321-60-8               | 0.5         | %               | 113               | 114               | 114               | 114               | 116               |
| Anthracene-d10                      | 1719-06-8              | 0.5         | %               | 98.4              | 101               | 100               | 101               | 102               |
| 4-Terphenyl-d14                     | 1718-51-0              | 0.5         | %               | 101               | 103               | 103               | 104               | 105               |
| EP075S: Acid Extractable Surrogates | s                      |             |                 |                   |                   |                   |                   |                   |
| 2-Fluorophenol                      | 367-12-4               | 0.5         | %               |                   |                   |                   |                   | 98.0              |
| Phenol-d6                           | 13127-88-3             | 0.5         | %               |                   |                   |                   |                   | 90.8              |
| 2-Chlorophenol-D4                   | 93951-73-6             | 0.5         | %               |                   |                   |                   |                   | 96.2              |
| 2.4.6-Tribromophenol                | 118-79-6               | 0.5         | %               |                   |                   |                   |                   | 55.5              |
| EP075T: Base/Neutral Extractable Su | urrogates              |             |                 |                   |                   |                   |                   |                   |
| Nitrobenzene-D5                     | 4165-60-0              | 0.5         | %               |                   |                   |                   |                   | 87.5              |
| 1.2-Dichlorobenzene-D4              | 2199-69-1              | 0.5         | %               |                   |                   |                   |                   | 85.6              |
| 2-Fluorobiphenyl                    | 321-60-8               | 0.5         | %               |                   |                   |                   |                   | 83.3              |
| Anthracene-d10                      | 1719-06-8              | 0.5         | %               |                   |                   |                   |                   | 92.3              |
| 4-Terphenyl-d14                     | 1718-51-0              | 0.5         | %               |                   |                   |                   |                   | 97.5              |
| EP080-SD: TPH(V)/BTEX Surrogates    |                        |             |                 |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4               | 17060-07-0             | 0.2         | %               | 101               | 106               | 118               | 109               | 116               |
| Toluene-D8                          | 2037-26-5              | 0.2         | %               | 107               | 114               | 126               | 98.0              | 126               |
| 4-Bromofluorobenzene                | 460-00-4               | 0.2         | %               | 105               | 119               | 129               | 107               | 122               |
| EP090S: Organotin Surrogate         |                        |             |                 |                   |                   |                   |                   |                   |
| Tripropyltin                        |                        | 0.5         | %               |                   |                   | 59.0              |                   | 90.4              |
| EP130S: Organophosphorus Pestici    | de Surrogate           |             |                 |                   |                   |                   |                   |                   |
| DEF                                 | 78-48-8                | 10          | %               | 48.8              | 39.6              | 41.8              | 48.4              | 39.3              |
| EP131S: OC Pesticide Surrogate      |                        |             |                 |                   |                   |                   |                   |                   |
| Dibromo-DDE                         | 21655-73-2             | 0.50        | %               | 47.5              | 57.7              | 50.6              | 65.6              | 45.7              |
| EP131T: PCB Surrogate               |                        |             |                 |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                  | 2051-24-3              | 0.5         | %               | 59.2              | 65.8              | 60.2              | 74.9              | 67.8              |
| EP132T: Base/Neutral Extractable Su | urrogates              |             |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                    | 321-60-8               | 10          | %               | 87.1              | 85.6              | 113               | 73.2              | 72.8              |
| Anthracene-d10                      | 1719-06-8              | 10          | %               | 99.9              | 117               | 120               | 101               | 91.8              |
| 4-Terphenyl-d14                     | 1718-51-0              | 10          | %               | 90.3              | 113               | 96.8              | 109               | 79.2              |
|                                     |                        |             |                 |                   |                   |                   |                   |                   |

| Page       | : 40 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID  |              |                | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |  |
|----------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                        | Cl                | ient samplii | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |
| Compound                               | CAS Number        | LOR          | Unit           | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |  |
|                                        |                   |              |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 105   | -110°C)           |              |                |                   |                   |                   |                   |                   |  |
| Moisture Content                       |                   | 1.0          | %              | 13.0              | 14.5              | 13.5              | 18.8              | 15.4              |  |
| EA150: Particle Sizing                 |                   |              |                |                   |                   |                   |                   |                   |  |
| +75μm                                  |                   | 1            | %              |                   |                   | 70                |                   | 51                |  |
| +150μm                                 |                   | 1            | %              |                   |                   | 64                |                   | 40                |  |
| +300μm                                 |                   | 1            | %              |                   |                   | 43                |                   | 19                |  |
| +425µm                                 |                   | 1            | %              |                   |                   | 26                |                   | 10                |  |
| +600μm                                 |                   | 1            | %              |                   |                   | 9                 |                   | 3                 |  |
| +1180μm                                |                   | 1            | %              |                   |                   | <1                |                   | <1                |  |
| +2.36mm                                |                   | 1            | %              |                   |                   | <1                |                   | <1                |  |
| +4.75mm                                |                   | 1            | %              |                   |                   | <1                |                   | <1                |  |
| +9.5mm                                 |                   | 1            | %              |                   |                   | <1                |                   | <1                |  |
| +19.0mm                                |                   | 1            | %              |                   |                   | <1                |                   | <1                |  |
| +37.5mm                                |                   | 1            | %              |                   |                   | <1                |                   | <1                |  |
| +75.0mm                                |                   | 1            | %              |                   |                   | <1                |                   | <1                |  |
| EA150: Soil Classification based on Pa | rticle Size       |              |                |                   |                   |                   |                   |                   |  |
| Clay (<2 μm)                           |                   | 1            | %              |                   |                   | 20                |                   | 32                |  |
| Silt (2-60 µm)                         |                   | 1            | %              |                   |                   | 8                 |                   | 12                |  |
| Sand (0.06-2.00 mm)                    |                   | 1            | %              |                   |                   | 72                |                   | 56                |  |
| Gravel (>2mm)                          |                   | 1            | %              |                   |                   | <1                |                   | <1                |  |
| Cobbles (>6cm)                         |                   | 1            | %              |                   |                   | <1                |                   | <1                |  |
| EG005(ED093)-SD: Total Metals in Sedi  | iments by ICP-AES | 3            |                |                   |                   |                   |                   |                   |  |
| Aluminium                              | 7429-90-5         | 50           | mg/kg          | 8610              | 2820              | 3870              | 14600             | 9760              |  |
| Iron                                   | 7439-89-6         | 50           | mg/kg          | 5400              | 1020              | 1470              | 1230              | 1360              |  |
| EG020-SD: Total Metals in Sediments b  | by ICPMS          |              |                |                   |                   |                   |                   |                   |  |
| Antimony                               | 7440-36-0         | 0.50         | mg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |
| Arsenic                                | 7440-38-2         | 1.00         | mg/kg          | 1.22              | <1.00             | <1.00             | <1.00             | <1.00             |  |
| Cadmium                                | 7440-43-9         | 0.1          | mg/kg          | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |  |
| Chromium                               | 7440-47-3         | 1.0          | mg/kg          | 8.9               | 2.5               | 3.0               | 11.9              | 6.9               |  |
| Copper                                 | 7440-50-8         | 1.0          | mg/kg          | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Cobalt                                 | 7440-48-4         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Lead                                   | 7439-92-1         | 1.0          | mg/kg          | 3.1               | 1.1               | 1.4               | 24.5              | 4.6               |  |
| Manganese                              | 7439-96-5         | 10           | mg/kg          | <10               | <10               | <10               | <10               | <10               |  |
| Nickel                                 | 7440-02-0         | 1.0          | mg/kg          | 1.0               | <1.0              | <1.0              | 2.0               | 1.3               |  |
| Selenium                               | 7782-49-2         | 0.1          | mg/kg          | 0.2               | <0.1              | <0.1              | <0.1              | 0.1               |  |

| Page       | : 41 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID    |            |                | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |
|-------------------------------------|---------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cli                 | ent sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                            | CAS Number          | LOR        | Unit           | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |
|                                     |                     |            |                | Result            | Result            | Result            | Result            | Result            |
| EG020-SD: Total Metals in Sediments | by ICPMS - Continue | ed         |                |                   |                   |                   |                   |                   |
| Silver                              | 7440-22-4           | 0.1        | mg/kg          | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Vanadium                            | 7440-62-2           | 2.0        | mg/kg          | 14.8              | 2.5               | 3.8               | 4.7               | 6.3               |
| Zinc                                | 7440-66-6           | 1.0        | mg/kg          | 1.9               | <1.0              | <1.0              | 4.2               | 2.1               |
| EG035T: Total Recoverable Mercury   | by FIMS             |            |                |                   |                   |                   |                   |                   |
| Mercury                             | 7439-97-6           | 0.01       | mg/kg          | <0.01             | <0.01             | <0.01             | 0.01              | <0.01             |
| EK026SF: Total CN by Segmented Fi   | ow Analyser         |            |                |                   |                   |                   |                   |                   |
| Total Cyanide                       | 57-12-5             | 1          | mg/kg          | <1                | <1                | <1                | <1                | <1                |
| EP003: Total Organic Carbon (TOC) i | n Soil              |            |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                |                     | 0.02       | %              | 0.07              | 0.04              | 0.06              | 0.12              | 0.06              |
| EP075(SIM)A: Phenolic Compounds     |                     |            |                |                   |                   |                   |                   |                   |
| Phenol                              | 108-95-2            | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| 2-Chlorophenol                      | 95-57-8             | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| 2-Methylphenol                      | 95-48-7             | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| 3- & 4-Methylphenol                 | 1319-77-3           | 1          | mg/kg          | <1                | <1                | <1                | <1                | <1                |
| 2-Nitrophenol                       | 88-75-5             | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| 2.4-Dimethylphenol                  | 105-67-9            | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| 2.4-Dichlorophenol                  | 120-83-2            | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| 2.6-Dichlorophenol                  | 87-65-0             | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| 4-Chloro-3-methylphenol             | 59-50-7             | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| 2.4.6-Trichlorophenol               | 88-06-2             | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| 2.4.5-Trichlorophenol               | 95-95-4             | 0.5        | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Pentachlorophenol                   | 87-86-5             | 2          | mg/kg          | <2                | <2                | <2                | <2                | <2                |
| EP075A: Phenolic Compounds          |                     |            |                |                   |                   |                   |                   |                   |
| Phenol                              | 108-95-2            | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2-Chlorophenol                      | 95-57-8             | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2-Methylphenol                      | 95-48-7             | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 3- & 4-Methylphenol                 | 1319-77-3           | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2-Nitrophenol                       | 88-75-5             | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2.4-Dimethylphenol                  | 105-67-9            | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2.4-Dichlorophenol                  | 120-83-2            | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2.6-Dichlorophenol                  | 87-65-0             | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Chloro-3-methylphenol             | 59-50-7             | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2.4.6-Trichlorophenol               | 88-06-2             | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2.4.5-Trichlorophenol               | 95-95-4             | 0.5        | mg/kg          |                   |                   | <0.5              |                   |                   |

| Page       | : 42 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID  |             |                | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |  |  |
|-------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                           | Cli               | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |
| Compound                                  | CAS Number        | LOR         | Unit           | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |  |  |
|                                           |                   |             |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EP075A: Phenolic Compounds - Continued    |                   |             |                |                   |                   |                   |                   |                   |  |  |
| Pentachlorophenol                         | 87-86-5           | 1           | mg/kg          |                   |                   | <1                |                   |                   |  |  |
| EP075B: Polynuclear Aromatic Hydrocarbons |                   |             |                |                   |                   |                   |                   |                   |  |  |
| Naphthalene                               | 91-20-3           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| 2-Methylnaphthalene                       | 91-57-6           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| 2-Chloronaphthalene                       | 91-58-7           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Acenaphthylene                            | 208-96-8          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Acenaphthene                              | 83-32-9           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Fluorene                                  | 86-73-7           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Phenanthrene                              | 85-01-8           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Anthracene                                | 120-12-7          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Fluoranthene                              | 206-44-0          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Pyrene                                    | 129-00-0          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| N-2-Fluorenyl Acetamide                   | 53-96-3           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Benz(a)anthracene                         | 56-55-3           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Chrysene                                  | 218-01-9          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Benzo(b+j) &                              | 205-99-2 207-08-9 | 1           | mg/kg          |                   |                   | <1                |                   |                   |  |  |
| Benzo(k)fluoranthene                      |                   |             |                |                   |                   |                   |                   |                   |  |  |
| 7.12-Dimethylbenz(a)anthracene            | 57-97-6           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Benzo(a)pyrene                            | 50-32-8           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| 3-Methylcholanthrene                      | 56-49-5           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Dibenz(a.h)anthracene                     | 53-70-3           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Benzo(g.h.i)perylene                      | 191-24-2          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| ^ Sum of PAHs                             |                   | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| ^ Benzo(a)pyrene TEQ (zero)               |                   | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| ^ Benzo(a)pyrene TEQ (half LOR)           |                   | 0.5         | mg/kg          |                   |                   | 0.6               |                   |                   |  |  |
| ^ Benzo(a)pyrene TEQ (LOR)                |                   | 0.5         | mg/kg          |                   |                   | 1.2               |                   |                   |  |  |
| EP075C: Phthalate Esters                  |                   |             |                |                   |                   |                   |                   |                   |  |  |
| Dimethyl phthalate                        | 131-11-3          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Diethyl phthalate                         | 84-66-2           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Di-n-butyl phthalate                      | 84-74-2           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| Butyl benzyl phthalate                    | 85-68-7           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |
| bis(2-ethylhexyl) phthalate               | 117-81-7          | 5.0         | mg/kg          |                   |                   | <5.0              |                   |                   |  |  |
| Di-n-octylphthalate                       | 117-84-0          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |  |  |

| Page       | : <b>43 of 60</b>     |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID |             |                | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |
|------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli              | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                           | CAS Number       | LOR         | Unit           | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |
|                                    |                  |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075D: Nitrosamines               |                  |             |                |                   |                   |                   |                   |                   |
| N-Nitrosomethylethylamine          | 10595-95-6       | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| N-Nitrosodiethylamine              | 55-18-5          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| N-Nitrosopyrrolidine               | 930-55-2         | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| N-Nitrosomorpholine                | 59-89-2          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| N-Nitrosodi-n-propylamine          | 621-64-7         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| N-Nitrosopiperidine                | 100-75-4         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| N-Nitrosodibutylamine              | 924-16-3         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| N-Nitrosodiphenyl &                | 86-30-6 122-39-4 | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| Diphenylamine                      |                  |             |                |                   |                   |                   |                   |                   |
| Methapyrilene                      | 91-80-5          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| EP075E: Nitroaromatics and Ketones |                  |             |                |                   |                   |                   |                   |                   |
| 2-Picoline                         | 109-06-8         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Acetophenone                       | 98-86-2          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Nitrobenzene                       | 98-95-3          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Isophorone                         | 78-59-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2.6-Dinitrotoluene                 | 606-20-2         | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| 2.4-Dinitrotoluene                 | 121-14-2         | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| 1-Naphthylamine                    | 134-32-7         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Nitroquinoline-N-oxide           | 56-57-5          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 5-Nitro-o-toluidine                | 99-55-8          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Azobenzene                         | 103-33-3         | 1           | mg/kg          |                   |                   | <1                |                   |                   |
| 1.3.5-Trinitrobenzene              | 99-35-4          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Phenacetin                         | 62-44-2          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Aminobiphenyl                    | 92-67-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Pentachloronitrobenzene            | 82-68-8          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Pronamide                          | 23950-58-5       | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Dimethylaminoazobenzene            | 60-11-7          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Chlorobenzilate                    | 510-15-6         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| EP075F: Haloethers                 |                  |             |                |                   |                   |                   |                   |                   |
| Bis(2-chloroethyl) ether           | 111-44-4         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Bis(2-chloroethoxy) methane        | 111-91-1         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Chlorophenyl phenyl ether        | 7005-72-3        | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Bromophenyl phenyl ether         | 101-55-3         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| EP075G: Chlorinated Hydrocarbons   |                  |             |                |                   |                   |                   |                   |                   |

| Page       | : 44 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   | Client sample ID |             |                | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |
|--------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Cli              | ent samplii | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                             | CAS Number       | LOR         | Unit           | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |
|                                      |                  |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075G: Chlorinated Hydrocarbons - C | ontinued         |             |                |                   |                   |                   |                   |                   |
| 1.3-Dichlorobenzene                  | 541-73-1         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 1.4-Dichlorobenzene                  | 106-46-7         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 1.2-Dichlorobenzene                  | 95-50-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachloroethane                     | 67-72-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 1.2.4-Trichlorobenzene               | 120-82-1         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachloropropylene                  | 1888-71-7        | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachlorobutadiene                  | 87-68-3          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachlorocyclopentadiene            | 77-47-4          | 2.5         | mg/kg          |                   |                   | <2.5              |                   |                   |
| Pentachlorobenzene                   | 608-93-5         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Hexachlorobenzene (HCB)              | 118-74-1         | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| EP075H: Anilines and Benzidines      |                  |             |                |                   |                   |                   |                   |                   |
| Aniline                              | 62-53-3          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Chloroaniline                      | 106-47-8         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 2-Nitroaniline                       | 88-74-4          | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| 3-Nitroaniline                       | 99-09-2          | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| Dibenzofuran                         | 132-64-9         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4-Nitroaniline                       | 100-01-6         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Carbazole                            | 86-74-8          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 3.3`-Dichlorobenzidine               | 91-94-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| EP075I: Organochlorine Pesticides    |                  |             |                |                   |                   |                   |                   |                   |
| alpha-BHC                            | 319-84-6         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| beta-BHC                             | 319-85-7         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| gamma-BHC                            | 58-89-9          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| delta-BHC                            | 319-86-8         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Heptachlor                           | 76-44-8          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Aldrin                               | 309-00-2         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Heptachlor epoxide                   | 1024-57-3        | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| alpha-Endosulfan                     | 959-98-8         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4.4`-DDE                             | 72-55-9          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Dieldrin                             | 60-57-1          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Endrin                               | 72-20-8          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| beta-Endosulfan                      | 33213-65-9       | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| 4.4`-DDD                             | 72-54-8          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Endosulfan sulfate                   | 1031-07-8        | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |

| Page       | : 45 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID  |             |                | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |
|----------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli               | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                               | CAS Number        | LOR         | Unit           | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |
|                                        |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075I: Organochlorine Pesticides - Co | ontinued          |             |                |                   |                   |                   |                   |                   |
| 4.4`-DDT                               | 50-29-3           | 1.0         | mg/kg          |                   |                   | <1.0              |                   |                   |
| ^ Sum of DDD + DDE + DDT               | 72-54-8/72-55-9/5 | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
|                                        | 0-2               |             |                |                   |                   |                   |                   |                   |
| ^ Sum of Aldrin + Dieldrin             | 309-00-2/60-57-1  | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| EP075J: Organophosphorus Pesticides    | 5                 |             |                |                   |                   |                   |                   |                   |
| Dichlorvos                             | 62-73-7           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Dimethoate                             | 60-51-5           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Diazinon                               | 333-41-5          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Chlorpyrifos-methyl                    | 5598-13-0         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Malathion                              | 121-75-5          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Fenthion                               | 55-38-9           | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Chlorpyrifos                           | 2921-88-2         | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Pirimphos-ethyl                        | 23505-41-1        | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Chlorfenvinphos                        | 470-90-6          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Prothiofos                             | 34643-46-4        | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| Ethion                                 | 563-12-2          | 0.5         | mg/kg          |                   |                   | <0.5              |                   |                   |
| EP080/071: Total Recoverable Hydroca   | rbons - NEPM 201  | 3 Fractio   | าร             |                   |                   |                   |                   |                   |
| >C10 - C16 Fraction                    |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| >C16 - C34 Fraction                    |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| >C34 - C40 Fraction                    |                   | 5           | mg/kg          | <5                | <5                | <5                | <5                | <5                |
| >C10 - C40 Fraction (sum)              |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| >C10 - C16 Fraction minus Naphthalene  |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| (F2)                                   |                   |             |                |                   |                   |                   |                   |                   |
| EP080-SD / EP071-SD: Total Petroleum   | Hydrocarbons      |             |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                       |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| C10 - C14 Fraction                     |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| C15 - C28 Fraction                     |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| C29 - C36 Fraction                     |                   | 5           | mg/kg          | <5                | <5                | <5                | <5                | <5                |
| ^ C10 - C36 Fraction (sum)             |                   | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| EP080-SD / EP071-SD: Total Recoverat   | ole Hydrocarbons  |             |                |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                      | C6_C10            | 3           | mg/kg          | <3                | <3                | <3                | <3                | <3                |
| C6 - C10 Fraction minus BTEX           | C6_C10-BTEX       | 3.0         | mg/kg          | <3.0              | <3.0              | <3.0              | <3.0              | <3.0              |
| (F1)                                   |                   |             |                |                   |                   |                   |                   |                   |
| EP080-SD: BTEXN                        |                   |             |                |                   |                   |                   |                   |                   |

| Page       | : 46 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID    |             |                | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |
|------------------------------------|---------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                  | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                           | CAS Number          | LOR         | Unit           | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |
|                                    |                     |             |                | Result            | Result            | Result            | Result            | Result            |
| EP080-SD: BTEXN - Continued        |                     |             |                |                   |                   |                   |                   |                   |
| Benzene                            | 71-43-2             | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Toluene                            | 108-88-3            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Ethylbenzene                       | 100-41-4            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| meta- & para-Xylene                | 108-38-3 106-42-3   | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| ortho-Xylene                       | 95-47-6             | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| ^ Total Xylenes                    |                     | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| ^ Sum of BTEX                      |                     | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Naphthalene                        | 91-20-3             | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| EP090: Organotin Compounds         |                     |             |                |                   |                   |                   |                   |                   |
| Tributyltin                        | 56573-85-4          | 0.5         | µgSn/kg        |                   |                   | <0.5              |                   |                   |
| EP130A: Organophosphorus Pesti     | cides (Ultra-trace) |             |                |                   |                   |                   |                   |                   |
| Bromophos-ethyl                    | 4824-78-6           | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Carbophenothion                    | 786-19-6            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Chlorfenvinphos (E)                | 18708-86-6          | 10.0        | µg/kg          | <10.0             | <10.0             | <10.0             | <10.0             | <10.0             |
| Chlorfenvinphos (Z)                | 18708-87-7          | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Chlorpyrifos                       | 2921-88-2           | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Chlorpyrifos-methyl                | 5598-13-0           | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Demeton-S-methyl                   | 919-86-8            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Diazinon                           | 333-41-5            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Dichlorvos                         | 62-73-7             | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Dimethoate                         | 60-51-5             | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Ethion                             | 563-12-2            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Fenamiphos                         | 22224-92-6          | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Fenthion                           | 55-38-9             | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Malathion                          | 121-75-5            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Azinphos Methyl                    | 86-50-0             | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Monocrotophos                      | 6923-22-4           | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Parathion                          | 56-38-2             | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Parathion-methyl                   | 298-00-0            | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Pirimphos-ethyl                    | 23505-41-1          | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| Prothiofos                         | 34643-46-4          | 10          | µg/kg          | <10               | <10               | <10               | <10               | <10               |
| EP131A: Organochlorine Pesticide   | s                   |             |                |                   |                   |                   |                   |                   |
| Aldrin                             | 309-00-2            | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |
| alpha-BHC                          | 319-84-6            | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |

| Page       | : 47 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)            | Client sample ID  |            |                | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |  |  |
|-----------------------------------------------|-------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                               | Cli               | ent sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |
| Compound                                      | CAS Number        | LOR        | Unit           | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |  |  |
|                                               |                   |            |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EP131A: Organochlorine Pesticides - Continued |                   |            |                |                   |                   |                   |                   |                   |  |  |
| beta-BHC                                      | 319-85-7          | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| delta-BHC                                     | 319-86-8          | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| 4.4`-DDD                                      | 72-54-8           | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| 4.4`-DDE                                      | 72-55-9           | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| 4.4`-DDT                                      | 50-29-3           | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| ^ Sum of DDD + DDE + DDT                      | 72-54-8/72-55-9/5 | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
|                                               | 0-2               |            |                |                   |                   |                   |                   |                   |  |  |
| Dieldrin                                      | 60-57-1           | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| alpha-Endosulfan                              | 959-98-8          | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| beta-Endosulfan                               | 33213-65-9        | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Endosulfan sulfate                            | 1031-07-8         | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| ^ Endosulfan (sum)                            | 115-29-7          | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Endrin                                        | 72-20-8           | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Endrin aldehyde                               | 7421-93-4         | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Endrin ketone                                 | 53494-70-5        | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Heptachlor                                    | 76-44-8           | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Heptachlor epoxide                            | 1024-57-3         | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| Hexachlorobenzene (HCB)                       | 118-74-1          | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| gamma-BHC                                     | 58-89-9           | 0.25       | µg/kg          | <0.25             | <0.25             | <0.25             | <0.25             | <0.25             |  |  |
| Methoxychlor                                  | 72-43-5           | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| cis-Chlordane                                 | 5103-71-9         | 0.25       | µg/kg          | <0.25             | <0.25             | <0.25             | <0.25             | <0.25             |  |  |
| trans-Chlordane                               | 5103-74-2         | 0.25       | µg/kg          | <0.25             | <0.25             | <0.25             | <0.25             | <0.25             |  |  |
| ^ Total Chlordane (sum)                       |                   | 0.25       | µg/kg          | <0.25             | <0.25             | <0.25             | <0.25             | <0.25             |  |  |
| Oxychlordane                                  | 27304-13-8        | 0.50       | µg/kg          | <0.50             | <0.50             | <0.50             | <0.50             | <0.50             |  |  |
| EP131B: Polychlorinated Biphenyls             | (as Aroclors)     |            |                |                   |                   |                   |                   |                   |  |  |
| ^ Total Polychlorinated biphenyls             |                   | 5.0        | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <5.0              |  |  |
| Aroclor 1016                                  | 12674-11-2        | 5.0        | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <5.0              |  |  |
| Aroclor 1221                                  | 11104-28-2        | 5.0        | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <5.0              |  |  |
| Aroclor 1232                                  | 11141-16-5        | 5.0        | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <5.0              |  |  |
| Aroclor 1242                                  | 53469-21-9        | 5.0        | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <5.0              |  |  |
| Aroclor 1248                                  | 12672-29-6        | 5.0        | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <5.0              |  |  |
| Aroclor 1254                                  | 11097-69-1        | 5.0        | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <5.0              |  |  |
| Aroclor 1260                                  | 11096-82-5        | 5.0        | µg/kg          | <5.0              | <5.0              | <5.0              | <5.0              | <5.0              |  |  |
| EP132B: Polynuclear Aromatic Hydr             | ocarbons          |            |                |                   |                   |                   |                   |                   |  |  |
| Naphthalene                                   | 91-20-3           | 5          | µg/kg          | <5                | <5                | <5                | <5                | <5                |  |  |

| Page       | : 48 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                             | Clie | ent sample ID | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |
|------------------------------------|-----------------------------|------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Client sampling date / time |      |               | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                           | CAS Number                  | LOR  | Unit          | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |
|                                    |                             |      |               | Result            | Result            | Result            | Result            | Result            |
| EP132B: Polynuclear Aromatic Hyd   | rocarbons - Continued       |      |               |                   |                   |                   |                   |                   |
| 2-Methylnaphthalene                | 91-57-6                     | 5    | µg/kg         | <5                | <5                | <5                | <5                | <5                |
| Acenaphthylene                     | 208-96-8                    | 4    | µg/kg         | <4                | <4                | <4                | <4                | <4                |
| Acenaphthene                       | 83-32-9                     | 4    | µg/kg         | <4                | <4                | <4                | <4                | <4                |
| Fluorene                           | 86-73-7                     | 4    | µg/kg         | <4                | <4                | <4                | <4                | <4                |
| Phenanthrene                       | 85-01-8                     | 4    | µg/kg         | 4                 | <4                | <4                | 8                 | <4                |
| Anthracene                         | 120-12-7                    | 4    | µg/kg         | <4                | <4                | <4                | <4                | <4                |
| Fluoranthene                       | 206-44-0                    | 4    | µg/kg         | 11                | <4                | <4                | 16                | <4                |
| Pyrene                             | 129-00-0                    | 4    | µg/kg         | 10                | <4                | <4                | 17                | <4                |
| Benz(a)anthracene                  | 56-55-3                     | 4    | µg/kg         | 5                 | <4                | <4                | 12                | <4                |
| Chrysene                           | 218-01-9                    | 4    | µg/kg         | 5                 | <4                | <4                | 8                 | <4                |
| Benzo(b+j)fluoranthene             | 205-99-2 205-82-3           | 4    | µg/kg         | <4                | <4                | <4                | 10                | <4                |
| Benzo(k)fluoranthene               | 207-08-9                    | 4    | µg/kg         | <4                | <4                | <4                | 7                 | <4                |
| Benzo(e)pyrene                     | 192-97-2                    | 4    | µg/kg         | <4                | <4                | <4                | 6                 | <4                |
| Benzo(a)pyrene                     | 50-32-8                     | 4    | µg/kg         | 4                 | <4                | <4                | 13                | <4                |
| Perylene                           | 198-55-0                    | 4    | µg/kg         | <4                | <4                | <4                | <4                | <4                |
| Benzo(g.h.i)perylene               | 191-24-2                    | 4    | µg/kg         | <4                | <4                | <4                | 8                 | <4                |
| Dibenz(a.h)anthracene              | 53-70-3                     | 4    | µg/kg         | <4                | <4                | <4                | <4                | <4                |
| Indeno(1.2.3.cd)pyrene             | 193-39-5                    | 4    | µg/kg         | <4                | <4                | <4                | 8                 | <4                |
| Coronene                           | 191-07-1                    | 5    | µg/kg         | <5                | <5                | <5                | <5                | <5                |
| ^ Sum of PAHs                      |                             | 4    | µg/kg         | 39                | <4                | <4                | 113               | <4                |
| EP075(SIM)S: Phenolic Compound     | Surrogates                  |      |               |                   |                   |                   |                   |                   |
| Phenol-d6                          | 13127-88-3                  | 0.5  | %             | 82.9              | 85.2              | 83.7              | 84.6              | 83.4              |
| 2-Chlorophenol-D4                  | 93951-73-6                  | 0.5  | %             | 91.8              | 95.0              | 93.5              | 94.3              | 92.6              |
| 2.4.6-Tribromophenol               | 118-79-6                    | 0.5  | %             | 59.2              | 58.1              | 60.4              | 60.3              | 57.4              |
| EP075(SIM)T: PAH Surrogates        |                             |      |               |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                   | 321-60-8                    | 0.5  | %             | 113               | 115               | 114               | 116               | 113               |
| Anthracene-d10                     | 1719-06-8                   | 0.5  | %             | 98.9              | 100               | 100               | 101               | 98.9              |
| 4-Terphenyl-d14                    | 1718-51-0                   | 0.5  | %             | 102               | 104               | 103               | 104               | 101               |
| EP075S: Acid Extractable Surrogate | es                          |      |               |                   |                   |                   |                   |                   |
| 2-Fluorophenol                     | 367-12-4                    | 0.5  | %             |                   |                   | 102               |                   |                   |
| Phenol-d6                          | 13127-88-3                  | 0.5  | %             |                   |                   | 95.9              |                   |                   |
| 2-Chlorophenol-D4                  | 93951-73-6                  | 0.5  | %             |                   |                   | 97.6              |                   |                   |
| 2.4.6-Tribromophenol               | 118-79-6                    | 0.5  | %             |                   |                   | 52.8              |                   |                   |
| EP075T: Base/Neutral Extractable S | Surrogates                  |      |               |                   |                   |                   |                   |                   |

| Page       | : 49 of 60              |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID            |      |      | VC02_1.5-1.6      | VC01_1.0-1.1      | VC01_0.5-1.0      | VC10_0.7-0.8      | VC10_0.0-0.5      |  |
|----------------------------------------|-----------------------------|------|------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                        | Client sampling date / time |      |      | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |
| Compound                               | CAS Number                  | LOR  | Unit | ES1936029-067     | ES1936029-071     | ES1936029-073     | ES1936029-076     | ES1936029-077     |  |
|                                        |                             |      |      | Result            | Result            | Result            | Result            | Result            |  |
| EP075T: Base/Neutral Extractable Surro | gates - Continued           |      |      |                   |                   |                   |                   |                   |  |
| Nitrobenzene-D5                        | 4165-60-0                   | 0.5  | %    |                   |                   | 91.8              |                   |                   |  |
| 1.2-Dichlorobenzene-D4                 | 2199-69-1                   | 0.5  | %    |                   |                   | 90.6              |                   |                   |  |
| 2-Fluorobiphenyl                       | 321-60-8                    | 0.5  | %    |                   |                   | 100               |                   |                   |  |
| Anthracene-d10                         | 1719-06-8                   | 0.5  | %    |                   |                   | 94.3              |                   |                   |  |
| 4-Terphenyl-d14                        | 1718-51-0                   | 0.5  | %    |                   |                   | 103               |                   |                   |  |
| EP080-SD: TPH(V)/BTEX Surrogates       |                             |      |      |                   |                   |                   |                   |                   |  |
| 1.2-Dichloroethane-D4                  | 17060-07-0                  | 0.2  | %    | 116               | 99.7              | 99.2              | 98.6              | 124               |  |
| Toluene-D8                             | 2037-26-5                   | 0.2  | %    | 123               | 96.6              | 105               | 98.3              | 129               |  |
| 4-Bromofluorobenzene                   | 460-00-4                    | 0.2  | %    | 119               | 109               | 99.5              | 105               | 126               |  |
| EP090S: Organotin Surrogate            |                             |      |      |                   |                   |                   |                   |                   |  |
| Tripropyltin                           |                             | 0.5  | %    |                   |                   | 68.9              |                   |                   |  |
| EP130S: Organophosphorus Pesticide S   | Surrogate                   |      |      |                   |                   |                   |                   |                   |  |
| DEF                                    | 78-48-8                     | 10   | %    | 40.7              | 48.6              | 52.2              | 37.8              | 41.6              |  |
| EP131S: OC Pesticide Surrogate         |                             |      |      |                   |                   |                   |                   |                   |  |
| Dibromo-DDE                            | 21655-73-2                  | 0.50 | %    | 52.2              | 79.9              | 74.9              | 52.9              | 55.5              |  |
| EP131T: PCB Surrogate                  |                             |      |      |                   |                   |                   |                   |                   |  |
| Decachlorobiphenyl                     | 2051-24-3                   | 0.5  | %    | 60.9              | 64.0              | 72.8              | 57.5              | 67.0              |  |
| EP132T: Base/Neutral Extractable Surro | gates                       |      |      |                   |                   |                   |                   |                   |  |
| 2-Fluorobiphenyl                       | 321-60-8                    | 10   | %    | 81.6              | 91.8              | 95.0              | 79.3              | 81.3              |  |
| Anthracene-d10                         | 1719-06-8                   | 10   | %    | 105               | 117               | 106               | 95.1              | 113               |  |
| 4-Terphenyl-d14                        | 1718-51-0                   | 10   | %    | 96.6              | 106               | 103               | 92.4              | 95.8              |  |

| Page       | 50 of 60                |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)       | Client sample ID |              |                | VC02_0.0-0.5      | FD01              | FD05              | TS1               | TB1               |
|------------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                          | Cli              | ient samplii | ng date / time | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                                 | CAS Number       | LOR          | Unit           | ES1936029-079     | ES1936029-081     | ES1936029-083     | ES1936029-085     | ES1936029-086     |
|                                          |                  |              |                | Result            | Result            | Result            | Result            | Result            |
| EA055: Moisture Content (Dried @ 105-1   | 10°C)            |              |                |                   |                   |                   |                   |                   |
| Moisture Content                         |                  | 1.0          | %              | 49.1              | 28.8              | 15.1              |                   |                   |
| EA150: Particle Sizing                   |                  |              |                |                   |                   |                   |                   |                   |
| +75µm                                    |                  | 1            | %              | 10                |                   |                   |                   |                   |
| +150µm                                   |                  | 1            | %              | 4                 |                   |                   |                   |                   |
| +300µm                                   |                  | 1            | %              | 2                 |                   |                   |                   |                   |
| +425µm                                   |                  | 1            | %              | <1                |                   |                   |                   |                   |
| +600µm                                   |                  | 1            | %              | <1                |                   |                   |                   |                   |
| +1180µm                                  |                  | 1            | %              | <1                |                   |                   |                   |                   |
| +2.36mm                                  |                  | 1            | %              | <1                |                   |                   |                   |                   |
| +4.75mm                                  |                  | 1            | %              | <1                |                   |                   |                   |                   |
| +9.5mm                                   |                  | 1            | %              | <1                |                   |                   |                   |                   |
| +19.0mm                                  |                  | 1            | %              | <1                |                   |                   |                   |                   |
| +37.5mm                                  |                  | 1            | %              | <1                |                   |                   |                   |                   |
| +75.0mm                                  |                  | 1            | %              | <1                |                   |                   |                   |                   |
| EA150: Soil Classification based on Part | icle Size        |              |                |                   |                   |                   |                   |                   |
| Clay (<2 μm)                             |                  | 1            | %              | 26                |                   |                   |                   |                   |
| Silt (2-60 μm)                           |                  | 1            | %              | 52                |                   |                   |                   |                   |
| Sand (0.06-2.00 mm)                      |                  | 1            | %              | 22                |                   |                   |                   |                   |
| Gravel (>2mm)                            |                  | 1            | %              | <1                |                   |                   |                   |                   |
| Cobbles (>6cm)                           |                  | 1            | %              | <1                |                   |                   |                   |                   |
| EG005(ED093)-SD: Total Metals in Sedim   | ents by ICP-AES  | 5            |                |                   |                   |                   |                   |                   |
| Aluminium                                | 7429-90-5        | 50           | mg/kg          | 12200             | 6720              | 10700             |                   |                   |
| Iron                                     | 7439-89-6        | 50           | mg/kg          | 34900             | 17000             | 2060              |                   |                   |
| EG020-SD: Total Metals in Sediments by   | ICPMS            |              |                |                   |                   |                   |                   |                   |
| Antimony                                 | 7440-36-0        | 0.50         | mg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |
| Arsenic                                  | 7440-38-2        | 1.00         | mg/kg          | 16.1              | 7.74              | <1.00             |                   |                   |
| Cadmium                                  | 7440-43-9        | 0.1          | mg/kg          | 0.5               | <0.1              | <0.1              |                   |                   |
| Chromium                                 | 7440-47-3        | 1.0          | mg/kg          | 42.0              | 11.4              | 7.6               |                   |                   |
| Copper                                   | 7440-50-8        | 1.0          | mg/kg          | 120               | 2.1               | <1.0              |                   |                   |
| Cobalt                                   | 7440-48-4        | 0.5          | mg/kg          | 4.2               | 1.3               | <0.5              |                   |                   |
| Lead                                     | 7439-92-1        | 1.0          | mg/kg          | 318               | 5.7               | 3.0               |                   |                   |
| Manganese                                | 7439-96-5        | 10           | mg/kg          | 88                | 27                | <10               |                   |                   |
| Nickel                                   | 7440-02-0        | 1.0          | mg/kg          | 10.4              | 3.8               | 1.9               |                   |                   |
| Selenium                                 | 7782-49-2        | 0.1          | mg/kg          | 0.6               | 0.3               | 0.1               |                   |                   |

| Page       | 51 of 60              |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID |              |                | VC02_0.0-0.5      | FD01              | FD05              | TS1               | TB1               |  |
|-------------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                           | Cli              | ient samplii | ng date / time | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                                  | CAS Number       | LOR          | Unit           | ES1936029-079     | ES1936029-081     | ES1936029-083     | ES1936029-085     | ES1936029-086     |  |
|                                           |                  |              |                | Result            | Result            | Result            | Result            | Result            |  |
| EG020-SD: Total Metals in Sediments by    | ICPMS - Continue | ed           |                |                   |                   |                   |                   |                   |  |
| Silver                                    | 7440-22-4        | 0.1          | mg/kg          | 3.0               | 0.5               | 0.2               |                   |                   |  |
| Vanadium                                  | 7440-62-2        | 2.0          | mg/kg          | 32.6              | 14.2              | 13.4              |                   |                   |  |
| Zinc                                      | 7440-66-6        | 1.0          | mg/kg          | 445               | 11.8              | 2.9               |                   |                   |  |
| EG035T: Total Recoverable Mercury by FIMS |                  |              |                |                   |                   |                   |                   |                   |  |
| Mercury                                   | 7439-97-6        | 0.01         | mg/kg          | 4.25              | 0.02              | <0.01             |                   |                   |  |
| EK026SF: Total CN by Segmented Flow       | Analyser         |              |                |                   |                   |                   |                   |                   |  |
| Total Cyanide                             | 57-12-5          | 1            | mg/kg          | <1                | <1                | <1                |                   |                   |  |
| EP003: Total Organic Carbon (TOC) in S    | oil              |              |                |                   |                   |                   |                   |                   |  |
| Total Organic Carbon                      |                  | 0.02         | %              | 2.82              | 0.39              | 0.09              |                   |                   |  |
| EP075(SIM)A: Phenolic Compounds           |                  |              |                |                   |                   |                   |                   |                   |  |
| Phenol                                    | 108-95-2         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2-Chlorophenol                            | 95-57-8          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2-Methylphenol                            | 95-48-7          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 3- & 4-Methylphenol                       | 1319-77-3        | 1            | mg/kg          | <1                | <1                | <1                |                   |                   |  |
| 2-Nitrophenol                             | 88-75-5          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.4-Dimethylphenol                        | 105-67-9         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.4-Dichlorophenol                        | 120-83-2         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.6-Dichlorophenol                        | 87-65-0          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 4-Chloro-3-methylphenol                   | 59-50-7          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.4.6-Trichlorophenol                     | 88-06-2          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| 2.4.5-Trichlorophenol                     | 95-95-4          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |  |
| Pentachlorophenol                         | 87-86-5          | 2            | mg/kg          | <2                | <2                | <2                |                   |                   |  |
| EP080/071: Total Petroleum Hydrocarbo     | ns               |              |                |                   |                   |                   |                   |                   |  |
| C6 - C9 Fraction                          |                  | 10           | mg/kg          |                   |                   |                   | 35                | <10               |  |
| EP080/071: Total Recoverable Hydrocart    | oons - NEPM 201  | 3 Fractio    | າຣ             |                   |                   |                   |                   |                   |  |
| C6 - C10 Fraction                         | C6_C10           | 10           | mg/kg          |                   |                   |                   | 44                | <10               |  |
| >C10 - C16 Fraction                       |                  | 3            | mg/kg          | 4                 | <3                | <3                |                   |                   |  |
| <sup>^</sup> C6 - C10 Fraction minus BTEX | C6_C10-BTEX      | 10           | mg/kg          |                   |                   |                   | 22                | <10               |  |
| (F1)                                      |                  |              |                |                   |                   |                   |                   |                   |  |
| >C16 - C34 Fraction                       |                  | 3            | mg/kg          | 78                | <3                | <3                |                   |                   |  |
| >C34 - C40 Fraction                       |                  | 5            | mg/kg          | 28                | <5                | <5                |                   |                   |  |
| >C10 - C40 Fraction (sum)                 |                  | 3            | mg/kg          | 110               | <3                | <3                |                   |                   |  |
| >C10 - C16 Fraction minus Naphthalene     |                  | 3            | mg/kg          | 4                 | <3                | <3                |                   |                   |  |
| (F2)                                      |                  |              |                |                   |                   |                   |                   |                   |  |

| Page       | 52 of 60              |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID   |             |                | VC02_0.0-0.5      | FD01              | FD05              | TS1               | TB1               |
|------------------------------------|--------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli                | ient sampli | ng date / time | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                           | CAS Number         | LOR         | Unit           | ES1936029-079     | ES1936029-081     | ES1936029-083     | ES1936029-085     | ES1936029-086     |
|                                    |                    |             |                | Result            | Result            | Result            | Result            | Result            |
| EP080: BTEXN                       |                    |             |                |                   |                   |                   |                   |                   |
| Benzene                            | 71-43-2            | 0.2         | mg/kg          |                   |                   |                   | <0.2              | <0.2              |
| Toluene                            | 108-88-3           | 0.5         | mg/kg          |                   |                   |                   | 9.4               | <0.5              |
| Ethylbenzene                       | 100-41-4           | 0.5         | mg/kg          |                   |                   |                   | 1.5               | <0.5              |
| meta- & para-Xylene                | 108-38-3 106-42-3  | 0.5         | mg/kg          |                   |                   |                   | 8.1               | <0.5              |
| ortho-Xylene                       | 95-47-6            | 0.5         | mg/kg          |                   |                   |                   | 3.4               | <0.5              |
| ^ Sum of BTEX                      |                    | 0.2         | mg/kg          |                   |                   |                   | 22.4              | <0.2              |
| ^ Total Xylenes                    |                    | 0.5         | mg/kg          |                   |                   |                   | 11.5              | <0.5              |
| Naphthalene                        | 91-20-3            | 1           | mg/kg          |                   |                   |                   | <1                | <1                |
| EP080-SD / EP071-SD: Total Petrole | um Hydrocarbons    |             |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                   |                    | 3           | mg/kg          | <3                | <3                | <3                |                   |                   |
| C10 - C14 Fraction                 |                    | 3           | mg/kg          | <3                | <3                | <3                |                   |                   |
| C15 - C28 Fraction                 |                    | 3           | mg/kg          | 48                | <3                | <3                |                   |                   |
| C29 - C36 Fraction                 |                    | 5           | mg/kg          | 46                | <5                | <5                |                   |                   |
| ^ C10 - C36 Fraction (sum)         |                    | 3           | mg/kg          | 94                | <3                | <3                |                   |                   |
| EP080-SD / EP071-SD: Total Recove  | rable Hydrocarbons |             |                |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                  | C6_C10             | 3           | mg/kg          | <3                | <3                | <3                |                   |                   |
| C6 - C10 Fraction minus BTEX       | C6_C10-BTEX        | 3.0         | mg/kg          | <3.0              | <3.0              | <3.0              |                   |                   |
| (F1)                               |                    |             |                |                   |                   |                   |                   |                   |
| EP080-SD: BTEXN                    |                    |             |                |                   |                   |                   |                   |                   |
| Benzene                            | 71-43-2            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| Toluene                            | 108-88-3           | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| Ethylbenzene                       | 100-41-4           | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| meta- & para-Xylene                | 108-38-3 106-42-3  | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| ortho-Xylene                       | 95-47-6            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| ^ Total Xylenes                    |                    | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   |                   |
| ^ Sum of BTEX                      |                    | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| Naphthalene                        | 91-20-3            | 0.2         | mg/kg          | <0.2              | <0.2              | <0.2              |                   |                   |
| EP130A: Organophosphorus Pestic    | ides (Ultra-trace) |             |                |                   |                   |                   |                   |                   |
| Bromophos-ethyl                    | 4824-78-6          | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Carbophenothion                    | 786-19-6           | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Chlorfenvinphos (E)                | 18708-86-6         | 10.0        | µg/kg          | <10.0             | <10.0             | <10.0             |                   |                   |
| Chlorfenvinphos (Z)                | 18708-87-7         | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Chlorpyrifos                       | 2921-88-2          | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |
| Chlorpyrifos-methyl                | 5598-13-0          | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |

| Page       | 53 of 60              |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                            | Client sample ID         |             |                | VC02_0.0-0.5      | FD01              | FD05              | TS1               | TB1               |  |  |
|---------------------------------------------------------------|--------------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                                               | Cli                      | ent samplir | ng date / time | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |  |
| Compound                                                      | CAS Number               | LOR         | Unit           | ES1936029-079     | ES1936029-081     | ES1936029-083     | ES1936029-085     | ES1936029-086     |  |  |
|                                                               |                          |             |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EP130A: Organophosphorus Pesticides (Ultra-trace) - Continued |                          |             |                |                   |                   |                   |                   |                   |  |  |
| Demeton-S-methyl                                              | 919-86-8                 | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Diazinon                                                      | 333-41-5                 | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Dichlorvos                                                    | 62-73-7                  | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Dimethoate                                                    | 60-51-5                  | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Ethion                                                        | 563-12-2                 | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Fenamiphos                                                    | 22224-92-6               | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Fenthion                                                      | 55-38-9                  | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Malathion                                                     | 121-75-5                 | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Azinphos Methyl                                               | 86-50-0                  | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Monocrotophos                                                 | 6923-22-4                | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Parathion                                                     | 56-38-2                  | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Parathion-methyl                                              | 298-00-0                 | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Pirimphos-ethyl                                               | 23505-41-1               | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| Prothiofos                                                    | 34643-46-4               | 10          | µg/kg          | <10               | <10               | <10               |                   |                   |  |  |
| EP131A: Organochlorine Pesticides                             |                          |             |                |                   |                   |                   |                   |                   |  |  |
| Aldrin                                                        | 309-00-2                 | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| alpha-BHC                                                     | 319-84-6                 | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| beta-BHC                                                      | 319-85-7                 | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| delta-BHC                                                     | 319-86-8                 | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| 4.4`-DDD                                                      | 72-54-8                  | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| 4.4`-DDE                                                      | 72-55-9                  | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| 4.4`-DDT                                                      | 50-29-3                  | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| ^ Sum of DDD + DDE + DDT                                      | 72-54-8/72-55-9/5<br>0-2 | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Dieldrin                                                      | 60-57-1                  | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| alpha-Endosulfan                                              | 959-98-8                 | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| beta-Endosulfan                                               | 33213-65-9               | 0.50        | μg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Endosulfan sulfate                                            | 1031-07-8                | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| ^ Endosulfan (sum)                                            | 115-29-7                 | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Endrin                                                        | 72-20-8                  | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Endrin aldehyde                                               | 7421-93-4                | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Endrin ketone                                                 | 53494-70-5               | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Heptachlor                                                    | 76-44-8                  | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Heptachlor epoxide                                            | 1024-57-3                | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |
| Hexachlorobenzene (HCB)                                       | 118-74-1                 | 0.50        | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |  |  |

| Page       | 54 of 60                |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID  |              |                | VC02_0.0-0.5      | FD01              | FD05              | TS1               | TB1               |
|-------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cl                | ient sampliı | ng date / time | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                            | CAS Number        | LOR          | Unit           | ES1936029-079     | ES1936029-081     | ES1936029-083     | ES1936029-085     | ES1936029-086     |
|                                     |                   |              |                | Result            | Result            | Result            | Result            | Result            |
| EP131A: Organochlorine Pesticides - | Continued         |              |                |                   |                   |                   |                   |                   |
| gamma-BHC                           | 58-89-9           | 0.25         | µg/kg          | <0.25             | <0.25             | <0.25             |                   |                   |
| Methoxychlor                        | 72-43-5           | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |
| cis-Chlordane                       | 5103-71-9         | 0.25         | µg/kg          | <0.25             | <0.25             | <0.25             |                   |                   |
| trans-Chlordane                     | 5103-74-2         | 0.25         | µg/kg          | <0.25             | <0.25             | <0.25             |                   |                   |
| ^ Total Chlordane (sum)             |                   | 0.25         | µg/kg          | <0.25             | <0.25             | <0.25             |                   |                   |
| Oxychlordane                        | 27304-13-8        | 0.50         | µg/kg          | <0.50             | <0.50             | <0.50             |                   |                   |
| EP131B: Polychlorinated Biphenyls ( | as Aroclors)      |              |                |                   |                   |                   |                   |                   |
| ^ Total Polychlorinated biphenyls   |                   | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              |                   |                   |
| Aroclor 1016                        | 12674-11-2        | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              |                   |                   |
| Aroclor 1221                        | 11104-28-2        | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              |                   |                   |
| Aroclor 1232                        | 11141-16-5        | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              |                   |                   |
| Aroclor 1242                        | 53469-21-9        | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              |                   |                   |
| Aroclor 1248                        | 12672-29-6        | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              |                   |                   |
| Aroclor 1254                        | 11097-69-1        | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              |                   |                   |
| Aroclor 1260                        | 11096-82-5        | 5.0          | µg/kg          | <5.0              | <5.0              | <5.0              |                   |                   |
| EP132B: Polynuclear Aromatic Hydro  | ocarbons          |              |                |                   |                   |                   |                   |                   |
| Naphthalene                         | 91-20-3           | 5            | µg/kg          | 116               | <5                | <5                |                   |                   |
| 2-Methylnaphthalene                 | 91-57-6           | 5            | µg/kg          | 44                | <5                | <5                |                   |                   |
| Acenaphthylene                      | 208-96-8          | 4            | µg/kg          | 297               | <4                | <4                |                   |                   |
| Acenaphthene                        | 83-32-9           | 4            | µg/kg          | 44                | <4                | <4                |                   |                   |
| Fluorene                            | 86-73-7           | 4            | µg/kg          | 95                | <4                | <4                |                   |                   |
| Phenanthrene                        | 85-01-8           | 4            | µg/kg          | 885               | <4                | <4                |                   |                   |
| Anthracene                          | 120-12-7          | 4            | µg/kg          | 286               | <4                | <4                |                   |                   |
| Fluoranthene                        | 206-44-0          | 4            | µg/kg          | 1890              | <4                | <4                |                   |                   |
| Pyrene                              | 129-00-0          | 4            | µg/kg          | 1780              | <4                | 4                 |                   |                   |
| Benz(a)anthracene                   | 56-55-3           | 4            | µg/kg          | 1130              | <4                | <4                |                   |                   |
| Chrysene                            | 218-01-9          | 4            | µg/kg          | 997               | <4                | <4                |                   |                   |
| Benzo(b+j)fluoranthene              | 205-99-2 205-82-3 | 4            | µg/kg          | 1490              | <4                | <4                |                   |                   |
| Benzo(k)fluoranthene                | 207-08-9          | 4            | µg/kg          | 661               | <4                | <4                |                   |                   |
| Benzo(e)pyrene                      | 192-97-2          | 4            | µg/kg          | 631               | <4                | <4                |                   |                   |
| Benzo(a)pyrene                      | 50-32-8           | 4            | µg/kg          | 1570              | <4                | 5                 |                   |                   |
| Perylene                            | 198-55-0          | 4            | µg/kg          | 329               | <4                | <4                |                   |                   |
| Benzo(g.h.i)perylene                | 191-24-2          | 4            | µg/kg          | 1000              | <4                | <4                |                   |                   |
| Dibenz(a.h)anthracene               | 53-70-3           | 4            | µg/kg          | 219               | <4                | <4                |                   |                   |

| Page       | 55 of 60              |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID            |      |       | VC02_0.0-0.5      | FD01              | FD05              | TS1               | TB1               |
|-------------------------------------|-----------------------------|------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Client sampling date / time |      |       | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                            | CAS Number                  | LOR  | Unit  | ES1936029-079     | ES1936029-081     | ES1936029-083     | ES1936029-085     | ES1936029-086     |
|                                     |                             |      |       | Result            | Result            | Result            | Result            | Result            |
| EP132B: Polynuclear Aromatic Hydro  | ocarbons - Continued        |      |       |                   |                   |                   |                   |                   |
| Indeno(1.2.3.cd)pyrene              | 193-39-5                    | 4    | µg/kg | 963               | <4                | <4                |                   |                   |
| Coronene                            | 191-07-1                    | 5    | µg/kg | 375               | <5                | <5                |                   |                   |
| ^ Sum of PAHs                       |                             | 4    | µg/kg | 14800             | <4                | 9                 |                   |                   |
| EP075(SIM)S: Phenolic Compound S    | urrogates                   |      |       |                   |                   |                   |                   |                   |
| Phenol-d6                           | 13127-88-3                  | 0.5  | %     | 84.6              | 86.1              | 84.2              |                   |                   |
| 2-Chlorophenol-D4                   | 93951-73-6                  | 0.5  | %     | 93.6              | 96.2              | 93.7              |                   |                   |
| 2.4.6-Tribromophenol                | 118-79-6                    | 0.5  | %     | 74.9              | 67.4              | 65.7              |                   |                   |
| EP075(SIM)T: PAH Surrogates         |                             |      |       |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                    | 321-60-8                    | 0.5  | %     | 114               | 116               | 114               |                   |                   |
| Anthracene-d10                      | 1719-06-8                   | 0.5  | %     | 102               | 102               | 101               |                   |                   |
| 4-Terphenyl-d14                     | 1718-51-0                   | 0.5  | %     | 95.8              | 102               | 100               |                   |                   |
| EP080S: TPH(V)/BTEX Surrogates      |                             |      |       |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4               | 17060-07-0                  | 0.2  | %     |                   |                   |                   | 90.1              | 101               |
| Toluene-D8                          | 2037-26-5                   | 0.2  | %     |                   |                   |                   | 99.8              | 106               |
| 4-Bromofluorobenzene                | 460-00-4                    | 0.2  | %     |                   |                   |                   | 104               | 111               |
| EP080-SD: TPH(V)/BTEX Surrogates    |                             |      |       |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4               | 17060-07-0                  | 0.2  | %     | 109               | 82.3              | 108               |                   |                   |
| Toluene-D8                          | 2037-26-5                   | 0.2  | %     | 99.8              | 85.8              | 97.0              |                   |                   |
| 4-Bromofluorobenzene                | 460-00-4                    | 0.2  | %     | 111               | 84.3              | 107               |                   |                   |
| EP130S: Organophosphorus Pesticio   | de Surrogate                |      |       |                   |                   |                   |                   |                   |
| DEF                                 | 78-48-8                     | 10   | %     | 53.6              | 49.3              | 37.7              |                   |                   |
| EP131S: OC Pesticide Surrogate      |                             |      |       |                   |                   |                   |                   |                   |
| Dibromo-DDE                         | 21655-73-2                  | 0.50 | %     | 42.0              | 60.7              | 67.4              |                   |                   |
| EP131T: PCB Surrogate               |                             |      |       |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                  | 2051-24-3                   | 0.5  | %     | 84.9              | 65.5              | 56.5              |                   |                   |
| EP132T: Base/Neutral Extractable Su | irrogates                   |      |       |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                    | 321-60-8                    | 10   | %     | 74.2              | 77.7              | 78.3              |                   |                   |
| Anthracene-d10                      | 1719-06-8                   | 10   | %     | 85.2              | 102               | 104               |                   |                   |
| 4-Terphenyl-d14                     | 1718-51-0                   | 10   | %     | 98.4              | 105               | 113               |                   |                   |

| Page       | 56 of 60              |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID   |             |                | TSC               |  |  |  |  |
|-------------------------------------------|--------------------|-------------|----------------|-------------------|--|--|--|--|
|                                           | Cli                | ient sampli | ng date / time | 31-Oct-2019 00:00 |  |  |  |  |
| Compound                                  | CAS Number         | LOR         | Unit           | ES1936029-087     |  |  |  |  |
|                                           |                    |             |                | Result            |  |  |  |  |
| EP080/071: Total Petroleum Hydrocarbons   |                    |             |                |                   |  |  |  |  |
| C6 - C9 Fraction                          |                    | 10          | mg/kg          | 47                |  |  |  |  |
| EP080/071: Total Recoverable Hydro        | carbons - NEPM 201 | 3 Fractio   | ns             |                   |  |  |  |  |
| C6 - C10 Fraction                         | C6_C10             | 10          | mg/kg          | 59                |  |  |  |  |
| <sup>^</sup> C6 - C10 Fraction minus BTEX | C6_C10-BTEX        | 10          | mg/kg          | 29                |  |  |  |  |
| (F1)                                      |                    |             |                |                   |  |  |  |  |
| EP080: BTEXN                              |                    |             |                |                   |  |  |  |  |
| Benzene                                   | 71-43-2            | 0.2         | mg/kg          | <0.2              |  |  |  |  |
| Toluene                                   | 108-88-3           | 0.5         | mg/kg          | 12.7              |  |  |  |  |
| Ethylbenzene                              | 100-41-4           | 0.5         | mg/kg          | 2.1               |  |  |  |  |
| meta- & para-Xylene                       | 108-38-3 106-42-3  | 0.5         | mg/kg          | 10.9              |  |  |  |  |
| ortho-Xylene                              | 95-47-6            | 0.5         | mg/kg          | 4.5               |  |  |  |  |
| ^ Sum of BTEX                             |                    | 0.2         | mg/kg          | 30.2              |  |  |  |  |
| ^ Total Xylenes                           |                    | 0.5         | mg/kg          | 15.4              |  |  |  |  |
| Naphthalene                               | 91-20-3            | 1           | mg/kg          | <1                |  |  |  |  |
| EP080S: TPH(V)/BTEX Surrogates            |                    |             |                |                   |  |  |  |  |
| 1.2-Dichloroethane-D4                     | 17060-07-0         | 0.2         | %              | 94.8              |  |  |  |  |
| Toluene-D8                                | 2037-26-5          | 0.2         | %              | 103               |  |  |  |  |
| 4-Bromofluorobenzene                      | 460-00-4           | 0.2         | %              | 108               |  |  |  |  |

| Page       | 57 of 60                |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: WATER<br>(Matrix: WATER)    | Client sample ID  |              |                | RIN_01            | <br> | <br> |
|-----------------------------------------|-------------------|--------------|----------------|-------------------|------|------|
|                                         | Cl                | ient samplii | ng date / time | 30-Oct-2019 00:00 | <br> | <br> |
| Compound                                | CAS Number        | LOR          | Unit           | ES1936029-084     | <br> | <br> |
|                                         |                   |              |                | Result            | <br> | <br> |
| EG020T: Total Metals by ICP-MS          |                   |              |                |                   |      |      |
| Arsenic                                 | 7440-38-2         | 0.001        | mg/L           | <0.001            | <br> | <br> |
| Cadmium                                 | 7440-43-9         | 0.0001       | mg/L           | <0.0001           | <br> | <br> |
| Chromium                                | 7440-47-3         | 0.001        | mg/L           | <0.001            | <br> | <br> |
| Copper                                  | 7440-50-8         | 0.001        | mg/L           | <0.001            | <br> | <br> |
| Nickel                                  | 7440-02-0         | 0.001        | mg/L           | <0.001            | <br> | <br> |
| Lead                                    | 7439-92-1         | 0.001        | mg/L           | <0.001            | <br> | <br> |
| Zinc                                    | 7440-66-6         | 0.005        | mg/L           | <0.005            | <br> | <br> |
| EG035T: Total Recoverable Mercury       | by FIMS           |              |                |                   |      |      |
| Mercury                                 | 7439-97-6         | 0.0001       | mg/L           | <0.0001           | <br> | <br> |
| EP075(SIM)B: Polynuclear Aromatic       | Hydrocarbons      |              |                |                   |      |      |
| Naphthalene                             | 91-20-3           | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Acenaphthylene                          | 208-96-8          | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Acenaphthene                            | 83-32-9           | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Fluorene                                | 86-73-7           | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Phenanthrene                            | 85-01-8           | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Anthracene                              | 120-12-7          | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Fluoranthene                            | 206-44-0          | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Pyrene                                  | 129-00-0          | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Benz(a)anthracene                       | 56-55-3           | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Chrysene                                | 218-01-9          | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Benzo(b+j)fluoranthene                  | 205-99-2 205-82-3 | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Benzo(k)fluoranthene                    | 207-08-9          | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Benzo(a)pyrene                          | 50-32-8           | 0.5          | µg/L           | <0.5              | <br> | <br> |
| Indeno(1.2.3.cd)pyrene                  | 193-39-5          | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Dibenz(a.h)anthracene                   | 53-70-3           | 1.0          | µg/L           | <1.0              | <br> | <br> |
| Benzo(g.h.i)perylene                    | 191-24-2          | 1.0          | µg/L           | <1.0              | <br> | <br> |
| ^ Sum of polycyclic aromatic hydrocarbo | ons               | 0.5          | µg/L           | <0.5              | <br> | <br> |
| ^ Benzo(a)pyrene TEQ (zero)             |                   | 0.5          | µg/L           | <0.5              | <br> | <br> |
| EP080/071: Total Petroleum Hydroca      | rbons             |              |                |                   |      |      |
| C6 - C9 Fraction                        |                   | 20           | µg/L           | <20               | <br> | <br> |
| C10 - C14 Fraction                      |                   | 50           | µg/L           | <50               | <br> | <br> |
| C15 - C28 Fraction                      |                   | 100          | µg/L           | <100              | <br> | <br> |
| C29 - C36 Fraction                      |                   | 50           | µg/L           | <50               | <br> | <br> |
| ^ C10 - C36 Fraction (sum)              |                   | 50           | µg/L           | <50               | <br> | <br> |

| Page       | 58 of 60                |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Sub-Matrix: WATER<br>(Matrix: WATER)      | Client sample ID  |              |                | RIN_01            | <br> | <br> |
|-------------------------------------------|-------------------|--------------|----------------|-------------------|------|------|
|                                           | Cli               | ient samplii | ng date / time | 30-Oct-2019 00:00 | <br> | <br> |
| Compound                                  | CAS Number        | LOR          | Unit           | ES1936029-084     | <br> | <br> |
|                                           |                   |              |                | Result            | <br> | <br> |
| EP080/071: Total Recoverable Hydroca      | arbons - NEPM 201 | 3 Fractio    | าร             |                   |      |      |
| C6 - C10 Fraction                         | C6_C10            | 20           | µg/L           | <20               | <br> | <br> |
| <sup>^</sup> C6 - C10 Fraction minus BTEX | C6_C10-BTEX       | 20           | µg/L           | <20               | <br> | <br> |
| (F1)                                      |                   |              |                |                   |      |      |
| >C10 - C16 Fraction                       |                   | 100          | µg/L           | <100              | <br> | <br> |
| >C16 - C34 Fraction                       |                   | 100          | µg/L           | <100              | <br> | <br> |
| >C34 - C40 Fraction                       |                   | 100          | µg/L           | <100              | <br> | <br> |
| ^ >C10 - C40 Fraction (sum)               |                   | 100          | µg/L           | <100              | <br> | <br> |
| ^ >C10 - C16 Fraction minus Naphthalene   |                   | 100          | µg/L           | <100              | <br> | <br> |
| (F2)                                      |                   |              |                |                   |      |      |
| EP080: BTEXN                              |                   |              |                |                   |      |      |
| Benzene                                   | 71-43-2           | 1            | µg/L           | <1                | <br> | <br> |
| Toluene                                   | 108-88-3          | 2            | µg/L           | <2                | <br> | <br> |
| Ethylbenzene                              | 100-41-4          | 2            | µg/L           | <2                | <br> | <br> |
| meta- & para-Xylene                       | 108-38-3 106-42-3 | 2            | µg/L           | <2                | <br> | <br> |
| ortho-Xylene                              | 95-47-6           | 2            | µg/L           | <2                | <br> | <br> |
| ^ Total Xylenes                           |                   | 2            | µg/L           | <2                | <br> | <br> |
| ^ Sum of BTEX                             |                   | 1            | µg/L           | <1                | <br> | <br> |
| Naphthalene                               | 91-20-3           | 5            | µg/L           | <5                | <br> | <br> |
| EP075(SIM)S: Phenolic Compound Su         | rrogates          |              |                |                   |      |      |
| Phenol-d6                                 | 13127-88-3        | 1.0          | %              | 26.1              | <br> | <br> |
| 2-Chlorophenol-D4                         | 93951-73-6        | 1.0          | %              | 63.7              | <br> | <br> |
| 2.4.6-Tribromophenol                      | 118-79-6          | 1.0          | %              | 80.0              | <br> | <br> |
| EP075(SIM)T: PAH Surrogates               |                   |              |                |                   |      |      |
| 2-Fluorobiphenyl                          | 321-60-8          | 1.0          | %              | 87.0              | <br> | <br> |
| Anthracene-d10                            | 1719-06-8         | 1.0          | %              | 84.4              | <br> | <br> |
| 4-Terphenyl-d14                           | 1718-51-0         | 1.0          | %              | 85.9              | <br> | <br> |
| EP080S: TPH(V)/BTEX Surrogates            |                   |              |                |                   |      |      |
| 1.2-Dichloroethane-D4                     | 17060-07-0        | 2            | %              | 90.8              | <br> | <br> |
| Toluene-D8                                | 2037-26-5         | 2            | %              | 95.1              | <br> | <br> |
| 4-Bromofluorobenzene                      | 460-00-4          | 2            | %              | 94.3              | <br> | <br> |

| Page       | 59 of 60                |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | : 12517046              |

# Surrogate Control Limits

| Compound     CAS Number     Low     High       EP0749: VOC Surrogates     12-Dichloroethane-D4     17060-07-0     64     130       12-Dichloroethane-D4     17060-07-0     64     130     130       Toluene-D8     2037-26-5     666     1312       EP075(SIM)S: Phenolic Compound Surrogates     93951-73-6     666     122       2.4.6.Tribromophenol-D4     93951-73-6     666     122       2.4.6.Tribromophenol     118-79-6     400     138       EP075(SIM)T: PAH Surrogates     2     2     129       Anthracene-d10     1719-06-8     66     128       4-Terphenyl-d14     1718-51-0     65     129       EP075S: Acid Extractable Surrogates     2     128       2.Chlorophenol-D4     93951-73-6     32     128       2.Als-Tribromophenol     118-79-6     133     121       EP075T: Base/Neutral Extractable Surrogates     2     128       2.Als-Tribromophenol     118-79-6     33     125       1.2.Dichlorobenzene-D4     2199-69-1     34     108                                                             | Sub-Matrix: SOIL                             |            | Recovery | Limits (%) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|----------|------------|
| EP0743: VOC Surrogates       1.2-Dichloroethane-D4     17060-07-0     64     130       Toluene-D8     2037-26-5     66     136       4-Bromofluorobenzene     460-00-4     60     122       EP075(SIM)S: Phenolic Compound Surrogates     120     127-86-3     63     123       2-Chlorophenol-D4     93951-73-6     66     122     12.45-Tribromophenol     118-79-6     40     138       EP075(SIM)T: PAH Surrogates     2     2-Chlorophenol     1719-06-8     66     122       2-Huorobiphenyl     321-60-8     70     122     Anthracene-d10     1719-06-8     66     128       4-Terphenyl-d14     1718-10     65     129     149       Phenol-d6     13127-88-3     32     128       2-Fluorophenol     367-12-4     29     149       Phenol-d6     13127-88-3     32     128       2-Fluorophenol-D4     93951-73-6     32     128       2-Fluorophenol-D4     93951-73-6     32     121       EP0751: Base//Neutral Extractable Surrogates     121 <th>Compound</th> <th>CAS Number</th> <th>Low</th> <th>High</th>    | Compound                                     | CAS Number | Low      | High       |
| 1.2-Dichloroethane-D4     17060-07-0     64     130       Toluene-D8     2037-26-5     66     136       4-Bromofluorobenzene     460-00-4     60     122       EP075(SIM)S: Phenolic Compound Surrogates      123       2-Chlorophenol-D4     93951-73-6     66     122       2.4.6.ribromophenol     118-79-6     66     122       2.4.6.ribromophenol     118-79-6     66     122       2.4.6.ribromophenol     118-79-6     66     122       Anthracene-d10     1719-06-8     66     128       4-Terphonyl-d14     1718-51-0     65     129       EP075S: Acid Extractable Surrogates     2     128       2.Fluorophenol-D4     93951-73-6     32     128       2.Fluorophenol-D4     93951-73-6     32 <td< th=""><th>EP074S: VOC Surrogates</th><th></th><th></th><th></th></td<>                  | EP074S: VOC Surrogates                       |            |          |            |
| Toluene-D8     2037-26-5     66     136       4-Bromofluorobenzene     460-00-4     60     122       EPO75(SIM)S: Phenolic Compound Surrogates     9     53     123       Phenol-d6     13127-88-3     63     122       2.4.6.Tribromophenol     118-79-6     66     122       2.4.6.Tribromophenol     118-79-6     40     138       EP075(SIM)T: PAH Surrogates     70     122       Anthracene-d10     1719-06-8     66     128       4.Terphenyl-d14     1718-51-0     65     129       EP075S: Acid Extractable Surrogates     2     149       2.Fluorophenol-D4     93951-73-6     32     128       2.Chlorophenol-D4     33951-73-6     32     128       2.Chlorophenol-D4     3193-121     121     121 <th>1.2-Dichloroethane-D4</th> <th>17060-07-0</th> <th>64</th> <th>130</th>              | 1.2-Dichloroethane-D4                        | 17060-07-0 | 64       | 130        |
| 4-Bromofluorobenzene   460-00-4   60   122     EP075(SIM)S: Phenolic Compound Surrogates   118     Phenol-d6   13127-88-3   63   123     2.Chlorophenol-D4   93951-73-6   66   122     2.4.6-Tribromophenol   118-79-6   66   122     2.4.6-Tribromophenol   118-79-6   66   122     2.4.6-Tribromophenol   1719-06-8   66   128     4-Torphenyl-d14   1718-51-0   65   129     EP075S: Acid Extractable Surrogates   2   149     Phenol-d6   13127-88-3   32   128     2.4.6-Tribromophenol   367-12-4   29   149     Phenol-d6   13127-88-3   32   128     2.4.6-Tribromophenol   118-79-6   13   121     EP075T: Base/Neutral Extractable Surrogates   2   129   149     Nitrobenzene-D5   4165-60-0   33   125   121     1.2-Dichorobenzene-D4   2199-68-1   34   108   121     2.Fluorobiphenyl   321-60-8   35   123   121     1.2-Dichorobenzene-D4 <td< th=""><th>Toluene-D8</th><th>2037-26-5</th><th>66</th><th>136</th></td<>                                                                                        | Toluene-D8                                   | 2037-26-5  | 66       | 136        |
| EP075(SIM)S: Phenolic Compound Surrogates       Phenol-d6     13127-88-3     63     123       2-Chlorophenol-D4     93951-73-6     66     122       2.4.6-Tribromophenol     118-79-6     40     138       EP075(SIM)T: PAH Surrogates     2     2     4.7     70     122       Anthracene-d10     1719-06-8     66     128     4       4-Terphenyl-d14     1718-51-0     65     129       EP075(SIM)S: Acid Extractable Surrogates     2     128     2       2-Fluorophenol     367-12-4     29     149       Phenol-d6     13127-88-3     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-Abe-Tribromophenol     118-79-6     13     121       EP0751: Base/Neutral Extractable Surrogates     3     125       1.2-Dichlorobenzene-D4     2199-69-1                                                                                | 4-Bromofluorobenzene                         | 460-00-4   | 60       | 122        |
| Phenol-d6     13127-88-3     63     123       2-Chlorophenol-D4     93951-73-6     66     122       2.4.6-Tribromophenol     118-79-6     40     138       EP075(SIM)T: PAH Surrogates     70     122       2-Fluorobiphenyl     321-60-8     70     122       Anthracene-d10     1719-06-8     66     128       4-Terphenyl-d14     1718-51-0     65     129       EP075S: Acid Extractable Surrogates     2     149       Phenol-d6     13127-88-3     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-Chlorophenol-D4     13127-88-3     32     128       2-At-Stribromophenol     118-79-6     33     125       12-Dichorobenzene-D4     2199-69-1     34     108                                                                                                          | EP075(SIM)S: Phenolic Compound Surrogates    |            |          |            |
| 2-Chlorophenol-D4     93951-73-6     66     122       2.4.6-Tribromophenol     118-79-6     40     138       EP075{(SIM)T: PAH Surrogates     70     122       Anthracene-d10     1719-06-8     66     128       4-Terphenyl-d14     1718-51-0     65     129       EP075S: Acid Extractable Surrogates     2     149       Phenol-d6     13127-88-3     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-A6-Tribromophenol     118-79-6     13     121       EP075T: Base/Neutral Extractable Surrogates     129     149       Nitrobenzene-D5     4165-60-0     33     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       1.2-Dichlorobenzene-D4     17060-07-0     73     133 <th>Phenol-d6</th> <th>13127-88-3</th> <th>63</th> <th>123</th>                      | Phenol-d6                                    | 13127-88-3 | 63       | 123        |
| 2.4.6-Tribromophenol     118-79-6     40     138       EP075(SIM)T: PAH Surrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-Chlorophenol-D4                            | 93951-73-6 | 66       | 122        |
| EP075(SIM)T: PAH Surrogates       2-Fluorobiphenyl     321-60-8     70     122       Anthracene-d10     1719-06-8     66     128       4-Terphenyl-d14     1718-51-0     65     129       EP075S: Acid Extractable Surrogates     2     149       Phenol-d6     13127-88-3     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-Ad-Tribromophenol     118-79-6     13     121       EP075T: Base/Neutral Extractable Surrogates     121     125       P12-Dichlorobenzene-D5     4165-60-0     33     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates     123     125       1.2-Dichloroethane-D4     17060-07-0     73     133       10a     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4 </th <th>2.4.6-Tribromophenol</th> <th>118-79-6</th> <th>40</th> <th>138</th> | 2.4.6-Tribromophenol                         | 118-79-6   | 40       | 138        |
| 2-Fluorobiphenyl     321-60-8     70     122       Anthracene-d10     1719-06-8     66     128       4-Terphenyl-d14     1718-51-0     65     129       EP075S:     Acid Extractable Surrogates     2     149       Phenol-d6     13127-88-3     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2-Chlorophenol     18-79-6     13     121       EP075T:     Base/Neutral Extractable Surrogates     122     128       Nitrobenzene-D5     4165-60-0     33     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     17060-07-0     73     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     1312     134     134       4-Bromofluorobenzene     460-00-4 <t< th=""><th>EP075(SIM)T: PAH Surrogates</th><th></th><th></th><th></th></t<>                       | EP075(SIM)T: PAH Surrogates                  |            |          |            |
| Anthracene-d10   1719-06-8   66   128     4-Terphenyl-d14   1718-51-0   65   129     EP075S: Acid Extractable Surrogates   2   149     Phenol-d6   13127-88-3   32   128     2-Chlorophenol-D4   93951-73-6   32   128     2.4.6-Tribromophenol   118-79-6   13   121     EP075T: Base/Neutral Extractable Surrogates    128     Nitrobenzene-D5   4165-60-0   33   125     1.2-Dichlorobenzene-D4   2199-69-1   34   108     2-Fluorobiphenyl   321-60-8   35   121     Anthracene-d10   1719-06-8   35   123     4-Terphenyl-d14   1718-51-0   33   125     EP080S: TPH(V)/BTEX Surrogates    132     1.2-Dichlorobenzene   460-00-4   72   130     EP080-SD: TPH(V)/BTEX Surrogates    132     1.2-Dichlorobenzene   460-00-4   72   130     EP080-SD: TPH(V)/BTEX Surrogates    137   134     4-Bromofluorobenzene   460-00-4   73   137                                                                                                                                                                                    | 2-Fluorobiphenyl                             | 321-60-8   | 70       | 122        |
| 4-Terphenyl-d14   1718-51-0   65   129     EP075S: Acid Extractable Surrogates   2   149     Phenol-d6   13127-88-3   32   128     2-Chlorophenol-D4   93951-73-6   32   128     2.4.6-Tribromophenol   118-79-6   13   121     EP075T: Base/Neutral Extractable Surrogates   118-79-6   13   121     Sitrobenzene-D5   4165-60-0   33   125     1.2-Dichlorobenzene-D4   2199-69-1   34   108     2-Fluorobiphenyl   321-60-8   35   121     Anthracene-d10   1718-51-0   33   125     EP080S: TPH(V)/BTEX Surrogates   123   125     1.2-Dichlorobenzene   460-00-4   72   130     EP080-SD: TPH(V)/BTEX Surrogates   132   132   132     4-Bromofluorobenzene   460-00-4   72   130     EP080-SD: TPH(V)/BTEX Surrogates   132   132   132     1.2-Dichloroethane-D4   17060-07-0   67   137     1.2-Dichloroethane-D4   17060-07-0   67   137     Toluene-D8   2037-26-5                                                                                                                                                    | Anthracene-d10                               | 1719-06-8  | 66       | 128        |
| EP075S: Acid Extractable Surrogates       2-Fluorophenol     367-12-4     29     149       Phenol-d6     13127-88-3     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2.4.6-Tribromophenol     118-79-6     13     121       EP075T: Base/Neutral Extractable Surrogates     1     125     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates     1     132     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     1     134     14       1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137                                                                                            | 4-Terphenyl-d14                              | 1718-51-0  | 65       | 129        |
| 2-Fluorophenol     367-12-4     29     149       Phenol-d6     13127-88-3     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2.4.6-Tribromophenol     118-79-6     13     121       EP075T: Base/Neutral Extractable Surrogates     12     12       Nitrobenzene-D5     4165-60-0     33     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates     12     132       1.2-Dichloroethane-D4     17060-07-0     73     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     12     134       4-Bromofluorobenzene     460-00-4     73     137       Toluene-D8     2037-26-5     74     134                                                                                                        | EP075S: Acid Extractable Surrogates          |            |          |            |
| Phenol-d6     13127-88-3     32     128       2-Chlorophenol-D4     93951-73-6     32     128       2.4.6-Tribromophenol     118-79-6     13     121       EP075T: Base/Neutral Extractable Surrogates       Nitrobenzene-D5     4165-60-0     33     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates     132     4-8     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     132     132       1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137                                                                                                      | 2-Fluorophenol                               | 367-12-4   | 29       | 149        |
| 2-Chlorophenol-D4     93951-73-6     32     128       2.4.6-Tribromophenol     118-79-6     13     121       EP075T: Base/Neutral Extractable Surrogates     125     12-0     125       Nitrobenzene-D5     4165-60-0     33     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates     120     132     133       1.2-Dichloroethane-D4     17060-07-0     73     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     12     134     134       1.2-Dichloroethane-D4     17060-07-0     67     137       1.2-Dichloroethane-D4     17060-07-0     67     137       1.2-Dichloroethane-D4     17060-07-0     67     137       1.2-Dichloroethane                                                                         | Phenol-d6                                    | 13127-88-3 | 32       | 128        |
| 2.4.6-Tribromophenol     118-79-6     13     121       EP075T: Base/Neutral Extractable Surrogates     125       Nitrobenzene-D5     4165-60-0     33     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates     120     132     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     12     134       1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       F090S: Organotin Surrogate     2037-26-5     74     134 <th>2-Chlorophenol-D4</th> <th>93951-73-6</th> <th>32</th> <th>128</th>               | 2-Chlorophenol-D4                            | 93951-73-6 | 32       | 128        |
| EP0751: Base/Neutral Extractable Surrogates       Nitrobenzene-D5     4165-60-0     33     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates      12       1.2-Dichloroethane-D4     17060-07-0     73     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates      137       1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       EP090S: Organotin Surrogate      35     130       EP130S: Organophosphorus Pesticide Surrogate      35     130       EP130S: Organophosphorus Pesticide Surrogate      102     102 <th>2.4.6-Tribromophenol</th> <th>118-79-6</th> <th>13</th> <th>121</th>                   | 2.4.6-Tribromophenol                         | 118-79-6   | 13       | 121        |
| Nitrobenzene-D5     4165-60-0     33     125       1.2-Dichlorobenzene-D4     2199-69-1     34     108       2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates      33     125       1.2-Dichloroethane-D4     17060-07-0     73     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates      137     133       1.2-Dichloroethane-D4     17060-07-0     67     137       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates      134     134       4-Bromofluorobenzene     460-00-4     73     137       FO1000-SC Organotin Surrogate      35     130       EP090S: Organotin Surrogate      35     130       EP130S: Organophosphorus Pesticide Surrogate                                                                                             | EP075T: Base/Neutral Extractable Surrogates  |            |          |            |
| 1.2-Dichlorobenzene-D4   2199-69-1   34   108     2-Fluorobiphenyl   321-60-8   35   121     Anthracene-d10   1719-06-8   35   123     4-Terphenyl-d14   1718-51-0   33   125     EP080S: TPH(V)/BTEX Surrogates   33   125     1.2-Dichloroethane-D4   17060-07-0   73   133     Toluene-D8   2037-26-5   74   132     4-Bromofluorobenzene   460-00-4   72   130     EP080-SD: TPH(V)/BTEX Surrogates   17060-07-0   67   137     1.2-Dichloroethane-D4   17060-07-0   67   137     Toluene-D8   2037-26-5   74   132     4-Bromofluorobenzene   460-00-4   73   137     Toluene-D8   2037-26-5   74   134     4-Bromofluorobenzene   460-00-4   73   137     EP090S: Organotin Surrogate   130   137     EP130S: Organophosphorus Pesticide Surrogate   35   130     EP130S: Organophosphorus Pesticide Surrogate   102   102                                                                                                                                                                                                | Nitrobenzene-D5                              | 4165-60-0  | 33       | 125        |
| 2-Fluorobiphenyl     321-60-8     35     121       Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates     33     125       1.2-Dichloroethane-D4     17060-07-0     73     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     1     132     133       1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       EP090S: Organotin Surrogate     130     137       EP130S: Organophosphorus Pesticide Surrogate     35     130       EP130S: Organophosphorus Pesticide Surrogate     102     102                                                                                                                                    | 1.2-Dichlorobenzene-D4                       | 2199-69-1  | 34       | 108        |
| Anthracene-d10     1719-06-8     35     123       4-Terphenyl-d14     1718-51-0     33     125       EP080S: TPH(V)/BTEX Surrogates     120     125       1.2-Dichloroethane-D4     17060-07-0     73     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     12-Dichloroethane-D4     72     130       1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       EP090S: Organotin Surrogate                                                                                                                                                                                                                                                                                                                         | 2-Fluorobiphenyl                             | 321-60-8   | 35       | 121        |
| 4-Terphenyl-d14   1718-51-0   33   125     EP0800S: TPH(V)/BTEX Surrogates   133   133     1.2-Dichloroethane-D4   17060-07-0   73   133     Toluene-D8   2037-26-5   74   132     4-Bromofluorobenzene   460-00-4   72   130     EP080-SD: TPH(V)/BTEX Surrogates   17060-07-0   67   137     1.2-Dichloroethane-D4   17060-07-0   67   137     Toluene-D8   2037-26-5   74   134     4-Bromofluorobenzene   460-00-4   73   137     Toluene-D8   2037-26-5   74   134     4-Bromofluorobenzene   460-00-4   73   137     EP090S: Organotin Surrogate    35   130     EP130S: Organophosphorus Pesticide Surrogate    35   130     EP130S: O. Desticide Surrogate                                                                                                                                                                                                                                                                                                                                                              | Anthracene-d10                               | 1719-06-8  | 35       | 123        |
| EP080S: TPH(V)/BTEX Surrogates       1.2-Dichloroethane-D4     17060-07-0     73     133       Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     17060-07-0     67     137       1.2-Dichloroethane-D4     17060-07-0     67     133       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       EP090S: Organotin Surrogate      35     130       EP130S: Organophosphorus Pesticide Surrogate                                                                                                                                                                                                                                                                                                                                                                                     | 4-Terphenyl-d14                              | 1718-51-0  | 33       | 125        |
| 1.2-Dichloroethane-D4   17060-07-0   73   133     Toluene-D8   2037-26-5   74   132     4-Bromofluorobenzene   460-00-4   72   130     EP080-SD: TPH(V)/BTEX Surrogates   17060-07-0   67   137     1.2-Dichloroethane-D4   17060-07-0   67   133     Toluene-D8   2037-26-5   74   134     4-Bromofluorobenzene   460-00-4   73   137     Toluene-D8   2037-26-5   74   134     4-Bromofluorobenzene   460-00-4   73   137     EP090S: Organotin Surrogate   73   130     EP130S: Organophosphorus Pesticide Surrogate   35   130     EP130S: O. Desticide Surrogate   78-48-8   14   102                                                                                                                                                                                                                                                                                                                                                                                                                                      | EP080S: TPH(V)/BTEX Surrogates               |            |          |            |
| Toluene-D8     2037-26-5     74     132       4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     17060-07-0     67     137       1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       EP090S: Organotin Surrogate     73     137       EP090S: Organotin Surrogate     35     130       EP130S: Organophosphorus Pesticide Surrogate     98-48-8     14     102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2-Dichloroethane-D4                        | 17060-07-0 | 73       | 133        |
| 4-Bromofluorobenzene     460-00-4     72     130       EP080-SD: TPH(V)/BTEX Surrogates     17060-07-0     67     137       1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       EP090S: Organotin Surrogate     7     73     130       EP130S: Organophosphorus Pesticide Surrogate     78-48-8     14     102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene-D8                                   | 2037-26-5  | 74       | 132        |
| EP080-SD: TPH(V)/BTEX Surrogates       1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       EP090S: Organotin Surrogate      35     130       EP130S: Organophosphorus Pesticide Surrogate      35     130       EP130S: Organophosphorus Pesticide Surrogate      5     14     102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-Bromofluorobenzene                         | 460-00-4   | 72       | 130        |
| 1.2-Dichloroethane-D4     17060-07-0     67     137       Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       EP090S: Organotin Surrogate      35     130       EP130S: Organophosphorus Pesticide Surrogate      205     14       DEF     78-48-8     14     102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EP080-SD: TPH(V)/BTEX Surrogates             |            |          |            |
| Toluene-D8     2037-26-5     74     134       4-Bromofluorobenzene     460-00-4     73     137       EP090S: Organotin Surrogate      35     130       EP130S: Organophosphorus Pesticide Surrogate      35     130       EP130S: Organophosphorus Pesticide Surrogate      2037-26-5        DEF     78-48-8     14     102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2-Dichloroethane-D4                        | 17060-07-0 | 67       | 137        |
| 4-Bromofluorobenzene 460-00-4 73 137   EP090S: Organotin Surrogate  35 130   Tripropyltin  35 130   EP130S: Organophosphorus Pesticide Surrogate  200 100   DEF 78-48-8 14 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Toluene-D8                                   | 2037-26-5  | 74       | 134        |
| EP090S: Organotin Surrogate     Tripropyltin    35   130     EP130S: Organophosphorus Pesticide Surrogate     DEF   78-48-8   14   102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-Bromofluorobenzene                         | 460-00-4   | 73       | 137        |
| Tripropyltin  35 130   EP130S: Organophosphorus Pesticide Surrogate   DEF 78-48-8 14 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EP090S: Organotin Surrogate                  |            |          |            |
| EP130S: Organophosphorus Pesticide Surrogate   DEF 78-48-8   14 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tripropyltin                                 |            | 35       | 130        |
| DEF 78-48-8 14 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EP130S: Organophosphorus Pesticide Surrogate |            |          |            |
| ED4248: OC Destiside Summerste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DEF                                          | 78-48-8    | 14       | 102        |
| EPISIS: OC Pesicide Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EP131S: OC Pesticide Surrogate               |            |          |            |
| Dibromo-DDE 21655-73-2 10 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dibromo-DDE                                  | 21655-73-2 | 10       | 119        |
| EP131T: PCB Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP131T: PCB Surrogate                        |            |          |            |



| Page       | : 60 of 60            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |

| Sub-Matrix: SOIL                            |            | Recovery | Limits (%) |
|---------------------------------------------|------------|----------|------------|
| Compound                                    | CAS Number | Low      | High       |
| EP131T: PCB Surrogate - Continued           |            |          |            |
| Decachlorobiphenyl                          | 2051-24-3  | 10       | 106        |
| EP132T: Base/Neutral Extractable Surrogates |            |          |            |
| 2-Fluorobiphenyl                            | 321-60-8   | 55       | 135        |
| Anthracene-d10                              | 1719-06-8  | 70       | 136        |
| 4-Terphenyl-d14                             | 1718-51-0  | 57       | 127        |
| Sub-Matrix: WATER                           |            | Recovery | Limits (%) |
| Compound                                    | CAS Number | Low      | High       |
| EP075(SIM)S: Phenolic Compound Surrogates   |            |          |            |
| Phenol-d6                                   | 13127-88-3 | 10       | 44         |
| 2-Chlorophenol-D4                           | 93951-73-6 | 14       | 94         |
| 2.4.6-Tribromophenol                        | 118-79-6   | 17       | 125        |
| EP075(SIM)T: PAH Surrogates                 |            |          |            |
| 2-Fluorobiphenyl                            | 321-60-8   | 20       | 104        |
| Anthracene-d10                              | 1719-06-8  | 27       | 113        |
| 4-Terphenyl-d14                             | 1718-51-0  | 32       | 112        |
| EP080S: TPH(V)/BTEX Surrogates              |            |          |            |
| 1.2-Dichloroethane-D4                       | 17060-07-0 | 71       | 137        |
| Toluene-D8                                  | 2037-26-5  | 79       | 131        |
| 4-Bromofluorobenzene                        | 460-00-4   | 70       | 128        |





## QUALITY CONTROL REPORT

| Work Order              | : ES1936029                                                      | Page                    | : 1 of 33                                             |
|-------------------------|------------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Amendment               | :1                                                               |                         |                                                       |
| Client                  | : GHD PTY LTD                                                    | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | : Jessica Watson                                                 | Contact                 | : Customer Services ES                                |
| Address                 | : LEVEL 15, 133 CASTLEREAGH STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | :                                                                | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                                                       | Date Samples Received   | : 31-Oct-2019                                         |
| Order number            | :                                                                | Date Analysis Commenced | :01-Nov-2019                                          |
| C-O-C number            | :                                                                | Issue Date              | : 10-Dec-2019                                         |
| Sampler                 | : Sarah Eccleshall                                               |                         | Hac-MRA NATA                                          |
| Site                    | :                                                                |                         |                                                       |
| Quote number            | : SY/522/19                                                      |                         | Accreditation No. 835                                 |
| No. of samples received | : 87                                                             |                         | Accredited for compliance with                        |
| No. of samples analysed | : 47                                                             |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                         | Accreditation Category                      |
|--------------------|----------------------------------|---------------------------------------------|
| Ankit Joshi        | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |
| Ben Felgendrejeris | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |
| Diana Mesa         | 2IC Organic Chemist              | Brisbane Organics, Stafford, QLD            |
| Dianne Blane       | Laboratory Coordinator (2IC)     | Newcastle - Inorganics, Mayfield West, NSW  |
| Edwandy Fadjar     | Organic Coordinator              | Sydney Inorganics, Smithfield, NSW          |
| Edwandy Fadjar     | Organic Coordinator              | Sydney Organics, Smithfield, NSW            |
| Ivan Taylor        | Analyst                          | Sydney Inorganics, Smithfield, NSW          |
| Merrin Avery       | Supervisor - Inorganic           | Newcastle - Inorganics, Mayfield West, NSW  |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                              |                             |            |      |         | Laboratory L    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------------|-----------------------------|------------|------|---------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID             | Method: Compound            | CAS Number | LOR  | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG005(ED093)-SD: 1   | otal Metals in Sediments by  | ICP-AES (QC Lot: 2682883)   |            |      |         |                 |                        |         |                     |
| ES1936029-071        | VC01_1.0-1.1                 | EG005-SD: Aluminium         | 7429-90-5  | 50   | mg/kg   | 2820            | 3290                   | 15.4    | 0% - 20%            |
|                      |                              | EG005-SD: Iron              | 7439-89-6  | 50   | mg/kg   | 1020            | 930                    | 9.00    | 0% - 20%            |
| ES1936029-058        | VC04_0.3-0.4                 | EG005-SD: Aluminium         | 7429-90-5  | 50   | mg/kg   | 14800           | 13500                  | 9.21    | 0% - 20%            |
|                      |                              | EG005-SD: Iron              | 7439-89-6  | 50   | mg/kg   | 2510            | 2170                   | 14.3    | 0% - 20%            |
| EG035T: Total Reco   | overable Mercury by FIMS (L  | ow Level) (QC Lot: 2682884) |            |      |         |                 |                        |         |                     |
| ES1936029-071        | VC01_1.0-1.1                 | EG035T-LL: Mercury          | 7439-97-6  | 0.01 | mg/kg   | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES1936029-058        | VC04_0.3-0.4                 | EG035T-LL: Mercury          | 7439-97-6  | 0.01 | mg/kg   | <0.01           | 0.01                   | 0.00    | No Limit            |
| EA037: Ass Field S   | creening Analysis (QC Lot: : | 2684165)                    |            |      |         |                 |                        |         |                     |
| ES1936029-013        | VC03_0.0-0.1                 | EA037: pH (F)               |            | 0.1  | pH Unit | 7.9             | 8.0                    | 0.00    | 0% - 20%            |
|                      |                              | EA037: pH (Fox)             |            | 0.1  | pH Unit | 6.2             | 6.2                    | 0.00    | 0% - 20%            |
| ES1936029-023        | VC10_0.0-0.1                 | EA037: pH (F)               |            | 0.1  | pH Unit | 7.7             | 7.8                    | 1.55    | 0% - 20%            |
|                      |                              | EA037: pH (Fox)             |            | 0.1  | pH Unit | 6.4             | 6.3                    | 0.00    | 0% - 20%            |
| EA037: Ass Field S   | creening Analysis (QC Lot:   | 2684166)                    |            |      |         |                 |                        |         |                     |
| ES1936029-033        | VC07_1.0-1.1                 | EA037: pH (F)               |            | 0.1  | pH Unit | 7.9             | 7.9                    | 0.00    | 0% - 20%            |
|                      |                              | EA037: pH (Fox)             |            | 0.1  | pH Unit | 5.9             | 5.9                    | 0.00    | 0% - 20%            |
| ES1936183-005        | Anonymous                    | EA037: pH (F)               |            | 0.1  | pH Unit | 7.3             | 7.1                    | 1.67    | 0% - 20%            |
|                      |                              | EA037: pH (Fox)             |            | 0.1  | pH Unit | 5.6             | 5.6                    | 0.00    | 0% - 20%            |
| EA055: Moisture Co   | ntent (Dried @ 105-110°C) (  | QC Lot: 2682887)            |            |      |         |                 |                        |         |                     |
| EM1918213-004        | Anonymous                    | EA055: Moisture Content     |            | 0.1  | %       | 38.8            | 39.1                   | 0.774   | 0% - 20%            |
| ES1935859-001        | Anonymous                    | EA055: Moisture Content     |            | 0.1  | %       | 29.3            | 26.6                   | 9.72    | 0% - 20%            |
| EA055: Moisture Co   | ntent (Dried @ 105-110°C)(   | QC Lot: 2682888)            |            |      |         |                 |                        |         |                     |
| ES1936029-058        | VC04_0.3-0.4                 | EA055: Moisture Content     |            | 0.1  | %       | 17.1            | 17.5                   | 2.34    | 0% - 50%            |
| EG020-SD: Total Me   | tals in Sediments by ICPMS   | (QC Lot: 2682877)           |            |      |         |                 |                        |         |                     |
| EM1918213-002        | Anonymous                    | EG020-SD: Cadmium           | 7440-43-9  | 0.1  | mg/kg   | 0.2             | 0.1                    | 0.00    | No Limit            |

| Page       | : 3 of 33             |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL     |                         |                                   |            |       |       | Laboratory      | Duplicate (DUP) Report | t        |                     |
|----------------------|-------------------------|-----------------------------------|------------|-------|-------|-----------------|------------------------|----------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                  | CAS Number | LOR   | Unit  | Original Result | Duplicate Result       | RPD (%)  | Recovery Limits (%) |
| EG020-SD: Total Me   | tals in Sediments by IC | PMS (QC Lot: 2682877) - continued |            |       |       |                 |                        |          |                     |
| EM1918213-002        | Anonymous               | EG020-SD: Selenium                | 7782-49-2  | 0.1   | mg/kg | 0.9             | 0.8                    | 0.00     | No Limit            |
|                      |                         | EG020-SD: Silver                  | 7440-22-4  | 0.1   | mg/kg | 0.4             | 0.3                    | 36.8     | No Limit            |
|                      |                         | EG020-SD: Antimony                | 7440-36-0  | 0.5   | mg/kg | <0.50           | <0.50                  | 0.00     | No Limit            |
|                      |                         | EG020-SD: Cobalt                  | 7440-48-4  | 0.5   | mg/kg | 1.3             | 0.9                    | 42.4     | No Limit            |
|                      |                         | EG020-SD: Arsenic                 | 7440-38-2  | 1     | mg/kg | 9.66            | 8.58                   | 11.8     | No Limit            |
|                      |                         | EG020-SD: Chromium                | 7440-47-3  | 1     | mg/kg | 11.0            | 8.7                    | 23.4     | 0% - 50%            |
|                      |                         | EG020-SD: Copper                  | 7440-50-8  | 1     | mg/kg | 12.2            | # 7.0                  | 54.6     | 0% - 50%            |
|                      |                         | EG020-SD: Lead                    | 7439-92-1  | 1     | mg/kg | 10.0            | # 5.1                  | 65.6     | 0% - 50%            |
|                      |                         | EG020-SD: Nickel                  | 7440-02-0  | 1     | mg/kg | 5.4             | 4.2                    | 25.3     | No Limit            |
|                      |                         | EG020-SD: Zinc                    | 7440-66-6  | 1     | mg/kg | 34.8            | # 18.8                 | 59.8     | 0% - 20%            |
|                      |                         | EG020-SD: Manganese               | 7439-96-5  | 10    | mg/kg | 60              | 46                     | 26.2     | No Limit            |
|                      |                         | EG020-SD: Vanadium                | 7440-62-2  | 2     | mg/kg | 21.0            | 17.6                   | 17.4     | 0% - 50%            |
| EM1918213-018        | Anonymous               | EG020-SD: Cadmium                 | 7440-43-9  | 0.1   | mg/kg | 0.3             | 0.2                    | 0.00     | No Limit            |
|                      |                         | EG020-SD: Selenium                | 7782-49-2  | 0.1   | mg/kg | 0.4             | 0.3                    | 0.00     | No Limit            |
|                      |                         | EG020-SD: Silver                  | 7440-22-4  | 0.1   | mg/kg | 0.3             | 0.3                    | 0.00     | No Limit            |
|                      | EG020-SD: Antimony      | 7440-36-0                         | 0.5        | mg/kg | <0.50 | <0.50           | 0.00                   | No Limit |                     |
|                      |                         | EG020-SD: Cobalt                  | 7440-48-4  | 0.5   | mg/kg | 1.4             | 1.2                    | 11.0     | No Limit            |
|                      |                         | EG020-SD: Arsenic                 | 7440-38-2  | 1     | mg/kg | 6.87            | 5.66                   | 19.2     | No Limit            |
|                      | EG020-SD: Chromium      | 7440-47-3                         | 1          | mg/kg | 6.5   | 6.6             | 1.61                   | No Limit |                     |
|                      | EG020-SD: Copper        | 7440-50-8                         | 1          | mg/kg | 12.2  | 12.8            | 5.12                   | 0% - 50% |                     |
|                      |                         | EG020-SD: Lead                    | 7439-92-1  | 1     | mg/kg | 11.8            | 12.1                   | 2.46     | 0% - 50%            |
|                      | EG020-SD: Nickel        | 7440-02-0                         | 1          | mg/kg | 3.0   | 3.0             | 0.00                   | No Limit |                     |
|                      |                         | EG020-SD: Zinc                    | 7440-66-6  | 1     | mg/kg | 46.0            | 45.5                   | 1.08     | 0% - 20%            |
|                      |                         | EG020-SD: Manganese               | 7439-96-5  | 10    | mg/kg | 57              | 58                     | 0.00     | No Limit            |
|                      |                         | EG020-SD: Vanadium                | 7440-62-2  | 2     | mg/kg | 6.7             | 6.8                    | 1.68     | No Limit            |
| EG020-SD: Total Me   | tals in Sediments by IC | PMS (QC Lot: 2682885)             |            |       |       |                 |                        |          |                     |
| ES1936029-058        | VC04_0.3-0.4            | EG020-SD: Cadmium                 | 7440-43-9  | 0.1   | mg/kg | <0.1            | <0.1                   | 0.00     | No Limit            |
|                      |                         | EG020-SD: Selenium                | 7782-49-2  | 0.1   | mg/kg | 0.2             | 0.3                    | 0.00     | No Limit            |
|                      |                         | EG020-SD: Silver                  | 7440-22-4  | 0.1   | mg/kg | 0.1             | <0.1                   | 0.00     | No Limit            |
|                      |                         | EG020-SD: Antimony                | 7440-36-0  | 0.5   | mg/kg | <0.50           | <0.50                  | 0.00     | No Limit            |
|                      |                         | EG020-SD: Cobalt                  | 7440-48-4  | 0.5   | mg/kg | <0.5            | 1.0                    | 71.0     | No Limit            |
|                      |                         | EG020-SD: Arsenic                 | 7440-38-2  | 1     | mg/kg | <1.00           | 1.15                   | 14.2     | No Limit            |
|                      |                         | EG020-SD: Chromium                | 7440-47-3  | 1     | mg/kg | 13.2            | 12.3                   | 7.25     | 0% - 50%            |
|                      |                         | EG020-SD: Copper                  | 7440-50-8  | 1     | mg/kg | <1.0            | 1.1                    | 12.6     | No Limit            |
|                      |                         | EG020-SD: Lead                    | 7439-92-1  | 1     | mg/kg | 28.0            | 26.7                   | 4.83     | 0% - 20%            |
|                      |                         | EG020-SD: Nickel                  | 7440-02-0  | 1     | mg/kg | 2.0             | 3.6                    | 57.8     | No Limit            |
|                      |                         | EG020-SD: Zinc                    | 7440-66-6  | 1     | mg/kg | 3.4             | 3.0                    | 14.1     | No Limit            |
|                      |                         | EG020-SD: Manganese               | 7439-96-5  | 10    | mg/kg | <10             | <10                    | 0.00     | No Limit            |
|                      |                         | EG020-SD: Vanadium                | 7440-62-2  | 2     | mg/kg | 10.4            | 6.9                    | 40.0     | No Limit            |
| EK026SF: Total CN    | by Segmented Flow An    | alyser (QC Lot: 2677335)          |            |       |       |                 |                        |          |                     |

| : 4 of 33               |
|-------------------------|
| : ES1936029 Amendment 1 |
| : GHD PTY LTD           |
| : 12517046              |
|                         |



| Sub-Matrix: SOIL     |                            |                                    |            |      |       | Laboratory L    | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------------|------------------------------------|------------|------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                   | CAS Number | LOR  | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EK026SF: Total CN    | by Segmented Flow Analyse  | r (QC Lot: 2677335) - continued    |            |      |       |                 |                        |         |                     |
| ES1935865-002        | Anonymous                  | EK026SF: Total Cyanide             | 57-12-5    | 1    | mg/kg | <1              | <1                     | 0.00    | No Limit            |
| ES1936029-007        | VC07_0.0-0.2               | EK026SF: Total Cyanide             | 57-12-5    | 1    | mg/kg | <1              | <1                     | 0.00    | No Limit            |
| EK026SF: Total CN    | by Segmented Flow Analyse  | r (QC Lot: 2677336)                |            |      |       |                 |                        |         |                     |
| ES1936029-076        | VC10_0.7-0.8               | EK026SF: Total Cyanide             | 57-12-5    | 1    | mg/kg | <1              | <1                     | 0.00    | No Limit            |
| WN1908608-002        | Anonymous                  | EK026SF: Total Cyanide             | 57-12-5    | 1    | mg/kg | <1              | <1                     | 0.00    | No Limit            |
| EK040T: Fluoride To  | tal (QC Lot: 2683332)      |                                    |            |      |       |                 |                        |         |                     |
| EB1928984-011        | Anonymous                  | EK040T: Fluoride                   | 16984-48-8 | 40   | mg/kg | 860             | 820                    | 4.66    | 0% - 20%            |
| EB1929055-002        | Anonymous                  | EK040T: Fluoride                   | 16984-48-8 | 40   | mg/kg | <40             | <40                    | 0.00    | No Limit            |
| EP003: Total Organi  | c Carbon (TOC) in Soil (QC | Lot: 2687095)                      |            |      |       |                 |                        |         |                     |
| EB1929034-001        | Anonymous                  | EP003: Total Organic Carbon        |            | 0.02 | %     | 29.6            | 26.5                   | 11.2    | 0% - 20%            |
| ES1936029-063        | VC04_0.5-1.0               | EP003: Total Organic Carbon        |            | 0.02 | %     | 0.05            | 0.06                   | 17.8    | No Limit            |
| EP074A: Monocyclic   | Aromatic Hvdrocarbons (Q   | C Lot: 2677735)                    |            |      |       |                 |                        |         |                     |
| ES1936029-007        | VC07 0.0-0.2               | EP074: Benzene                     | 71-43-2    | 0.2  | mg/kg | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      | _                          | EP074: Toluene                     | 108-88-3   | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: Ethylbenzene                | 100-41-4   | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: meta- & para-Xylene         | 108-38-3   | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            |                                    | 106-42-3   |      |       |                 |                        |         |                     |
|                      |                            | EP074: Styrene                     | 100-42-5   | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: ortho-Xylene                | 95-47-6    | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: Isopropylbenzene            | 98-82-8    | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: n-Propylbenzene             | 103-65-1   | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: 1.3.5-Trimethylbenzene      | 108-67-8   | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: sec-Butylbenzene            | 135-98-8   | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: 1.2.4-Trimethylbenzene      | 95-63-6    | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: tert-Butylbenzene           | 98-06-6    | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: p-Isopropyltoluene          | 99-87-6    | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: n-Butylbenzene              | 104-51-8   | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP074B: Oxygenate    | d Compounds (QC Lot: 2677  | 735)                               |            |      |       |                 |                        |         |                     |
| ES1936029-007        | VC07_0.0-0.2               | EP074: Vinyl Acetate               | 108-05-4   | 5    | mg/kg | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: 2-Butanone (MEK)            | 78-93-3    | 5    | mg/kg | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: 4-Methyl-2-pentanone (MIBK) | 108-10-1   | 5    | mg/kg | <5              | <5                     | 0.00    | No Limit            |
|                      |                            | EP074: 2-Hexanone (MBK)            | 591-78-6   | 5    | mg/kg | <5              | <5                     | 0.00    | No Limit            |
| EP074C: Sulfonated   | Compounds (QC Lot: 26777   | /35)                               |            |      |       |                 |                        |         |                     |
| ES1936029-007        | VC07_0.0-0.2               | EP074: Carbon disulfide            | 75-15-0    | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP074D: Fumigants    | (QC Lot: 2677735)          |                                    |            |      |       |                 |                        |         |                     |
| ES1936029-007        | VC07 0.0-0.2               | EP074: 2.2-Dichloropropane         | 594-20-7   | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      | _                          | EP074: 1.2-Dichloropropane         | 78-87-5    | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: cis-1.3-Dichloropropylene   | 10061-01-5 | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP074: trans-1.3-Dichloropropylene | 10061-02-6 | 0.5  | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |

| Page       | 5 of 33                 |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | : 12517046              |



| Sub-Matrix: SOIL     |                        |                                    |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|------------------------|------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                   | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP074D: Fumigants    | (QC Lot: 2677735) - co | ontinued                           |            |                                   |       |                 |                  |         |                     |
| ES1936029-007        | VC07_0.0-0.2           | EP074: 1.2-Dibromoethane (EDB)     | 106-93-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP074E: Halogenate   | d Aliphatic Compound   | s (QC Lot: 2677735)                |            |                                   |       |                 |                  |         |                     |
| ES1936029-007        | VC07_0.0-0.2           | EP074: 1.1-Dichloroethene          | 75-35-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: lodomethane                 | 74-88-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: trans-1.2-Dichloroethene    | 156-60-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.1-Dichloroethane          | 75-34-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: cis-1.2-Dichloroethene      | 156-59-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.1.1-Trichloroethane       | 71-55-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.1-Dichloropropylene       | 563-58-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: Carbon Tetrachloride        | 56-23-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.2-Dichloroethane          | 107-06-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: Trichloroethene             | 79-01-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: Dibromomethane              | 74-95-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.1.2-Trichloroethane       | 79-00-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.3-Dichloropropane         | 142-28-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: Tetrachloroethene           | 127-18-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.1.1.2-Tetrachloroethane   | 630-20-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: trans-1.4-Dichloro-2-butene | 110-57-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: cis-1.4-Dichloro-2-butene   | 1476-11-5  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.1.2.2-Tetrachloroethane   | 79-34-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.2.3-Trichloropropane      | 96-18-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: Pentachloroethane           | 76-01-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.2-Dibromo-3-chloropropane | 96-12-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: Hexachlorobutadiene         | 87-68-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: Dichlorodifluoromethane     | 75-71-8    | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                        | EP074: Chloromethane               | 74-87-3    | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                        | EP074: Vinyl chloride              | 75-01-4    | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                        | EP074: Bromomethane                | 74-83-9    | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                        | EP074: Chloroethane                | 75-00-3    | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                        | EP074: Trichlorofluoromethane      | 75-69-4    | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
| EP074F: Halogenated  | d Aromatic Compound    | s (QC Lot: 2677735)                |            |                                   |       |                 |                  |         |                     |
| ES1936029-007        | VC07_0.0-0.2           | EP074: Chlorobenzene               | 108-90-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: Bromobenzene                | 108-86-1   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 2-Chlorotoluene             | 95-49-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 4-Chlorotoluene             | 106-43-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.3-Dichlorobenzene         | 541-73-1   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.4-Dichlorobenzene         | 106-46-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.2-Dichlorobenzene         | 95-50-1    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.2.4-Trichlorobenzene      | 120-82-1   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                        | EP074: 1.2.3-Trichlorobenzene      | 87-61-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |

| Page       | : 6 of 33               |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | : 12517046              |



| Sub-Matrix: SOIL     |                           |                                     |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|---------------------------|-------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                    | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP074G: Trihalometh  | nanes (QC Lot: 2677735)   |                                     |            |                                   |       |                 |                  |         |                     |
| ES1936029-007        | VC07_0.0-0.2              | EP074: Chloroform                   | 67-66-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP074: Bromodichloromethane         | 75-27-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP074: Dibromochloromethane         | 124-48-1   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP074: Bromoform                    | 75-25-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP074H: Naphthalen   | e (QC Lot: 2677735)       |                                     |            |                                   |       |                 |                  |         |                     |
| ES1936029-007        | VC07_0.0-0.2              | EP074: Naphthalene                  | 91-20-3    | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EP075(SIM)A: Pheno   | lic Compounds (QC Lot: 26 | 680331)                             |            |                                   |       |                 |                  |         |                     |
| ES1936029-001        | VC09 0.0-0.2              | EP075(SIM): Phenol                  | 108-95-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| 201000020 001        | -                         | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2-Methylphenol          | 95-48-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.4-Dimethylphenol      | 105-67-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.4-Dichlorophenol      | 120-83-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.6-Dichlorophenol      | 87-65-0    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.4.6-Trichlorophenol   | 88-06-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.4.5-Trichlorophenol   | 95-95-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 3- & 4-Methylphenol     | 1319-77-3  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Pentachlorophenol       | 87-86-5    | 2                                 | mg/kg | <2              | <2               | 0.00    | No Limit            |
| ES1936029-071        | VC01_1.0-1.1              | EP075(SIM): Phenol                  | 108-95-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2-Methylphenol          | 95-48-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.4-Dimethylphenol      | 105-67-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.4-Dichlorophenol      | 120-83-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.6-Dichlorophenol      | 87-65-0    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.4.6-Trichlorophenol   | 88-06-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 2.4.5-Trichlorophenol   | 95-95-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): 3- & 4-Methylphenol     | 1319-77-3  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Pentachlorophenol       | 87-86-5    | 2                                 | mg/kg | <2              | <2               | 0.00    | No Limit            |
| EP075A: Phenolic Co  | ompounds (QC Lot: 268977  | 7)                                  |            |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5              | EP075: Phenol                       | 108-95-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075: 2-Chlorophenol               | 95-57-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075: 2-Methylphenol               | 95-48-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075: 3- & 4-Methylphenol          | 1319-77-3  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075: 2-Nitrophenol                | 88-75-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075: 2.4-Dimethylphenol           | 105-67-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075: 2.4-Dichlorophenol           | 120-83-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075: 2.6-Dichlorophenol           | 87-65-0    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |

| Page       | : 7 of 33               |
|------------|-------------------------|
| Work Order | : ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | : 12517046              |



| Sub-Matrix: SOIL     |                          |                                          |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|--------------------------|------------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                         | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP075A: Phenolic Co  | mpounds (QC Lot: 2689777 | ′) - continued                           |            |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5             | EP075: 4-Chloro-3-methylphenol           | 59-50-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: 2.4.6-Trichlorophenol             | 88-06-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: 2.4.5-Trichlorophenol             | 95-95-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Pentachlorophenol                 | 87-86-5    | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EP075B: Polynuclear  | Aromatic Hydrocarbons (C | C Lot: 2689777)                          |            |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5             | EP075: Naphthalene                       | 91-20-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: 2-Methylnaphthalene               | 91-57-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: 2-Chloronaphthalene               | 91-58-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Acenaphthylene                    | 208-96-8   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Acenaphthene                      | 83-32-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Fluorene                          | 86-73-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Phenanthrene                      | 85-01-8    | 0.5                               | mg/kg | 0.7             | <0.5             | 37.7    | No Limit            |
|                      |                          | EP075: Anthracene                        | 120-12-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Fluoranthene                      | 206-44-0   | 0.5                               | mg/kg | 1.5             | 0.9              | 50.0    | No Limit            |
|                      |                          | EP075: Pyrene                            | 129-00-0   | 0.5                               | mg/kg | 1.5             | 1.0              | 40.6    | No Limit            |
|                      |                          | EP075: N-2-Fluorenyl Acetamide           | 53-96-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Benz(a)anthracene                 | 56-55-3    | 0.5                               | mg/kg | 0.8             | 0.6              | 34.1    | No Limit            |
|                      |                          | EP075: Chrysene                          | 218-01-9   | 0.5                               | mg/kg | 0.7             | <0.5             | 30.0    | No Limit            |
|                      |                          | EP075: 7.12-Dimethylbenz(a)anthracene    | 57-97-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Benzo(a)pyrene                    | 50-32-8    | 0.5                               | mg/kg | 0.8             | 0.7              | 16.8    | No Limit            |
|                      |                          | EP075: 3-Methylcholanthrene              | 56-49-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Indeno(1.2.3.cd)pyrene            | 193-39-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Dibenz(a.h)anthracene             | 53-70-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Benzo(g.h.i)perylene              | 191-24-2   | 0.5                               | mg/kg | 0.5             | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Benzo(b+j) & Benzo(k)fluoranthene | 205-99-2   | 1                                 | mg/kg | 1               | 1                | 0.00    | No Limit            |
|                      |                          |                                          | 207-08-9   |                                   |       |                 |                  |         |                     |
| EP075C: Phthalate Es | ters (QC Lot: 2689777)   |                                          |            |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5             | EP075: Dimethyl phthalate                | 131-11-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Diethyl phthalate                 | 84-66-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Di-n-butyl phthalate              | 84-74-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Butyl benzyl phthalate            | 85-68-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: Di-n-octylphthalate               | 117-84-0   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP075D: Nitrosamine  | s (QC Lot: 2689777)      |                                          |            |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5             | EP075: N-Nitrosomethylethylamine         | 10595-95-6 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: N-Nitrosodiethylamine             | 55-18-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: N-Nitrosopyrrolidine              | 930-55-2   | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                          | EP075: N-Nitrosomorpholine               | 59-89-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: N-Nitrosodi-n-propylamine         | 621-64-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: N-Nitrosopiperidine               | 100-75-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP075: N-Nitrosodibutylamine             | 924-16-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |



| Sub-Matrix: SOIL     |                                                                                                                |                                          |                     | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID                                                                                               | Method: Compound                         | CAS Number          | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP075D: Nitrosamine  | s (QC Lot: 2689777) - conti                                                                                    | nued                                     |                     |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5                                                                                                   | EP075: N-Nitrosodiphenyl & Diphenylamine | 86-30-6<br>122-39-4 | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Methapyrilene                     | 91-80-5             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP075E: Nitroaromat  | ics and Ketones (QC Lot: 2                                                                                     | 689777)                                  |                     |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5                                                                                                   | EP075: 2-Picoline                        | 109-06-8            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Acetophenone                      | 98-86-2             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Nitrobenzene                      | 98-95-3             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Isophorone                        | 78-59-1             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 2.6-Dinitrotoluene                | 606-20-2            | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 2.4-Dinitrotoluene                | 121-14-2            | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 1-Naphthylamine                   | 134-32-7            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 4-Nitroquinoline-N-oxide          | 56-57-5             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 5-Nitro-o-toluidine               | 99-55-8             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 1.3.5-Trinitrobenzene             | 99-35-4             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Phenacetin                        | 62-44-2             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 4-Aminobiphenyl                   | 92-67-1             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Pentachloronitrobenzene           | 82-68-8             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Pronamide                         | 23950-58-5          | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Dimethylaminoazobenzene           | 60-11-7             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Chlorobenzilate                   | 510-15-6            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Azobenzene                        | 103-33-3            | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EP075F: Haloethers   | (QC Lot: 2689777)                                                                                              |                                          |                     |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5                                                                                                   | EP075: Bis(2-chloroethyl) ether          | 111-44-4            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Bis(2-chloroethoxy) methane       | 111-91-1            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 4-Chlorophenyl phenyl ether       | 7005-72-3           | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 4-Bromophenyl phenyl ether        | 101-55-3            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP075G: Chlorinated  | Hydrocarbons (QC Lot: 268                                                                                      | 39777)                                   |                     |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5                                                                                                   | EP075: 1.3-Dichlorobenzene               | 541-73-1            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 1.4-Dichlorobenzene               | 106-46-7            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 1.2-Dichlorobenzene               | 95-50-1             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Hexachloroethane                  | 67-72-1             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: 1.2.4-Trichlorobenzene            | 120-82-1            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Hexachloropropylene               | 1888-71-7           | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Hexachlorobutadiene               | 87-68-3             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Pentachlorobenzene                | 608-93-5            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Hexachlorobenzene (HCB)           | 118-74-1            | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                                                                                                                | EP075: Hexachlorocyclopentadiene         | 77-47-4             | 2.5                               | mg/kg | <2.5            | <2.5             | 0.00    | No Limit            |
| EP075H: Anilines and | Benzidines (QC Lot: 2689)                                                                                      | 777)                                     |                     |                                   |       |                 |                  |         |                     |
| ES1936029-011        | VC07_0.0-0.5                                                                                                   | EP075: Aniline                           | 62-53-3             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      | 1 Contract of the second second second second second second second second second second second second second s |                                          |                     |                                   |       |                 |                  |         |                     |

| Page       | ÷ 9 of 33             |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL              |                            |                                      |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|-------------------------------|----------------------------|--------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID          | Client sample ID           | Method: Compound                     | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP075H: Anilines and          | Benzidines (QC Lot: 2689   | 777) - continued                     |            |                                   |       |                 |                  |         |                     |
| ES1936029-011                 | VC07_0.0-0.5               | EP075: 4-Chloroaniline               | 106-47-8   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: 2-Nitroaniline                | 88-74-4    | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                               |                            | EP075: 3-Nitroaniline                | 99-09-2    | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                               |                            | EP075: Dibenzofuran                  | 132-64-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: 4-Nitroaniline                | 100-01-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Carbazole                     | 86-74-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: 3.3`-Dichlorobenzidine        | 91-94-1    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP075I: Organochlori          | ne Pesticides (QC Lot: 268 | 9777)                                |            |                                   |       |                 |                  |         |                     |
| ES1936029-011                 | VC07_0.0-0.5               | EP075: alpha-BHC                     | 319-84-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: beta-BHC                      | 319-85-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: gamma-BHC                     | 58-89-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: delta-BHC                     | 319-86-8   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Heptachlor                    | 76-44-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Aldrin                        | 309-00-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Heptachlor epoxide            | 1024-57-3  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: alpha-Endosulfan              | 959-98-8   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: 4.4`-DDE                      | 72-55-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Dieldrin                      | 60-57-1    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Endrin                        | 72-20-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: beta-Endosulfan               | 33213-65-9 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: 4.4`-DDD                      | 72-54-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Endosulfan sulfate            | 1031-07-8  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: 4.4`-DDT                      | 50-29-3    | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
| EP075J: Organophos            | phorus Pesticides (QC Lot  | : 2689777)                           |            |                                   |       |                 |                  |         |                     |
| ES1936029-011                 | VC07_0.0-0.5               | EP075: Dichlorvos                    | 62-73-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Dimethoate                    | 60-51-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Diazinon                      | 333-41-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Chlorpyrifos-methyl           | 5598-13-0  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Malathion                     | 121-75-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Fenthion                      | 55-38-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Chlorpyrifos                  | 2921-88-2  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Pirimphos-ethyl               | 23505-41-1 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Chlorfenvinphos               | 470-90-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Prothiofos                    | 34643-46-4 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                               |                            | EP075: Ethion                        | 563-12-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP080/071: Tota <u>l Petr</u> | oleum Hydrocarbons (QC     | Lot: 2680181)                        |            |                                   |       |                 |                  |         |                     |
| ES1936027-001                 | Anonymous                  | EP080: C6 - C9 Fraction              |            | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| ES1936111-004                 | Anonymous                  | EP080: C6 - C9 Fraction              |            | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| EP080/071: Total Rec          | overable Hydrocarbons - N  | EPM 2013 Eractions (QC Lot: 2680181) |            |                                   |       |                 |                  |         |                     |



| Sub-Matrix: SOIL     |                            |                                                  |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|----------------------------|--------------------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                                 | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP080/071: Total Red | coverable Hydrocarbons - N | EPM 2013 Fractions (QC Lot: 2680181) - continued |            |                                   |       |                 |                  |         |                     |
| ES1936027-001        | Anonymous                  | EP080: C6 - C10 Fraction                         | C6_C10     | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| ES1936111-004        | Anonymous                  | EP080: C6 - C10 Fraction                         | C6_C10     | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| EP080: BTEXN (QC     | Lot: 2680181)              |                                                  |            |                                   |       |                 |                  |         |                     |
| ES1936027-001        | Anonymous                  | EP080: Benzene                                   | 71-43-2    | 0.2                               | mg/kg | 0.4             | <0.2             | 72.1    | No Limit            |
|                      |                            | EP080: Toluene                                   | 108-88-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP080: Ethylbenzene                              | 100-41-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP080: meta- & para-Xylene                       | 108-38-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            |                                                  | 106-42-3   |                                   |       |                 |                  |         |                     |
|                      |                            | EP080: ortho-Xylene                              | 95-47-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP080: Naphthalene                               | 91-20-3    | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
| ES1936111-004        | Anonymous                  | EP080: Benzene                                   | 71-43-2    | 0.2                               | mg/kg | <0.2            | <0.2             | 0.00    | No Limit            |
|                      |                            | EP080: Toluene                                   | 108-88-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP080: Ethylbenzene                              | 100-41-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP080: meta- & para-Xylene                       | 108-38-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            |                                                  | 106-42-3   |                                   |       |                 |                  |         |                     |
|                      |                            | EP080: ortho-Xylene                              | 95-47-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP080: Naphthalene                               | 91-20-3    | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EP080-SD / EP071-S   | D: Total Petroleum Hydroca | rbons (QC Lot: 2677697)                          |            |                                   |       |                 |                  |         |                     |
| ES1936029-001        | VC09_0.0-0.2               | EP071-SD: C10 - C14 Fraction                     |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: C15 - C28 Fraction                     |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: C10 - C36 Fraction (sum)               |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: C29 - C36 Fraction                     |            | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
| ES1936029-071        | VC01_1.0-1.1               | EP071-SD: C10 - C14 Fraction                     |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: C15 - C28 Fraction                     |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: C10 - C36 Fraction (sum)               |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: C29 - C36 Fraction                     |            | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
| EP080-SD / EP071-S   | D: Total Petroleum Hydroca | rbons (QC Lot: 2677734)                          |            |                                   |       |                 |                  |         |                     |
| ES1936029-071        | VC01_1.0-1.1               | EP080-SD: C6 - C9 Fraction                       |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
| ES1936029-007        | VC07_0.0-0.2               | EP080-SD: C6 - C9 Fraction                       |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
| EP080-SD / EP071-S   | D: Total Recoverable Hydro | carbons (QC Lot: 2677697)                        |            |                                   |       |                 |                  |         |                     |
| ES1936029-001        | VC09_0.0-0.2               | EP071-SD: >C10 - C16 Fraction                    |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: >C16 - C34 Fraction                    |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: >C10 - C40 Fraction (sum)              |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: >C34 - C40 Fraction                    |            | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
| ES1936029-071        | VC01_1.0-1.1               | EP071-SD: >C10 - C16 Fraction                    |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: >C16 - C34 Fraction                    |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: >C10 - C40 Fraction (sum)              |            | 3                                 | mg/kg | <3              | <3               | 0.00    | No Limit            |
|                      |                            | EP071-SD: >C34 - C40 Fraction                    |            | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
| EP080-SD: BTEXN (    | QC   of: 2677734)          |                                                  |            |                                   |       |                 |                  |         |                     |


| Sub-Matrix: SOIL     |                         | Laboratory Duplicate (DUP) Report |            |     |         |                 |                  |                |                     |
|----------------------|-------------------------|-----------------------------------|------------|-----|---------|-----------------|------------------|----------------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                  | CAS Number | LOR | Unit    | Original Result | Duplicate Result | <b>RPD</b> (%) | Recovery Limits (%) |
| EP080-SD: BTEXN      | (QC Lot: 2677734) - co  | ontinued                          |            |     |         |                 |                  |                |                     |
| ES1936029-071        | VC01 1.0-1.1            | EP080-SD: Benzene                 | 71-43-2    | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
|                      | _                       | EP080-SD: Toluene                 | 108-88-3   | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
|                      |                         | EP080-SD: Ethylbenzene            | 100-41-4   | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
|                      |                         | EP080-SD: meta- & para-Xylene     | 108-38-3   | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
|                      |                         |                                   | 106-42-3   |     |         |                 |                  |                |                     |
|                      |                         | EP080-SD: ortho-Xylene            | 95-47-6    | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
| ES1936029-007        | VC07_0.0-0.2            | EP080-SD: Benzene                 | 71-43-2    | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
|                      |                         | EP080-SD: Toluene                 | 108-88-3   | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
|                      |                         | EP080-SD: Ethylbenzene            | 100-41-4   | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
|                      |                         | EP080-SD: meta- & para-Xylene     | 108-38-3   | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
|                      |                         |                                   | 106-42-3   |     |         |                 |                  |                |                     |
|                      |                         | EP080-SD: ortho-Xylene            | 95-47-6    | 0.2 | mg/kg   | <0.2            | <0.2             | 0.00           | No Limit            |
| EP090: Organotin     | Compounds (QC Lot: 2    | 2698344)                          |            |     |         |                 |                  |                |                     |
| EM1919013-021        | Anonymous               | EP090: Tributyltin                | 56573-85-4 | 0.5 | µgSn/kg | 4.8             | 3.5              | 30.2           | No Limit            |
|                      |                         | EP090: MonobutyItin               | 78763-54-9 | 1   | µgSn/kg | <1              | <1               | 0.00           | No Limit            |
|                      |                         | EP090: Dibutyltin                 | 1002-53-5  | 1   | µgSn/kg | 2               | <1               | 77.0           | No Limit            |
| ES1936183-029        | Anonymous               | EP090: Tributyltin                | 56573-85-4 | 0.5 | µgSn/kg | 6.9             | 5.3              | 26.4           | 0% - 50%            |
|                      |                         | EP090: MonobutyItin               | 78763-54-9 | 1   | µgSn/kg | <1              | <1               | 0.00           | No Limit            |
|                      |                         | EP090: Dibutyltin                 | 1002-53-5  | 1   | µgSn/kg | 3               | 3                | 0.00           | No Limit            |
| EP090: Organotin     | Compounds (QC Lot: 2    | 2745160)                          |            |     |         |                 |                  |                |                     |
| ES1936029-055        | VC03_0.0-0.5            | EP090: Tributyltin                | 56573-85-4 | 0.5 | µgSn/kg | <0.5            | <0.5             | 0.00           | No Limit            |
|                      |                         | EP090: MonobutyItin               | 78763-54-9 | 1   | µgSn/kg | <1              | <1               | 0.00           | No Limit            |
|                      |                         | EP090: Dibutyltin                 | 1002-53-5  | 1   | µgSn/kg | <1              | <1               | 0.00           | No Limit            |
| EP130A: Organoph     | nosphorus Pesticides (I | Ultra-trace) (QC Lot: 2677727)    |            |     |         |                 |                  |                |                     |
| ES1936029-001        | VC09_0.0-0.2            | EP130: Bromophos-ethyl            | 4824-78-6  | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Carbophenothion            | 786-19-6   | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Chlorfenvinphos (E)        | 18708-86-6 | 10  | µg/kg   | <10.0           | <10.0            | 0.00           | No Limit            |
|                      |                         | EP130: Chlorfenvinphos (Z)        | 18708-87-7 | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Chlorpyrifos               | 2921-88-2  | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Chlorpyrifos-methyl        | 5598-13-0  | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Demeton-S-methyl           | 919-86-8   | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Diazinon                   | 333-41-5   | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Dichlorvos                 | 62-73-7    | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Dimethoate                 | 60-51-5    | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Ethion                     | 563-12-2   | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Fenamiphos                 | 22224-92-6 | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Fenthion                   | 55-38-9    | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Malathion                  | 121-75-5   | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Azinphos Methyl            | 86-50-0    | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |
|                      |                         | EP130: Monocrotophos              | 6923-22-4  | 10  | µg/kg   | <10             | <10              | 0.00           | No Limit            |



| Sub-Matrix: SOIL     |                        |                                            |                | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|------------------------|--------------------------------------------|----------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                           | CAS Number     | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP130A: Organopho    | osphorus Pesticides (U | Jltra-trace) (QC Lot: 2677727) - continued |                |                                   |       |                 |                  |         |                     |
| ES1936029-001        | VC09_0.0-0.2           | EP130: Parathion                           | 56-38-2        | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Parathion-methyl                    | 298-00-0       | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Pirimphos-ethyl                     | 23505-41-1     | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Prothiofos                          | 34643-46-4     | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
| ES1936029-071        | VC01_1.0-1.1           | EP130: Bromophos-ethyl                     | 4824-78-6      | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Carbophenothion                     | 786-19-6       | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Chlorfenvinphos (E)                 | 18708-86-6     | 10                                | µg/kg | <10.0           | <10.0            | 0.00    | No Limit            |
|                      |                        | EP130: Chlorfenvinphos (Z)                 | 18708-87-7     | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Chlorpyrifos                        | 2921-88-2      | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Chlorpyrifos-methyl                 | 5598-13-0      | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Demeton-S-methyl                    | 919-86-8       | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Diazinon                            | 333-41-5       | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Dichlorvos                          | 62-73-7        | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Dimethoate                          | 60-51-5        | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Ethion                              | 563-12-2       | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Fenamiphos                          | 22224-92-6     | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Fenthion                            | 55-38-9        | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Malathion                           | 121-75-5       | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Azinphos Methyl                     | 86-50-0        | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Monocrotophos                       | 6923-22-4      | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Parathion                           | 56-38-2        | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Parathion-methyl                    | 298-00-0       | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Pirimphos-ethyl                     | 23505-41-1     | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                        | EP130: Prothiofos                          | 34643-46-4     | 10                                | µg/kg | <10             | <10              | 0.00    | No Limit            |
| EP131A: Organochl    | orine Pesticides (QC L | _ot: 2677729)                              |                |                                   |       |                 |                  |         |                     |
| ES1936029-001        | VC09_0.0-0.2           | EP131A: gamma-BHC                          | 58-89-9        | 0.25                              | µg/kg | <0.25           | <0.25            | 0.00    | No Limit            |
|                      |                        | EP131A: cis-Chlordane                      | 5103-71-9      | 0.25                              | µg/kg | <0.25           | <0.25            | 0.00    | No Limit            |
|                      |                        | EP131A: trans-Chlordane                    | 5103-74-2      | 0.25                              | µg/kg | <0.25           | <0.25            | 0.00    | No Limit            |
|                      |                        | EP131A: Total Chlordane (sum)              |                | 0.25                              | µg/kg | <0.25           | <0.25            | 0.00    | No Limit            |
|                      |                        | EP131A: Aldrin                             | 309-00-2       | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |
|                      |                        | EP131A: alpha-BHC                          | 319-84-6       | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |
|                      |                        | EP131A: beta-BHC                           | 319-85-7       | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |
|                      |                        | EP131A: delta-BHC                          | 319-86-8       | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |
|                      |                        | EP131A: 4.4`-DDD                           | 72-54-8        | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |
|                      |                        | EP131A: 4.4`-DDE                           | 72-55-9        | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |
|                      |                        | EP131A: 4.4`-DDT                           | 50-29-3        | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |
|                      |                        | EP131A: Sum of DDD + DDE + DDT             | 72-54-8/72-55- | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |
|                      |                        |                                            | 9/50-2         |                                   |       |                 |                  |         |                     |
|                      |                        | EP131A: Dieldrin                           | 60-57-1        | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |
|                      |                        | EP131A: alpha-Endosulfan                   | 959-98-8       | 0.5                               | µg/kg | <0.50           | <0.50            | 0.00    | No Limit            |

| Page       | : 13 of 33            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL     |                          |                                         |                |      | Laboratory Duplicate (DUP) Report |                 |                  |         |                     |  |
|----------------------|--------------------------|-----------------------------------------|----------------|------|-----------------------------------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID         | Method: Compound                        | CAS Number     | LOR  | Unit                              | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EP131A: Organochlo   | rine Pesticides (QC Lot: | 2677729) - continued                    |                |      |                                   |                 |                  |         |                     |  |
| ES1936029-001        | VC09_0.0-0.2             | EP131A: beta-Endosulfan                 | 33213-65-9     | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endosulfan sulfate              | 1031-07-8      | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endosulfan (sum)                | 115-29-7       | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endrin                          | 72-20-8        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endrin aldehyde                 | 7421-93-4      | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endrin ketone                   | 53494-70-5     | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Heptachlor                      | 76-44-8        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Heptachlor epoxide              | 1024-57-3      | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Hexachlorobenzene (HCB)         | 118-74-1       | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Methoxychlor                    | 72-43-5        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
| ES1936029-071        | VC01_1.0-1.1             | EP131A: gamma-BHC                       | 58-89-9        | 0.25 | µg/kg                             | <0.25           | <0.25            | 0.00    | No Limit            |  |
|                      |                          | EP131A: cis-Chlordane                   | 5103-71-9      | 0.25 | µg/kg                             | <0.25           | <0.25            | 0.00    | No Limit            |  |
|                      |                          | EP131A: trans-Chlordane                 | 5103-74-2      | 0.25 | µg/kg                             | <0.25           | <0.25            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Total Chlordane (sum)           |                | 0.25 | µg/kg                             | <0.25           | <0.25            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Aldrin                          | 309-00-2       | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: alpha-BHC                       | 319-84-6       | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: beta-BHC                        | 319-85-7       | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: delta-BHC                       | 319-86-8       | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: 4.4`-DDD                        | 72-54-8        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: 4.4`-DDE                        | 72-55-9        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: 4.4`-DDT                        | 50-29-3        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Sum of DDD + DDE + DDT          | 72-54-8/72-55- | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          |                                         | 9/50-2         |      |                                   |                 |                  |         |                     |  |
|                      |                          | EP131A: Dieldrin                        | 60-57-1        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: alpha-Endosulfan                | 959-98-8       | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: beta-Endosulfan                 | 33213-65-9     | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endosulfan sulfate              | 1031-07-8      | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endosulfan (sum)                | 115-29-7       | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endrin                          | 72-20-8        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endrin aldehyde                 | 7421-93-4      | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Endrin ketone                   | 53494-70-5     | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Heptachlor                      | 76-44-8        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Heptachlor epoxide              | 1024-57-3      | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Hexachlorobenzene (HCB)         | 118-74-1       | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
|                      |                          | EP131A: Methoxychlor                    | 72-43-5        | 0.5  | µg/kg                             | <0.50           | <0.50            | 0.00    | No Limit            |  |
| EP131B: Polychlorina | ated Biphenyls (as Arocl | ors) (QC Lot: 2677728)                  |                |      |                                   |                 |                  |         |                     |  |
| ES1936029-001        | VC09 0.0-0.2             | EP131B: Total Polychlorinated binhenvis |                | 5    | µg/kg                             | <5.0            | <5.0             | 0.00    | No Limit            |  |
|                      | _                        | EP131B: Aroclor 1016                    | 12674-11-2     | 5    | µg/kg                             | <5.0            | <5.0             | 0.00    | No Limit            |  |
|                      |                          | EP131B: Aroclor 1221                    | 11104-28-2     | 5    | µg/kg                             | <5.0            | <5.0             | 0.00    | No Limit            |  |
|                      |                          | EP131B: Aroclor 1232                    | 11141-16-5     | 5    | µg/kg                             | <5.0            | <5.0             | 0.00    | No Limit            |  |



| Sub-Matrix: SOIL     |                             |                                         |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|-----------------------------|-----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID            | Method: Compound                        | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP131B: Polychlorina | ated Biphenyls (as Aroclors | ) (QC Lot: 2677728) - continued         |            |                                   |       |                 |                  |         |                     |
| ES1936029-001        | VC09_0.0-0.2                | EP131B: Aroclor 1242                    | 53469-21-9 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1248                    | 12672-29-6 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1254                    | 11097-69-1 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1260                    | 11096-82-5 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
| ES1936029-071        | VC01_1.0-1.1                | EP131B: Total Polychlorinated biphenyls |            | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1016                    | 12674-11-2 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1221                    | 11104-28-2 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1232                    | 11141-16-5 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1242                    | 53469-21-9 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1248                    | 12672-29-6 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1254                    | 11097-69-1 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
|                      |                             | EP131B: Aroclor 1260                    | 11096-82-5 | 5                                 | µg/kg | <5.0            | <5.0             | 0.00    | No Limit            |
| EP132B: Polynuclear  | Aromatic Hydrocarbons (C    | QC Lot: 2677696)                        |            |                                   |       |                 | ·                |         |                     |
| ES1936029-001        | VC09_0.0-0.2                | EP132B-SD: Acenaphthylene               | 208-96-8   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Acenaphthene                 | 83-32-9    | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Fluorene                     | 86-73-7    | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Phenanthrene                 | 85-01-8    | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Anthracene                   | 120-12-7   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Fluoranthene                 | 206-44-0   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Pyrene                       | 129-00-0   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Benz(a)anthracene            | 56-55-3    | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Chrysene                     | 218-01-9   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Benzo(b+j)fluoranthene       | 205-99-2   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             |                                         | 205-82-3   |                                   |       |                 |                  |         |                     |
|                      |                             | EP132B-SD: Benzo(k)fluoranthene         | 207-08-9   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Benzo(e)pyrene               | 192-97-2   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Benzo(a)pyrene               | 50-32-8    | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Perylene                     | 198-55-0   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Benzo(g.h.i)perylene         | 191-24-2   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Dibenz(a.h)anthracene        | 53-70-3    | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Indeno(1.2.3.cd)pyrene       | 193-39-5   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Sum of PAHs                  |            | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Naphthalene                  | 91-20-3    | 5                                 | µg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: 2-Methylnaphthalene          | 91-57-6    | 5                                 | µg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Coronene                     | 191-07-1   | 5                                 | µg/kg | <5              | <5               | 0.00    | No Limit            |
| ES1936029-071        | VC01_1.0-1.1                | EP132B-SD: Acenaphthylene               | 208-96-8   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Acenaphthene                 | 83-32-9    | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Fluorene                     | 86-73-7    | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Phenanthrene                 | 85-01-8    | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |
|                      |                             | EP132B-SD: Anthracene                   | 120-12-7   | 4                                 | µg/kg | <4              | <4               | 0.00    | No Limit            |



| Sub Matrix SOI        |                            |                                      |              |        |       | Laboratory I    | Junlicato (DUP) Poport |             |                     |
|-----------------------|----------------------------|--------------------------------------|--------------|--------|-------|-----------------|------------------------|-------------|---------------------|
| Sub-Matrix: SOIL      | Olivert - annula ID        |                                      | 040 North an | 100    | 11    |                 |                        |             | <b>D</b>            |
| Laboratory sample ID  |                            | Method: Compound                     | CAS Number   | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%)     | Recovery Limits (%) |
| EP132B: Polynuclear   | Aromatic Hydrocarbons (C   | (C Lot: 2677696) - continued         |              |        |       | -               |                        |             |                     |
| ES1936029-071         | VC01_1.0-1.1               | EP132B-SD: Fluoranthene              | 206-44-0     | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Pyrene                    | 129-00-0     | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Benz(a)anthracene         | 56-55-3      | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Chrysene                  | 218-01-9     | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Benzo(b+j)fluoranthene    | 205-99-2     | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            |                                      | 205-82-3     |        |       |                 |                        |             |                     |
|                       |                            | EP132B-SD: Benzo(k)fluoranthene      | 207-08-9     | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Benzo(e)pyrene            | 192-97-2     | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Benzo(a)pyrene            | 50-32-8      | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Perylene                  | 198-55-0     | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Benzo(g.h.i)perylene      | 191-24-2     | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Dibenz(a.h)anthracene     | 53-70-3      | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Indeno(1.2.3.cd)pyrene    | 193-39-5     | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Sum of PAHs               |              | 4      | µg/kg | <4              | <4                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Naphthalene               | 91-20-3      | 5      | µg/kg | <5              | <5                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: 2-Methylnaphthalene       | 91-57-6      | 5      | µg/kg | <5              | <5                     | 0.00        | No Limit            |
|                       |                            | EP132B-SD: Coronene                  | 191-07-1     | 5      | µg/kg | <5              | <5                     | 0.00        | No Limit            |
| Sub Matrix: WATER     |                            |                                      |              |        |       | Laboratory I    | Duplicate (DUP) Report |             |                     |
| Laboratory sample ID  | Client sample ID           | Method: Compound                     | CAS Number   | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%)     | Recovery Limits (%) |
| EG020T: Total Metals  | by ICP-MS (OC Lot: 26863)  |                                      |              |        |       | onginarrooan    | 2 april a to 1 to a to | 1.1.2 (7.0) |                     |
| ES1026020 084         | BIN 01                     |                                      | 7440 42 0    | 0.0001 | ma/l  | <0.0001         | <0.0001                | 0.00        | No Limit            |
| E31930029-004         | RIN_01                     |                                      | 7440-43-9    | 0.0001 | mg/L  | <0.0001         | <0.0001                | 0.00        | No Limit            |
|                       |                            |                                      | 7440-36-2    | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00        | NO LIIIII           |
|                       |                            | EG020A-1: Chromium                   | 7440-47-3    | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00        | No Limit            |
|                       |                            | EG020A-1: Copper                     | 7440-50-8    | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00        | No Limit            |
|                       |                            | EG020A-T: Lead                       | 7439-92-1    | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00        | NO LIMIT            |
|                       |                            | EG020A-T: Nickel                     | 7440-02-0    | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00        | No Limit            |
|                       |                            | EG020A-T: Zinc                       | 7440-66-6    | 0.005  | mg/L  | <0.005          | <0.005                 | 0.00        | No Limit            |
| EG035T: Total Recov   | verable Mercury by FIMS(Q  | C Lot: 2686717)                      |              |        |       |                 |                        |             |                     |
| WN1908881-036         | Anonymous                  | EG035T: Mercury                      | 7439-97-6    | 0.0001 | mg/L  | <0.0001         | <0.0001                | 0.00        | No Limit            |
| EP080/071: Total Petr | oleum Hydrocarbons (QC I   | ₋ot: 2681218)                        |              |        |       |                 |                        |             |                     |
| ES1936026-002         | Anonymous                  | EP080: C6 - C9 Fraction              |              | 20     | µg/L  | <20             | <20                    | 0.00        | No Limit            |
| ES1936051-002         | Anonymous                  | EP080: C6 - C9 Fraction              |              | 20     | µg/L  | <20             | <20                    | 0.00        | No Limit            |
| EP080/071: Total Rec  | overable Hydrocarbons - NE | EPM 2013 Fractions (QC Lot: 2681218) |              |        |       |                 |                        |             |                     |
| ES1936026-002         | Anonymous                  | EP080: C6 - C10 Fraction             | C6_C10       | 20     | µg/L  | <20             | <20                    | 0.00        | No Limit            |
| ES1936051-002         | Anonymous                  | EP080: C6 - C10 Fraction             | C6_C10       | 20     | µg/L  | <20             | <20                    | 0.00        | No Limit            |
| EP080: BTEXN (QC L    | .ot: 2681218)              |                                      |              |        |       |                 |                        |             |                     |
| ES1936026-002         | Anonymous                  | EP080: Benzene                       | 71-43-2      | 1      | µg/L  | <1              | <1                     | 0.00        | No Limit            |
|                       |                            | EP080: Toluene                       | 108-88-3     | 2      | µg/L  | <2              | <2                     | 0.00        | No Limit            |
|                       |                            | EP080: Ethylbenzene                  | 100-41-4     | 2      | µq/L  | <2              | <2                     | 0.00        | No Limit            |

| Page       | 16 of 33              |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | GHD PTY LTD           |
| Project    | 12517046              |



| Sub-Matrix: WATER                          |                  |                            |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|--------------------------------------------|------------------|----------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID                       | Client sample ID | Method: Compound           | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EP080: BTEXN (QC Lot: 2681218) - continued |                  |                            |            |                                   |      |                 |                  |         |                     |  |
| ES1936026-002                              | Anonymous        | EP080: meta- & para-Xylene | 108-38-3   | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                            |                  |                            | 106-42-3   |                                   |      |                 |                  |         |                     |  |
|                                            |                  | EP080: ortho-Xylene        | 95-47-6    | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                            |                  | EP080: Naphthalene         | 91-20-3    | 5                                 | µg/L | <5              | <5               | 0.00    | No Limit            |  |
| ES1936051-002                              | Anonymous        | EP080: Benzene             | 71-43-2    | 1                                 | µg/L | <1              | <1               | 0.00    | No Limit            |  |
|                                            |                  | EP080: Toluene             | 108-88-3   | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                            |                  | EP080: Ethylbenzene        | 100-41-4   | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                            |                  | EP080: meta- & para-Xylene | 108-38-3   | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                            |                  |                            | 106-42-3   |                                   |      |                 |                  |         |                     |  |
|                                            |                  | EP080: ortho-Xylene        | 95-47-6    | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                                            |                  | EP080: Naphthalene         | 91-20-3    | 5                                 | µg/L | <5              | <5               | 0.00    | No Limit            |  |



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                    |                     |      |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-----------------------------------------------------|---------------------|------|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                     |                     |      |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                    | CAS Number          | LOR  | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |
| EG005(ED093)-SD: Total Metals in Sediments by ICP-A | ES (QCLot: 268288   | 3)   |       |                   |                                       |                    |          |            |  |
| EG005-SD: Aluminium                                 | 7429-90-5           | 50   | mg/kg | <50               | 6134 mg/kg                            | 108                | 88.2     | 136        |  |
| EG005-SD: Iron                                      | 7439-89-6           | 50   | mg/kg | <50               | 8400 mg/kg                            | 86.0               | 70.0     | 109        |  |
| EG035T: Total Recoverable Mercury by FIMS (Low Lev  | vel) (QCLot: 268288 | 34)  |       |                   |                                       |                    |          |            |  |
| EG035T-LL: Mercury                                  | 7439-97-6           | 0.01 | mg/kg | <0.01             | 0.257 mg/kg                           | 83.3               | 72.0     | 116        |  |
| EG020-SD: Total Metals in Sediments by ICPMS (QCL   | ot: 2682877)        |      |       |                   |                                       |                    |          |            |  |
| EG020-SD: Antimony                                  | 7440-36-0           | 0.5  | mg/kg | <0.50             | 4.6 mg/kg                             | 81.4               | 70.0     | 130        |  |
| EG020-SD: Arsenic                                   | 7440-38-2           | 1    | mg/kg | <1.00             | 21.7 mg/kg                            | 100                | 80.0     | 139        |  |
| EG020-SD: Cadmium                                   | 7440-43-9           | 0.1  | mg/kg | <0.1              | 4.64 mg/kg                            | 103                | 83.0     | 127        |  |
| EG020-SD: Chromium                                  | 7440-47-3           | 1    | mg/kg | <1.0              | 43.9 mg/kg                            | 86.0               | 73.0     | 130        |  |
| EG020-SD: Copper                                    | 7440-50-8           | 1    | mg/kg | <1.0              | 32 mg/kg                              | 96.6               | 76.0     | 130        |  |
| EG020-SD: Cobalt                                    | 7440-48-4           | 0.5  | mg/kg | <0.5              | 16 mg/kg                              | 105                | 81.0     | 130        |  |
| EG020-SD: Lead                                      | 7439-92-1           | 1    | mg/kg | <1.0              | 40 mg/kg                              | 98.3               | 74.0     | 130        |  |
| EG020-SD: Manganese                                 | 7439-96-5           | 10   | mg/kg | <10               | 130 mg/kg                             | 106                | 76.0     | 130        |  |
| EG020-SD: Nickel                                    | 7440-02-0           | 1    | mg/kg | <1.0              | 55 mg/kg                              | 97.1               | 83.0     | 130        |  |
| EG020-SD: Selenium                                  | 7782-49-2           | 0.1  | mg/kg | <0.1              | 5.37 mg/kg                            | 122                | 71.0     | 130        |  |
| EG020-SD: Silver                                    | 7440-22-4           | 0.1  | mg/kg | <0.1              | 4 mg/kg                               | 111                | 64.0     | 148        |  |
| EG020-SD: Vanadium                                  | 7440-62-2           | 2    | mg/kg | <2.0              | 29.6 mg/kg                            | 106                | 84.0     | 131        |  |
| EG020-SD: Zinc                                      | 7440-66-6           | 1    | mg/kg | <1.0              | 60.8 mg/kg                            | 110                | 82.0     | 137        |  |
| EG020-SD: Total Metals in Sediments by ICPMS (QCL   | ot: 2682885)        |      |       |                   |                                       |                    |          |            |  |
| EG020-SD: Antimony                                  | 7440-36-0           | 0.5  | mg/kg | <0.50             | 4.6 mg/kg                             | 74.5               | 70.0     | 130        |  |
| EG020-SD: Arsenic                                   | 7440-38-2           | 1    | mg/kg | <1.00             | 21.7 mg/kg                            | 87.2               | 80.0     | 139        |  |
| EG020-SD: Cadmium                                   | 7440-43-9           | 0.1  | mg/kg | <0.1              | 4.64 mg/kg                            | 89.9               | 83.0     | 127        |  |
| EG020-SD: Chromium                                  | 7440-47-3           | 1    | mg/kg | <1.0              | 43.9 mg/kg                            | 75.5               | 73.0     | 130        |  |
| EG020-SD: Copper                                    | 7440-50-8           | 1    | mg/kg | <1.0              | 32 mg/kg                              | 85.2               | 76.0     | 130        |  |
| EG020-SD: Cobalt                                    | 7440-48-4           | 0.5  | mg/kg | <0.5              | 16 mg/kg                              | 90.1               | 81.0     | 130        |  |
| EG020-SD: Lead                                      | 7439-92-1           | 1    | mg/kg | <1.0              | 40 mg/kg                              | 79.4               | 74.0     | 130        |  |
| EG020-SD: Manganese                                 | 7439-96-5           | 10   | mg/kg | <10               | 130 mg/kg                             | 81.9               | 76.0     | 130        |  |
| EG020-SD: Nickel                                    | 7440-02-0           | 1    | mg/kg | <1.0              | 55 mg/kg                              | 86.2               | 83.0     | 130        |  |
| EG020-SD: Selenium                                  | 7782-49-2           | 0.1  | mg/kg | <0.1              | 5.37 mg/kg                            | 94.4               | 71.0     | 130        |  |
| EG020-SD: Silver                                    | 7440-22-4           | 0.1  | mg/kg | <0.1              | 4 mg/kg                               | 68.0               | 64.0     | 148        |  |
| EG020-SD: Vanadium                                  | 7440-62-2           | 2    | mg/kg | <2.0              | 29.6 mg/kg                            | 86.0               | 84.0     | 131        |  |
| EG020-SD: Zinc                                      | 7440-66-6           | 1    | mg/kg | <1.0              | 60.8 mg/kg                            | 88.6               | 82.0     | 137        |  |
| EK026SF: Total CN by Segmented Flow Analyser (QC    | Lot: 2677335)       |      |       |                   |                                       |                    |          |            |  |
| EK026SF: Total Cyanide                              | 57-12-5             | 1    | mg/kg | <1                | 40 mg/kg                              | 106                | 81.0     | 129        |  |



| Sub-Matrix: SOIL                                              |      |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|---------------------------------------------------------------|------|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                               |      |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound CAS Number                                   | LOR  | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |
| EK026SF: Total CN by Segmented Flow Analyser (QCLot: 2677336) |      |       |                   |                                       |                    |          |            |  |
| EK026SF: Total Cyanide 57-12-5                                | 1    | mg/kg | <1                | 40 mg/kg                              | 112                | 81.0     | 129        |  |
| EK040T: Fluoride Total (OCLot: 2683332)                       |      |       |                   |                                       |                    |          |            |  |
| EK040T: Fluoride 16984-48-8                                   | 40   | mg/kg | <40               | 400 mg/kg                             | 76.0               | 67.2     | 96.3       |  |
| EP003: Total Organic Carbon (TOC) in Soil (QCI of: 2687095)   |      |       |                   |                                       |                    |          |            |  |
| EP003: Total Organic Carbon                                   | 0.02 | %     | <0.02             | 1.03 %                                | 101                | 70.0     | 130        |  |
|                                                               |      |       | <0.02             | 0.48 %                                | 105                | 70.0     | 130        |  |
| EP074A: Monocyclic Aromatic Hydrocarbons (OCI of: 2677735)    |      |       |                   |                                       |                    |          |            |  |
| EP074: Benzene 71-43-2                                        | 0.2  | mg/kg | <0.2              | 1 mg/kg                               | 88.3               | 71.0     | 121        |  |
| EP074: Toluene 108-88-3                                       | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 86.6               | 65.0     | 131        |  |
| EP074: Ethylbenzene 100-41-4                                  | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 85.8               | 72.0     | 114        |  |
| EP074: meta- & para-Xylene 108-38-3                           | 0.5  | mg/kg | <0.5              | 2 mg/kg                               | 84.8               | 70.0     | 116        |  |
| 106-42-3                                                      |      |       |                   |                                       |                    |          |            |  |
| EP074: Styrene 100-42-5                                       | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 82.1               | 67.0     | 113        |  |
| EP074: ortho-Xylene 95-47-6                                   | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 86.5               | 75.0     | 115        |  |
| EP074: Isopropylbenzene 98-82-8                               | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 84.8               | 65.0     | 117        |  |
| EP074: n-Propylbenzene 103-65-1                               | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 82.5               | 66.0     | 122        |  |
| EP074: 1.3.5-Trimethylbenzene 108-67-8                        | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 82.4               | 68.0     | 118        |  |
| EP074: sec-Butylbenzene 135-98-8                              | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 83.8               | 69.0     | 119        |  |
| EP074: 1.2.4-Trimethylbenzene 95-63-6                         | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 83.8               | 69.0     | 117        |  |
| EP074: tert-Butylbenzene 98-06-6                              | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 83.7               | 69.0     | 115        |  |
| EP074: p-lsopropyltoluene 99-87-6                             | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 84.1               | 66.0     | 118        |  |
| EP074: n-Butylbenzene 104-51-8                                | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 82.7               | 59.0     | 125        |  |
| EP074B: Oxygenated Compounds (QCLot: 2677735)                 |      |       |                   |                                       |                    |          |            |  |
| EP074: Vinyl Acetate 108-05-4                                 | 5    | mg/kg | <5                | 10 mg/kg                              | 100                | 29.6     | 156        |  |
| EP074: 2-Butanone (MEK) 78-93-3                               | 5    | mg/kg | <5                | 10 mg/kg                              | 96.4               | 58.0     | 136        |  |
| EP074: 4-Methyl-2-pentanone (MIBK) 108-10-1                   | 5    | mg/kg | <5                | 10 mg/kg                              | 92.6               | 62.0     | 132        |  |
| EP074: 2-Hexanone (MBK) 591-78-6                              | 5    | mg/kg | <5                | 10 mg/kg                              | 90.0               | 54.0     | 136        |  |
| EP074C: Sulfonated Compounds (QCLot: 2677735)                 |      |       |                   |                                       |                    |          |            |  |
| EP074: Carbon disulfide 75-15-0                               | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 80.0               | 54.0     | 126        |  |
| EP074D: Fumigants (QCLot: 2677735)                            |      |       |                   |                                       |                    |          |            |  |
| EP074: 2.2-Dichloropropane 594-20-7                           | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 87.8               | 60.0     | 126        |  |
| EP074: 1.2-Dichloropropane 78-87-5                            | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 87.8               | 68.0     | 124        |  |
| EP074: cis-1.3-Dichloropropylene 10061-01-5                   | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 83.2               | 51.0     | 119        |  |
| EP074: trans-1.3-Dichloropropylene 10061-02-6                 | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 81.5               | 52.0     | 114        |  |
| EP074: 1.2-Dibromoethane (EDB) 106-93-4                       | 0.5  | mg/kg | <0.5              | 1 mg/kg                               | 90.8               | 63.0     | 115        |  |
| EP074E: Halogenated Aliphatic Compounds (QCLot: 2677735)      |      |       |                   |                                       |                    |          |            |  |
| EP074: Dichlorodifluoromethane 75-71-8                        | 5    | mg/kg | <5                | 10 mg/kg                              | 75.6               | 30.0     | 148        |  |
| EP074: Chloromethane 74-87-3                                  | 5    | mg/kg | <5                | 10 mg/kg                              | 86.4               | 41.0     | 141        |  |

| Page       | : 19 of 33            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | : 12517046            |



| Sub-Matrix: SOIL                              |                          |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-----------------------------------------------|--------------------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                               |                          |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                              | CAS Number               | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |
| EP074E: Halogenated Aliphatic Compounds (QCLo | ot: 2677735) - continued | 1   |       |                   |                                       |                    |          |            |  |
| EP074: Vinyl chloride                         | 75-01-4                  | 5   | mg/kg | <5                | 10 mg/kg                              | 84.7               | 43.0     | 147        |  |
| EP074: Bromomethane                           | 74-83-9                  | 5   | mg/kg | <5                | 10 mg/kg                              | 84.4               | 47.0     | 141        |  |
| EP074: Chloroethane                           | 75-00-3                  | 5   | mg/kg | <5                | 10 mg/kg                              | 88.2               | 49.0     | 143        |  |
| EP074: Trichlorofluoromethane                 | 75-69-4                  | 5   | mg/kg | <5                | 10 mg/kg                              | 86.1               | 49.0     | 135        |  |
| EP074: 1.1-Dichloroethene                     | 75-35-4                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 87.4               | 54.0     | 126        |  |
| EP074: lodomethane                            | 74-88-4                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 54.6               | 43.0     | 129        |  |
| EP074: trans-1.2-Dichloroethene               | 156-60-5                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 84.8               | 64.0     | 120        |  |
| EP074: 1.1-Dichloroethane                     | 75-34-3                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 84.9               | 67.0     | 125        |  |
| EP074: cis-1.2-Dichloroethene                 | 156-59-2                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 88.2               | 69.0     | 121        |  |
| EP074: 1.1.1-Trichloroethane                  | 71-55-6                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 83.6               | 65.0     | 117        |  |
| EP074: 1.1-Dichloropropylene                  | 563-58-6                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 86.5               | 65.0     | 123        |  |
| EP074: Carbon Tetrachloride                   | 56-23-5                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 81.5               | 59.0     | 125        |  |
| EP074: 1.2-Dichloroethane                     | 107-06-2                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 92.7               | 65.0     | 125        |  |
| EP074: Trichloroethene                        | 79-01-6                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 86.4               | 70.0     | 118        |  |
| EP074: Dibromomethane                         | 74-95-3                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 89.7               | 68.0     | 118        |  |
| EP074: 1.1.2-Trichloroethane                  | 79-00-5                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 89.0               | 64.0     | 126        |  |
| EP074: 1.3-Dichloropropane                    | 142-28-9                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 90.2               | 68.0     | 122        |  |
| EP074: Tetrachloroethene                      | 127-18-4                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 86.3               | 67.0     | 143        |  |
| EP074: 1.1.1.2-Tetrachloroethane              | 630-20-6                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 83.2               | 62.0     | 122        |  |
| EP074: trans-1.4-Dichloro-2-butene            | 110-57-6                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 78.7               | 54.0     | 128        |  |
| EP074: cis-1.4-Dichloro-2-butene              | 1476-11-5                | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 83.4               | 55.0     | 129        |  |
| EP074: 1.1.2.2-Tetrachloroethane              | 79-34-5                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 88.4               | 65.0     | 121        |  |
| EP074: 1.2.3-Trichloropropane                 | 96-18-4                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 92.5               | 61.0     | 125        |  |
| EP074: Pentachloroethane                      | 76-01-7                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 74.7               | 19.8     | 134        |  |
| EP074: 1.2-Dibromo-3-chloropropane            | 96-12-8                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 86.9               | 53.0     | 129        |  |
| EP074: Hexachlorobutadiene                    | 87-68-3                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 83.0               | 50.0     | 128        |  |
| EP074F: Halogenated Aromatic Compounds (QCL   | ot: 2677735)             |     |       |                   |                                       |                    |          |            |  |
| EP074: Chlorobenzene                          | 108-90-7                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 86.5               | 68.0     | 116        |  |
| EP074: Bromobenzene                           | 108-86-1                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 86.2               | 70.0     | 114        |  |
| EP074: 2-Chlorotoluene                        | 95-49-8                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 85.2               | 68.0     | 122        |  |
| EP074: 4-Chlorotoluene                        | 106-43-4                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 85.2               | 67.0     | 123        |  |
| EP074: 1.3-Dichlorobenzene                    | 541-73-1                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 85.6               | 70.0     | 116        |  |
| EP074: 1.4-Dichlorobenzene                    | 106-46-7                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 85.2               | 67.0     | 117        |  |
| EP074: 1.2-Dichlorobenzene                    | 95-50-1                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 87.0               | 70.0     | 114        |  |
| EP074: 1.2.4-Trichlorobenzene                 | 120-82-1                 | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 83.0               | 48.0     | 122        |  |
| EP074: 1.2.3-Trichlorobenzene                 | 87-61-6                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 85.6               | 52.0     | 122        |  |
| EP074G: Trihalomethanes (QCLot: 2677735)      |                          |     |       |                   |                                       |                    |          |            |  |
| EP074: Chloroform                             | 67-66-3                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 84.7               | 66.0     | 124        |  |
| EP074: Bromodichloromethane                   | 75-27-4                  | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 84.7               | 61.0     | 121        |  |

| : 20 of 33              |
|-------------------------|
| : ES1936029 Amendment 1 |
| : GHD PTY LTD           |
| : 12517046              |
|                         |



| Sub-Matrix: SOIL                                    |            |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |
|-----------------------------------------------------|------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|
|                                                     |            |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                    | CAS Number | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |
| EP074G: Trihalomethanes (QCLot: 2677735) - continue | d          |     |       |                   |                                       |                    |          |            |
| EP074: Dibromochloromethane                         | 124-48-1   | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 81.7               | 63.0     | 121        |
| EP074: Bromoform                                    | 75-25-2    | 0.5 | mg/kg | <0.5              | 1 mg/kg                               | 79.7               | 60.0     | 126        |
| EP074H: Naphthalene (QCLot: 2677735)                |            |     |       |                   |                                       |                    |          |            |
| EP074: Naphthalene                                  | 91-20-3    | 1   | mg/kg | <1                | 1 mg/kg                               | 87.2               | 67.0     | 129        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 2680331)    |            |     |       |                   |                                       |                    |          |            |
| EP075(SIM): Phenol                                  | 108-95-2   | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 99.9               | 71.0     | 125        |
| EP075(SIM): 2-Chlorophenol                          | 95-57-8    | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 106                | 72.0     | 124        |
| EP075(SIM): 2-Methylphenol                          | 95-48-7    | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 109                | 71.0     | 123        |
| EP075(SIM): 3- & 4-Methylphenol                     | 1319-77-3  | 1   | mg/kg | <1                | 12 mg/kg                              | 117                | 67.0     | 127        |
| EP075(SIM): 2-Nitrophenol                           | 88-75-5    | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 97.4               | 54.0     | 114        |
| EP075(SIM): 2.4-Dimethylphenol                      | 105-67-9   | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 104                | 68.0     | 126        |
| EP075(SIM): 2.4-Dichlorophenol                      | 120-83-2   | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 107                | 66.0     | 120        |
| EP075(SIM): 2.6-Dichlorophenol                      | 87-65-0    | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 110                | 70.0     | 120        |
| EP075(SIM): 4-Chloro-3-methylphenol                 | 59-50-7    | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 104                | 70.0     | 116        |
| EP075(SIM): 2.4.6-Trichlorophenol                   | 88-06-2    | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 106                | 54.0     | 114        |
| EP075(SIM): 2.4.5-Trichlorophenol                   | 95-95-4    | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 108                | 60.0     | 114        |
| EP075(SIM): Pentachlorophenol                       | 87-86-5    | 2   | mg/kg | <2                | 12 mg/kg                              | 39.3               | 10.0     | 57.0       |
| EP075A: Phenolic Compounds (QCLot: 2689777)         |            |     |       |                   |                                       |                    |          |            |
| EP075: Phenol                                       | 108-95-2   | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 102                | 64.0     | 114        |
| EP075: 2-Chlorophenol                               | 95-57-8    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 106                | 57.0     | 115        |
| EP075: 2-Methylphenol                               | 95-48-7    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 98.0               | 55.0     | 117        |
| EP075: 3- & 4-Methylphenol                          | 1319-77-3  | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 98.9               | 46.0     | 122        |
| EP075: 2-Nitrophenol                                | 88-75-5    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 92.2               | 47.0     | 117        |
| EP075: 2.4-Dimethylphenol                           | 105-67-9   | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 96.3               | 13.7     | 108        |
| EP075: 2.4-Dichlorophenol                           | 120-83-2   | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 94.4               | 47.0     | 105        |
| EP075: 2.6-Dichlorophenol                           | 87-65-0    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 80.6               | 48.0     | 110        |
| EP075: 4-Chloro-3-methylphenol                      | 59-50-7    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 79.9               | 57.0     | 113        |
| EP075: 2.4.6-Trichlorophenol                        | 88-06-2    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 66.7               | 49.0     | 109        |
| EP075: 2.4.5-Trichlorophenol                        | 95-95-4    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 65.0               | 49.0     | 107        |
| EP075: Pentachlorophenol                            | 87-86-5    | 1   | mg/kg | <1                | 3 mg/kg                               | 16.0               | 12.0     | 76.0       |
| EP075B: Polynuclear Aromatic Hydrocarbons (QCLot: 2 | 2689777)   |     |       |                   |                                       |                    |          |            |
| EP075: Naphthalene                                  | 91-20-3    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 96.4               | 62.0     | 118        |
| EP075: 2-Methylnaphthalene                          | 91-57-6    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 79.1               | 58.0     | 116        |
| EP075: 2-Chloronaphthalene                          | 91-58-7    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 75.4               | 54.0     | 112        |
| EP075: Acenaphthylene                               | 208-96-8   | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 80.7               | 56.0     | 114        |
| EP075: Acenaphthene                                 | 83-32-9    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 98.9               | 62.0     | 112        |
| EP075: Fluorene                                     | 86-73-7    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 101                | 59.0     | 115        |
| EP075: Phenanthrene                                 | 85-01-8    | 0.5 | mg/kg | <0.5              | 1.5 mg/kg                             | 97.9               | 63.0     | 113        |

| Page       | : 21 of 33            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL                                 |                        |        |       | Method Blank (MB)  | Laboratory Control Spike (LCS) Report |            |      |      |
|--------------------------------------------------|------------------------|--------|-------|--------------------|---------------------------------------|------------|------|------|
|                                                  | Report Report          | Report | Spike | Spike Recovery (%) | Recovery                              | Limits (%) |      |      |
| Method: Compound                                 | CAS Number             | LOR    | Unit  | Result             | Concentration                         | LCS        | Low  | High |
| EP075B: Polynuclear Aromatic Hydrocarbons (QCLo  | ot: 2689777) - continu | ed     |       |                    |                                       |            |      |      |
| EP075: Anthracene                                | 120-12-7               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 101        | 57.0 | 111  |
| EP075: Fluoranthene                              | 206-44-0               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 101        | 58.0 | 114  |
| EP075: Pyrene                                    | 129-00-0               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 103        | 57.0 | 117  |
| EP075: N-2-Fluorenyl Acetamide                   | 53-96-3                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 110        | 58.0 | 114  |
| EP075: Benz(a)anthracene                         | 56-55-3                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 108        | 59.0 | 115  |
| EP075: Chrysene                                  | 218-01-9               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 110        | 61.0 | 117  |
| EP075: Benzo(b+j) & Benzo(k)fluoranthene         | 205-99-2<br>207-08-9   | 1      | mg/kg | <1                 | 3 mg/kg                               | 101        | 57.0 | 119  |
| EP075: 7.12-Dimethylbenz(a)anthracene            | 57-97-6                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 101        | 48.1 | 106  |
| EP075: Benzo(a)pyrene                            | 50-32-8                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 104        | 56.0 | 116  |
| EP075: 3-Methylcholanthrene                      | 56-49-5                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 83.4       | 50.0 | 116  |
| EP075: Indeno(1.2.3.cd)pyrene                    | 193-39-5               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 97.2       | 55.0 | 117  |
| EP075: Dibenz(a.h)anthracene                     | 53-70-3                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 96.2       | 53.0 | 119  |
| EP075: Benzo(g.h.i)perylene                      | 191-24-2               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 92.7       | 56.0 | 120  |
| EP075C: Phthalate Esters (QCLot: 2689777)        |                        |        |       |                    |                                       |            |      |      |
| EP075: Dimethyl phthalate                        | 131-11-3               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 81.9       | 60.0 | 118  |
| EP075: Diethyl phthalate                         | 84-66-2                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 96.6       | 65.0 | 115  |
| EP075: Di-n-butyl phthalate                      | 84-74-2                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 98.9       | 65.0 | 121  |
| EP075: Butyl benzyl phthalate                    | 85-68-7                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 104        | 62.0 | 116  |
| EP075: bis(2-ethylhexyl) phthalate               | 117-81-7               |        | mg/kg |                    | 1.5 mg/kg                             | 93.7       | 69.0 | 133  |
| EP075: Di-n-octylphthalate                       | 117-84-0               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 95.0       | 62.0 | 124  |
| EP075D: Nitrosamines (QCLot: 2689777)            |                        |        |       |                    |                                       |            |      |      |
| EP075: N-Nitrosomethylethylamine                 | 10595-95-6             | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 93.7       | 39.4 | 124  |
| EP075: N-Nitrosodiethylamine                     | 55-18-5                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 83.4       | 59.0 | 117  |
| EP075: N-Nitrosopyrrolidine                      | 930-55-2               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 103        | 53.0 | 125  |
| EP075: N-Nitrosomorpholine                       | 59-89-2                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 99.4       | 65.0 | 121  |
| EP075: N-Nitrosodi-n-propylamine                 | 621-64-7               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 102        | 59.0 | 123  |
| EP075: N-Nitrosopiperidine                       | 100-75-4               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 109        | 57.0 | 115  |
| EP075: N-Nitrosodibutylamine                     | 924-16-3               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 74.1       | 57.0 | 119  |
| EP075: N-Nitrosodiphenyl & Diphenylamine         | 86-30-6<br>122-39-4    | 0.5    | mg/kg | <0.6               | 3 mg/kg                               | 101        | 42.0 | 112  |
| EP075: Methapyrilene                             | 91-80-5                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 64.7       | 16.3 | 123  |
| EP075E: Nitroaromatics and Ketones (QCLot: 26897 | 77)                    |        |       |                    |                                       |            |      |      |
| EP075: 2-Picoline                                | 109-06-8               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 91.1       | 27.3 | 129  |
| EP075: Acetophenone                              | 98-86-2                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 102        | 60.0 | 116  |
| EP075: Nitrobenzene                              | 98-95-3                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 106        | 65.0 | 119  |
| EP075: Isophorone                                | 78-59-1                | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 104        | 62.0 | 116  |
| EP075: 2.6-Dinitrotoluene                        | 606-20-2               | 0.5    | mg/kg | <0.5               | 1.5 mg/kg                             | 83.0       | 58.0 | 118  |

| Page       | : 22 of 33            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL                                 |                  | Method Blank (MB) | Laboratory Control Spike (LCS) Report |        |               |                    |          |            |
|--------------------------------------------------|------------------|-------------------|---------------------------------------|--------|---------------|--------------------|----------|------------|
|                                                  |                  |                   |                                       | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                 | CAS Number       | LOR               | Unit                                  | Result | Concentration | LCS                | Low      | High       |
| EP075E: Nitroaromatics and Ketones (QCLot: 2689) | 777) - continued |                   |                                       |        |               |                    |          |            |
| EP075: 2.4-Dinitrotoluene                        | 121-14-2         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 102                | 59.0     | 115        |
| EP075: 1-Naphthylamine                           | 134-32-7         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 25.3               | 18.0     | 112        |
| EP075: 4-Nitroquinoline-N-oxide                  | 56-57-5          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 66.8               | 10.0     | 87.0       |
| EP075: 5-Nitro-o-toluidine                       | 99-55-8          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 93.4               | 48.3     | 98.5       |
| EP075: Azobenzene                                | 103-33-3         | 1                 | mg/kg                                 | <1     | 1.5 mg/kg     | 99.7               | 62.0     | 118        |
| EP075: 1.3.5-Trinitrobenzene                     | 99-35-4          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 75.5               | 36.0     | 114        |
| EP075: Phenacetin                                | 62-44-2          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 103                | 62.0     | 114        |
| EP075: 4-Aminobiphenyl                           | 92-67-1          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 81.3               | 36.1     | 102        |
| EP075: Pentachloronitrobenzene                   | 82-68-8          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 91.5               | 56.0     | 110        |
| EP075: Pronamide                                 | 23950-58-5       | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 87.6               | 54.0     | 110        |
| EP075: Dimethylaminoazobenzene                   | 60-11-7          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 101                | 48.0     | 108        |
| EP075: Chlorobenzilate                           | 510-15-6         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 95.0               | 57.4     | 112        |
| EP075F: Haloethers (QCLot: 2689777)              |                  |                   |                                       |        |               |                    |          |            |
| EP075: Bis(2-chloroethyl) ether                  | 111-44-4         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 102                | 63.0     | 121        |
| EP075: Bis(2-chloroethoxy) methane               | 111-91-1         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 102                | 59.0     | 115        |
| EP075: 4-Chlorophenyl phenyl ether               | 7005-72-3        | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 99.9               | 58.0     | 112        |
| EP075: 4-Bromophenyl phenyl ether                | 101-55-3         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 98.5               | 58.0     | 110        |
| EP075G: Chlorinated Hydrocarbons (QCLot: 26897)  | 77)              |                   |                                       |        |               |                    |          |            |
| EP075: 1.3-Dichlorobenzene                       | 541-73-1         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 101                | 58.0     | 112        |
| EP075: 1.4-Dichlorobenzene                       | 106-46-7         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 100                | 58.0     | 116        |
| EP075: 1.2-Dichlorobenzene                       | 95-50-1          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 99.8               | 57.0     | 115        |
| EP075: Hexachloroethane                          | 67-72-1          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 95.4               | 54.0     | 116        |
| EP075: 1.2.4-Trichlorobenzene                    | 120-82-1         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 103                | 62.9     | 108        |
| EP075: Hexachloropropylene                       | 1888-71-7        | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 83.4               | 39.1     | 110        |
| EP075: Hexachlorobutadiene                       | 87-68-3          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 78.2               | 59.0     | 117        |
| EP075: Hexachlorocyclopentadiene                 | 77-47-4          | 2.5               | mg/kg                                 | <2.5   | 1.5 mg/kg     | # 21.7             | 24.3     | 108        |
| EP075: Pentachlorobenzene                        | 608-93-5         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 93.2               | 57.0     | 109        |
| EP075: Hexachlorobenzene (HCB)                   | 118-74-1         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 97.3               | 59.0     | 111        |
| EP075H: Anilines and Benzidines (QCLot: 2689777) |                  |                   |                                       |        |               |                    |          |            |
| EP075: Aniline                                   | 62-53-3          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 89.0               | 13.2     | 108        |
| EP075: 4-Chloroaniline                           | 106-47-8         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 29.4               | 20.5     | 99.0       |
| EP075: 2-Nitroaniline                            | 88-74-4          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 83.0               | 52.0     | 112        |
| EP075: 3-Nitroaniline                            | 99-09-2          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 75.9               | 31.5     | 93.7       |
| EP075: Dibenzofuran                              | 132-64-9         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 99.4               | 60.0     | 110        |
| EP075: 4-Nitroaniline                            | 100-01-6         | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.6               | 42.0     | 112        |
| EP075: Carbazole                                 | 86-74-8          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 100                | 59.0     | 111        |
| EP075: 3.3`-Dichlorobenzidine                    | 91-94-1          | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 82.6               | 23.1     | 113        |
| EP075I: Organochlorine Pesticides (QCLot: 268977 | 7)               |                   |                                       |        |               |                    |          |            |

| Page       | : 23 of 33            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL                                         |              |               |       | Method Blank (MB) | 3) Laboratory Control Spike (LCS) Report |                    |          |            |
|----------------------------------------------------------|--------------|---------------|-------|-------------------|------------------------------------------|--------------------|----------|------------|
|                                                          |              |               |       | Report            | Spike                                    | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                         | CAS Number   | LOR           | Unit  | Result            | Concentration                            | LCS                | Low      | High       |
| EP075I: Organochlorine Pesticides (QCLot: 2689777) - con | tinued       |               |       |                   |                                          |                    |          |            |
| EP075: alpha-BHC                                         | 319-84-6     | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 96.8               | 63.0     | 113        |
| EP075: beta-BHC                                          | 319-85-7     | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 102                | 57.0     | 113        |
| EP075: gamma-BHC                                         | 58-89-9      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 88.1               | 61.0     | 117        |
| EP075: delta-BHC                                         | 319-86-8     | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 93.1               | 64.0     | 118        |
| EP075: Heptachlor                                        | 76-44-8      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 89.1               | 55.0     | 115        |
| EP075: Aldrin                                            | 309-00-2     | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 90.5               | 61.0     | 115        |
| EP075: Heptachlor epoxide                                | 1024-57-3    | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 83.6               | 56.0     | 118        |
| EP075: alpha-Endosulfan                                  | 959-98-8     | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 88.4               | 65.0     | 125        |
| EP075: 4.4`-DDE                                          | 72-55-9      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 97.7               | 60.0     | 116        |
| EP075: Dieldrin                                          | 60-57-1      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 94.3               | 64.0     | 118        |
| EP075: Endrin                                            | 72-20-8      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 89.6               | 53.0     | 117        |
| EP075: beta-Endosulfan                                   | 33213-65-9   | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 99.7               | 65.0     | 115        |
| EP075: 4.4`-DDD                                          | 72-54-8      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 98.9               | 62.0     | 118        |
| EP075: Endosulfan sulfate                                | 1031-07-8    | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 119                | 63.0     | 129        |
| EP075: 4.4`-DDT                                          | 50-29-3      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 98.6               | 46.0     | 122        |
| EP075: Sum of DDD + DDE + DDT                            | 72-54-8/72-5 | 0.5           | mg/kg | <0.5              |                                          |                    |          |            |
|                                                          | 5-9/50-2     |               |       |                   |                                          |                    |          |            |
| EP075: Sum of Aldrin + Dieldrin                          | 309-00-2/60- | 0.5           | mg/kg | <0.5              |                                          |                    |          |            |
|                                                          | 57-1         |               |       |                   |                                          |                    |          |            |
| EP075J: Organophosphorus Pesticides (QCLot: 2689777)     |              |               |       |                   |                                          |                    |          |            |
| EP075: Dichlorvos                                        | 62-73-7      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 67.5               | 46.0     | 112        |
| EP075: Dimethoate                                        | 60-51-5      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 106                | 63.0     | 119        |
| EP075: Diazinon                                          | 333-41-5     | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 99.8               | 68.0     | 134        |
| EP075: Chlorpyrifos-methyl                               | 5598-13-0    | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 97.2               | 60.0     | 130        |
| EP075: Malathion                                         | 121-75-5     | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 120                | 65.0     | 127        |
| EP075: Fenthion                                          | 55-38-9      | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 99.7               | 60.0     | 116        |
| EP075: Chlorpyrifos                                      | 2921-88-2    | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 93.6               | 63.0     | 113        |
| EP075: Pirimphos-ethyl                                   | 23505-41-1   | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 99.7               | 65.0     | 115        |
| EP075: Chlorfenvinphos                                   | 470-90-6     | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 87.6               | 59.0     | 103        |
| EP075: Prothiofos                                        | 34643-46-4   | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 100                | 59.0     | 119        |
| EP075: Ethion                                            | 563-12-2     | 0.5           | mg/kg | <0.5              | 1.5 mg/kg                                | 110                | 62.0     | 118        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 268018   | 1)           |               |       |                   |                                          |                    |          |            |
| EP080: C6 - C9 Fraction                                  |              | 10            | mg/kg | <10               | 26 mg/kg                                 | 91.8               | 68.4     | 128        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 F  | ractions (QC | Lot: 2680181) |       |                   |                                          |                    |          |            |
| EP080: C6 - C10 Fraction                                 | C6_C10       | 10            | mg/kg | <10               | 31 mg/kg                                 | 94.0               | 68.4     | 128        |
| EP080: BTEXN (QCLot: 2680181)                            |              |               |       |                   |                                          |                    |          |            |
| EP080: Benzene                                           | 71-43-2      | 0.2           | mg/kg | <0.2              | 1 mg/kg                                  | 83.9               | 62.0     | 116        |
| EP080: Toluene                                           | 108-88-3     | 0.5           | mg/kg | <0.5              | 1 mg/kg                                  | 87.4               | 67.0     | 121        |

| Page       | : 24 of 33            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL                                |                        |     |         | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |
|-------------------------------------------------|------------------------|-----|---------|-------------------|---------------------------------------|--------------------|----------|------------|
|                                                 |                        |     |         | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                | CAS Number             | LOR | Unit    | Result            | Concentration                         | LCS                | Low      | High       |
| EP080: BTEXN (QCLot: 2680181) - continued       |                        |     |         |                   |                                       |                    |          |            |
| EP080: Ethylbenzene                             | 100-41-4               | 0.5 | mg/kg   | <0.5              | 1 mg/kg                               | 88.7               | 65.0     | 117        |
| EP080: meta- & para-Xylene                      | 108-38-3               | 0.5 | mg/kg   | <0.5              | 2 mg/kg                               | 88.9               | 66.0     | 118        |
|                                                 | 106-42-3               |     |         |                   |                                       |                    |          |            |
| EP080: ortho-Xylene                             | 95-47-6                | 0.5 | mg/kg   | <0.5              | 1 mg/kg                               | 91.6               | 68.0     | 120        |
| EP080: Naphthalene                              | 91-20-3                | 1   | mg/kg   | <1                | 1 mg/kg                               | 92.4               | 63.0     | 119        |
| EP080-SD / EP071-SD: Total Petroleum Hydrocarb  | ons (QCLot: 2677697)   |     |         |                   |                                       |                    |          |            |
| EP071-SD: C10 - C14 Fraction                    |                        | 3   | mg/kg   | <3                | 5 mg/kg                               | 92.6               | 78.0     | 118        |
| EP071-SD: C15 - C28 Fraction                    |                        | 3   | mg/kg   | <3                | 7.5 mg/kg                             | 96.3               | 84.0     | 118        |
| EP071-SD: C29 - C36 Fraction                    |                        | 5   | mg/kg   | <5                | 5 mg/kg                               | 94.9               | 73.0     | 119        |
| EP071-SD: C10 - C36 Fraction (sum)              |                        | 3   | mg/kg   | <3                |                                       |                    |          |            |
| EP080-SD / EP071-SD: Total Petroleum Hydrocarb  | ons (QCLot: 2677734)   |     |         |                   |                                       |                    |          |            |
| EP080-SD: C6 - C9 Fraction                      |                        | 3   | mg/kg   | <3                | 6.2 mg/kg                             | 91.5               | 61.0     | 133        |
| EP080-SD / EP071-SD: Total Recoverable Hydroca  | rbons (QCLot: 2677697) |     |         |                   |                                       |                    |          |            |
| EP071-SD: >C10 - C16 Fraction                   |                        | 3   | mg/kg   | <3                | 6.25 mg/kg                            | 96.1               | 70.0     | 130        |
| EP071-SD: >C16 - C34 Fraction                   |                        | 3   | mg/kg   | <3                | 8.75 mg/kg                            | 94.4               | 74.0     | 138        |
| EP071-SD: >C34 - C40 Fraction                   |                        | 5   | mg/kg   | <5                | 3.75 mg/kg                            | 95.8               | 63.0     | 131        |
| EP071-SD: >C10 - C40 Fraction (sum)             |                        | 3   | mg/kg   | <3                |                                       |                    |          |            |
| EP080-SD: BTEXN (QCLot: 2677734)                |                        |     |         |                   |                                       |                    |          |            |
| EP080-SD: Benzene                               | 71-43-2                | 0.2 | mg/kg   | <0.2              | 0.2 mg/kg                             | 105                | 66.0     | 122        |
| EP080-SD: Toluene                               | 108-88-3               | 0.2 | mg/kg   | <0.2              | 0.2 mg/kg                             | 109                | 70.0     | 130        |
| EP080-SD: Ethylbenzene                          | 100-41-4               | 0.2 | mg/kg   | <0.2              | 0.2 mg/kg                             | 102                | 66.0     | 126        |
| EP080-SD: meta- & para-Xylene                   | 108-38-3               | 0.2 | mg/kg   | <0.2              | 0.4 mg/kg                             | 102                | 59.0     | 129        |
|                                                 | 106-42-3               |     |         |                   |                                       |                    |          |            |
| EP080-SD: ortho-Xylene                          | 95-47-6                | 0.2 | mg/kg   | <0.2              | 0.2 mg/kg                             | 104                | 66.0     | 126        |
| EP090: Organotin Compounds (QCLot: 2698344)     |                        |     |         |                   |                                       |                    |          |            |
| EP090: Monobutyltin                             | 78763-54-9             | 1   | µgSn/kg | <1                | 1.25 µgSn/kg                          | 65.6               | 36.0     | 128        |
| EP090: Dibutyltin                               | 1002-53-5              | 1   | µgSn/kg | <1                | 1.25 µgSn/kg                          | 91.3               | 42.0     | 132        |
| EP090: Tributyltin                              | 56573-85-4             | 0.5 | µgSn/kg | <0.5              | 1.25 µgSn/kg                          | 135                | 52.0     | 139        |
| EP090: Organotin Compounds (QCLot: 2745160)     |                        |     |         |                   |                                       |                    |          |            |
| EP090: Monobutyltin                             | 78763-54-9             | 1   | µgSn/kg | <1                | 1.25 µgSn/kg                          | 37.1               | 36.0     | 128        |
| EP090: Dibutyltin                               | 1002-53-5              | 1   | µgSn/kg | <1                | 1.25 µgSn/kg                          | 103                | 42.0     | 132        |
| EP090: Tributyltin                              | 56573-85-4             | 0.5 | µgSn/kg | <0.5              | 1.25 µgSn/kg                          | 109                | 52.0     | 139        |
| EP130A: Organophosphorus Pesticides (Ultra-trac | e) (QCLot: 2677727)    |     |         |                   |                                       |                    |          |            |
| EP130: Bromophos-ethyl                          | 4824-78-6              | 10  | µg/kg   | <10               | 50 µg/kg                              | 87.6               | 49.0     | 117        |
| EP130: Carbophenothion                          | 786-19-6               | 10  | µg/kg   | <10               | 50 µg/kg                              | 92.7               | 54.0     | 104        |
| EP130: Chlorfenvinphos (E)                      | 18708-86-6             | 10  | μg/kg   | <10.0             | 5 µg/kg                               | 88.5               | 48.0     | 156        |
| EP130: Chlorfenvinphos (Z)                      | 18708-87-7             | 10  | μg/kg   | <10               | 50 µg/kg                              | 89.2               | 53.0     | 119        |
| EP130: Chlorpyrifos                             | 2921-88-2              | 10  | µg/kg   | <10               | 50 µg/kg                              | 91.2               | 54.0     | 112        |

| Page       | : 25 of 33            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL                             |                             |           |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |
|----------------------------------------------|-----------------------------|-----------|-------|-------------------|---------------------------------------|--------------------|----------|------------|
|                                              |                             |           |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                             | CAS Number                  | LOR       | Unit  | Result            | Concentration                         | LCS                | Low      | High       |
| EP130A: Organophosphorus Pesticides (Ultra-t | trace) (QCLot: 2677727) - ( | continued |       |                   |                                       |                    |          |            |
| EP130: Chlorpyrifos-methyl                   | 5598-13-0                   | 10        | µg/kg | <10               | 50 µg/kg                              | 90.8               | 52.0     | 108        |
| EP130: Demeton-S-methyl                      | 919-86-8                    | 10        | µg/kg | <10               | 50 µg/kg                              | 83.8               | 51.0     | 109        |
| EP130: Diazinon                              | 333-41-5                    | 10        | µg/kg | <10               | 50 µg/kg                              | 87.4               | 57.0     | 121        |
| EP130: Dichlorvos                            | 62-73-7                     | 10        | µg/kg | <10               | 50 µg/kg                              | 80.8               | 48.0     | 104        |
| EP130: Dimethoate                            | 60-51-5                     | 10        | μg/kg | <10               | 50 µg/kg                              | 98.2               | 52.0     | 120        |
| EP130: Ethion                                | 563-12-2                    | 10        | µg/kg | <10               | 50 µg/kg                              | 88.0               | 51.0     | 121        |
| EP130: Fenamiphos                            | 22224-92-6                  | 10        | μg/kg | <10               | 50 µg/kg                              | 82.8               | 50.0     | 120        |
| EP130: Fenthion                              | 55-38-9                     | 10        | µg/kg | <10               | 50 µg/kg                              | 88.1               | 48.0     | 112        |
| EP130: Malathion                             | 121-75-5                    | 10        | µg/kg | <10               | 50 µg/kg                              | 89.7               | 51.0     | 121        |
| EP130: Azinphos Methyl                       | 86-50-0                     | 10        | µg/kg | <10               | 50 µg/kg                              | 92.4               | 45.0     | 127        |
| EP130: Monocrotophos                         | 6923-22-4                   | 10        | µg/kg | <10               | 50 µg/kg                              | 78.8               | 48.0     | 128        |
| EP130: Parathion                             | 56-38-2                     | 10        | µg/kg | <10               | 50 µg/kg                              | 86.7               | 49.0     | 125        |
| EP130: Parathion-methyl                      | 298-00-0                    | 10        | µg/kg | <10               | 50 µg/kg                              | 86.9               | 51.0     | 119        |
| EP130: Pirimphos-ethyl                       | 23505-41-1                  | 10        | µg/kg | <10               | 50 µg/kg                              | 87.7               | 48.0     | 120        |
| EP130: Prothiofos                            | 34643-46-4                  | 10        | µg/kg | <10               | 50 µg/kg                              | 84.9               | 51.0     | 117        |
| EP131A: Organochlorine Pesticides (QCLot: 20 | 677729)                     |           |       |                   |                                       |                    |          |            |
| EP131A: Aldrin                               | 309-00-2                    | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 92.1               | 38.0     | 139        |
| EP131A: alpha-BHC                            | 319-84-6                    | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 92.5               | 17.6     | 136        |
| EP131A: beta-BHC                             | 319-85-7                    | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 110                | 30.5     | 131        |
| EP131A: delta-BHC                            | 319-86-8                    | 0.5       | μg/kg | <0.50             | 5 µg/kg                               | 69.6               | 37.0     | 140        |
| EP131A: 4.4`-DDD                             | 72-54-8                     | 0.5       | μg/kg | <0.50             | 5 µg/kg                               | 118                | 25.9     | 141        |
| EP131A: 4.4`-DDE                             | 72-55-9                     | 0.5       | μg/kg | <0.50             | 5 µg/kg                               | 94.0               | 35.0     | 129        |
| EP131A: 4.4`-DDT                             | 50-29-3                     | 0.5       | μg/kg | <0.50             | 5 µg/kg                               | 116                | 23.4     | 138        |
| EP131A: Sum of DDD + DDE + DDT               | 72-54-8/72-5                | 0.5       | µg/kg | <0.50             |                                       |                    |          |            |
|                                              | 5-9/50-2                    |           |       |                   |                                       |                    |          |            |
| EP131A: Dieldrin                             | 60-57-1                     | 0.5       | μg/kg | <0.50             | 5 µg/kg                               | 122                | 30.2     | 140        |
| EP131A: alpha-Endosulfan                     | 959-98-8                    | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 102                | 38.0     | 140        |
| EP131A: beta-Endosulfan                      | 33213-65-9                  | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 116                | 32.0     | 152        |
| EP131A: Endosulfan sulfate                   | 1031-07-8                   | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 116                | 36.0     | 155        |
| EP131A: Endosulfan (sum)                     | 115-29-7                    | 0.5       | µg/kg | <0.50             |                                       |                    |          |            |
| EP131A: Endrin                               | 72-20-8                     | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 100                | 25.8     | 158        |
| EP131A: Endrin aldehyde                      | 7421-93-4                   | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 115                | 20.1     | 118        |
| EP131A: Endrin ketone                        | 53494-70-5                  | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 100                | 13.4     | 135        |
| EP131A: Heptachlor                           | 76-44-8                     | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 99.6               | 39.0     | 155        |
| EP131A: Heptachlor epoxide                   | 1024-57-3                   | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 104                | 34.0     | 148        |
| EP131A: Hexachlorobenzene (HCB)              | 118-74-1                    | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 92.5               | 26.1     | 152        |
| EP131A: gamma-BHC                            | 58-89-9                     | 0.25      | µg/kg | <0.25             | 5 µg/kg                               | 94.9               | 31.2     | 137        |
| EP131A: Methoxychlor                         | 72-43-5                     | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 116                | 36.0     | 152        |
| EP131A: cis-Chlordane                        | 5103-71-9                   | 0.25      | µg/kg | <0.25             | 5 µg/kg                               | 113                | 36.0     | 142        |

| : 26 of 33              |
|-------------------------|
| : ES1936029 Amendment 1 |
| : GHD PTY LTD           |
| : 12517046              |
|                         |



| Sub-Matrix: SOIL                                                 |               |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                              |           |            |  |  |
|------------------------------------------------------------------|---------------|------|-------------------|---------------------------------------|---------------|------------------------------|-----------|------------|--|--|
|                                                                  |               |      |                   | Report                                | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |  |  |
| Method: Compound                                                 | CAS Number    | LOR  | Unit              | Result                                | Concentration | LCS                          | Low       | High       |  |  |
| EP131A: Organochlorine Pesticides (QCLot: 2677729) - continued   |               |      |                   |                                       |               |                              |           |            |  |  |
| EP131A: trans-Chlordane                                          | 5103-74-2     | 0.25 | µg/kg             | <0.25                                 | 5 µg/kg       | 110                          | 29.5      | 138        |  |  |
| EP131A: Total Chlordane (sum)                                    |               | 0.25 | µg/kg             | <0.25                                 |               |                              |           |            |  |  |
| EP131B: Polychlorinated Biphenyls (as Aroclors) (QCLot: 2677728) |               |      |                   |                                       |               |                              |           |            |  |  |
| EP131B: Total Polychlorinated biphenyls                          |               | 5    | µg/kg             | <5.0                                  | 50 µg/kg      | 75.5                         | 45.0      | 115        |  |  |
| EP131B: Aroclor 1016                                             | 12674-11-2    | 5    | µg/kg             | <5.0                                  |               |                              |           |            |  |  |
| EP131B: Aroclor 1221                                             | 11104-28-2    | 5    | µg/kg             | <5.0                                  |               |                              |           |            |  |  |
| EP131B: Aroclor 1232                                             | 11141-16-5    | 5    | µg/kg             | <5.0                                  |               |                              |           |            |  |  |
| EP131B: Aroclor 1242                                             | 53469-21-9    | 5    | µg/kg             | <5.0                                  |               |                              |           |            |  |  |
| EP131B: Aroclor 1248                                             | 12672-29-6    | 5    | µg/kg             | <5.0                                  |               |                              |           |            |  |  |
| EP131B: Aroclor 1254                                             | 11097-69-1    | 5    | µg/kg             | <5.0                                  | 50 µg/kg      | 75.5                         | 45.0      | 115        |  |  |
| EP131B: Aroclor 1260                                             | 11096-82-5    | 5    | µg/kg             | <5.0                                  |               |                              |           |            |  |  |
| EP132B: Polynuclear Aromatic Hydrocarbons (QC                    | Lot: 2677696) |      |                   |                                       |               |                              |           |            |  |  |
| EP132B-SD: Naphthalene                                           | 91-20-3       | 5    | µg/kg             | <5                                    | 25 µg/kg      | 94.3                         | 63.0      | 129        |  |  |
| EP132B-SD: 2-Methylnaphthalene                                   | 91-57-6       | 5    | µg/kg             | <5                                    | 25 µg/kg      | 80.0                         | 64.0      | 128        |  |  |
| EP132B-SD: Acenaphthylene                                        | 208-96-8      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 97.9                         | 65.0      | 129        |  |  |
| EP132B-SD: Acenaphthene                                          | 83-32-9       | 4    | µg/kg             | <4                                    | 25 µg/kg      | 90.6                         | 68.0      | 132        |  |  |
| EP132B-SD: Fluorene                                              | 86-73-7       | 4    | µg/kg             | <4                                    | 25 µg/kg      | 84.4                         | 68.0      | 124        |  |  |
| EP132B-SD: Phenanthrene                                          | 85-01-8       | 4    | µg/kg             | <4                                    | 25 µg/kg      | 93.1                         | 64.0      | 134        |  |  |
| EP132B-SD: Anthracene                                            | 120-12-7      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 94.9                         | 65.0      | 131        |  |  |
| EP132B-SD: Fluoranthene                                          | 206-44-0      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 96.1                         | 64.0      | 130        |  |  |
| EP132B-SD: Pyrene                                                | 129-00-0      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 82.2                         | 67.0      | 133        |  |  |
| EP132B-SD: Benz(a)anthracene                                     | 56-55-3       | 4    | µg/kg             | <4                                    | 25 µg/kg      | 105                          | 62.0      | 130        |  |  |
| EP132B-SD: Chrysene                                              | 218-01-9      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 95.9                         | 65.0      | 133        |  |  |
| EP132B-SD: Benzo(b+j)fluoranthene                                | 205-99-2      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 110                          | 68.0      | 120        |  |  |
|                                                                  | 205-82-3      |      |                   |                                       |               |                              |           |            |  |  |
| EP132B-SD: Benzo(k)fluoranthene                                  | 207-08-9      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 98.9                         | 61.0      | 133        |  |  |
| EP132B-SD: Benzo(e)pyrene                                        | 192-97-2      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 96.7                         | 63.0      | 127        |  |  |
| EP132B-SD: Benzo(a)pyrene                                        | 50-32-8       | 4    | µg/kg             | <4                                    | 25 µg/kg      | 106                          | 66.0      | 118        |  |  |
| EP132B-SD: Perylene                                              | 198-55-0      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 88.0                         | 69.0      | 119        |  |  |
| EP132B-SD: Benzo(g.h.i)perylene                                  | 191-24-2      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 106                          | 66.0      | 120        |  |  |
| EP132B-SD: Dibenz(a.h)anthracene                                 | 53-70-3       | 4    | µg/kg             | <4                                    | 25 µg/kg      | 98.9                         | 64.0      | 122        |  |  |
| EP132B-SD: Indeno(1.2.3.cd)pyrene                                | 193-39-5      | 4    | µg/kg             | <4                                    | 25 µg/kg      | 96.3                         | 64.0      | 120        |  |  |
| EP132B-SD: Coronene                                              | 191-07-1      | 5    | µg/kg             | <5                                    | 25 µg/kg      | 82.4                         | 68.0      | 136        |  |  |
| EP132B-SD: Sum of PAHs                                           |               | 4    | µg/kg             | <4                                    |               |                              |           |            |  |  |
| Sub-Matrix: WATER                                                |               |      |                   | Method Blank (MB)                     |               | Laboratory Control Spike (LC | S) Report |            |  |  |
|                                                                  |               |      |                   | Report                                | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |  |  |
| Method: Compound                                                 | CAS Number    | LOR  | Unit              | Result                                | Concentration | LCS                          | Low       | High       |  |  |
| EG020T: Total Metals by ICP-MS (QCLot: 2686305)                  |               |      |                   |                                       |               |                              |           |            |  |  |

| Page       | : 27 of 33            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: WATER                                                                |                        |               | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                    |          |            |  |  |
|----------------------------------------------------------------------------------|------------------------|---------------|-------------------|---------------------------------------|---------------|--------------------|----------|------------|--|--|
|                                                                                  |                        |               |                   | Report                                | Spike         | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                                                 | CAS Number             | LOR           | Unit              | Result                                | Concentration | LCS                | Low      | High       |  |  |
| EG020T: Total Metals by ICP-MS (QCLot: 2686305) - continued                      |                        |               |                   |                                       |               |                    |          |            |  |  |
| EG020A-T: Arsenic                                                                | 7440-38-2              | 0.001         | mg/L              | <0.001                                | 0.1 mg/L      | 104                | 82.0     | 114        |  |  |
| EG020A-T: Cadmium                                                                | 7440-43-9              | 0.0001        | mg/L              | <0.0001                               | 0.1 mg/L      | 106                | 84.0     | 112        |  |  |
| EG020A-T: Chromium                                                               | 7440-47-3              | 0.001         | mg/L              | <0.001                                | 0.1 mg/L      | 110                | 86.0     | 116        |  |  |
| EG020A-T: Copper                                                                 | 7440-50-8              | 0.001         | mg/L              | <0.001                                | 0.1 mg/L      | 105                | 83.0     | 118        |  |  |
| EG020A-T: Lead                                                                   | 7439-92-1              | 0.001         | mg/L              | <0.001                                | 0.1 mg/L      | 104                | 85.0     | 115        |  |  |
| EG020A-T: Nickel                                                                 | 7440-02-0              | 0.001         | mg/L              | <0.001                                | 0.1 mg/L      | 107                | 84.0     | 116        |  |  |
| EG020A-T: Zinc                                                                   | 7440-66-6              | 0.005         | mg/L              | <0.005                                | 0.1 mg/L      | 103                | 79.0     | 117        |  |  |
| EG035T: Total Recoverable Mercury by FIMS (QC                                    | Lot: 2686717)          |               |                   |                                       |               |                    |          |            |  |  |
| EG035T: Mercury                                                                  | 7439-97-6              | 0.0001        | mg/L              | <0.0001                               | 0.01 mg/L     | 91.2               | 77.0     | 111        |  |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons                                   | s (QCLot: 2677025)     |               |                   |                                       |               |                    |          |            |  |  |
| EP075(SIM): Naphthalene                                                          | 91-20-3                | 1             | µg/L              | <1.0                                  | 5 µg/L        | 76.4               | 50.0     | 94.0       |  |  |
| EP075(SIM): Acenaphthylene                                                       | 208-96-8               | 1             | µg/L              | <1.0                                  | 5 µg/L        | 77.3               | 63.6     | 114        |  |  |
| EP075(SIM): Acenaphthene                                                         | 83-32-9                | 1             | µg/L              | <1.0                                  | 5 µg/L        | 71.2               | 62.2     | 113        |  |  |
| EP075(SIM): Fluorene                                                             | 86-73-7                | 1             | µg/L              | <1.0                                  | 5 µg/L        | 76.4               | 63.9     | 115        |  |  |
| EP075(SIM): Phenanthrene                                                         | 85-01-8                | 1             | µg/L              | <1.0                                  | 5 µg/L        | 71.8               | 62.6     | 116        |  |  |
| EP075(SIM): Anthracene                                                           | 120-12-7               | 1             | µg/L              | <1.0                                  | 5 µg/L        | 73.3               | 64.3     | 116        |  |  |
| EP075(SIM): Fluoranthene                                                         | 206-44-0               | 1             | µg/L              | <1.0                                  | 5 µg/L        | 88.3               | 63.6     | 118        |  |  |
| EP075(SIM): Pyrene                                                               | 129-00-0               | 1             | µg/L              | <1.0                                  | 5 µg/L        | 99.4               | 63.1     | 118        |  |  |
| EP075(SIM): Benz(a)anthracene                                                    | 56-55-3                | 1             | µg/L              | <1.0                                  | 5 µg/L        | 88.0               | 64.1     | 117        |  |  |
| EP075(SIM): Chrysene                                                             | 218-01-9               | 1             | µg/L              | <1.0                                  | 5 µg/L        | 88.9               | 62.5     | 116        |  |  |
| EP075(SIM): Benzo(b+j)fluoranthene                                               | 205-99-2               | 1             | µg/L              | <1.0                                  | 5 µg/L        | 97.3               | 61.7     | 119        |  |  |
|                                                                                  | 205-82-3               |               |                   |                                       |               |                    |          |            |  |  |
| EP075(SIM): Benzo(k)fluoranthene                                                 | 207-08-9               | 1             | µg/L              | <1.0                                  | 5 µg/L        | 81.6               | 63.0     | 115        |  |  |
| EP075(SIM): Benzo(a)pyrene                                                       | 50-32-8                | 0.5           | µg/L              | <0.5                                  | 5 µg/L        | 98.7               | 63.3     | 117        |  |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                                               | 193-39-5               | 1             | µg/L              | <1.0                                  | 5 µg/L        | 94.7               | 59.9     | 118        |  |  |
| EP075(SIM): Dibenz(a.h)anthracene                                                | 53-70-3                | 1             | µg/L              | <1.0                                  | 5 µg/L        | 99.7               | 61.2     | 117        |  |  |
| EP075(SIM): Benzo(g.h.i)perylene                                                 | 191-24-2               | 1             | µg/L              | <1.0                                  | 5 µg/L        | 98.2               | 59.1     | 118        |  |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLo                                    | t: 2677026)            |               |                   |                                       |               |                    |          |            |  |  |
| EP071: C10 - C14 Fraction                                                        |                        | 50            | µg/L              | <50                                   | 2000 µg/L     | 67.4               | 55.8     | 112        |  |  |
| EP071: C15 - C28 Fraction                                                        |                        | 100           | µg/L              | <100                                  | 3000 µg/L     | 89.8               | 71.6     | 113        |  |  |
| EP071: C29 - C36 Fraction                                                        |                        | 50            | µg/L              | <50                                   | 2000 µg/L     | 92.9               | 56.0     | 121        |  |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLo                                    | t: 2681218)            |               |                   |                                       |               |                    |          |            |  |  |
| EP080: C6 - C9 Fraction                                                          |                        | 20            | µg/L              | <20                                   | 260 µg/L      | 91.2               | 75.0     | 127        |  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEF                                  | PM 2013 Fractions (QCL | .ot: 2677026) |                   |                                       |               |                    |          |            |  |  |
| EP071: >C10 - C16 Fraction                                                       |                        | 100           | µg/L              | <100                                  | 2500 μg/L     | 75.6               | 57.9     | 119        |  |  |
| EP071: >C16 - C34 Fraction                                                       |                        | 100           | µg/L              | <100                                  | 3500 µg/L     | 93.6               | 62.5     | 110        |  |  |
| EP071: >C34 - C40 Fraction                                                       |                        | 100           | µg/L              | <100                                  | 1500 µg/L     | 94.0               | 61.5     | 121        |  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 2681218) |                        |               |                   |                                       |               |                    |          |            |  |  |



| Sub-Matrix: WATER                                                                            |            |     |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |            |            |  |
|----------------------------------------------------------------------------------------------|------------|-----|------|-------------------|---------------------------------------|--------------------|------------|------------|--|
|                                                                                              |            |     |      | Report            | Spike                                 | Spike Recovery (%) | Recovery I | .imits (%) |  |
| Method: Compound                                                                             | CAS Number | LOR | Unit | Result            | Concentration                         | LCS                | Low        | High       |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 2681218) - continued |            |     |      |                   |                                       |                    |            |            |  |
| EP080: C6 - C10 Fraction                                                                     | C6_C10     | 20  | µg/L | <20               | 310 µg/L                              | 94.4               | 75.0       | 127        |  |
| EP080: BTEXN (QCLot: 2681218)                                                                |            |     |      |                   |                                       |                    |            |            |  |
| EP080: Benzene                                                                               | 71-43-2    | 1   | μg/L | <1                | 10 µg/L                               | 94.1               | 70.0       | 122        |  |
| EP080: Toluene                                                                               | 108-88-3   | 2   | μg/L | <2                | 10 µg/L                               | 99.2               | 69.0       | 123        |  |
| EP080: Ethylbenzene                                                                          | 100-41-4   | 2   | μg/L | <2                | 10 µg/L                               | 97.3               | 70.0       | 120        |  |
| EP080: meta- & para-Xylene                                                                   | 108-38-3   | 2   | μg/L | <2                | 10 µg/L                               | 95.6               | 69.0       | 121        |  |
|                                                                                              | 106-42-3   |     |      |                   |                                       |                    |            |            |  |
| EP080: ortho-Xylene                                                                          | 95-47-6    | 2   | μg/L | <2                | 10 µg/L                               | 98.8               | 72.0       | 122        |  |
| EP080: Naphthalene                                                                           | 91-20-3    | 5   | µg/L | <5                | 10 µg/L                               | 98.3               | 70.0       | 120        |  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL     |                                                      |                        | Matrix Spike (MS) Report |               |                  |            |          |
|----------------------|------------------------------------------------------|------------------------|--------------------------|---------------|------------------|------------|----------|
|                      |                                                      |                        |                          | Spike         | SpikeRecovery(%) | Recovery L | mits (%) |
| Laboratory sample ID | Client sample ID                                     | Method: Compound       | CAS Number               | Concentration | MS               | Low        | High     |
| EG035T: Total Rec    | coverable Mercury by FIMS (Low Level) (QCLot: 268288 | 4)                     |                          |               |                  |            |          |
| ES1936029-001        | VC09_0.0-0.2                                         | EG035T-LL: Mercury     | 7439-97-6                | 0.05 mg/kg    | 108              | 70.0       | 130      |
| EG020-SD: Total M    | etals in Sediments by ICPMS (QCLot: 2682877)         |                        |                          |               |                  |            |          |
| EM1918213-003        | Anonymous                                            | EG020-SD: Arsenic      | 7440-38-2                | 50 mg/kg      | 90.8             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Cadmium      | 7440-43-9                | 50 mg/kg      | 87.8             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Chromium     | 7440-47-3                | 50 mg/kg      | 89.5             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Copper       | 7440-50-8                | 250 mg/kg     | 94.9             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Lead         | 7439-92-1                | 250 mg/kg     | 92.3             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Nickel       | 7440-02-0                | 50 mg/kg      | 85.7             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Zinc         | 7440-66-6                | 250 mg/kg     | 78.0             | 70.0       | 130      |
| EG020-SD: Total M    | etals in Sediments by ICPMS (QCLot: 2682885)         |                        |                          |               |                  |            |          |
| ES1936029-063        | VC04_0.5-1.0                                         | EG020-SD: Arsenic      | 7440-38-2                | 50 mg/kg      | 91.6             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Cadmium      | 7440-43-9                | 50 mg/kg      | 96.5             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Chromium     | 7440-47-3                | 50 mg/kg      | 102              | 70.0       | 130      |
|                      |                                                      | EG020-SD: Copper       | 7440-50-8                | 250 mg/kg     | 93.9             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Lead         | 7439-92-1                | 250 mg/kg     | 97.0             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Nickel       | 7440-02-0                | 50 mg/kg      | 97.8             | 70.0       | 130      |
|                      |                                                      | EG020-SD: Zinc         | 7440-66-6                | 250 mg/kg     | 94.3             | 70.0       | 130      |
| EK026SF: Total CM    | N by Segmented Flow Analyser (QCLot: 2677335)        |                        |                          |               |                  |            |          |
| ES1935865-002        | Anonymous                                            | EK026SF: Total Cyanide | 57-12-5                  | 40 mg/kg      | 128              | 70.0       | 130      |

| : 29 of 33              |
|-------------------------|
| : ES1936029 Amendment 1 |
| : GHD PTY LTD           |
| : 12517046              |
|                         |



| Sub-Matrix: SOIL     |                                               |                                     |            | Ма            | atrix Spike (MS) Report |             |          |
|----------------------|-----------------------------------------------|-------------------------------------|------------|---------------|-------------------------|-------------|----------|
|                      |                                               |                                     |            | Spike         | SpikeRecovery(%)        | Recovery Li | mits (%) |
| Laboratory sample ID | Client sample ID                              | Method: Compound                    | CAS Number | Concentration | MS                      | Low         | High     |
| EK026SF: Total Cl    | N by Segmented Flow Analyser (QCLot: 2677336) |                                     |            |               |                         |             |          |
| ES1936029-076        | VC10_0.7-0.8                                  | EK026SF: Total Cyanide              | 57-12-5    | 40 mg/kg      | 130                     | 70.0        | 130      |
| EK040T: Fluoride 1   | Fotal (QCLot: 2683332)                        |                                     |            |               |                         |             |          |
| EB1928984-011        | Anonymous                                     | EK040T: Fluoride                    | 16984-48-8 | 400 mg/kg     | 107                     | 70.0        | 130      |
| EP074A: Monocyc      | ic Aromatic Hydrocarbons (QCLot: 2677735)     |                                     |            |               |                         |             |          |
| ES1936029-007        | VC07_0.0-0.2                                  | EP074: Benzene                      | 71-43-2    | 2.5 mg/kg     | 84.0                    | 70.0        | 130      |
|                      |                                               | EP074: Toluene                      | 108-88-3   | 2.5 mg/kg     | 87.4                    | 70.0        | 130      |
| EP074E: Halogena     | ted Aliphatic Compounds (QCLot: 2677735)      |                                     |            |               |                         |             |          |
| ES1936029-007        | VC07_0.0-0.2                                  | EP074: 1.1-Dichloroethene           | 75-35-4    | 2.5 mg/kg     | # 61.0                  | 70.0        | 130      |
|                      |                                               | EP074: Trichloroethene              | 79-01-6    | 2.5 mg/kg     | 82.3                    | 70.0        | 130      |
| EP074F: Halogena     | ted Aromatic Compounds (QCLot: 2677735)       |                                     |            |               |                         |             |          |
| ES1936029-007        | VC07_0.0-0.2                                  | EP074: Chlorobenzene                | 108-90-7   | 2.5 mg/kg     | 90.2                    | 70.0        | 130      |
| EP075(SIM)A: Phei    | nolic Compounds (QCLot: 2680331)              |                                     |            |               |                         |             |          |
| ES1936029-001        | VC09 0.0-0.2                                  | EP075(SIM): Phenol                  | 108-95-2   | 10 ma/ka      | 87.2                    | 70.0        | 130      |
|                      | _                                             | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 10 mg/kg      | 92.1                    | 70.0        | 130      |
|                      |                                               | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 10 mg/kg      | 86.7                    | 60.0        | 130      |
|                      |                                               | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 10 mg/kg      | 87.9                    | 70.0        | 130      |
|                      |                                               | EP075(SIM): Pentachlorophenol       | 87-86-5    | 10 mg/kg      | 66.8                    | 20.0        | 130      |
| EP075A: Phenolic     | Compounds (QCLot: 2689777)                    |                                     |            |               |                         |             |          |
| ES1936029-011        | VC07_0.0-0.5                                  | EP075: Phenol                       | 108-95-2   | 10 mg/kg      | 99.4                    | 60.0        | 130      |
|                      |                                               | EP075: 2-Chlorophenol               | 95-57-8    | 10 mg/kg      | 95.8                    | 60.0        | 130      |
|                      |                                               | EP075: 2-Nitrophenol                | 88-75-5    | 10 mg/kg      | 98.4                    | 50.0        | 130      |
|                      |                                               | EP075: 4-Chloro-3-methylphenol      | 59-50-7    | 10 mg/kg      | 93.7                    | 50.0        | 130      |
|                      |                                               | EP075: Pentachlorophenol            | 87-86-5    | 10 mg/kg      | 30.1                    | 10.0        | 130      |
| EP075B: Polynucle    | ear Aromatic Hydrocarbons (QCLot: 2689777)    |                                     |            |               |                         |             |          |
| ES1936029-011        | VC07_0.0-0.5                                  | EP075: Acenaphthene                 | 83-32-9    | 10 mg/kg      | 81.7                    | 50.0        | 130      |
|                      |                                               | EP075: Pyrene                       | 129-00-0   | 10 mg/kg      | 82.2                    | 50.0        | 130      |
| EP075D: Nitrosami    | ines (QCLot: 2689777)                         |                                     |            |               |                         |             |          |
| ES1936029-011        | VC07_0.0-0.5                                  | EP075: N-Nitrosodi-n-propylamine    | 621-64-7   | 10 mg/kg      | 96.5                    | 50.0        | 130      |
| EP075E: Nitroarom    | natics and Ketones (QCLot: 2689777)           |                                     |            |               |                         |             |          |
| ES1936029-011        | VC07_0.0-0.5                                  | EP075: 2.4-Dinitrotoluene           | 121-14-2   | 10 mg/kg      | 89.4                    | 40.0        | 130      |
| EP075G: Chlorinat    | ed Hydrocarbons (QCLot: 2689777)              |                                     |            |               |                         |             |          |
| ES1936029-011        | VC07_0.0-0.5                                  | EP075: 1.4-Dichlorobenzene          | 106-46-7   | 10 mg/kg      | 87.8                    | 60.0        | 130      |
|                      |                                               | EP075: 1.2.4-Trichlorobenzene       | 120-82-1   | 10 mg/kg      | 85.5                    | 50.0        | 130      |
| EP080/071: Total P   | etroleum Hydrocarbons (QCLot: 2680181)        |                                     |            |               |                         |             |          |
| ES1936027-001        | Anonymous                                     | EP080: C6 - C9 Fraction             |            | 32.5 mg/kg    | 104                     | 70.0        | 130      |



| Sub-Matrix: SOIL     |                                                    |                               |            |               | atrix Spike (MS) Repor | t          |           |
|----------------------|----------------------------------------------------|-------------------------------|------------|---------------|------------------------|------------|-----------|
|                      |                                                    |                               |            | Spike         | SpikeRecovery(%)       | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                   | Method: Compound              | CAS Number | Concentration | MS                     | Low        | High      |
| EP080/071: Total R   | ecoverable Hydrocarbons - NEPM 2013 Fractions(QCL  | .ot: 2680181)                 |            |               |                        |            |           |
| ES1936027-001        | Anonymous                                          | EP080: C6 - C10 Fraction      | C6_C10     | 37.5 mg/kg    | 105                    | 70.0       | 130       |
| EP080: BTEXN (Q      | CLot: 2680181)                                     |                               |            |               |                        |            |           |
| ES1936027-001        | Anonymous                                          | EP080: Benzene                | 71-43-2    | 2.5 mg/kg     | 85.5                   | 70.0       | 130       |
|                      |                                                    | EP080: Toluene                | 108-88-3   | 2.5 mg/kg     | 96.7                   | 70.0       | 130       |
|                      |                                                    | EP080: Ethylbenzene           | 100-41-4   | 2.5 mg/kg     | 98.0                   | 70.0       | 130       |
|                      |                                                    | EP080: meta- & para-Xylene    | 108-38-3   | 2.5 mg/kg     | 98.6                   | 70.0       | 130       |
|                      |                                                    |                               | 106-42-3   |               |                        |            |           |
|                      |                                                    | EP080: ortho-Xylene           | 95-47-6    | 2.5 mg/kg     | 101                    | 70.0       | 130       |
|                      |                                                    | EP080: Naphthalene            | 91-20-3    | 2.5 mg/kg     | 88.6                   | 70.0       | 130       |
| EP080-SD / EP071-    | SD: Total Petroleum Hydrocarbons (QCLot: 2677697)  |                               |            |               |                        |            |           |
| ES1936029-001        | VC09_0.0-0.2                                       | EP071-SD: C10 - C14 Fraction  |            | 14 mg/kg      | 102                    | 70.0       | 130       |
|                      |                                                    | EP071-SD: C15 - C28 Fraction  |            | 59 mg/kg      | 84.0                   | 70.0       | 130       |
|                      |                                                    | EP071-SD: C29 - C36 Fraction  |            | 42 mg/kg      | 114                    | 70.0       | 130       |
| EP080-SD / EP071-    | SD: Total Petroleum Hydrocarbons (QCLot: 2677734)  |                               |            |               |                        |            |           |
| ES1936029-007        | VC07_0.0-0.2                                       | EP080-SD: C6 - C9 Fraction    |            | 6.5 mg/kg     | 108                    | 70.0       | 130       |
| EP080-SD: BTEXN      | (QCLot: 2677734)                                   |                               |            |               |                        |            |           |
| ES1936029-007        | VC07_0.0-0.2                                       | EP080-SD: Benzene             | 71-43-2    | 0.5 mg/kg     | 94.2                   | 70.0       | 130       |
|                      |                                                    | EP080-SD: Toluene             | 108-88-3   | 0.5 mg/kg     | 103                    | 70.0       | 130       |
|                      |                                                    | EP080-SD: Ethylbenzene        | 100-41-4   | 0.5 mg/kg     | 103                    | 70.0       | 130       |
|                      |                                                    | EP080-SD: meta- & para-Xylene | 108-38-3   | 0.5 mg/kg     | 102                    | 70.0       | 130       |
|                      |                                                    |                               | 106-42-3   |               |                        |            |           |
|                      |                                                    | EP080-SD: ortho-Xylene        | 95-47-6    | 0.5 mg/kg     | 104                    | 70.0       | 130       |
| EP090: Organotin     | Compounds (QCLot: 2698344)                         |                               |            |               |                        |            |           |
| EM1919013-022        | Anonymous                                          | EP090: MonobutyItin           | 78763-54-9 | 1.25 µgSn/kg  | 84.0                   | 20.0       | 130       |
|                      |                                                    | EP090: DibutyItin             | 1002-53-5  | 1.25 µgSn/kg  | # 201                  | 20.0       | 130       |
|                      |                                                    | EP090: Tributyltin            | 56573-85-4 | 1.25 µgSn/kg  | # 866                  | 20.0       | 130       |
| EP090: Organotin     | Compounds (QCLot: 2745160)                         |                               |            |               |                        |            |           |
| ES1939786-001        | Anonymous                                          | EP090: Monobutyltin           | 78763-54-9 | 1.25 µgSn/kg  | # 7.69                 | 20.0       | 130       |
|                      |                                                    | EP090: DibutyItin             | 1002-53-5  | 1.25 µgSn/kg  | 58.6                   | 20.0       | 130       |
|                      |                                                    | EP090: Tributyltin            | 56573-85-4 | 1.25 µgSn/kg  | 52.7                   | 20.0       | 130       |
| EP130A: Organoph     | osphorus Pesticides (Ultra-trace) (QCLot: 2677727) |                               |            |               |                        |            |           |
| ES1936029-001        | VC09_0.0-0.2                                       | EP130: Bromophos-ethyl        | 4824-78-6  | 50 µg/kg      | 57.1                   | 36.0       | 144       |
|                      |                                                    | EP130: Carbophenothion        | 786-19-6   | 50 µg/kg      | 59.1                   | 38.0       | 120       |
|                      |                                                    | EP130: Chlorfenvinphos (E)    | 18708-86-6 | 5 µg/kg       | 59.5                   | 49.0       | 157       |
|                      |                                                    | EP130: Chlorfenvinphos (Z)    | 18708-87-7 | 50 µg/kg      | 59.9                   | 53.0       | 145       |
|                      |                                                    | EP130: Chlorpyrifos           | 2921-88-2  | 50 µg/kg      | 71.0                   | 60.0       | 140       |
|                      |                                                    | EP130: Chlorpyrifos-methyl    | 5598-13-0  | 50 µg/kg      | 71.5                   | 56.0       | 126       |



| Sub-Matrix: SOIL                                                               |                                                 |                                         |            |               | atrix Spike (MS) Repor | t          |           |  |
|--------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------|---------------|------------------------|------------|-----------|--|
|                                                                                |                                                 |                                         |            | Spike         | SpikeRecovery(%)       | Recovery L | imits (%) |  |
| Laboratory sample ID                                                           | Client sample ID                                | Method: Compound                        | CAS Number | Concentration | MS                     | Low        | High      |  |
| EP130A: Organophosphorus Pesticides (Ultra-trace) (QCLot: 2677727) - continued |                                                 |                                         |            |               |                        |            |           |  |
| ES1936029-001                                                                  | VC09_0.0-0.2                                    | EP130: Demeton-S-methyl                 | 919-86-8   | 50 µg/kg      | 60.3                   | 9.70       | 148       |  |
|                                                                                |                                                 | EP130: Diazinon                         | 333-41-5   | 50 µg/kg      | 66.7                   | 60.0       | 122       |  |
|                                                                                |                                                 | EP130: Dichlorvos                       | 62-73-7    | 50 µg/kg      | 56.4                   | 33.0       | 123       |  |
|                                                                                |                                                 | EP130: Dimethoate                       | 60-51-5    | 50 µg/kg      | 64.2                   | 36.0       | 142       |  |
|                                                                                |                                                 | EP130: Ethion                           | 563-12-2   | 50 µg/kg      | 59.4                   | 48.0       | 136       |  |
|                                                                                |                                                 | EP130: Fenamiphos                       | 22224-92-6 | 50 µg/kg      | 52.3                   | 42.0       | 136       |  |
|                                                                                |                                                 | EP130: Fenthion                         | 55-38-9    | 50 µg/kg      | 60.5                   | 35.0       | 131       |  |
|                                                                                |                                                 | EP130: Malathion                        | 121-75-5   | 50 µg/kg      | 60.7                   | 55.0       | 141       |  |
|                                                                                |                                                 | EP130: Azinphos Methyl                  | 86-50-0    | 50 µg/kg      | 54.6                   | 23.5       | 132       |  |
|                                                                                |                                                 | EP130: Monocrotophos                    | 6923-22-4  | 50 µg/kg      | 60.1                   | 35.0       | 153       |  |
|                                                                                |                                                 | EP130: Parathion                        | 56-38-2    | 50 µg/kg      | 63.3                   | 57.0       | 147       |  |
|                                                                                |                                                 | EP130: Parathion-methyl                 | 298-00-0   | 50 µg/kg      | 54.9                   | 48.0       | 140       |  |
|                                                                                |                                                 | EP130: Pirimphos-ethyl                  | 23505-41-1 | 50 µg/kg      | 60.2                   | 45.0       | 137       |  |
|                                                                                |                                                 | EP130: Prothiofos                       | 34643-46-4 | 50 µg/kg      | 57.5                   | 51.0       | 137       |  |
| EP131A: Organoch                                                               | lorine Pesticides (QCLot: 2677729)              |                                         |            |               |                        |            |           |  |
| ES1936029-001                                                                  | VC09_0.0-0.2                                    | EP131A: Aldrin                          | 309-00-2   | 5 µg/kg       | 75.4                   | 23.4       | 153       |  |
|                                                                                |                                                 | EP131A: alpha-BHC                       | 319-84-6   | 5 µg/kg       | 80.2                   | 17.6       | 156       |  |
|                                                                                |                                                 | EP131A: beta-BHC                        | 319-85-7   | 5 µg/kg       | 107                    | 24.9       | 153       |  |
|                                                                                |                                                 | EP131A: delta-BHC                       | 319-86-8   | 5 µg/kg       | 80.2                   | 25.2       | 147       |  |
|                                                                                |                                                 | EP131A: 4.4`-DDD                        | 72-54-8    | 5 µg/kg       | 67.8                   | 25.9       | 150       |  |
|                                                                                |                                                 | EP131A: 4.4`-DDE                        | 72-55-9    | 5 µg/kg       | 59.9                   | 31.2       | 125       |  |
|                                                                                |                                                 | EP131A: 4.4`-DDT                        | 50-29-3    | 5 µg/kg       | 107                    | 23.4       | 163       |  |
|                                                                                |                                                 | EP131A: Dieldrin                        | 60-57-1    | 5 µg/kg       | 92.6                   | 30.2       | 140       |  |
|                                                                                |                                                 | EP131A: alpha-Endosulfan                | 959-98-8   | 5 µg/kg       | 59.8                   | 28.8       | 135       |  |
|                                                                                |                                                 | EP131A: beta-Endosulfan                 | 33213-65-9 | 5 µg/kg       | 80.3                   | 22.6       | 141       |  |
|                                                                                |                                                 | EP131A: Endosulfan sulfate              | 1031-07-8  | 5 µg/kg       | 86.1                   | 16.1       | 156       |  |
|                                                                                |                                                 | EP131A: Endrin                          | 72-20-8    | 5 µg/kg       | 105                    | 17.7       | 162       |  |
|                                                                                |                                                 | EP131A: Endrin aldehyde                 | 7421-93-4  | 5 µg/kg       | 105                    | 20.1       | 116       |  |
|                                                                                |                                                 | EP131A: Endrin ketone                   | 53494-70-5 | 5 µg/kg       | 77.5                   | 13.4       | 151       |  |
|                                                                                |                                                 | EP131A: Heptachlor                      | 76-44-8    | 5 µg/kg       | 89.1                   | 23.8       | 170       |  |
|                                                                                |                                                 | EP131A: Heptachlor epoxide              | 1024-57-3  | 5 µg/kg       | 80.1                   | 28.3       | 140       |  |
|                                                                                |                                                 | EP131A: Hexachlorobenzene (HCB)         | 118-74-1   | 5 µg/kg       | 82.7                   | 17.7       | 144       |  |
|                                                                                |                                                 | EP131A: gamma-BHC                       | 58-89-9    | 5 µg/kg       | 84.0                   | 21.8       | 158       |  |
|                                                                                |                                                 | EP131A: Methoxychlor                    | 72-43-5    | 5 µg/kg       | 112                    | 24.4       | 158       |  |
|                                                                                |                                                 | EP131A: cis-Chlordane                   | 5103-71-9  | 5 µg/kg       | 85.2                   | 27.3       | 139       |  |
|                                                                                |                                                 | EP131A: trans-Chlordane                 | 5103-74-2  | 5 µg/kg       | 83.5                   | 29.5       | 138       |  |
| EP131B: Polychlor                                                              | inated Biphenyls (as Aroclors) (QCLot: 2677728) |                                         |            |               |                        |            |           |  |
| ES1936029-007                                                                  | VC07_0.0-0.2                                    | EP131B: Total Polychlorinated biphenyls |            | 50 µg/kg      | 101                    | 44.0       | 136       |  |
|                                                                                |                                                 | EP131B: Aroclor 1254                    | 11097-69-1 | 50 µg/kg      | 101                    | 44.0       | 136       |  |



| Sub-Matrix: SOIL     |                                |                                   |            | M             | atrix Spike (MS) Report |          |            |
|----------------------|--------------------------------|-----------------------------------|------------|---------------|-------------------------|----------|------------|
|                      |                                |                                   |            | Spike         | SpikeRecovery(%)        | Recovery | Limits (%) |
| Laboratory sample ID | Client sample ID               | Method: Compound                  | CAS Number | Concentration | MS                      | Low      | High       |
| EP132B: Polynucle    | ear Aromatic Hydrocarbons (QCI | Lot: 2677696)                     |            |               |                         |          |            |
| ES1936029-001        | VC09_0.0-0.2                   | EP132B-SD: Naphthalene            | 91-20-3    | 25 µg/kg      | 85.9                    | 70.0     | 130        |
|                      | _                              | EP132B-SD: 2-Methylnaphthalene    | 91-57-6    | 25 µg/kg      | 88.3                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Acenaphthylene         | 208-96-8   | 25 µg/kg      | 101                     | 70.0     | 130        |
|                      |                                | EP132B-SD: Acenaphthene           | 83-32-9    | 25 µg/kg      | 92.5                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Fluorene               | 86-73-7    | 25 µg/kg      | 99.7                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Phenanthrene           | 85-01-8    | 25 µg/kg      | 94.9                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Anthracene             | 120-12-7   | 25 µg/kg      | 97.6                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Fluoranthene           | 206-44-0   | 25 µg/kg      | 98.1                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Pyrene                 | 129-00-0   | 25 µg/kg      | 98.9                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Benz(a)anthracene      | 56-55-3    | 25 µg/kg      | 108                     | 70.0     | 130        |
|                      |                                | EP132B-SD: Chrysene               | 218-01-9   | 25 µg/kg      | 95.4                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Benzo(b+j)fluoranthene | 205-99-2   | 25 µg/kg      | 106                     | 70.0     | 130        |
|                      |                                |                                   | 205-82-3   |               |                         |          |            |
|                      |                                | EP132B-SD: Benzo(k)fluoranthene   | 207-08-9   | 25 µg/kg      | 91.4                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Benzo(e)pyrene         | 192-97-2   | 25 µg/kg      | 91.4                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Benzo(a)pyrene         | 50-32-8    | 25 µg/kg      | 106                     | 70.0     | 130        |
|                      |                                | EP132B-SD: Perylene               | 198-55-0   | 25 µg/kg      | 92.4                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Benzo(g.h.i)perylene   | 191-24-2   | 25 µg/kg      | 95.0                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Dibenz(a.h)anthracene  | 53-70-3    | 25 µg/kg      | 99.8                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Indeno(1.2.3.cd)pyrene | 193-39-5   | 25 µg/kg      | 98.5                    | 70.0     | 130        |
|                      |                                | EP132B-SD: Coronene               | 191-07-1   | 25 µg/kg      | 108                     | 70.0     | 130        |
| Sub-Matrix: WATER    |                                |                                   |            | М             | atrix Spike (MS) Report |          |            |
|                      |                                |                                   |            | Spike         | SpikeRecovery(%)        | Recovery | Limits (%) |
| Laboratory sample ID | Client sample ID               | Method: Compound                  | CAS Number | Concentration | MS                      | Low      | High       |
| EG035T: Total Re     | coverable Mercury by FIMS(QCL  | Lot: 2686717)                     |            |               |                         |          |            |
| EP1911175-003        | Anonymous                      | EG035T: Mercury                   | 7439-97-6  | 0.01 mg/L     | 78.2                    | 70.0     | 130        |
| EP080/071: Total F   | etroleum Hydrocarbons (QCLot   | : 2681218)                        |            |               |                         |          |            |
| ES1936026-002        | Anonymous                      | EP080: C6 - C9 Fraction           |            | 325 µg/L      | 98.4                    | 70.0     | 130        |
| EP080/071: Total F   | ecoverable Hydrocarbons - NEP  | M 2013 Fractions (QCLot: 2681218) |            |               |                         |          |            |
| ES1936026-002        | Anonymous                      | EP080: C6 - C10 Fraction          | C6_C10     | 375 μg/L      | 97.8                    | 70.0     | 130        |
| EP080: BTEXN (Q      | CLot: 2681218)                 |                                   |            |               |                         |          |            |
| ES1936026-002        | Anonymous                      | EP080: Benzene                    | 71-43-2    | 25 µg/L       | 92.7                    | 70.0     | 130        |
|                      | -                              | EP080: Toluene                    | 108-88-3   | 25 µg/L       | 91.7                    | 70.0     | 130        |
|                      |                                | EP080: Ethylbenzene               | 100-41-4   | 25 µg/L       | 92.1                    | 70.0     | 130        |
|                      |                                | EP080: meta- & para-Xvlene        | 108-38-3   | 25 µg/L       | 92.0                    | 70.0     | 130        |
|                      |                                |                                   | 106-42-3   |               |                         |          |            |
|                      |                                | EP080: ortho-Xylene               | 95-47-6    | 25 µg/L       | 94.7                    | 70.0     | 130        |
|                      |                                | EP080: Naphthalene                | 91-20-3    | 25 µg/L       | 96.2                    | 70.0     | 130        |

| Page       | : 33 of 33            |
|------------|-----------------------|
| Work Order | ES1936029 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | : 12517046            |



| enu       | CHAIN OF<br>CUSTODY<br>ALS Laboratory<br>please tick | UADELAID<br>PH-08 R359<br>DBRISBAN<br>PH-07 J20<br>DGLADSTO<br>PH-07 7471 | E 24 Burma Road Po<br>DR/M E: ecclolide@e<br>E 32 Shand Savet 5:<br>7222 - xanglex hm<br>NVE 46 Callemovide<br>5600 E: gladslona@ | oraka SA 5095 LIMA<br>Isginbot.com Ph:0<br>Isginbot.com Ph:0<br>Vot.0.0 4053 LIM<br>Status@_siginbat.com Ph:<br>Drive Circon DLD 4680 LIME<br>asisylobat.com Ph 0 | ACKAY 78 16/ms<br>07 4944 0177 E.<br>IELBOWRNE 2-4<br>03 0549 9000 E<br>7068 - 27 8/ym<br>02 5372 0736 E: | our Road Mack<br>mackey@alsp<br>I Westall Road<br>: Samples nicib<br>isy Road Muog<br>musgee.moil@ | ay GLD 4740<br>Iobal 40m<br>Springvalo VIC 31<br>xorme@alsylotal<br>ee NSW 2850<br>galsglobal com | _⊒NEWC/A<br>≊1: 02490<br>71NO(4<br>ເປດ)<br>ເປດ)<br>ວ | NSTUE 5 Rose G<br>98 0433 E. start<br>VRA 4713 Goary<br>4423 2063 : : : : :<br>IF ERT+1 10 + lod<br>in 08 0209 7665 | um Road Warabro<br>dos norveaslie@al<br>Place Korth Noero<br>wradgels(dobel.co<br>Way Malaga WA<br>E samples.paché | sk NBW 2304<br>global.com<br>NSW 2541<br>n<br>5000<br>galsgietael.com |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | USYIDN(SY 247-280 )<br>Ph: 02 \$784 8556 E) ;<br>DTOWN SVILLE : 4<br>Ph: 04 4796 1600 E) (<br>DWDLLONGONG 90<br>Ph: 02 4225 5) ; | Voodpark Rogg<br>semples.sydue,<br>5 Desme Court<br>ownes e leterwice<br>Konny Street V<br>ourtkemble@gas | Sondafield N<br>@alsglobel.c<br>Bohie GLD 4<br>Onerta ®alsg<br>/oliocgang N<br>global.com | \$102164<br>com<br>เร็า8<br>(SW 2500 | ***      |
|-----------|------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|----------|
| CLIENT    | GHD Ply Ltd                                          |                                                                           | TURNAROUN                                                                                                                         |                                                                                                                                                                   | and TAT fills                                                                                             | st due date)                                                                                       | r.                                                                                                |                                                      |                                                                                                                     |                                                                                                                    | FO                                                                    | TEABORATORY US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E ONLY (Circl                                                                                                                    | <b>)</b>                                                                                                  |                                                                                           |                                      |          |
| OFFICE:   | level 15, 133 Castlercagh St, Sydney                 |                                                                           | (Standard TAT r<br>some tests e.g.                                                                                                | nay be longer for<br><u>Ultra Frace Organics)</u> Non S                                                                                                           | Standard or u                                                                                             | irgent TAT (I                                                                                      | List due dete)                                                                                    | :                                                    |                                                                                                                     |                                                                                                                    | 0.5                                                                   | ody Sen Intact?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                           |                                                                                           | No. (                                | ŵ        |
| PROJECT   | r; 12517046                                          |                                                                           | ALS QUOTE                                                                                                                         | NÖ.: SY-522-1                                                                                                                                                     | 19                                                                                                        |                                                                                                    |                                                                                                   | COC SEC                                              | ARENCE NUN                                                                                                          | IBER (Circle)                                                                                                      |                                                                       | CLEARDZON ICO DIICKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nesent (jpon rece                                                                                                                | pt?                                                                                                       |                                                                                           | , No                                 | 1/2      |
| ORDERN    | IUMBER:                                              |                                                                           | i<br>1                                                                                                                            |                                                                                                                                                                   |                                                                                                           |                                                                                                    | co                                                                                                | ¢: ① 2                                               | 34                                                                                                                  | 56                                                                                                                 | 7 Rut                                                                 | dom Sample Temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ve on Receipt                                                                                                                    | . · · · · · · · · · · · · · · · · · · ·                                                                   | ંડું                                                                                      | ъ.                                   | ģ        |
| PROJECT   | MANAGER: Carmen Yi                                   | CONTACT P                                                                 | H; 0451 962 98                                                                                                                    | 6                                                                                                                                                                 |                                                                                                           |                                                                                                    | OF                                                                                                | : 1 2                                                | 3 4                                                                                                                 | 90                                                                                                                 | ) 7 🤤                                                                 | le comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |                                                                                                           |                                                                                           |                                      |          |
| SAMPLER   | R: Sarah Eccleshall                                  | SAMPLER N                                                                 | IOBILE: 0459 5                                                                                                                    | 46 332 RELINQU                                                                                                                                                    | ISHED BY:                                                                                                 |                                                                                                    | RE                                                                                                | CEIVED BY:                                           | ~ ~~                                                                                                                | 0 1/2.1                                                                                                            | RELINQU                                                               | ished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  | RECEIVE                                                                                                   | ₽₽U                                                                                       | p                                    |          |
| COC ema   | iled to ALS? ( YES / NO)                             | EDD FORMA                                                                 | T (or default):                                                                                                                   | S. Ecclesi                                                                                                                                                        | hall                                                                                                      | _                                                                                                  | لحاصد                                                                                             | ep-Als                                               | Liou                                                                                                                | 10ezo                                                                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                           | 201                                                                                       | Ars                                  |          |
| Email Re; | ports to: sarah.eccleshall@ghd.com; carmen           | .yi@ghd.com; labreprots@g                                                 | hd.com                                                                                                                            | DATE/TIM                                                                                                                                                          | E:<br>74   A 4                                                                                            | ~/1a                                                                                               | 5 <b>19</b> ^^                                                                                    | телтіме:<br>. Г., Г. <i>Сл</i>                       | 1.51                                                                                                                | <b></b>                                                                                                            | DATE/TIM                                                              | E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  | DATE/TIM                                                                                                  | iE:                                                                                       | (1)                                  |          |
| Email Inv | olce to (with default to PM if no other addresse     | s are listed):                                                            |                                                                                                                                   | 2710                                                                                                                                                              | a 17(v                                                                                                    | 911                                                                                                | 0/                                                                                                | 11/19                                                | 101                                                                                                                 | ر                                                                                                                  |                                                                       | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  | <u>0</u> (                                                                                                | [[[[]]                                                                                    | 19 190                               | <u>«</u> |
| COMMEN    | TS/SPECIAL HANDLING/STORAGE OR DIS                   | iPOSAL: Please inform G                                                   | HD contacts of                                                                                                                    | any possible holding time iss                                                                                                                                     | sues that ar                                                                                              | re pecievec                                                                                        | i with these s                                                                                    | samples                                              |                                                                                                                     |                                                                                                                    |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                           |                                                                                           |                                      |          |
| 118E      | BAMPLE<br>MATRIX, SOLID                              | DETALS<br>(3) WATER (W) <sup>+</sup>                                      |                                                                                                                                   | CONTAINER INFORM                                                                                                                                                  | ATION - A                                                                                                 |                                                                                                    |                                                                                                   | ANA<br>Where <b>Me</b> t                             | LYSIS REQL<br>als are requin                                                                                        | liREO including<br>ad, specify Tota                                                                                | BUITES (NB<br>(unfitered bo                                           | Suite Codes must be interesting the state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sted to attract suit<br>/ed (field filterad b                                                                                    | e price)<br>ottle required                                                                                | <b>I</b> }.                                                                               |                                      | -        |
| LABID     | SAMPLE D                                             | DATE / TIME                                                               | MATRIX                                                                                                                            | TYPE & PRESERVATIVE<br>(refer to codes below)                                                                                                                     | TOTAL<br>CONTAINERS                                                                                       | ASS Field Screen<br>EA037)                                                                         | Phenols<br>EP075A)                                                                                | IRH/BTEXN (EP080-<br>SD)                             | FRH Ultra trace in sediments (EP071-SD)                                                                             |                                                                                                                    | TCN<br>FEK0265F)                                                      | SciOPPCB/PAH<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>(10-02)<br>( | SD03)<br>Maticle Size<br>Astribution (EA150H)<br>Cata Short Suite                                                                | <b>S</b> .                                                                                                | BT (EP090)                                                                                | Diaxins/Fumas<br>EPs00)              | loid     |
| i         | •<br>VC06_0.0-0.1                                    | 31/10/2019 20:00                                                          | 5                                                                                                                                 | ASS                                                                                                                                                               | 1                                                                                                         | x                                                                                                  |                                                                                                   |                                                      |                                                                                                                     | 1.21                                                                                                               | Auch                                                                  | VISIS: DOKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                |                                                                                                           |                                                                                           |                                      | <u> </u> |
|           | VC06 0.5-0.6                                         | 31/10/2019 20:00                                                          | 5                                                                                                                                 | ASS                                                                                                                                                               | ,                                                                                                         | ×                                                                                                  |                                                                                                   |                                                      |                                                                                                                     | )rga                                                                                                               | pised                                                                 | By / Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Boxbane                                                                                                                          |                                                                                                           | -+-<br>                                                                                   | ┍╺╢┈╶┽╴                              | -        |
| -         |                                                      |                                                                           |                                                                                                                                   | <u> </u>                                                                                                                                                          |                                                                                                           |                                                                                                    | _                                                                                                 |                                                      |                                                                                                                     | - seiir                                                                                                            | guish                                                                 | ed By / Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e teor                                                                                                                           | 710=                                                                                                      |                                                                                           |                                      | _        |
| 3         | VC12_0.0-0.1                                         | 31/10/2019 20:30                                                          | s                                                                                                                                 | ASS                                                                                                                                                               | 1                                                                                                         | ×                                                                                                  |                                                                                                   |                                                      |                                                                                                                     | Con                                                                                                                | ote / 1                                                               | mrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (50 F T                                                                                                                          | Jak 1                                                                                                     | tion                                                                                      | do                                   |          |
| 4         | VC12_0.5-0.6                                         | 31/10/2019 20:30                                                          | 9                                                                                                                                 | ASS                                                                                                                                                               | 1                                                                                                         | x                                                                                                  |                                                                                                   |                                                      |                                                                                                                     | NO)                                                                                                                | ia: F                                                                 | DO6, FOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 + FO                                                                                                                           |                                                                                                           | 1.4                                                                                       |                                      |          |
| 5         | VC12_1.0-1.1                                         | 31/10/2019 20:30                                                          | S                                                                                                                                 | ASS                                                                                                                                                               | 1                                                                                                         | ×                                                                                                  |                                                                                                   |                                                      | 1                                                                                                                   | Mar                                                                                                                | k Ry I                                                                | O / Interr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al Sheet                                                                                                                         |                                                                                                           |                                                                                           |                                      | -        |
| <br>6     | VC08_0.0-0.1                                         | 31/10/2019 20:45                                                          | s                                                                                                                                 | A56                                                                                                                                                               | 1                                                                                                         | +<br>_ ×                                                                                           | +                                                                                                 |                                                      |                                                                                                                     |                                                                                                                    |                                                                       | <del>   </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - <u> </u>   -                                                                                                                   |                                                                                                           |                                                                                           |                                      | _        |
|           | VC08_0.5-0.6                                         | 31/10/2019 20:45                                                          | 5                                                                                                                                 | ASS                                                                                                                                                               | 1                                                                                                         | x                                                                                                  | -                                                                                                 | -                                                    |                                                                                                                     |                                                                                                                    |                                                                       | Environme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ntal Divici                                                                                                                      | ΔD.                                                                                                       | ++                                                                                        |                                      | —        |
|           | VC08 1.0-1.1                                         | 31/10/2019 20:45                                                          | s                                                                                                                                 | ASS                                                                                                                                                               | 1                                                                                                         | x                                                                                                  |                                                                                                   |                                                      |                                                                                                                     |                                                                                                                    | <b></b>                                                               | Sydney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  | 011                                                                                                       |                                                                                           |                                      |          |
| a         | VC08 15-16                                           | 31/10/2019 20:45                                                          |                                                                                                                                   | 22 <b>4</b>                                                                                                                                                       |                                                                                                           |                                                                                                    | -                                                                                                 | <u> </u>                                             |                                                                                                                     |                                                                                                                    | <u> </u>                                                              | ES1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93618                                                                                                                            | 3                                                                                                         |                                                                                           |                                      | -        |
|           |                                                      |                                                                           |                                                                                                                                   |                                                                                                                                                                   | ·                                                                                                         | <u>+</u>                                                                                           | -                                                                                                 |                                                      |                                                                                                                     | ·                                                                                                                  | <u> </u>                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                           | +                                                                                         |                                      |          |
| 10        | VC13_0.0-0.1                                         | 31/10/2019 21:45                                                          | S                                                                                                                                 | ASS                                                                                                                                                               | 1                                                                                                         | ×                                                                                                  |                                                                                                   |                                                      |                                                                                                                     |                                                                                                                    |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                           |                                                                                           |                                      |          |
| N         | VC13_0.5-0.6                                         | 30/10/2019 21:45                                                          | s                                                                                                                                 | ASS                                                                                                                                                               | 1                                                                                                         | ×                                                                                                  |                                                                                                   |                                                      |                                                                                                                     |                                                                                                                    |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                           | -                                                                                         |                                      | _        |
| 12        | VC13_1.0-1.1                                         | 30/10/2019 21:45                                                          | s                                                                                                                                 | ASS                                                                                                                                                               | 1                                                                                                         | x                                                                                                  |                                                                                                   |                                                      |                                                                                                                     |                                                                                                                    | (·                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                           |                                                                                           |                                      | _        |
|           |                                                      |                                                                           |                                                                                                                                   | TOTAL                                                                                                                                                             |                                                                                                           | 12                                                                                                 |                                                                                                   |                                                      | 1                                                                                                                   |                                                                                                                    |                                                                       | felephone : - 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-8784 8555                                                                                                                      |                                                                                                           |                                                                                           |                                      | -        |

Water Container Codes: P = Unpreserved Plastic: N = Nitic Preserved Plastic: ORC = Nitic Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved Plastic; N = Nitic Preserved Plastic; ORC = Nitic Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium Hydroxide Preserved; S = Sodium; S = Sodium Hydroxide Preserv

| Enk                        | CHAIN OF<br>CUSTOD<br>ALS Laborator<br>please tick | E DADELAIO<br>In.08 8355<br>Y Dispessaa<br>Pil.07 334<br>DGCASS<br>DGCASS<br>Ph.07 747<br>→ | E 21 Burnia Read Po<br>(0990 E - adealdeige<br>B: 32 Shand Street 9<br>3 7229 E: sanypester<br>ONE 45 CaPemondat<br>1 5509 E: gledstoret, | voraka GA \$000<br>Segat bak.com<br>Isafat di J.O. 4073<br>sbare@kilegiobal.com<br>I Drive Cinton OLD 4830<br>Jakglobal.com | DMAC<br>Phi B7<br>DME(<br>Phi 03<br>DMUD<br>Phi 02 | :KAY 78 Harbo<br>19544 0577 51<br>280URNE 2 4<br>3 8545 0600 51<br>3 8545 0600 51<br>3 8577 6725 51 | eur Rnad Mecke<br>mackay@adogk<br>Wystat Rnad S<br>Caampies.malbr<br>ey Road Mudge<br>mwdgge.mall@ | iy QLD 4746<br>sballcom<br>Spaingvale M<br>sumstgialsgi<br>H NSW 2854<br>alogiobal com | CINFY<br>Ph:02<br>IC 2171 LIN<br>IC 2171 LIN<br>IC 2171 LIN<br>IC 2171<br>IC 21711<br>IC 2171<br>IC 2171<br>IC 2171<br>IC 2171<br>IC 21711<br>IC 217111<br>IC 21711<br>IC 217111<br>IC 21711<br>IC 217111<br>IC 217111<br>IC 2 | CASTLE S Rosen<br>4568 9433 El son<br>09444 4/10 (Aear<br>024423 2083 El: r<br>0766774 1.0 Ho<br>Ph: C8 9209 765 | Bum Road Warai<br>Dios nowonataky<br>y Piana North No<br>owca@aisglobai<br>d Way Malaga IV<br>5 El somplesuper | nicok NS1// 2005<br>Bisgiobal.com<br>wra NS1// 2541<br>com<br>(A 6050<br>Ini@alagiobal.co | מ                                     | ଘର<br>Ph,<br>Ph:<br>ପ୍ୟୁ<br>Ph:                    | YDNEY 237-28<br>02 8724 8555<br>OWNSYLLE 1<br>07 4795 0600<br>YOLLONGON(<br>02 4225 3125 | 89 Woodpark Re<br>El samples sydr<br>4 15 Destra Co<br>El boncsville en<br>800 Kenny Erret<br>El por ken blags | ad Sovratiaid<br>ey@alcoloba<br>int Hobia (OLL<br>wonicenta@ia<br>c Wolkangoory<br>jakata bal.com | NSW 216<br>il.com<br>D 4218<br>38qbhailice<br>38qbhailice<br>5 NSW 25 | 10<br>50   |
|----------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------|
| CLIENT:                    | GHD Pty Ltd                                        | ······································                                                      | TURNAROU                                                                                                                                  |                                                                                                                             | I 🗆 Standa                                         | rd TAT (Lis                                                                                         | t due date):                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                | Ē                                                                                         | ORLABORA                              | ORY USE C                                          | ONLY (GH                                                                                 | cie)                                                                                                           | - 1.575-975<br>- 1.575 - 975                                                                      | 1200                                                                  |            |
| OFFICE:                    | level 15, 133 Castlereagh St, Sydney               | ·                                                                                           | {Standard TAT r                                                                                                                           | nay be longer for some<br>Trace Organics)                                                                                   | non Sta                                            | andard or u                                                                                         | rgent TAT (L                                                                                       | lst due da                                                                             | ate):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                                                                                | 00.6                                                                                      | uninch Seel ofa                       | <b>.</b>                                           |                                                                                          | ня и на<br>Колонички у                                                                                         | 86                                                                                                |                                                                       |            |
| PROJEC                     | T: 12517046                                        | · · · · · · · · · · · · · · · · · · ·                                                       | ALS QUOTE                                                                                                                                 | NO.:                                                                                                                        | SY-522-19                                          | )                                                                                                   |                                                                                                    | [                                                                                      | COC SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  | IBER (Circle                                                                                                   | » (i                                                                                      | ne <b>Selitan</b> i                   | w bricks pres                                      | ent upon Hic                                                                             | apri 🤆                                                                                                         | S                                                                                                 | NO                                                                    | The second |
| ORDERI                     | NUMBER:                                            | -                                                                                           |                                                                                                                                           |                                                                                                                             |                                                    |                                                                                                     |                                                                                                    |                                                                                        | coc: 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>€</b> _]3 (                                                                                                   | . 5                                                                                                            | 6 7 N                                                                                     | al constante                          | emperature q                                       | r Receipt                                                                                |                                                                                                                |                                                                                                   | 'C 🖌                                                                  |            |
| PROJEC                     | T MANAGER: Carmen YI                               | CONTACT P                                                                                   | H: 0451 962 98                                                                                                                            | 8                                                                                                                           |                                                    |                                                                                                     |                                                                                                    |                                                                                        | OF: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 3                                                                                                              | 00                                                                                                             | フィ                                                                                        | hercomment                            |                                                    |                                                                                          | 3                                                                                                              | <u> </u>                                                                                          |                                                                       |            |
| SAMPLE                     | R: Sarah Eccleshall                                | SAMPLER                                                                                     | AOBILE: 0459 5                                                                                                                            | 46 332                                                                                                                      | RELINQUIS                                          | HED BY:                                                                                             |                                                                                                    |                                                                                        | RECEIVED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                                                                                                                |                                                                                                                | RELING                                                                                    | UISHED BY:                            |                                                    |                                                                                          | RECEIV                                                                                                         | ED BY                                                                                             | Are                                                                   |            |
| COC em:                    | alied to ALS? ( YES / NO)                          | EDD FORM/                                                                                   | AT (or default):                                                                                                                          |                                                                                                                             | S. Ecclesha                                        | 11                                                                                                  |                                                                                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                |                                                                                           |                                       |                                                    |                                                                                          | 50                                                                                                             | °Y 1                                                                                              | A                                                                     | £          |
| Emall Re                   | ports to: sarah.eccleshall@ghd.com; carmer         | 1.yi@ghd.com; labreprots@                                                                   | ghd.com                                                                                                                                   |                                                                                                                             | DATE/TIME:                                         | :                                                                                                   |                                                                                                    | ļ                                                                                      | DATE/TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                                | DATE/T                                                                                    | IME:                                  |                                                    |                                                                                          | DATE/T                                                                                                         | IME <sub>j</sub>                                                                                  | 1                                                                     |            |
| Email Inv                  | /olce to (will default to PM if no other addresse  | es are listed):                                                                             |                                                                                                                                           |                                                                                                                             |                                                    |                                                                                                     |                                                                                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                |                                                                                           |                                       |                                                    |                                                                                          | 0                                                                                                              | 1 1                                                                                               | 119                                                                   | I          |
| USE-                       | MATRIX: SOLID                                      |                                                                                             |                                                                                                                                           | CONTAINE                                                                                                                    | RINFORMAT                                          | tion ???                                                                                            |                                                                                                    | 1                                                                                      | A<br>Where N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NALYSIS REQ<br>Istals are requi                                                                                  | UIRED includi<br>red, specify To                                                                               | ing SUITES (i<br>ital (unfiltered                                                         | NB. Suite Codes<br>  bottle required) | must be lister<br>or Oissolved                     | d to attract si<br>(field filtered                                                       | uite price)<br>  bollie require                                                                                | ď)                                                                                                |                                                                       | 1          |
| LAB ID                     | SAMPLE ID                                          | DATE / TIME                                                                                 | MATRIX                                                                                                                                    | TYPE & PRESE                                                                                                                | RVATIVE<br>below)                                  | TOTAL<br>CONTAINERS                                                                                 | ASS Field Screen<br>(EA637)                                                                        | Phanols<br>(EP075A)                                                                    | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IRH Ultra trace in<br>sediments {EP0713                                                                          | гос<br>ЕР0(3)                                                                                                  | ICN<br>EK0265F)                                                                           | OCIOPIPCB/PAH<br>SD-02)               | CMPS Matals (15<br>netals + Iow lave!<br>kg)(SD03) | Particle Size<br>listribution (EA150                                                     |                                                                                                                |                                                                                                   | lloxins/Furnas<br>EP300)                                              |            |
| ъ                          | VC14_0.0-0.1                                       | 31/10/2019 22:15                                                                            | s                                                                                                                                         | ASS                                                                                                                         |                                                    | 1                                                                                                   | ×                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                |                                                                                                                |                                                                                           | <b>V &gt;:</b>                        |                                                    |                                                                                          |                                                                                                                | <del> - 1-</del>                                                                                  |                                                                       | Ť          |
| 14                         | VC14_0.5-0.6                                       | 31/10/2019 22:15                                                                            | 5                                                                                                                                         | ASS                                                                                                                         |                                                    | ٦                                                                                                   | ¥                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                |                                                                                                                |                                                                                           |                                       |                                                    |                                                                                          |                                                                                                                |                                                                                                   |                                                                       | Ī          |
| 15                         | VC14_1.0-1.1                                       | 31/10/2019 22:15                                                                            | \$                                                                                                                                        | ASS                                                                                                                         |                                                    | 1                                                                                                   | x                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                |                                                                                           |                                       |                                                    |                                                                                          |                                                                                                                |                                                                                                   |                                                                       | Ī          |
| 16                         | VC14_1.3-1.4                                       | 31/10/2019 22:15                                                                            | s                                                                                                                                         | A55                                                                                                                         |                                                    | 1                                                                                                   | ×                                                                                                  | <br> <br>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | :<br>                                                                                                          | <u> </u>                                                                                  |                                       |                                                    |                                                                                          |                                                                                                                |                                                                                                   |                                                                       | F          |
| 17                         | VC06_0.0-0.1                                       | 31/10/2019 20:00                                                                            | s                                                                                                                                         | Jar                                                                                                                         |                                                    | 1                                                                                                   |                                                                                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                | x                                                                                                              |                                                                                           | _                                     | :<br>                                              |                                                                                          |                                                                                                                |                                                                                                   |                                                                       |            |
| 18                         | VC06_0.3-0.4                                       | 31/10/2019 20:00                                                                            | S                                                                                                                                         | Jar                                                                                                                         |                                                    | 1                                                                                                   |                                                                                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | i                                                                                                              | i                                                                                         |                                       |                                                    |                                                                                          |                                                                                                                | -                                                                                                 |                                                                       | †-<br>:    |
|                            | VC06_0.5-0.6                                       | 31/10/2019 20:00                                                                            | \$                                                                                                                                        | Jar                                                                                                                         |                                                    | 1                                                                                                   |                                                                                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                |                                                                                           |                                       |                                                    |                                                                                          |                                                                                                                |                                                                                                   |                                                                       |            |
| pa                         | VC06_0.7-0.8                                       | 31/10/2019 20:00                                                                            | s                                                                                                                                         | Jar                                                                                                                         |                                                    | 1                                                                                                   |                                                                                                    | :<br>                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                |                                                                                           |                                       |                                                    |                                                                                          |                                                                                                                |                                                                                                   |                                                                       |            |
| ря<br>20                   |                                                    | 31/10/2019 20:00                                                                            | S                                                                                                                                         | Jar                                                                                                                         |                                                    | 1                                                                                                   |                                                                                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                |                                                                                           |                                       |                                                    |                                                                                          |                                                                                                                |                                                                                                   |                                                                       |            |
| 19<br>20<br>21             | VC06_0.8-0.9                                       |                                                                                             | 1                                                                                                                                         |                                                                                                                             |                                                    |                                                                                                     |                                                                                                    | 1                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 1                                                                                                              | Į                                                                                         |                                       |                                                    |                                                                                          |                                                                                                                |                                                                                                   | 1                                                                     | ſ          |
| 19<br>20<br>21<br>22       | VC06_0.8-0.9<br>VC06_0.0-0.5                       | 31/10/2019 20:00                                                                            | s                                                                                                                                         | Jar                                                                                                                         |                                                    | 3                                                                                                   |                                                                                                    | _                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                | -                                                                                         |                                       |                                                    | ;                                                                                        |                                                                                                                |                                                                                                   |                                                                       | L          |
| 19<br>20<br>21<br>22<br>23 | VC06_0.8-0.9<br>VC06_0.8-0.5<br>VC06_0.5-1.0       | 31/10/2018 20:00<br>Pt 31/10/2019 20:00                                                     | S<br>S                                                                                                                                    | Jar                                                                                                                         |                                                    | 3                                                                                                   | . <u> </u>                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                |                                                                                           |                                       |                                                    | ;                                                                                        |                                                                                                                | ····                                                                                              |                                                                       |            |

z = zona na marina zu z zona val souran olsupriale Meserved; VS = VOA via Sunuhic Preserved; AV = Ainreight Unpreserved Viat SG = Su Z = Zinc Acetate Preserved Bottle; E = EDIA Preserved Bottles; ST = Stanle Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

| Env        |                            | CHAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please tick → | ДАСБЕЛИВ<br>95 (8836)<br>СВВ8540<br>95 (97324)<br>⊕1640510<br>₽5 (97324) | : 27 Burna Road Po<br>18250 El radiolalde@o<br>192 Shand Sireet S<br>7222 El samples.bri<br>St& Afr Callemon dah<br>S600 El glessionefi | koraka S/A 5095<br>Negloběl com<br>Kofford OLO 2052<br>Isběnego Isyloběl com<br>n Orive Ušních OLO 4080<br>Rokejskihat com | Ph 07<br>Ph 07<br>Ph 02<br>Ph 02<br>Ph 02 | 4844 01771 (<br>4844 01771 (<br>4800RNE 2-<br>3 8540 5600 E<br>2011 27 Syds<br>6372 8735 E | wi Nood Macki<br>Markay(Esleji)<br>Mesiali Road 1<br>Sahipisa metu<br>Ny Road Mudgi<br>Wudgee,maikiji | ay QuU 4740<br>obal.com<br>Sprinsvale VIC<br>cume(galagio<br>en NSW 2850<br>Iakgiobal.com | LINE WC<br>12h; 02.4)<br>C 317.1 DNG<br>bAlcom 42h C | ASB   SRoso<br>689433 Et san<br>WRA 4/13 Gear<br>244232063 Et<br>WELK1041014<br>Par 03 9209760 | Sum Road Watob<br>phalaeticastic@v<br>y Hace North Nor<br>ownafgang boar<br>d Way Manga - W<br>5 El samplas.psd | rock NSW 2204<br>dogbballsom<br>wa NSW 7541<br>om<br>A 6090<br>n@alsgloballson | e                                   | ມຮາ<br>Ph: I<br>Ph: I<br>Ph: I<br>Ph: I<br>ມາຍ: ເ | ONEY 277<br>12 8764 85:<br>19/N \$VILL<br>197 4796 96<br>07 4796 96<br>04 ONG 04<br>42 4225 313 | -289 Weodj<br>551 - sampi<br>514-15 Des<br>59 Et lonnas<br>NG 94 Keon<br>25 Et partke | iark Road Sr<br>As sydney@a<br>nta Court Bo<br>vilie.envl.acon<br>iy Street Vice<br>ຫຍ້າວຜູ້ຈາກຜູ້ເກ | nrhfeld N8<br>Alsglobal.co<br>Alle QLD 16<br>Antal@alsgli<br>Pongong N5<br>X03l.com | W 21(4<br>)m<br>318<br>Iohal com<br>\$W 2500 |        |
|------------|----------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|--------|
| LIENT:     | GHD Pty Ltd                |                                                         |                                                                          | TURNAROUN                                                                                                                               | ND REQUIREMENT                                                                                                             | t 🗆 Standar                               | rd (Al (Lis                                                                                | t due date):                                                                                          |                                                                                           |                                                      |                                                                                                |                                                                                                                 | Ŕ                                                                              | RLABORA                             | IORY USE O                                        | NLY (C                                                                                          | ircio)                                                                                |                                                                                                      |                                                                                     |                                              |        |
| OFFICE:    | level 15, 133 Castlereac   | jh St, Sydney                                           |                                                                          | (Standard TAT n<br>tests e.g., Litra                                                                                                    | nay be longer for som<br>Trace Organics)                                                                                   | e 🗌 Non Sta                               | andard or u                                                                                | gent TAT (L                                                                                           | ist due de                                                                                | t <del>a</del> ):                                    |                                                                                                |                                                                                                                 | 10                                                                             | sidoy Saal Inia                     | ar                                                |                                                                                                 |                                                                                       | Yas                                                                                                  |                                                                                     | Na                                           | $-\pi$ |
| ROJECT     | 12517046                   |                                                         |                                                                          | ALS QUOTE                                                                                                                               | ND.:                                                                                                                       | SY-522-19                                 |                                                                                            |                                                                                                       |                                                                                           | COC SEC                                              | UENCE NU                                                                                       | BER (Circle                                                                                                     |                                                                                | inizin li                           | că oricks presei                                  | nt upon n                                                                                       | caipi?                                                                                | (Yes                                                                                                 | S.                                                                                  | No                                           | ેંો    |
| DRDER NI   | JMBER:                     |                                                         |                                                                          |                                                                                                                                         |                                                                                                                            |                                           |                                                                                            |                                                                                                       |                                                                                           | COC: 1 2                                             | $\bigcirc$                                                                                     | 1 5 6                                                                                                           | 7 83                                                                           | ndom Sample                         | Temperature or                                    | Receipt                                                                                         |                                                                                       |                                                                                                      |                                                                                     | •                                            |        |
| PROJECT    | MANAGER: Carmen YI         |                                                         | CONTACT P                                                                | H: 0451 962 98                                                                                                                          | 18                                                                                                                         |                                           |                                                                                            |                                                                                                       |                                                                                           | 0∓; 1 2                                              | 3                                                                                              | 600                                                                                                             | ) 7 💏                                                                          | er comment:                         |                                                   |                                                                                                 |                                                                                       | <u> </u>                                                                                             | <u>}</u>                                                                            |                                              |        |
| SAMPLER    | : Sarah Eccleshali         |                                                         | SAMPLER M                                                                | OBILE: 0459 5                                                                                                                           | i46 332                                                                                                                    | RELINQUISI                                | HED BY:                                                                                    |                                                                                                       | R                                                                                         | ECEIVED BY:                                          |                                                                                                |                                                                                                                 | RELINQ                                                                         | JISHED BY;                          |                                                   |                                                                                                 | RE                                                                                    | CEIVED                                                                                               | BY:                                                                                 |                                              |        |
| COC emai   | ed to ALS? { YES / N       | Ю)                                                      | EDD FORMA                                                                | T (or default):                                                                                                                         |                                                                                                                            | S. Ecclesha                               | llí                                                                                        |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 | 2                                                                                     | ⇒%4                                                                                                  | 1 AS                                                                                | 5                                            |        |
| Email Rep  | orts to: sarah.eccleshalk  | 2ghd.com; carmen.yi                                     | @ghd.com; labreprots@g                                                   | phd.com                                                                                                                                 |                                                                                                                            | DATE/TIME:                                | :                                                                                          |                                                                                                       |                                                                                           | ATE/TIME:                                            |                                                                                                |                                                                                                                 | DATE/TIN                                                                       | MË:                                 |                                                   |                                                                                                 | DA                                                                                    | ТЕЛТІМЕ                                                                                              | 11                                                                                  |                                              |        |
| Email Invo | ice to (will default to PM | f no other addresses :                                  | are listed):                                                             |                                                                                                                                         |                                                                                                                            |                                           |                                                                                            |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       | <u>_</u>                                                                                             | <u>(                                    </u>                                        | <u>\4</u>                                    | 196    |
|            |                            |                                                         |                                                                          |                                                                                                                                         |                                                                                                                            |                                           |                                                                                            |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     |                                              |        |
|            |                            | SAMPLE DE<br>Matrix: Solid (S                           | TAILS<br>WATER (W)                                                       |                                                                                                                                         | CONTAINE                                                                                                                   | RINFORMAT                                 | rion                                                                                       | ·                                                                                                     |                                                                                           | AN<br>Where Me                                       | IALYSIS REG<br>Italis are requi                                                                | UIRED Includi<br>red, specify To                                                                                | ng SUITES (N<br>bai (unfiltered l                                              | IB. Suite Code:<br>bottle required) | s must be listed<br>) or Dissolved (              | lo attract<br>field filter                                                                      | suite pric<br>ed bottle r                                                             | equined).                                                                                            |                                                                                     |                                              |        |
| LABID      | SAMPLE                     | di :                                                    | DATE / TIME                                                              | MATRIX                                                                                                                                  | TYPE & PRESE<br>(refer to code)                                                                                            | RVATIVE<br>s below)                       | TOTAL<br>CONTAINERS                                                                        | LSS Fleid Screen                                                                                      | honols<br>EP07SA)                                                                         | RH/BTEXN (EP080-                                     | RH Ultra trace In<br>ediments (EP071-SD)                                                       | 0C<br>EP003)                                                                                                    | CN                                                                             | IC/OP/PCB/PAH<br>SD-02)             | 2MPS Motals (15<br>Datals + faw levai<br>19)SC03  | article Size<br>(stribution (EA150H)                                                            | -7/4 Short Suite                                                                      |                                                                                                      | BT (EP090)                                                                          | toxins/r-urnas                               |        |
| 24         | VC12_0.0-0.1               |                                                         | 31/10/2019 20:30                                                         | 5                                                                                                                                       | JAR                                                                                                                        |                                           | 1                                                                                          | <u>a c</u>                                                                                            | <u></u>                                                                                   | w                                                    | ; <b>)— m</b>                                                                                  |                                                                                                                 |                                                                                |                                     | <u>YEI</u>                                        | <u>a v</u>                                                                                      | <u>a</u>                                                                              |                                                                                                      |                                                                                     | <u>) #</u>                                   | ¥      |
| 25         | VC12_0.3-0.4               |                                                         | 31/10/2019 20:30                                                         | \$                                                                                                                                      | reL                                                                                                                        |                                           | 1                                                                                          |                                                                                                       |                                                                                           |                                                      | ĺ                                                                                              |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     |                                              | ,      |
| 26         | VC12_0.6-0.6               |                                                         | 31/10/2019 20:30                                                         |                                                                                                                                         | jar                                                                                                                        |                                           | 1                                                                                          | <u>.</u>                                                                                              |                                                                                           | · •••                                                |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   | ! - +                                                                                           |                                                                                       |                                                                                                      |                                                                                     |                                              | x      |
| 27         | VC12_0.8-0.9               |                                                         | 31/10/2019 20:30                                                         | 5                                                                                                                                       | JAR                                                                                                                        | ··+                                       | 1                                                                                          |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     | ·                                            | ×      |
| 28         | VC12_1.0-1,1               |                                                         | 31/10/2019 20:30                                                         | s                                                                                                                                       | JAR                                                                                                                        |                                           | 1                                                                                          |                                                                                                       |                                                                                           |                                                      |                                                                                                | x                                                                                                               |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     |                                              |        |
| 29         | VC12_0.0-0.5               |                                                         | 31/10/2019 20:30                                                         | S                                                                                                                                       | JAR and f                                                                                                                  | Bag                                       | 4                                                                                          |                                                                                                       | x                                                                                         | ×                                                    | x                                                                                              | ×                                                                                                               | χ.                                                                             | x                                   | x                                                 | x                                                                                               |                                                                                       |                                                                                                      | x x                                                                                 |                                              |        |
| 30         | VC12_0,5-1.0               |                                                         | 31/10/2019 20:30                                                         | s                                                                                                                                       | Jar                                                                                                                        |                                           | 3                                                                                          |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     |                                              |        |
| 31         | VC08_0.0-0.1               |                                                         | 31/10/2019 20:45                                                         | 5                                                                                                                                       | jar                                                                                                                        |                                           | 1                                                                                          |                                                                                                       |                                                                                           |                                                      |                                                                                                | x                                                                                                               |                                                                                |                                     |                                                   | x                                                                                               |                                                                                       |                                                                                                      |                                                                                     |                                              |        |
| 32         | VC08_0.3-0 4               |                                                         | 31/10/2019 20:45                                                         | 3                                                                                                                                       | jar                                                                                                                        |                                           | 1                                                                                          |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     |                                              | x      |
| 33         | VC08_0.5                   | 0.6                                                     | 31/10/2019 20:45                                                         | 9                                                                                                                                       | jar                                                                                                                        |                                           | 1                                                                                          |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     |                                              |        |
| 34         | VC08_0.7-                  | -0.0                                                    | 31/10/2019 20:45                                                         | 5                                                                                                                                       | jar<br>1                                                                                                                   |                                           | 1                                                                                          |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     |                                              |        |
| 35         | VC08_1.0-                  | 1.1                                                     | 31/10/2019 20:45                                                         | 5                                                                                                                                       | jar                                                                                                                        |                                           | 1                                                                                          |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                |                                     |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     | i                                            |        |
|            |                            |                                                         |                                                                          |                                                                                                                                         |                                                                                                                            | TOTAL                                     |                                                                                            |                                                                                                       |                                                                                           |                                                      |                                                                                                |                                                                                                                 |                                                                                | <del>]</del> -                      |                                                   |                                                                                                 |                                                                                       |                                                                                                      |                                                                                     |                                              | $\top$ |

``

· · · · · ·

V = VOA Vial HCI Preserved; VB = VOA Vial Solium Bisulphale Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved VIal SG = Sulfuric Preserved Amber Glass; H = HCI preserved Plastic: HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic: F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphale Solis; B = Unpreserved Bag.

| Enu                   | ALS CH                                | AIN OF         DACELAD           ND 0F         DMDE 235           STODY         DB 07324           S Laboratory:         DGLA037           please tick → | E 21 Borns Road Pa<br>* 1890 E. arteletiese<br>또 32 Shand Street S<br>7 (22 E. camples.ta<br>(사용 13 Calorrendo)<br>1 560011: gladstoneg | Jonaka SA 5025 ⊐M<br>Mrgibbal nom Ph<br>Seford GLD 4053 ⊒M<br>Johann¢244551 John Ph<br>1 Other Gincer GLO 4830 ⊒M<br>galsg5bbal.com Ph; | ACKAY 78 Harb<br>C7 4544 C177 E<br>IELECURNE 2<br>03 8549 96001<br>UDGEE 27 Sydi<br>62 6372 6725 F | sta Ruad teteskay I<br>Maskav(Salastobé<br>4 Westal Ronat Spi<br>5 saroptes.metoou<br>19 Road Nardgos I<br>19 Rudgee mar(Gals | 010 4745<br>Loon<br>Ingvale VIC<br>Ingkalsgibi<br>NSW 2850<br>Stobal.com | LINEWO<br>INK 02 4<br>2 31 71 LINE<br>2 31 71 LINE 00<br>1 JOIN Photo<br>1 JOIN Photo | 2451LE 510991<br>90894531: Ann<br>90884413 Geal<br>924423 2062 E: J<br>024723 2062 E: J<br>024719 10 Ha<br>024719 10 Ha | Gum Road Watebr<br>oples newcastlegial<br>y Piaca North Norw<br>nowraggarogiobal ro<br>witaggarogiobal ro<br>witaga Way Malaga Wa<br>So bit semples.perth | ookinistii 2310<br>Isglobalkiom<br>Issi NSW 2541<br>Ist<br>ABU9:1<br>Igalagiobaleo | Г<br>Л                              | Boy<br>Phro<br>Difo<br>Dife<br>Bern               | TDNE7 277 260<br>32 2754 2655 E.<br>3WNS VILLE 14<br>37 4756 TEOD I.<br>OLLONGOMG 0<br>12 4225 3125 F: | Webspark Rea<br>complex.sydne<br>16 Dearto Com<br>Amride. No mus<br>O Kenny Stross<br>paskom No Stross | d Smithted I<br>y@olsglobal<br>n Bohle QLQ<br>sontrottalgist<br>W <b>olongong</b><br>Sglobal.com | NSYY 2164<br>.02/11<br>14918<br>Sglobal Low<br>(NSW 256) | *     |
|-----------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------|
| LIENT                 | GHD Pty Ltd                           | ······································                                                                                                                   | TURNAROU                                                                                                                                |                                                                                                                                         | dard TAT (Lie                                                                                      | it due data):                                                                                                                 |                                                                          |                                                                                       |                                                                                                                         | -,-                                                                                                                                                       |                                                                                    | ÖR LÆDRAT                           | (ORY USE o                                        | MLY (Cirol                                                                                             | <b>).</b> (5. )                                                                                        |                                                                                                  |                                                          | 1     |
| )FFICË:               | level 15, 133 Castlereagh St, S       | /dney                                                                                                                                                    | (Standard TAT r<br>tests e.g., Ultra                                                                                                    | may be longer for some D Non 1                                                                                                          | Standard of u                                                                                      | itgent TAT (Lis                                                                                                               | due dat                                                                  | te):                                                                                  |                                                                                                                         |                                                                                                                                                           | Ó                                                                                  | isibiy Sual Inla                    | ci?                                               |                                                                                                        | Y                                                                                                      |                                                                                                  | NE                                                       | den d |
| ROJEC                 | 12517046                              |                                                                                                                                                          | ALS QUOTE                                                                                                                               | NO.: SY-522-                                                                                                                            | 19                                                                                                 |                                                                                                                               |                                                                          | COC SE                                                                                | QUENCE NUI                                                                                                              | WBER (Circle)                                                                                                                                             |                                                                                    | inizen (                            | te oficiks prese                                  | nt uprin receij                                                                                        | n? (Yo                                                                                                 | <b>}</b> *:                                                                                      | No.                                                      |       |
| DRDER N               | UMBER:                                |                                                                                                                                                          |                                                                                                                                         |                                                                                                                                         |                                                                                                    |                                                                                                                               |                                                                          | COC: t 2                                                                              | $^{\circ}$ $eV$                                                                                                         | D 5 6                                                                                                                                                     | 7                                                                                  | andom Sample 1                      | lemperatura or                                    | n Receipt                                                                                              | 5                                                                                                      | $\mathbf{\hat{s}}$                                                                               |                                                          |       |
| ROJEC                 | MANAGER: Carmen Yi                    | CONTACT                                                                                                                                                  | °H: 0451 962 98                                                                                                                         |                                                                                                                                         |                                                                                                    | ·                                                                                                                             |                                                                          | OF: 1 2                                                                               | 2 3                                                                                                                     | <u> </u>                                                                                                                                                  | 27 🛛                                                                               | ne comment.                         |                                                   |                                                                                                        | <u></u>                                                                                                |                                                                                                  |                                                          |       |
| AMPLE                 | R: Sarah Eccleshall                   | SAMPLER I                                                                                                                                                | MOBILE: 0459 5                                                                                                                          | 546 332 RELINQU                                                                                                                         | ISHED BY:                                                                                          |                                                                                                                               | R                                                                        | ECEIVED BY:                                                                           |                                                                                                                         |                                                                                                                                                           | RELING                                                                             | UISHED BY:                          |                                                   |                                                                                                        | RECEIVE                                                                                                |                                                                                                  | pro                                                      |       |
| COC ema               | iled to ALS? ( YES / NO)              | EDD FORM                                                                                                                                                 | AT (or default):                                                                                                                        | 5. Eccles                                                                                                                               | həli                                                                                               |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        | 1 3                                                                                                    | - N'                                                                                             | 14                                                       | J     |
| Email Re              | oorts to: sarah.eccieshall@ghd.co     | m; carmen.yl@ghd.com; labreprots@                                                                                                                        | ghd.com                                                                                                                                 |                                                                                                                                         | IE:                                                                                                |                                                                                                                               | D                                                                        | ATE/TIME:                                                                             |                                                                                                                         |                                                                                                                                                           | DATEM                                                                              | ME:                                 |                                                   |                                                                                                        | DATE/T                                                                                                 | ME:                                                                                              | l a                                                      | 10    |
| Email thy             | oice to (will default to PM if no oth | er addresses are listed):                                                                                                                                | <b>.</b> _                                                                                                                              |                                                                                                                                         |                                                                                                    |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         | _                                                                                                                                                         |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        | (u)                                                                                              | <u> </u>                                                 | L.    |
|                       | <b>MATR</b>                           | SAMPLE DETARS                                                                                                                                            |                                                                                                                                         | CONTAINER INFORM                                                                                                                        | ATICAL                                                                                             |                                                                                                                               |                                                                          | Al<br>Where N                                                                         | VALYSIS REG<br>etais are requi                                                                                          | UIRED Includin<br>ired, specify Tot                                                                                                                       | g SUITES (I<br>al (unfillered                                                      | NB. Suite Codes<br>bottle required) | or Dissolved (                                    | i to attract suit<br>(field filtered t                                                                 | le price)<br>xottle required                                                                           | s).<br>                                                                                          | <u>†</u> ⊺                                               |       |
| LAB KO                | SAMPLE ID                             | DATE / TIME                                                                                                                                              | MATRIX                                                                                                                                  | TYPE & PRESERVATIVE<br>(refer to codes below)                                                                                           | TOTAL<br>CONTAINERS                                                                                | ASS Field Screen<br>EA037)                                                                                                    | henols<br>EP075A)                                                        | TRH/BTEXN (EP080-                                                                     | RRH Ultra trace In<br>Isodiments (EP071-SI                                                                              | roc<br>EP003)                                                                                                                                             | ICN<br>EK0265F)                                                                    | SC/OP/PCB/PAH<br>SD-02)             | CMPS Metals (15<br>netals + low level H(<br>SD03) | Particle Size<br>listribution (EA150H<br>2-7/4 Short Suite                                             |                                                                                                        | 16T (EP090)                                                                                      | DoxIns/Furnas<br>EP300)                                  |       |
| Z                     | VC08_1.3-1.4                          | 31/10/2019 20:45                                                                                                                                         | s                                                                                                                                       | Jar                                                                                                                                     | 1                                                                                                  |                                                                                                                               | цф                                                                       |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        |                                                                                                  |                                                          |       |
| 37                    | VC08_1.5-1.6                          | 31/10/2019 20:45                                                                                                                                         | 5                                                                                                                                       | Jar                                                                                                                                     | 1                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        | ]                                                                                                      |                                                                                                  |                                                          |       |
| 38                    | VC08_0.0-0.5                          | 31/10/2019 20:45                                                                                                                                         | 5                                                                                                                                       | Jar                                                                                                                                     | 3                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        |                                                                                                  |                                                          |       |
| 39                    | VC08_0.5-1.0                          | 31/10/2019 20:45                                                                                                                                         | \$                                                                                                                                      | Jar and bag                                                                                                                             | 4                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    | _                                   |                                                   |                                                                                                        |                                                                                                        |                                                                                                  |                                                          |       |
| 40                    | VC08_1.0-1.5                          | 31/10/2019 20:45                                                                                                                                         | 5                                                                                                                                       | Jar and bag                                                                                                                             | 4                                                                                                  |                                                                                                                               | x                                                                        | ×                                                                                     | ×                                                                                                                       | ¥                                                                                                                                                         | r                                                                                  | x                                   | x                                                 | ×                                                                                                      |                                                                                                        | ×                                                                                                | ×                                                        |       |
| 41                    | VC13_0.0-0.1                          | 31/10/2019 21:45                                                                                                                                         | ŝ                                                                                                                                       | Jər                                                                                                                                     | 1                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         | ×                                                                                                                                                         |                                                                                    |                                     |                                                   | r                                                                                                      |                                                                                                        |                                                                                                  |                                                          |       |
| 42                    | VC13_0.3-0.4                          | 31/10/2019 21:45                                                                                                                                         | s                                                                                                                                       | tet.                                                                                                                                    | 1                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        |                                                                                                  | i                                                        |       |
| 43                    | VC13_0.5-0.6                          | 31/10/2019 21:45                                                                                                                                         | 8                                                                                                                                       | Jar                                                                                                                                     | 1                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        |                                                                                                  |                                                          | ,     |
|                       | VC13_0.7-0.8                          | 31/10/2019 21:45                                                                                                                                         | \$                                                                                                                                      | Jar                                                                                                                                     | 1                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        |                                                                                                  |                                                          |       |
| 41                    | VC13_1.0-1.1                          | 31/10/2019 21:45                                                                                                                                         | 8                                                                                                                                       | Jar                                                                                                                                     | 1                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        |                                                                                                  |                                                          | ,     |
| 41<br>45              |                                       |                                                                                                                                                          | s                                                                                                                                       | jar                                                                                                                                     | 3                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        |                                                                                                  |                                                          | x     |
| 41<br>45<br>46        | VC13_0.0-0.5                          | 31/10/2019 21:45                                                                                                                                         |                                                                                                                                         |                                                                                                                                         |                                                                                                    |                                                                                                                               |                                                                          |                                                                                       | ·                                                                                                                       |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        |                                                                                                  |                                                          |       |
| 441<br>45<br>46<br>47 | VC13_0.0-0.5<br>VC13_0.5-1.0          | 31/10/2019 21:45                                                                                                                                         | s                                                                                                                                       | jar and bag                                                                                                                             | 4                                                                                                  |                                                                                                                               |                                                                          |                                                                                       |                                                                                                                         |                                                                                                                                                           |                                                                                    |                                     |                                                   |                                                                                                        |                                                                                                        |                                                                                                  |                                                          | ,     |

| Eny        | CHAIN (<br>CUSTOR<br>ALS Labor<br>please ti       | DF         DADELAID(<br>Pic 08 83%           OY         CBPISBANI<br>9h 07 3243           OY         CPUSPIC           OQLADSTC         CPUSPIC           VK →         CPUSPIC | . 21 Burnia Road Poi<br>1820 E: antalaide@at<br>2 32 Shand Stree: St<br>7222 L: samples.brit<br>XS 46 Collomandah<br>5600 L: gladsinnegt | oroka SA 5095<br>Jegiobal.com<br>Inferd OLD 4053<br>sbane@atxgloba.com<br>I Dree Clinton OLD 4680<br>Jeteglobal.com | DMACKAY 7:<br>Ph 07 4944 0<br>DM£LBOUR<br>Ph: 03 6549<br>DMJDQEE 2<br>Ph: 02 5372 5 | 8 Harbour Road<br>177 L: mátkayi<br>NE 2-4 Weasett<br>8600 & samnle<br>7 Sydney Road<br>735 L: mudges | Mackey (N.C. 474<br>Qalsgiobal.com<br>Unad Spécique e 1<br>Melbourresgiolis<br>Mudgoe NSW 28<br>mail@alsgiobal.co | ) ДNEWC<br>Phr 92 4<br>(IC 3171 ДNC<br>Iobal.com Pat 0<br>Io<br>Io<br>Io<br>Io<br>Io | 2487115 5 Rost Gi<br>908 9433 Er samp<br>wR4 4/13 Geary<br>24423 2003 E; no<br>⊒PERTH 10 Had<br>Ph: 08 9204 7655 | um Road Warabm<br>les.newcastolpai<br>Place Nະເຮັກ Nows<br>wra@alsgtobal.co<br>Way Malaga: WA<br>L: samples.perin@ | ok NSW 2304<br>grobal.com<br>NSW 2541<br>n<br>1090<br>raisglobal.com |                                   | USYON:<br>Pt: 72 875<br>DTOWNS<br>Pt: 07 474<br>DWOLLO<br>Pt: 02 425 | 277-299<br>24 8555 E<br>27111 E 144<br>95 0500 E<br>NCONC &<br>25 3125 E | Wobdpa<br>: semples<br>15 Down<br>: townesal<br>9 Kenny<br>: porkemi | ৎ Road Smit<br>sydney@als<br>a Court Bohil<br>Gonstommen<br>Sheet Wollon<br>চউ@alsgiote | hfield NSM<br>glichat.com<br>a QLO 481<br>fal@alsglo!<br>ogong NSI<br>al.com | V 2164<br>-<br>-<br>baucom<br>W 2600 |     |
|------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|-----|
| CLIENT:    | GHD Pty Ltd                                       |                                                                                                                                                                                | TURNAROUN                                                                                                                                | ND REQUIREMENT                                                                                                      | 🗋 Standard T                                                                        | AT (List du                                                                                           | date):                                                                                                            |                                                                                      | · · · ·                                                                                                          |                                                                                                                    | i ii iii                                                             | DR LABORA                         | TORY USE                                                             | DNLY (                                                                   | Circle)                                                              |                                                                                         |                                                                              |                                      |     |
| OFFICE:    | level 15, 133 Castlereagh St, Sydney              |                                                                                                                                                                                | (Standard TAT ri<br>some tests e.g                                                                                                       | nay be longer for<br>Uthe Trace                                                                                     | Non Stand                                                                           | ard or urgeni                                                                                         | TAT (List due                                                                                                     | date}:                                                                               |                                                                                                                  |                                                                                                                    | a a a a a a a a a a a a a a a a a a a                                | usion Scal In                     | let?                                                                 |                                                                          |                                                                      |                                                                                         |                                                                              |                                      |     |
| PROJECT    | : 12517046                                        |                                                                                                                                                                                | ALS QUOTE                                                                                                                                | NO.:                                                                                                                | SY-522-19                                                                           |                                                                                                       |                                                                                                                   | COC                                                                                  | SEQUENCE NI                                                                                                      | IMBER (Circi                                                                                                       | e)                                                                   | te ce inizen                      | los bricks pies                                                      | ent spor                                                                 | i recë)pt                                                            | $i^{\dagger}$                                                                           | Since                                                                        |                                      | NA  |
| ORDER N    | UMBER:                                            |                                                                                                                                                                                |                                                                                                                                          |                                                                                                                     |                                                                                     |                                                                                                       | -                                                                                                                 | COC: 1                                                                               | 2 3                                                                                                              | • 🕤                                                                                                                | 5 7 R                                                                | udom:Sample                       | Temporeliumes                                                        | m Recei                                                                  | pt.                                                                  |                                                                                         | 60                                                                           |                                      |     |
| PROJECT    | MANAGER: Carmen Yi                                | CONTACT P                                                                                                                                                                      | H: 0451 962 98                                                                                                                           | 18                                                                                                                  | _                                                                                   |                                                                                                       |                                                                                                                   | C7F: 1                                                                               | z 3                                                                                                              | 4 5 (                                                                                                              | 5,70                                                                 | ner comment:                      |                                                                      |                                                                          |                                                                      | 2,63                                                                                    | 15. S                                                                        |                                      |     |
| SAMPLER    | l: Sarah Eccleshali                               | SAMPLER N                                                                                                                                                                      | OBILE: 0459 5                                                                                                                            | 546 332 F                                                                                                           | ELINQUISHE                                                                          | D BY:                                                                                                 |                                                                                                                   | RECEIVED                                                                             | BY:                                                                                                              |                                                                                                                    | RELING                                                               | UISHED BY                         | :                                                                    |                                                                          |                                                                      | RECEIVE                                                                                 | D BY:                                                                        | A                                    |     |
| COC emai   | lled to ALS? ( YES / NO)                          | EDD FORM/                                                                                                                                                                      | AT (or default):                                                                                                                         | 5                                                                                                                   | . Eccleshall                                                                        |                                                                                                       |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      | 509                                                                                     | XHI                                                                          | No                                   | L   |
| Email Rep  | orts to: sarah.eccleshall@ghd.com; car            | men.yl@ghd.com; labreprots@                                                                                                                                                    | )<br>ghd.com                                                                                                                             | C                                                                                                                   | ATE/TIME:                                                                           |                                                                                                       |                                                                                                                   | DATE/TIME:                                                                           |                                                                                                                  |                                                                                                                    | DATE/T                                                               | IME:                              |                                                                      |                                                                          |                                                                      | DATE/TI                                                                                 | иE: /                                                                        | 40                                   | 5   |
| Email Invo | bice to (will default to PM if no other addr      | esses are listed):                                                                                                                                                             |                                                                                                                                          |                                                                                                                     |                                                                                     |                                                                                                       |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      | OI                                                                                      | <u>lu</u>                                                                    | 119                                  | 190 |
| COMMEN     | TS/SPECIAL HANDLING/STORAGE OF                    | DISPOSAL:                                                                                                                                                                      |                                                                                                                                          |                                                                                                                     |                                                                                     |                                                                                                       |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      | -                                                                                       |                                                                              |                                      |     |
|            | SANP<br>MATRIX: SOI                               | E DETALS<br>D (S)WATER (W)                                                                                                                                                     |                                                                                                                                          | CONTAINER                                                                                                           | INFORMATIO                                                                          |                                                                                                       |                                                                                                                   | AN/<br>Where Met                                                                     | ALYSIS REQUI                                                                                                     | RED including<br>I, specify Total                                                                                  | SUITES (NB.<br>(unfiltored bo                                        | Sulie Codes n<br>ille required) o | ust be listed in<br>Dissolved (fig                                   | ettract :<br>eld filtere                                                 | suăe prie<br>d bollie                                                | xe)<br>required).                                                                       |                                                                              |                                      |     |
| LAB ID     | SAMPLE ID                                         | DATE / TIME                                                                                                                                                                    | MATRIX                                                                                                                                   | TYPE & PRESER<br>(refer to codes b                                                                                  | VATIVE<br>ekow)                                                                     | CONTAINERS                                                                                            | Phenols<br>(EP075A)                                                                                               | TRH/BTEXN (EP080-                                                                    | TRH Ultra trace in<br>sediments (EP071-SD)                                                                       | TOC<br>(EP003)                                                                                                     | TCN<br>(EK0265F)                                                     | OC/OP/PCB/PAH<br>(SD-02)          | ICMPS Metals (15<br>Intetals + Iow level Hg)<br>(SD03                | Particle Size<br>distribution (EA150H)                                   | P-7/4 Short Suite                                                    |                                                                                         | TBT (EP090)                                                                  | Dioxins/Furnas<br>(EP300)            | НоЮ |
| 48         | VC14_0.0-0.1                                      | 31/10/2019 22:15                                                                                                                                                               | s                                                                                                                                        | Jar                                                                                                                 | 1                                                                                   |                                                                                                       |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      |                                                                                         |                                                                              | ļ                                    | x   |
| 49         | VC14_0.3-0.4                                      | 31/10/2019 22:15                                                                                                                                                               | 5                                                                                                                                        | Jar                                                                                                                 | 1                                                                                   |                                                                                                       |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          | :                                                                    |                                                                                         |                                                                              |                                      | x   |
| Ф          | VC14-0.5-0.5                                      | 31/16/2019 22:15                                                                                                                                                               | \$                                                                                                                                       | Jair                                                                                                                |                                                                                     | 1                                                                                                     |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      |                                                                                         |                                                                              |                                      | ×   |
| ন          | VC14_0.7+0.8                                      | 31/10/2019 22:15                                                                                                                                                               | 6                                                                                                                                        | Jar                                                                                                                 |                                                                                     | 1                                                                                                     |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      |                                                                                         |                                                                              |                                      | x   |
| 52         | VC14_1.0-1.1                                      | 31/10/2019 22:15                                                                                                                                                               | s                                                                                                                                        | Jar                                                                                                                 |                                                                                     | 4                                                                                                     |                                                                                                                   |                                                                                      |                                                                                                                  | ×                                                                                                                  |                                                                      |                                   |                                                                      |                                                                          | x                                                                    |                                                                                         |                                                                              |                                      |     |
| 53         | VC14_1.3-1.4                                      | 31/10/2019 22:15                                                                                                                                                               | S                                                                                                                                        | Jar                                                                                                                 |                                                                                     | 1                                                                                                     |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      |                                                                                         |                                                                              | 1                                    | x   |
| 54         | VC14_0.0-0.5                                      | 31/10/2019 22:15                                                                                                                                                               | s                                                                                                                                        | Jar and Bag                                                                                                         | 1                                                                                   | 4                                                                                                     |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      | T -                                                                      | !                                                                    |                                                                                         |                                                                              | ļ                                    | ×   |
| 55         | VC14_0.5-1.0                                      | 31/10/2019 22:15                                                                                                                                                               | s                                                                                                                                        | jar                                                                                                                 |                                                                                     | 3                                                                                                     |                                                                                                                   | " [ _                                                                                |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      |                                                                                         |                                                                              |                                      | x   |
| 56         | SW01                                              | 31/10/2019                                                                                                                                                                     | w                                                                                                                                        | P                                                                                                                   |                                                                                     | 1                                                                                                     |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      |                                                                                         |                                                                              |                                      | x   |
| 57         | SW02                                              | 31/10/2018                                                                                                                                                                     | · · · · ·                                                                                                                                | P                                                                                                                   | ~~~                                                                                 | 1                                                                                                     |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      |                                                                                         |                                                                              |                                      | x   |
| 58         | 8W03                                              | 31/10/2019                                                                                                                                                                     | w                                                                                                                                        | Р                                                                                                                   | 1                                                                                   |                                                                                                       |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    |                                                                      |                                   |                                                                      |                                                                          |                                                                      |                                                                                         | 1                                                                            | <b>—</b>                             | x   |
| 59         | SMB                                               | 31/19/2019                                                                                                                                                                     | <br>w                                                                                                                                    | р<br>  р<br>                                                                                                        | 1                                                                                   |                                                                                                       |                                                                                                                   |                                                                                      |                                                                                                                  |                                                                                                                    | i -                                                                  |                                   | -                                                                    | 1                                                                        |                                                                      | · • ·                                                                                   | 1                                                                            |                                      | x   |
| Vater Cont | alh <b>er Corles:</b> P⇒Unpreservent Pisstin' N = | Vitric Preserved Plastic ORC = N                                                                                                                                               | Stic Preserved Of                                                                                                                        | RC: SHi≖ Sodium Hude                                                                                                |                                                                                     | (ad: 5 = Sod                                                                                          |                                                                                                                   | Preserved Plastle                                                                    | · AG = Amber (                                                                                                   |                                                                                                                    | (evil- AP - Alefi                                                    |                                   | Plastin                                                              |                                                                          |                                                                      |                                                                                         |                                                                              |                                      |     |

| Enu       | CHAIN OF<br>CUSTODY<br>ALS Laboratory.<br>please Sck > | LADELAD<br>Ph: 98 Piba<br>EBRISBAN<br>Ph: 17 5243<br>CGLASSIC<br>Ph. 07 721 | E 21 Biuma Ruad Po<br>19830 E : ad-salda(ga<br>E 32 Shand Streat St<br>(222 E, samples,bi<br>24E 48 Colombia)<br>500 E: gladstone@ | oraka SA S295<br>Asglobalutom<br>tehtini (LLI) 4050<br>Starie gualisglobal com<br>EDMM Clinton QLD 4089<br>Set-global com | CIMACK<br>Ph: 97-40<br>LIMELB<br>Ph: 03-8<br>CIMPJOG<br>Ph: 02-83 | AY 78 Horf<br>044 01775<br>90URNE 2<br>9545 9503<br>185 27 Syd<br>377 67355 | bnur Road Missi<br>=: mackay@ain;<br>=4 Westak Road<br>E. Sampias.mea<br>inay Road Madg<br>: murdgee.makg | ray OLD 4748<br>Isoongyals Vic<br>Soursegalsets<br>Joo NSW 2050<br>Baisglot ALcom | 미NEV<br>Ph: 00<br>317! 구<br>al.con 분원 | VCASTLE 0 Rose<br>24968 9433 E: 50<br>NOWRA 4/13 Ge<br>0 024432 2035 E<br>DEERTH 102<br>Ph: 08 9203 7 | a Guse Road Wara<br>miples.hewesster<br>any Place North N:<br>newezgalsglobal<br>Hao Way Malaga<br>Sob El samples ee | brook NSW 230.<br>ຊີລະອຸງັດໄປປະເທດ<br>ແລະ NSW 2541<br>ເວລາ<br>WA 8090<br>ເກີເຊີຍໄຊຍັດອີສາ ແ | 1<br>:m                         |                                                    | OSYDX<br>Ph: 02 3<br>Ph: 07 7<br>Ph: 07 7<br>DwOLI<br>Ph: 52 4 | EY 277-0<br>3784 8555<br>NSV1 11<br>1748 0600<br>LONGON<br>1225 3125 | 280 Vood<br>5 Et trintp<br>14-25 De<br>9 Et terro<br>8 S0 Kent<br>5 Et portpa | iverik Road<br>estiyohty<br>ma Court<br>with envike<br>iy Shuet V<br>mitho@ae | l Simelińk (†<br>Kwalogiaba<br>(Bahwe OX (<br>Simkeriołigia<br>Wolionyczni)<br>Sglabak con | NSW 21<br>Lom<br>14918<br>Gelebalat<br>NSW 25 | (64<br>541<br>560 |
|-----------|--------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------|
| LIENT:    | GHD Pty Ltd                                            |                                                                             | TURNAROUN                                                                                                                          |                                                                                                                           | Standard T                                                        | AT (List                                                                    | t due date):                                                                                              |                                                                                   |                                       |                                                                                                       |                                                                                                                      | Č.                                                                                          | LABORATO                        | RY USE D                                           | NÈY (                                                          | Circis)                                                              |                                                                               |                                                                               |                                                                                            |                                               |                   |
| OFFICE:   | level 15, 133 Castlervagh St, Sydney                   |                                                                             | (Standard TAT m<br>tests e.g., Ultra T                                                                                             | nay be longer for some<br>frace Organics)                                                                                 | Non Stands                                                        | and of ut                                                                   | gent TAT (Li                                                                                              | st due date)                                                                      |                                       |                                                                                                       |                                                                                                                      |                                                                                             | di Seni letat                   |                                                    | ويندوندي<br>مريد                                               |                                                                      |                                                                               | •                                                                             | N                                                                                          |                                               |                   |
| ROJECT    | : 12517046                                             |                                                                             | ALS QUOTE                                                                                                                          | NO.:                                                                                                                      | SY-552-19                                                         |                                                                             |                                                                                                           |                                                                                   | COC SEQ                               | UENCE NU <b>m</b> e                                                                                   | SER (Circle)                                                                                                         | 1                                                                                           | ind Arizon is a                 | tincka presei                                      | et lucicle                                                     | recalp!?                                                             | Ċ                                                                             | <u>نونو</u>                                                                   | Ň                                                                                          | <b>.</b>                                      |                   |
| DRDER N   | UMBER:                                                 |                                                                             |                                                                                                                                    |                                                                                                                           |                                                                   |                                                                             | -                                                                                                         |                                                                                   | C: 1 2                                | 34                                                                                                    | 5 🔶                                                                                                                  | 〈 7 🞇                                                                                       | om Sample Te                    | n perature or                                      | r Receir                                                       |                                                                      | ି ୍                                                                           | ົລ                                                                            |                                                                                            |                                               | ್ರತಿ              |
| ROJECT    | MANAGER: Carmon Yi                                     | CONTACT P                                                                   | H: 0451 962 98                                                                                                                     | 8                                                                                                                         |                                                                   |                                                                             |                                                                                                           | 05                                                                                | ; 1 z                                 | 34                                                                                                    | 5 6                                                                                                                  | 7 0                                                                                         | outimed.                        |                                                    | 200                                                            | <u>2006</u><br><u>C2400</u>                                          |                                                                               | > -                                                                           | <u> </u>                                                                                   |                                               |                   |
| AMPLER    | t: Serah Eccleshall                                    | SAMPLER M                                                                   | OBILE: 0459 5                                                                                                                      | 46 332                                                                                                                    | RELINQUISHEI                                                      | D BY:                                                                       |                                                                                                           | RE                                                                                | CEIVED BY:                            |                                                                                                       |                                                                                                                      | RELINQUI                                                                                    | SHED BY:                        |                                                    |                                                                | 1                                                                    | RECE                                                                          |                                                                               | 5-80                                                                                       | ъЛ                                            | $\sim$            |
| COC emai  | led to ALS? ( YES / NO)                                | EDD FORMA                                                                   | T (or defauit):                                                                                                                    |                                                                                                                           | S. Eccleshall                                                     |                                                                             |                                                                                                           |                                                                                   |                                       |                                                                                                       |                                                                                                                      |                                                                                             |                                 |                                                    |                                                                |                                                                      |                                                                               |                                                                               | _v<br>¢⊈                                                                                   | χŀ,                                           |                   |
| mall Rep  | orte to: sarah.eccleshall@ghd.com; carmen.y            | vl@ghd.com; labreprots@g                                                    | ghd.com                                                                                                                            |                                                                                                                           | DATE/TIME:                                                        |                                                                             |                                                                                                           | DAT                                                                               | TE/TIME:                              |                                                                                                       |                                                                                                                      | DATE/TIM                                                                                    | Ξ:                              |                                                    |                                                                |                                                                      | DATE                                                                          | TIME:                                                                         |                                                                                            |                                               |                   |
| mall Invo | lice to (will default to PM if no other addresses      | are listed):                                                                |                                                                                                                                    |                                                                                                                           |                                                                   |                                                                             |                                                                                                           |                                                                                   |                                       | <u> </u>                                                                                              |                                                                                                                      | L                                                                                           |                                 |                                                    |                                                                | l                                                                    | <u> </u>                                                                      | $\geq 1$                                                                      | $\left( 1\right)$                                                                          | 19                                            | (                 |
| OMMEN     | TS/SPECIAL HANDLING/STORAGE OR DISF                    | POSAL:                                                                      |                                                                                                                                    |                                                                                                                           |                                                                   |                                                                             |                                                                                                           |                                                                                   |                                       |                                                                                                       |                                                                                                                      |                                                                                             |                                 |                                                    |                                                                |                                                                      |                                                                               |                                                                               |                                                                                            |                                               |                   |
| ALS C     | SAMPLE D<br>MISTRIX SOLID (                            | IETAES<br>SJWATER (W)                                                       |                                                                                                                                    | CONTAINE                                                                                                                  | CINFORMATION                                                      | N.                                                                          |                                                                                                           | •                                                                                 | Where                                 | ANALYSIS RE<br>Metals are raq                                                                         | QUIRED includ<br>wired, specify T                                                                                    | ding SUITES (<br>otal (unilitered                                                           | NB. Suite Coo<br>Sootle require | es must be lis<br>c) or Dissolv                    | sted to a<br>ed (field                                         | ltract su<br>Nitered                                                 | ite price<br>botte re                                                         | )<br>quired).                                                                 |                                                                                            |                                               |                   |
| LAE iD    | SAMPLE ID                                              | DATE / TIME                                                                 | MATRUX                                                                                                                             | TYPE & PRESE                                                                                                              | RVATIVE<br>below)                                                 | TOTAL<br>CONTAINERS                                                         | ASS Fleid Screen<br>(EAU37)                                                                               | <sup>a</sup> henols<br>(EP075A)                                                   | TRH/BTEXN (EP080-<br>SD)              | FRH Uitra traco in<br>sodiments (EP071-SD)                                                            | 10C<br>(EP 403)                                                                                                      | TCN<br>(EK0265F)                                                                            | OC/OP/PCB/PAH<br>(SD-02)        | CMPS Metals (15<br>metals + low level<br>4g)(SD03) | Particia Size<br>distribution (EA150H)                         | P-7/4 Short Sulte                                                    | ТЯН                                                                           | BTEXN                                                                         | PAH<br>Trh C6-c10                                                                          | BTEX                                          |                   |
| -         | FD05                                                   | 30/10/2019                                                                  | s                                                                                                                                  | JAR                                                                                                                       |                                                                   | ١                                                                           |                                                                                                           |                                                                                   | ,⊢ vi<br>Piea                         | he forward to                                                                                         | eurofins                                                                                                             | <b> </b>                                                                                    |                                 |                                                    |                                                                |                                                                      |                                                                               |                                                                               |                                                                                            | <u> </u>                                      |                   |
| 6         | FD07                                                   | 30/10/2019                                                                  | s                                                                                                                                  | JAR                                                                                                                       |                                                                   | 1                                                                           |                                                                                                           |                                                                                   |                                       |                                                                                                       |                                                                                                                      |                                                                                             |                                 |                                                    |                                                                |                                                                      |                                                                               |                                                                               |                                                                                            |                                               | -                 |
|           | FD08                                                   | 30/10/2819                                                                  | s                                                                                                                                  | JAR                                                                                                                       |                                                                   | -                                                                           |                                                                                                           |                                                                                   | Plea                                  | se forward to                                                                                         | eurofins                                                                                                             |                                                                                             |                                 | •                                                  |                                                                |                                                                      | Î                                                                             |                                                                               |                                                                                            |                                               |                   |
| ы         | fD09                                                   | 31/10/2019                                                                  | s                                                                                                                                  | Jar                                                                                                                       |                                                                   | 1                                                                           |                                                                                                           |                                                                                   |                                       |                                                                                                       |                                                                                                                      |                                                                                             | -                               |                                                    |                                                                |                                                                      |                                                                               |                                                                               |                                                                                            |                                               |                   |
| -         | FD10                                                   | 31/10/2019                                                                  | 5                                                                                                                                  | Jar                                                                                                                       | 1                                                                 |                                                                             |                                                                                                           |                                                                                   | Plea                                  | se forward to                                                                                         | เขาตร์แห                                                                                                             |                                                                                             |                                 |                                                    |                                                                |                                                                      |                                                                               |                                                                               |                                                                                            |                                               |                   |
| 62        | RIN_02                                                 | 31/10/2019                                                                  | w                                                                                                                                  | tottles                                                                                                                   |                                                                   | 4                                                                           | _                                                                                                         |                                                                                   | ·                                     |                                                                                                       |                                                                                                                      |                                                                                             |                                 |                                                    |                                                                |                                                                      | _x_                                                                           | x                                                                             | x                                                                                          | -                                             | <u> </u>          |
| 63        | TSZ                                                    | 31/10/2019                                                                  | 3                                                                                                                                  | jar                                                                                                                       |                                                                   | 1                                                                           |                                                                                                           |                                                                                   |                                       |                                                                                                       |                                                                                                                      | ļ                                                                                           |                                 | <b>.</b>                                           |                                                                |                                                                      |                                                                               | *                                                                             |                                                                                            |                                               | ]                 |
| 64        | TB2                                                    | 30/10/2019                                                                  | s                                                                                                                                  | jar                                                                                                                       |                                                                   | 1                                                                           |                                                                                                           |                                                                                   |                                       |                                                                                                       | <u> </u> .                                                                                                           |                                                                                             |                                 | <u> </u>                                           |                                                                |                                                                      |                                                                               |                                                                               | ×                                                                                          | ×                                             |                   |
| <u>65</u> | Trip Spike Control                                     | · · · · · · · · · · · · · · · · · · ·                                       |                                                                                                                                    |                                                                                                                           |                                                                   |                                                                             | <br>                                                                                                      | <u> </u>                                                                          |                                       |                                                                                                       | <u> </u>                                                                                                             |                                                                                             | <br>                            |                                                    |                                                                |                                                                      |                                                                               |                                                                               |                                                                                            |                                               |                   |
| do        | K12 0.9-1.0                                            |                                                                             |                                                                                                                                    |                                                                                                                           |                                                                   |                                                                             |                                                                                                           |                                                                                   |                                       |                                                                                                       |                                                                                                                      |                                                                                             |                                 |                                                    |                                                                | -                                                                    |                                                                               |                                                                               |                                                                                            |                                               |                   |
| k7        | VC14 1.0-1.4                                           |                                                                             |                                                                                                                                    |                                                                                                                           |                                                                   |                                                                             |                                                                                                           |                                                                                   |                                       |                                                                                                       |                                                                                                                      |                                                                                             |                                 |                                                    |                                                                |                                                                      |                                                                               |                                                                               |                                                                                            |                                               |                   |
|           |                                                        |                                                                             |                                                                                                                                    |                                                                                                                           |                                                                   |                                                                             |                                                                                                           | 1                                                                                 |                                       |                                                                                                       |                                                                                                                      | 1                                                                                           |                                 |                                                    |                                                                |                                                                      |                                                                               | 1                                                                             | 1                                                                                          |                                               |                   |

Would you please let the lab know to hold off the TBT and Dioxins testing for these 3 samples? We're awaiting some approvals which haven't landed yet.

Apologies for any inconvenience caused.

Regards, Carmen

From: Sarah Eccleshall <<u>Sarah.Eccleshall@ghd.com</u>> Sent: Saturday, 2 November 2019 6:13 PM To: Brenda Hong (InTouch) <<u>brenda.hong@alsglobal.com</u>> Cc: Carmen Yi <<u>Carmen.Yi@ghd.com</u>> Subject: Additional analysis requerst for: ES1936029:

Hi Brenda,

We'd like to request additional analysis on three sediment samples under work order ES1936029

| Samples      | Analyses     |  |
|--------------|--------------|--|
| VC01_0.5-1.0 | TBT, Dioxins |  |
| VC04_0.5-1.0 | TBT, Dioxins |  |
| VC07_0.0-0.5 | TBT, Dioxins |  |

Many Thanks,

#### Sarah Eccleshall PhD MSc BSc Hons Graduate Environmental Scientist Contamination & Environmental Management

GHD Proudly employee owned T: +61 2 9239 7715 | M: +61 459 546 332 | E: <u>sarah.eccleshall@ghd.com</u> Level 15 133 Castlereagh Street Sydney NSW 2000 Australia | <u>www.qhd.com</u>





Environmental Division

Telephone : - 61-2-6784 8555

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

# 21.11.19 -707

## **Kim Phan**

From:Loren SchiavonSent:Thursday, 7 November 2019 10:26 AMTo:Kim PhanSubject:FW: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:Attachments:image001.png; image002.png; image003.png; image004.png

Hi Kim,

Can I get you to assist with this one?

We need to add in the testing requested below to two active work orders. Please leave the current due dates and email CS to send a prelim - we then need to create the separate batches for the dioxins. Vanessa has confirmed 10 days from receipt for the TBT.

Thanks.

Kind Regards Loren Schiavon Sample Administration Coordinator, Environmental

 T +61 2 8784 8555
 WO No: E

 F +61 2 8784 8500
 Artach By I

 Loren.schiavon@alsglobal.com
 277-289 Woodpark Road

 277-289 Woodpark Road
 Smithfield NSW 2164

 AUSTRALIA
 Subscribe

 Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how.

 We are keen for your feedback! Please click here for your 3 minute survey EnviroMail™ 00 – All EnviroMails™ in one convenient library.

 Recent releases (click to access directly):

 EnviroMail™ 124 – PFOS Analysis to Freshwater Species Protection Lv! 99% EnviroMail™ 127 – Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here.





### Right Solutions • Right Partner

https://aus01.safelinks.protection.outlook.com/?uri=www.alsglobal.com&data=02%7C01%7CKim.Phan%40alsglobal.com%7C822e6d0d1a2e415fdefc08d76310b269% 7C485ca04e6f7440509764cdb4bfa89c25%7C0%7C0%7C637086795685299636&sdata=Eyqaw0cQknLkqagzwxAPSDeCzRtw1wXYtpWrHbo9C1E%3D&reserved=0

-----Original Message-----From: Grace White Sent: Thursday, 7 November 2019 8:52 AM To: Loren Schiavon <loren.schiavon@alsglobal.com> Subject: FW: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:

Hey Loren,

Can you please organise making the below amendments?

Thank you!

Grace White Client Services Officer, Environmental Sydney

T +61 2 8784 8555 D +61 2 8784 8531 F +61 2 8784 8500 grace.white@alsglobal.com 277-289 Woodpark Road Smithfield, NSW, 2164

Subscribe

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how. We are keen for your feedback! Please click here for your 3 minute survey EnviroMail™ 00 – All EnviroMails™ in one convenient library. Recent releases (click to access directly): EnviroMail™ 124 – PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail™ 127 – Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here. Right Solutions • Right Partner https://aus01.safelinks.protection.outlook.com/?url=www.alsglobal.com&data=02%7C01%7CKim.Phan%40alsglobal.com%7C822e6d0d1a2e415fdefc08d76310b269%7C485ca04e6f7440509764cdb4bfa89c25%7C0%7C0%7C637086795685299636&sdata=Eyqaw0cQknLkqagzwxAPSDeCzRtw1wXYtpWrHbo9C1E%3D&reserved=0

-----Original Message-----From: Carmen Yi [mailto:Carmen.Yi@ghd.com] Sent: Wednesday, 6 November 2019 11:07 PM To: ALSEnviro Sydney <ALSEnviro.Sydney@ALSGlobal.com> Cc: Sarah.Eccleshall@ghd.com; Brenda Hong <Brenda.Hong@alsglobal.com> Subject: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

#### Hi ALS team,

We have now received approval to go ahead with the TBT, dioxin and SVOC tests for ES1936183 and ES1936029. Would you please test the following samples on standard turnaround time please?

#### ES1936183

VC08\_1.0-1.5 (4 c) VC12\_0.0-0.5 (2)

### ES1936029

VC01\_0.5-1.0

VC04\_0.5-1.0

VC07\_0.0-0.5

#### Kind regards

Carmen Yi

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

-

4



\_\_\_\_

# **SAMPLE RECEIPT NOTIFICATION (SRN)**

| Work Order                                                                 | ES1936183                                                                                                     |                                                   |                                                      |                                                                                |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|
| Client<br>Contact<br>Address                                               | : <b>GHD PTY LTD</b><br>: MS CARMEN YI<br>: LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address                  | : Environme<br>: Customer<br>: 277-289 W<br>NSW Aust | ental Division Sydney<br>Services ES<br>/oodpark Road Smithfield<br>ralia 2164 |
| E-mail<br>Telephone<br>Facsimile                                           | : carmen.yi@ghd.com<br>: +61 0451 962 988<br>:                                                                | E-mail<br>Telephone<br>Facsimile                  | : ALSEnviro<br>: +61-2-878<br>: +61-2-878            | .Sydney@ALSGlobal.com<br>4 8555<br>4 8500                                      |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler                 | : 12517046<br>:<br>:<br>:<br>: SARAH ECCLESHALL                                                               | Page<br>Quote number<br>QC Level                  | : 1 of 5<br>: ES2019GF<br>: NEPM 201                 | HDSER0030 (SY/522/19)<br>I3 B3 & ALS QC Standard                               |
| Dates<br>Date Samples Rece<br>Client Requested D<br>Date                   | eived : 01-Nov-2019 15:15<br>Due : 11-Nov-2019                                                                | Issue Date<br>Scheduled Report                    | ing Date                                             | : 07-Nov-2019<br>: <b>11-Nov-2019</b>                                          |
| Delivery Deta<br>Mode of Delivery<br>No. of coolers/boxe<br>Receipt Detail | ails<br>: Client Drop Off<br>s : 6<br>:                                                                       | Security Seal<br>Temperature<br>No. of samples re | ceived / analysed                                    | : Not Available<br>: 3.3'C - Ice present<br>: 66 / 27                          |

#### **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Sample SW01 was not received by ALS Sydney.
- Sample VC06\_0.5-1.0 was received as VC06\_0.5-0.9.
- 07/11/19: This is an updated SRA which indicates TBT and SVOC for the samples VC12\_0.0-0.5 (#29), VC08\_1.0-1.5 (#40).
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- PSD and Total Fluoride analysis will be conducted by ALS Newcastle.
- TOC analysis to be conducted by ALS Brisbane.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Samples FD06, FD08 and FD10 have been forwarded to Eurofins as per COC request.
- Preliminary results will be available on the scheduled reporting date listed in this report. However the final report with TBT analysis will be complete on 21/11/19.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
  analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
  temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
  recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



Segmented Flow Analyser

(Solids)

ning Analysis

(m

ested

rbon (TOC) in Soil M Phenols only hort Suite 'aste Classification (SCC) -

≥

#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exists.

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

| Matrix: SOIL      |                   |                  | ) SOIL<br>sis requ    | A037<br>d Scree | A055-10<br>Conten | (026SF<br>inide By | 2003<br>anic Ca | P075 SI  | 7/4 - S<br>CCW M |
|-------------------|-------------------|------------------|-----------------------|-----------------|-------------------|--------------------|-----------------|----------|------------------|
| Laboratory sample | Client sampling   | Client sample ID | On Hold               | OIL - E/        | OIL - E/          | OIL - EV           | OIL - EF        | OIL - EF | ISW DE           |
| ES1936183-001     | 31-Oct-2019 20:00 | VC06_0.0-0.1     | <u> </u>              | √               | 02                |                    |                 | 0 0      |                  |
| ES1936183-002     | 31-Oct-2019 20:00 | VC06_0.5-0.6     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-003     | 31-Oct-2019 20:30 | VC12_0.0-0.1     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-004     | 31-Oct-2019 20:30 | VC12_0.5-0.6     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-005     | 31-Oct-2019 20:30 | VC12_1.0-1.1     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-006     | 31-Oct-2019 20:45 | VC08_0.0-0.1     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-007     | 31-Oct-2019 20:45 | VC08_0.5-0.6     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-008     | 31-Oct-2019 20:45 | VC08_1.0-1.1     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-009     | 31-Oct-2019 20:45 | VC08_1.5-1.6     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-010     | 31-Oct-2019 21:45 | VC13_0.0-0.1     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-011     | 30-Oct-2019 21:45 | VC13_0.5-0.6     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-012     | 30-Oct-2019 21:45 | VC13_1.0-1.1     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-013     | 31-Oct-2019 22:15 | VC14_0.0-0.1     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-014     | 31-Oct-2019 22:15 | VC14_0.5-0.6     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-015     | 31-Oct-2019 22:15 | VC14_1.0-1.1     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-016     | 31-Oct-2019 22:15 | VC14_1.3-1.4     |                       | ✓               |                   |                    |                 |          |                  |
| ES1936183-017     | 31-Oct-2019 20:00 | VC06_0.0-0.1     |                       |                 | ✓                 |                    | ✓               |          | ✓                |
| ES1936183-018     | 31-Oct-2019 20:00 | VC06_0.3-0.4     | <ul> <li>✓</li> </ul> |                 |                   |                    |                 |          |                  |
| ES1936183-019     | 31-Oct-2019 20:00 | VC06_0.5-0.6     | <ul> <li>✓</li> </ul> |                 |                   |                    |                 |          |                  |
| ES1936183-020     | 31-Oct-2019 20:00 | VC06_0.7-0.8     | <ul> <li>✓</li> </ul> |                 |                   |                    |                 |          |                  |
| ES1936183-021     | 31-Oct-2019 20:00 | VC06_0.8-0.9     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-022     | 31-Oct-2019 20:00 | VC06_0.0-0.5     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-023     | 31-Oct-2019 20:00 | VC06_0.5-0.9     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-024     | 31-Oct-2019 20:30 | VC12_0.0-0.1     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-025     | 31-Oct-2019 20:30 | VC12_0.3-0.4     | 1                     |                 |                   |                    |                 |          |                  |
| ES1936183-026     | 31-Oct-2019 20:30 | VC12_0.5-0.6     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-027     | 31-Oct-2019 20:30 | VC12_0.8-0.9     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-028     | 31-Oct-2019 20:30 | VC12_1.0-1.1     |                       |                 | ✓                 |                    | ✓               |          | ✓                |
| ES1936183-029     | 31-Oct-2019 20:30 | VC12_0.0-0.5     |                       |                 | ✓                 | 1                  | ✓               | 1        |                  |
| ES1936183-030     | 31-Oct-2019 20:30 | VC12_0.5-1.0     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-031     | 31-Oct-2019 20:45 | VC0S_0.0-0.1     |                       |                 | 1                 |                    | ✓               |          | ✓                |
| ES1936183-032     | 31-Oct-2019 20:45 | VC08_0.3-0.4     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-033     | 31-Oct-2019 20:45 | VC0B_0.5-0.6     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-034     | 31-Oct-2019 20:45 | VC0B_0.7-0.8     | ✓                     |                 |                   |                    |                 |          |                  |
| ES1936183-035     | 31-Oct-2019 20:45 | VC08_1.0-1.1     | ✓                     |                 |                   |                    |                 |          |                  |
| Issue Date | : 07-Nov-2019         |
|------------|-----------------------|
| Page       | : 3 of 5              |
| Work Order | ES1936183 Amendment 0 |
| Client     | : GHD PTY LTD         |



|                   |                    |                  | OIL<br>requested                     | 37<br>creening Analysis                 | 55-103<br>intent                | 26SF (Solids)<br>Je By Segmented Flow Analyser | 03<br>ic Carbon (TOC) in Soil | 75 SIM Phenols only<br>Jls only | 4 - Short Suite<br>:W Waste Classification (SCC) - |
|-------------------|--------------------|------------------|--------------------------------------|-----------------------------------------|---------------------------------|------------------------------------------------|-------------------------------|---------------------------------|----------------------------------------------------|
|                   |                    |                  | in Hold) S<br>analysis               | JIL - EA05<br>S Field S                 | JIL - EA0€<br>bisture Co        | JIL - EK02<br>tal Cyanid                       | JIL - EPOC<br>tal Organi      | DIL - EPO7<br>M - Pheno         | JIL - P- 7/                                        |
| E01026192 026     | 21 Oct 2010 20:45  | VC09 1 2 1 4     | <u>Q ž</u>                           | AS SC                                   | ŭ ₹                             | S ₽                                            | S ₽                           | <u>യ യ</u>                      | δž                                                 |
| ES1930183-030     | 31 Oct 2019 20:45  | VC08_1.5-1.4     | •                                    |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1036183-037     | 31 Oct 2019 20:45  | VC08_0.0.0.5     | •<br>•                               |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1930183-038     | 31 Oct 2019 20:45  | VC08_0.5_1.0     | •                                    |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-040     | 31-Oct-2019 20:45  | VC08_1.0-1.5     | •                                    |                                         | 1                               | 4                                              | 1                             | 1                               |                                                    |
| ES1936183-041     | 31-Oct_2010 21:45  | VC13_0.0-0.1     |                                      |                                         | ,<br>,                          | -                                              | ,<br>,                        | •                               | 1                                                  |
| ES1936183-042     | 31-Oct-2019 21:45  | VC13_0.3-0.4     | 1                                    |                                         | *                               |                                                | -                             |                                 |                                                    |
| ES1936183-043     | 31-Oct_2010 21:45  | VC13_0.5-0.6     | •                                    |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-044     | 31-Oct-2019 21:45  | VC13_0.7-0.8     | ·<br>·                               |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-045     | 31-Oct-2019 21:45  | VC13_1.0-1.1     | ·<br>•                               |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-046     | 31-Oct-2019 21:45  | VC13_0.0-0.5     | ·<br>•                               |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-047     | 31-Oct-2019 21:45  | VC13_0.5-1.0     | ·<br>•                               |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-048     | 31-Oct-2019 22:15  | VC14_0.0.0.1     | ·<br>•                               |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-049     | 31-Oct-2019 22:15  | VC14_0304        | 1                                    |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-050     | 31-Oct-2019 22:15  | VC14-0.5-0.6     | ·<br>•                               |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-051     | 31-Oct-2019 22:15  | VC14_0708        | ·<br>•                               |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-052     | 31-Oct-2019 22:15  | VC14_1_0-1_1     |                                      |                                         | 1                               |                                                | 1                             |                                 | 1                                                  |
| ES1936183-053     | 31-Oct-2019 22:15  | VC14_1 3-1 4     | 1                                    |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-054     | 31-Oct-2019 22:15  | VC14_0.0-0.5     | ·<br>•                               |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-055     | 31-Oct-2019 22:15  | VC14_0.5-1.0     | 1                                    |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-060     | 30-Oct-2019 00:00  | FD07             | 1                                    |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-061     | 31-Oct-2019 00:00  | FD09             | 1                                    |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-066     | 31-Oct-2019 00:00  | VC12 0.9-1.0     | 1                                    |                                         |                                 |                                                |                               |                                 |                                                    |
| ES1936183-067     | 31-Oct-2019 00:00  | VC14 1.0-1.4     | 1                                    |                                         |                                 |                                                |                               |                                 |                                                    |
|                   |                    |                  | 0H<br>Analysis by Hydrometer: AS1289 | 1 - SD<br>ce in sediments               | 5 (solids)<br>Drganic Compounds | D-SD<br>AN in Sediments                        | ) (solids)                    | PAH ultra trace                 | MS (15 metals + low level Hg)                      |
| Laboratory sample | Client sampling    | Client sample ID | OIL - EA15(<br>article Size          | OIL - EP07 <sup>.</sup><br>RH ultra tra | OIL - EP07{<br>smivolatile (    | OIL - EP08(<br>3H(V)/BTE)                      | OIL - EP09(<br>'ganotins      | OIL - SD-02<br>C/OP/PCB/        | OIL - SD-0č<br>etals by ICF                        |
| ID                | <u>date / time</u> | VC12 0 0-0 5     | <u>м</u><br>М                        | ы<br>К                                  | <u>ഗ്ഗ്</u>                     | ĭŏ ⊭<br>∡                                      | <u>ග්ර්</u>                   | <u>ა ე</u>                      | <u>ة م</u>                                         |
| ES1936183-040     | 31-Oct-2019 20:45  | VC08 1.0-1 5     | •                                    | •                                       | ,<br>,                          | •                                              | ·<br>•                        | •<br>•                          | ·<br>·                                             |
|                   | 0. 000 20.40       |                  | <u> </u>                             | <u> </u>                                | · ·                             | <u> </u>                                       | <u> </u>                      |                                 |                                                    |



| Matrix: <b>SOIL</b><br>Laboratory sample<br>ID<br>ES1936183-063<br>ES1936183-064<br>ES1936183-065 | Client sampling<br>date / time<br>31-Oct-2019 00:00<br>31-Oct-2019 00:00<br>31-Oct-2019 00:00 | Client sample ID<br>TS2<br>TB2<br>Trip Spike control | <ul> <li>Soil - EP080</li> <li>BTEXN</li> </ul> | SOIL - S-18 (NO MOIST)<br>TRH(C6-C9)/BTEXN with No Moisture for TBs |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|
|                                                                                                   |                                                                                               |                                                      |                                                 |                                                                     |
| Matrix: <b>WATER</b><br>Laboratory sample                                                         | Client sampling<br>date / time                                                                | Client sample ID                                     | (On Hold) WATER<br>No analysis requested        | WATER - W-26T<br>TRH/BTEXN/PAH/Total 8 Metals                       |
| ES1936183-057                                                                                     | 31-Oct-2019 00:00                                                                             | SW02                                                 | 1                                               |                                                                     |
| ES1936183-058                                                                                     | 31-Oct-2019 00:00                                                                             | SW03                                                 | 1                                               |                                                                     |
| ES1936183-059                                                                                     | 31-Oct-2019 00:00                                                                             | SWB                                                  | ✓                                               |                                                                     |
| ES1936183-062                                                                                     | 31-Oct-2019 00:00                                                                             | RIN_02                                               |                                                 | 1                                                                   |

#### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### **Requested Deliverables**

#### ACCOUNTS PAYABLE (Hobart)



| - A4 - AU Tax Invoice (INV)                                                   | Email | accountspayableAU@ghd.com |
|-------------------------------------------------------------------------------|-------|---------------------------|
| CARMEN YI                                                                     |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | carmen.yi@ghd.com         |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)                   | Email | carmen.yi@ghd.com         |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>         | Email | carmen.yi@ghd.com         |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | carmen.yi@ghd.com         |
| - Attachment - Report (SUBCO)                                                 | Email | carmen.yi@ghd.com         |
| - Chain of Custody (CoC) (COC)                                                | Email | carmen.yi@ghd.com         |
| - EDI Format - ENMRG (ENMRG)                                                  | Email | carmen.yi@ghd.com         |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | carmen.yi@ghd.com         |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>                     | Email | carmen.yi@ghd.com         |
| GHD LAB REPORTS                                                               |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | ghdlabreports@ghd.com     |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | ghdlabreports@ghd.com     |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>         | Email | ghdlabreports@ghd.com     |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | ghdlabreports@ghd.com     |
| - Attachment - Report (SUBCO)                                                 | Email | ghdlabreports@ghd.com     |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | ghdlabreports@ghd.com     |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>                     | Email | ghdlabreports@ghd.com     |
| SARAH ECCLESHALL                                                              |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>         | Email | sarah.eccleshall@ghd.com  |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | sarah.eccleshall@ghd.com  |
| - Attachment - Report (SUBCO)                                                 | Email | sarah.eccleshall@ghd.com  |
| - Chain of Custody (CoC) (COC)                                                | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ENMRG (ENMRG)                                                  | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | sarah.eccleshall@ghd.com  |



#### **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1936183                                                        | Page                    | : 1 of 37                                             |
|-------------------------|------------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : GHD PTY LTD                                                    | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : MS CARMEN YI                                                   | Contact                 | : Customer Services ES                                |
| Address                 | : LEVEL 15, 133 CASTLEREAGH STREET<br>SYDNEY NSW. AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | : +61 0451 962 988                                               | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                                                       | Date Samples Received   | : 01-Nov-2019 15:15                                   |
| Order number            | :                                                                | Date Analysis Commenced | : 05-Nov-2019                                         |
| C-O-C number            | :                                                                | Issue Date              | : 20-Nov-2019 19:48                                   |
| Sampler                 | : SARAH ECCLESHALL                                               |                         | HALA NALA                                             |
| Site                    | :                                                                |                         |                                                       |
| Quote number            | : SY/522/19                                                      |                         | Accreditation No. 925                                 |
| No. of samples received | : 66                                                             |                         | Accredited for compliance with                        |
| No. of samples analysed | : 27                                                             |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories         | Position                         | Accreditation Category                      |
|---------------------|----------------------------------|---------------------------------------------|
| Alison Graham       | Supervisor - Inorganic           | Newcastle - Inorganics, Mayfield West, NSW  |
| Ankit Joshi         | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |
| Ben Felgendrejeris  | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |
| Diana Mesa          | 2IC Organic Chemist              | Brisbane Organics, Stafford, QLD            |
| Dianne Blane        | Laboratory Coordinator (2IC)     | Newcastle - Inorganics, Mayfield West, NSW  |
| Edwandy Fadjar      | Organic Coordinator              | Sydney Organics, Smithfield, NSW            |
| Evie Sidarta        | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |
| Ivan Taylor         | Analyst                          | Sydney Inorganics, Smithfield, NSW          |
| Kim McCabe          | Senior Inorganic Chemist         | Brisbane Acid Sulphate Soils, Stafford, QLD |
| Minh Wills          | 2IC Organic Chemist              | Brisbane Organics, Stafford, QLD            |
| Satishkumar Trivedi | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |

| Page       | : 2 of 37     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key :
   CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

   LOR = Limit of reporting
  - ^ = This result is computed from individual analyte detections at or above the level of reporting
  - ø = ALS is not NATA accredited for these tests.
  - ~ = Indicates an estimated value.
- EA150H: Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1 2006 was not requested by the client. Typical sediment SPD values used for calculations and consequently NATA endorsement does not apply to hydrometer results.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EG048G:Poor spike recovery for Alkyl Hexavalent Chromium due to matrix interferences.
- EP131B : Positive PCB result is confirmed by re-extraction and re-analysis.
- EP080-SD: Poor matrix spike recovery due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EP071: Particular samples required dilution due to the presence of high level contaminants. LOR values have been adjusted accordingly.
- EP080: The trip spike and its control have been analysed for volatile TPH and BTEX only. The trip spike and control were prepared in the lab using reagent grade sand spiked with petrol. The spike was dispatched from the lab and the control retained.
- EP090 Organotin: Particular sample shows poor matrix spike recovery due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.
- EP075: 'Sum of PAH' is the sum of the USEPA 16 priority PAHs
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

| Page       | : 3 of 37     |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID |     |         | VC06_0.0-0.1      | VC06_0.5-0.6      | VC12_0.0-0.1      | VC12_0.5-0.6      | VC12_1.0-1.1      |
|-------------------------------------|------------------|-----|---------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Client sampling date / time         |                  |     |         | 31-Oct-2019 20:00 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 |
| Compound                            | CAS Number       | LOR | Unit    | ES1936183-001     | ES1936183-002     | ES1936183-003     | ES1936183-004     | ES1936183-005     |
|                                     |                  |     |         | Result            | Result            | Result            | Result            | Result            |
| EA037: Ass Field Screening Analysis |                  |     |         |                   |                   |                   |                   |                   |
| ø pH (F)                            |                  | 0.1 | pH Unit | 8.7               | 8.1               | 8.7               | 8.2               | 7.3               |
| øpH (Fox)                           |                  | 0.1 | pH Unit | 5.2               | 5.7               | 6.1               | 5.9               | 5.6               |
| Ø Reaction Rate                     |                  | 1   | -       | 3                 | 3                 | 3                 | 3                 | 3                 |

| Page       | : 4 of 37     |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  |            | Clie | ent sample ID | VC08_0.0-0.1      | VC08_0.5-0.6      | VC08_1.0-1.1      | VC08_1.5-1.6      | VC13_0.0-0.1      |
|-------------------------------------|------------|------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Client sampling date / time         |            |      |               | 31-Oct-2019 20:45 | 31-Oct-2019 20:45 | 31-Oct-2019 20:45 | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 |
| Compound                            | CAS Number | LOR  | Unit          | ES1936183-006     | ES1936183-007     | ES1936183-008     | ES1936183-009     | ES1936183-010     |
|                                     |            |      |               | Result            | Result            | Result            | Result            | Result            |
| EA037: Ass Field Screening Analysis |            |      |               |                   |                   |                   |                   |                   |
| ø pH (F)                            |            | 0.1  | pH Unit       | 8.2               | 8.5               | 7.9               | 8.1               | 8.3               |
| øpH (Fox)                           |            | 0.1  | pH Unit       | 6.3               | 6.4               | 5.9               | 6.3               | 6.4               |
| Ø Reaction Rate                     |            | 1    | -             | 3                 | 3                 | 3                 | 3                 | 3                 |

| Page       | 5 of 37       |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  |            | Clie         | ent sample ID  | VC13_0.5-0.6      | VC13_1.0-1.1      | VC14_0.0-0.1      | VC14_0.5-0.6      | VC14_1.0-1.1      |
|-------------------------------------|------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | CI         | lient sampli | ng date / time | 30-Oct-2019 21:45 | 30-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 22:15 | 31-Oct-2019 22:15 |
| Compound                            | CAS Number | LOR          | Unit           | ES1936183-011     | ES1936183-012     | ES1936183-013     | ES1936183-014     | ES1936183-015     |
|                                     |            |              |                | Result            | Result            | Result            | Result            | Result            |
| EA037: Ass Field Screening Analysis |            |              |                |                   |                   |                   |                   |                   |
| øpH (F)                             |            | 0.1          | pH Unit        | 8.2               | 7.8               | 8.4               | 8.6               | 8.6               |
| øpH (Fox)                           |            | 0.1          | pH Unit        | 6.2               | 6.3               | 6.4               | 6.5               | 6.5               |
| Ø Reaction Rate                     |            | 1            | -              | 3                 | 3                 | 3                 | 3                 | 3                 |

| Page       | : 6 of 37     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)         | Client sample ID |              |                | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|--------------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                            | Cl               | ient samplii | ng date / time | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                                   | CAS Number       | LOR          | Unit           | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                            |                  |              |                | Result            | Result            | Result            | Result            | Result            |
| EA037: Ass Field Screening Analysis        |                  |              |                |                   |                   |                   |                   |                   |
| ø pH (F)                                   |                  | 0.1          | pH Unit        | 8.1               |                   |                   |                   |                   |
| ø pH (Fox)                                 |                  | 0.1          | pH Unit        | 6.3               |                   |                   |                   |                   |
| ø Reaction Rate                            |                  | 1            | -              | 3                 |                   |                   |                   |                   |
| EA055: Moisture Content (Dried @ 105-11    | 0°C)             |              |                |                   |                   |                   |                   |                   |
| Moisture Content                           |                  | 1.0          | %              |                   | 48.2              | 19.9              | 24.2              | 31.1              |
| EA150: Particle Sizing                     |                  |              |                |                   |                   |                   |                   |                   |
| +75μm                                      |                  | 1            | %              |                   |                   |                   | 81                |                   |
| +150μm                                     |                  | 1            | %              |                   |                   |                   | 75                |                   |
| +300μm                                     |                  | 1            | %              |                   |                   |                   | 52                |                   |
| +425µm                                     |                  | 1            | %              |                   |                   |                   | 29                |                   |
| +600µm                                     |                  | 1            | %              |                   |                   |                   | 10                |                   |
| +1180μm                                    |                  | 1            | %              |                   |                   |                   | 1                 |                   |
| +2.36mm                                    |                  | 1            | %              |                   |                   |                   | <1                |                   |
| +4.75mm                                    |                  | 1            | %              |                   |                   |                   | <1                |                   |
| +9.5mm                                     |                  | 1            | %              |                   |                   |                   | <1                |                   |
| +19.0mm                                    |                  | 1            | %              |                   |                   |                   | <1                |                   |
| +37.5mm                                    |                  | 1            | %              |                   |                   |                   | <1                |                   |
| +75.0mm                                    |                  | 1            | %              |                   |                   |                   | <1                |                   |
| EA150: Soil Classification based on Partic | le Size          |              |                |                   |                   |                   |                   |                   |
| Clay (<2 µm)                               |                  | 1            | %              |                   |                   |                   | 15                |                   |
| Silt (2-60 µm)                             |                  | 1            | %              |                   |                   |                   | 4                 |                   |
| Sand (0.06-2.00 mm)                        |                  | 1            | %              |                   |                   |                   | 81                |                   |
| Gravel (>2mm)                              |                  | 1            | %              |                   |                   |                   | <1                |                   |
| Cobbles (>6cm)                             |                  | 1            | %              |                   |                   |                   | <1                |                   |
| EG005(ED093)-SD: Total Metals in Sedime    | ents by ICP-AES  | 3            |                |                   |                   |                   |                   |                   |
| Aluminium                                  | 7429-90-5        | 50           | mg/kg          |                   |                   |                   | 4790              |                   |
| Iron                                       | 7439-89-6        | 50           | mg/kg          |                   |                   |                   | 4290              |                   |
| EG005(ED093)T: Total Metals by ICP-AES     |                  |              |                |                   |                   |                   |                   |                   |
| Arsenic                                    | 7440-38-2        | 5            | mg/kg          |                   | 18                | <5                |                   | 14                |
| Beryllium                                  | 7440-41-7        | 1            | mg/kg          |                   | <1                | <1                |                   | <1                |
| Cadmium                                    | 7440-43-9        | 1            | mg/kg          |                   | <1                | <1                |                   | <1                |
| Lead                                       | 7439-92-1        | 5            | mg/kg          |                   | 224               | 42                |                   | 117               |
| Molybdenum                                 | 7439-98-7        | 2            | mg/kg          |                   | <2                | <2                |                   | <2                |
| Nickel                                     | 7440-02-0        | 2            | mg/kg          |                   | 10                | 4                 |                   | 6                 |

| Page       | : 7 of 37     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)              | Client sample ID |             |                | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|-------------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                 | Cli              | ent samplii | ng date / time | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound CAS                                    | Number           | LOR         | Unit           | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                                 |                  |             |                | Result            | Result            | Result            | Result            | Result            |
| EG005(ED093)T: Total Metals by ICP-AES - Contin | nued             |             |                |                   |                   |                   |                   |                   |
| Selenium 7                                      | 782-49-2         | 5           | mg/kg          |                   | <5                | <5                |                   | <5                |
| Silver 74                                       | 440-22-4         | 2           | mg/kg          |                   | <2                | <2                |                   | <2                |
| EG020-SD: Total Metals in Sediments by ICPMS    |                  |             |                |                   |                   |                   |                   |                   |
| Antimony 74                                     | 440-36-0         | 0.50        | mg/kg          |                   |                   |                   | <0.50             |                   |
| Arsenic 74                                      | 440-38-2         | 1.00        | mg/kg          |                   |                   |                   | 2.20              |                   |
| Cadmium 74                                      | 440-43-9         | 0.1         | mg/kg          |                   |                   |                   | <0.1              |                   |
| Chromium 74                                     | 440-47-3         | 1.0         | mg/kg          |                   |                   |                   | 6.0               |                   |
| Copper 74                                       | 440-50-8         | 1.0         | mg/kg          |                   |                   |                   | 4.5               |                   |
| Cobalt 74                                       | 440-48-4         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Lead 74                                         | 439-92-1         | 1.0         | mg/kg          |                   |                   |                   | 10.6              |                   |
| Manganese 74                                    | 439-96-5         | 10          | mg/kg          |                   |                   |                   | <10               |                   |
| Nickel 74                                       | 440-02-0         | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| Selenium 7                                      | 782-49-2         | 0.1         | mg/kg          |                   |                   |                   | <0.1              |                   |
| Silver 74                                       | 440-22-4         | 0.1         | mg/kg          |                   |                   |                   | 0.2               |                   |
| Vanadium 74                                     | 440-62-2         | 2.0         | mg/kg          |                   |                   |                   | 13.5              |                   |
| Zinc 74                                         | 440-66-6         | 1.0         | mg/kg          |                   |                   |                   | 14.4              |                   |
| EG035T: Total Recoverable Mercury by FIMS       |                  |             |                |                   |                   |                   |                   |                   |
| Mercury 74                                      | 439-97-6         | 0.01        | mg/kg          |                   |                   |                   | 0.12              |                   |
| Mercury 74                                      | 439-97-6         | 0.1         | mg/kg          |                   | 3.4               | <0.1              |                   | 1.8               |
| EG048: Hexavalent Chromium (Alkaline Digest)    |                  |             |                |                   |                   |                   |                   |                   |
| Hexavalent Chromium 18                          | 540-29-9         | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| EK026SF: Total CN by Segmented Flow Analyse     | ər               |             |                |                   |                   |                   |                   |                   |
| Total Cyanide                                   | 57-12-5          | 1           | mg/kg          |                   | <1                | <1                | <1                | <1                |
| EK028SF: Weak Acid Dissociable CN by Segme      | nted Flov        | w Analyse   | ər             |                   |                   |                   |                   |                   |
| Weak Acid Dissociable Cyanide                   |                  | 1           | mg/kg          |                   | <1                | <1                |                   | <1                |
| EK040T: Fluoride Total                          |                  |             |                |                   |                   |                   |                   |                   |
| Fluoride 16                                     | 984-48-8         | 40          | mg/kg          |                   | 90                | 80                |                   | 120               |
| EP003: Total Organic Carbon (TOC) in Soil       |                  |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                            |                  | 0.02        | %              |                   | 2.05              | 0.13              | 0.34              | 1.20              |
| EP066: Polychlorinated Biphenyls (PCB)          |                  |             |                |                   |                   |                   |                   |                   |
| Total Polychlorinated biphenyls                 |                  | 0.1         | mg/kg          |                   | <0.1              | <0.1              |                   | <0.1              |
| EP068A: Organochlorine Pesticides (OC)          |                  |             |                |                   |                   |                   |                   |                   |
| alpha-BHC                                       | 319-84-6         | 0.05        | mg/kg          |                   | <0.05             | <0.05             |                   | <0.05             |
| Hexachlorobenzene (HCB)                         | 118-74-1         | 0.05        | mg/kg          |                   | <0.05             | <0.05             |                   | <0.05             |

| Page       | : 8 of 37     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID            |             |                   | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|------------------------------------|-----------------------------|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Client sampling date / time |             |                   | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                           | CAS Number                  | LOR         | Unit              | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                    |                             |             |                   | Result            | Result            | Result            | Result            | Result            |
| EP068A: Organochlorine Pesticides  | s (OC) - Continued          |             |                   |                   |                   |                   |                   |                   |
| beta-BHC                           | 319-85-7                    | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| gamma-BHC                          | 58-89-9                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| delta-BHC                          | 319-86-8                    | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| Heptachlor                         | 76-44-8                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| Aldrin                             | 309-00-2                    | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| Heptachlor epoxide                 | 1024-57-3                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| ^ Total Chlordane (sum)            |                             | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| trans-Chlordane                    | 5103-74-2                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| alpha-Endosulfan                   | 959-98-8                    | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| cis-Chlordane                      | 5103-71-9                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| Dieldrin                           | 60-57-1                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| 4.4`-DDE                           | 72-55-9                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| Endrin                             | 72-20-8                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| beta-Endosulfan                    | 33213-65-9                  | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| 4.4`-DDD                           | 72-54-8                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| Endrin aldehyde                    | 7421-93-4                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| Endosulfan sulfate                 | 1031-07-8                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| 4.4`-DDT                           | 50-29-3                     | 0.2         | mg/kg             |                   | <0.2              | <0.2              |                   | <0.2              |
| EP068B: Organophosphorus Pestic    | cides (OP)                  |             |                   |                   |                   |                   |                   |                   |
| Chlorpyrifos                       | 2921-88-2                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   | <0.05             |
| EP071 SG: Total Recoverable Hydro  | ocarbons - NEPM 201         | 3 Fractior  | is - Silica gel o | cleanup           |                   |                   |                   |                   |
| >C10 - C16 Fraction                |                             | 50          | mg/kg             |                   | <50               | <50               |                   | <50               |
| >C16 - C34 Fraction                |                             | 100         | mg/kg             |                   | 610               | <100              |                   | 190               |
| >C34 - C40 Fraction                |                             | 100         | mg/kg             |                   | 190               | <100              |                   | <100              |
| ^ >C10 - C40 Fraction (sum)        |                             | 50          | mg/kg             |                   | 800               | <50               |                   | 190               |
| EP071 SG-S: Total Petroleum Hydro  | ocarbons in Soil - Silio    | ca gel clea | anup              |                   |                   |                   |                   |                   |
| C10 - C14 Fraction                 |                             | 50          | mg/kg             |                   | <50               | <50               |                   | <50               |
| C15 - C28 Fraction                 |                             | 100         | mg/kg             |                   | 350               | <100              |                   | 110               |
| C29 - C36 Fraction                 |                             | 100         | mg/kg             |                   | 370               | <100              |                   | 110               |
| ^ C10 - C36 Fraction (sum)         |                             | 50          | mg/kg             |                   | 720               | <50               |                   | 220               |
| EP074A: Monocyclic Aromatic Hyd    | rocarbons                   |             |                   |                   |                   |                   |                   |                   |
| Benzene                            | 71-43-2                     | 0.2         | mg/kg             |                   | <0.2              | <0.2              |                   | <0.2              |
| Toluene                            | 108-88-3                    | 0.5         | mg/kg             |                   | <0.5              | <0.5              |                   | <0.5              |
| Ethylbenzene                       | 100-41-4                    | 0.5         | mg/kg             |                   | <0.5              | <0.5              |                   | <0.5              |
|                                    |                             |             |                   |                   |                   |                   |                   |                   |

| Page       | : 9 of 37     |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                      | Clie        | ent sample ID  | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|------------------------------------|----------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli                  | ient sampli | ng date / time | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                           | CAS Number           | LOR         | Unit           | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                    |                      |             |                | Result            | Result            | Result            | Result            | Result            |
| EP074A: Monocyclic Aromatic Hydro  | ocarbons - Continued |             |                |                   |                   |                   |                   |                   |
| meta- & para-Xylene                | 108-38-3 106-42-3    | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| Styrene                            | 100-42-5             | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| ortho-Xylene                       | 95-47-6              | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| EP074B: Oxygenated Compounds       |                      |             |                |                   |                   |                   |                   |                   |
| 2-Butanone (MEK)                   | 78-93-3              | 5           | mg/kg          |                   | <5                | <5                |                   | <5                |
| EP074E: Halogenated Aliphatic Com  | pounds               |             |                |                   |                   |                   |                   |                   |
| Vinyl chloride                     | 75-01-4              | 4           | mg/kg          |                   | <4                | <4                |                   | <4                |
| 1.1-Dichloroethene                 | 75-35-4              | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| Methylene chloride                 | 75-09-2              | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| 1.1.1-Trichloroethane              | 71-55-6              | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| Carbon Tetrachloride               | 56-23-5              | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| 1.2-Dichloroethane                 | 107-06-2             | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| Trichloroethene                    | 79-01-6              | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| 1.1.2-Trichloroethane              | 79-00-5              | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| Tetrachloroethene                  | 127-18-4             | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| 1.1.1.2-Tetrachloroethane          | 630-20-6             | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| 1.1.2.2-Tetrachloroethane          | 79-34-5              | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| EP074F: Halogenated Aromatic Com   | npounds              |             |                |                   |                   |                   |                   |                   |
| Chlorobenzene                      | 108-90-7             | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| EP074G: Trihalomethanes            |                      |             |                |                   |                   |                   |                   |                   |
| Chloroform                         | 67-66-3              | 0.5         | mg/kg          |                   | <0.5              | <0.5              |                   | <0.5              |
| EP075(SIM)A: Phenolic Compounds    |                      |             |                |                   |                   |                   |                   |                   |
| Phenol                             | 108-95-2             | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |
| 2-Chlorophenol                     | 95-57-8              | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 2-Methylphenol                     | 95-48-7              | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |
| 3- & 4-Methylphenol                | 1319-77-3            | 1           | mg/kg          |                   | <1                | <1                | <1                | <1                |
| 2-Nitrophenol                      | 88-75-5              | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 2.4-Dimethylphenol                 | 105-67-9             | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 2.4-Dichlorophenol                 | 120-83-2             | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 2.6-Dichlorophenol                 | 87-65-0              | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 4-Chloro-3-methylphenol            | 59-50-7              | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |
| 2.4.6-Trichlorophenol              | 88-06-2              | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |
| 2.4.5-Trichlorophenol              | 95-95-4              | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |
| Pentachlorophenol                  | 87-86-5              | 2           | mg/kg          |                   | <2                | <2                | <2                | <2                |

| Page       | : 10 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID            |     |       | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|----------------------------------------|-----------------------------|-----|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Client sampling date / time |     |       | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                               | CAS Number                  | LOR | Unit  | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                        |                             |     |       | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)B: Polynuclear Aromatic      | Hydrocarbons                |     |       |                   |                   |                   |                   |                   |
| Naphthalene                            | 91-20-3                     | 0.5 | mg/kg |                   | <0.5              | <0.5              |                   | <0.5              |
| Acenaphthylene                         | 208-96-8                    | 0.5 | mg/kg |                   | <0.5              | <0.5              |                   | <0.5              |
| Acenaphthene                           | 83-32-9                     | 0.5 | mg/kg |                   | <0.5              | <0.5              |                   | <0.5              |
| Fluorene                               | 86-73-7                     | 0.5 | mg/kg |                   | <0.5              | <0.5              |                   | <0.5              |
| Phenanthrene                           | 85-01-8                     | 0.5 | mg/kg |                   | 0.7               | <0.5              |                   | <0.5              |
| Anthracene                             | 120-12-7                    | 0.5 | mg/kg |                   | <0.5              | <0.5              |                   | <0.5              |
| Fluoranthene                           | 206-44-0                    | 0.5 | mg/kg |                   | 2.3               | <0.5              |                   | 1.3               |
| Pyrene                                 | 129-00-0                    | 0.5 | mg/kg |                   | 2.6               | <0.5              |                   | 1.5               |
| Benz(a)anthracene                      | 56-55-3                     | 0.5 | mg/kg |                   | 1.0               | <0.5              |                   | 0.6               |
| Chrysene                               | 218-01-9                    | 0.5 | mg/kg |                   | 1.0               | <0.5              |                   | 0.6               |
| Benzo(b+j)fluoranthene                 | 205-99-2 205-82-3           | 0.5 | mg/kg |                   | 1.8               | <0.5              |                   | 1.0               |
| Benzo(k)fluoranthene                   | 207-08-9                    | 0.5 | mg/kg |                   | 0.8               | <0.5              |                   | <0.5              |
| Benzo(a)pyrene                         | 50-32-8                     | 0.5 | mg/kg |                   | 1.8               | <0.5              |                   | 0.9               |
| Indeno(1.2.3.cd)pyrene                 | 193-39-5                    | 0.5 | mg/kg |                   | 0.9               | <0.5              |                   | <0.5              |
| Dibenz(a.h)anthracene                  | 53-70-3                     | 0.5 | mg/kg |                   | <0.5              | <0.5              |                   | <0.5              |
| Benzo(g.h.i)perylene                   | 191-24-2                    | 0.5 | mg/kg |                   | 1.1               | <0.5              |                   | <0.5              |
| ^ Sum of polycyclic aromatic hydrocarb | ons                         | 0.5 | mg/kg |                   | 14.0              | <0.5              |                   | 5.9               |
| ^ Benzo(a)pyrene TEQ (zero)            |                             | 0.5 | mg/kg |                   | 2.3               | <0.5              |                   | 1.1               |
| ^ Benzo(a)pyrene TEQ (half LOR)        |                             | 0.5 | mg/kg |                   | 2.5               | 0.6               |                   | 1.4               |
| ^ Benzo(a)pyrene TEQ (LOR)             |                             | 0.5 | mg/kg |                   | 2.8               | 1.2               |                   | 1.7               |
| EP075A: Phenolic Compounds             |                             |     |       |                   |                   |                   |                   |                   |
| Phenol                                 | 108-95-2                    | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 2-Chlorophenol                         | 95-57-8                     | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 2-Methylphenol                         | 95-48-7                     | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 3- & 4-Methylphenol                    | 1319-77-3                   | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 2-Nitrophenol                          | 88-75-5                     | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 2.4-Dimethylphenol                     | 105-67-9                    | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 2.4-Dichlorophenol                     | 120-83-2                    | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 2.6-Dichlorophenol                     | 87-65-0                     | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 4-Chloro-3-methylphenol                | 59-50-7                     | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 2.4.6-Trichlorophenol                  | 88-06-2                     | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| 2.4.5-Trichlorophenol                  | 95-95-4                     | 0.5 | mg/kg |                   |                   |                   | <0.5              |                   |
| Pentachlorophenol                      | 87-86-5                     | 1   | mg/kg |                   |                   |                   | <1                |                   |
| EP075B: Polynuclear Aromatic Hyd       | rocarbons                   |     |       |                   |                   |                   |                   |                   |

| Page       | : 11 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)         | Client sample ID             |              |                | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|--------------------------------------------|------------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                            | Cli                          | ient samplii | ng date / time | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                                   | CAS Number                   | LOR          | Unit           | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                            |                              |              |                | Result            | Result            | Result            | Result            | Result            |
| EP075B: Polynuclear Aromatic Hydro         | ocarbons - Cont <u>inued</u> |              |                |                   |                   |                   |                   |                   |
| Naphthalene                                | 91-20-3                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| 2-Methylnaphthalene                        | 91-57-6                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| 2-Chloronaphthalene                        | 91-58-7                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Acenaphthylene                             | 208-96-8                     | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Acenaphthene                               | 83-32-9                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Fluorene                                   | 86-73-7                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Phenanthrene                               | 85-01-8                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Anthracene                                 | 120-12-7                     | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Fluoranthene                               | 206-44-0                     | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Pyrene                                     | 129-00-0                     | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| N-2-Fluorenyl Acetamide                    | 53-96-3                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Benz(a)anthracene                          | 56-55-3                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Chrysene                                   | 218-01-9                     | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Benzo(b+j) &                               | 205-99-2 207-08-9            | 1            | mg/kg          |                   |                   |                   | <1                |                   |
| Benzo(k)fluoranthene                       |                              |              |                |                   |                   |                   |                   |                   |
| 7.12-Dimethylbenz(a)anthracene             | 57-97-6                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Benzo(a)pyrene                             | 50-32-8                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| 3-Methylcholanthrene                       | 56-49-5                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Indeno(1.2.3.cd)pyrene                     | 193-39-5                     | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Dibenz(a.h)anthracene                      | 53-70-3                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Benzo(g.h.i)perylene                       | 191-24-2                     | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| ^ Sum of PAHs                              |                              | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| ^ Benzo(a)pyrene TEQ (zero)                |                              | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| <sup>^</sup> Benzo(a)pyrene TEQ (half LOR) |                              | 0.5          | mg/kg          |                   |                   |                   | 0.6               |                   |
| ^ Benzo(a)pyrene TEQ (LOR)                 |                              | 0.5          | mg/kg          |                   |                   |                   | 1.2               |                   |
| EP075C: Phthalate Esters                   |                              |              |                |                   |                   |                   |                   |                   |
| Dimethyl phthalate                         | 131-11-3                     | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Diethyl phthalate                          | 84-66-2                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Di-n-butyl phthalate                       | 84-74-2                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| Butyl benzyl phthalate                     | 85-68-7                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| bis(2-ethylhexyl) phthalate                | 117-81-7                     | 5.0          | mg/kg          |                   |                   |                   | <5.0              |                   |
| Di-n-octylphthalate                        | 117-84-0                     | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| EP075D: Nitrosamines                       |                              |              |                |                   |                   |                   |                   |                   |
| N-Nitrosomethylethylamine                  | 10595-95-6                   | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |
| N-Nitrosodiethylamine                      | 55-18-5                      | 0.5          | mg/kg          |                   |                   |                   | <0.5              |                   |

| Page       | : 12 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Clear subject dire form         31-0c-2019 2:03         31-0c-2019 2:03         31-0c-2019 2:03         31-0c-2019 2:03           Compound         CLBR         UPR         ES193519-16         ES193519-16         ES193519-201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID |             |                | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| ConcordCAS NumberVariatEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEstassatesEst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | Cli              | ient sampli | ng date / time | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| PRVSD:         PResult         Result         Result         Result         Result         Result           Natiossopyrolations         0005552         0.0         mg/sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Compound                           | CAS Number       | LOR         | Unit           | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
| EPV560: Nitrosaminos-Ocnativad         Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second S |                                    |                  |             |                | Result            | Result            | Result            | Result            | Result            |
| NHirosopyrolidine         99.05.5         10.         mg/sg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EP075D: Nitrosamines - Continued   |                  |             |                |                   |                   |                   |                   |                   |
| Niriscence/phalme         59.89.2         0.5         mg/kg            40.5            Nirisceptions/serolyamine         61.64.7         0.5         mg/kg           40.5            Nirisceptions/serolyamine         62.41.63         0.5         mg/kg           40.5            Nirisceptions/serolyamine         62.41.63         0.5         mg/kg           40.5            Polyneymine         62.63.0         1.5         mg/kg           40.5            Wethayvine         91.40.5         0.5         mg/kg           40.5            2.Picoline         100.06.8         0.5         mg/kg           40.5            2.Picoline         100.06.8         0.5         mg/kg           40.5            2.Picoline         100.06.8         0.5         mg/kg           40.5            2.Picoline         100.05.8         0.5         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N-Nitrosopyrrolidine               | 930-55-2         | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| NHinosophenpropylamine         621-64-7         0.5         mg/kg             4.05            NHinosophenyl &         68-30         122-304         0.5         mg/kg            -0.5            NHinosophenyl &         68-30         122-304         1.0         mg/kg <td>N-Nitrosomorpholine</td> <td>59-89-2</td> <td>0.5</td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td>&lt;0.5</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-Nitrosomorpholine                | 59-89-2          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Nincoscipipandine         100-754         0.5         mg/kg             0.5            Nincoscipipandine         863-06         122-394         1.0         mg/kg <td>N-Nitrosodi-n-propylamine</td> <td>621-64-7</td> <td>0.5</td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td>&lt;0.5</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-Nitrosodi-n-propylamine          | 621-64-7         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Nitrosodibuyiamine         924-163         0.5         mg/kg            1.0             Nitrosodibhenyl &         68-30-6         122.394         1.0         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-Nitrosopiperidine                | 100-75-4         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Nicosciptionny 16         86-30.6 122-30.4         1.0         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N-Nitrosodibutylamine              | 924-16-3         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Dippenyamine         PH - Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point         Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-Nitrosodiphenyl &                | 86-30-6 122-39-4 | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| Methopyreline         91-80-5         0.5         mg/kg                EPO73E:         Nitrobaronatics and Ketones         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diphenylamine                      |                  |             |                |                   |                   |                   |                   |                   |
| Utroaromatics and Ketones           2-Picoline         109-06.8         0.5         mg/kg           -0.5            Acetophenone         98-86.2         0.5         mg/kg            -0.5            Nitrobanzane         98-95.3         0.5         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Methapyrilene                      | 91-80-5          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 2-Picoline         100-06-8         0.5         mg/kg            0.05            Acstophenone         98-86-2         0.5         mg/kg           0.05            Istrobenzene         98-96-3         0.5         mg/kg           0.05            Istrobenzene         98-96-3         0.5         mg/kg           0.05            2.4-Dintrotoluene         666-20-2         10         mg/kg            0.05            2.4-Dintrotoluene         121-42         10         mg/kg            0.05            2.4-Dintrotoluene         121-42         10         mg/kg            0.05            2.4-Dintrotoluene         108-55         0.5         mg/kg            0.05            4-NitropulnolineA-oxide         56-5         mg/kg            0.05            5-Nitro-oclolidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EP075E: Nitroaromatics and Ketones |                  |             |                |                   |                   |                   |                   |                   |
| Accophenone         98.862         0.5         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Picoline                         | 109-06-8         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Nitobanzene         98.96.3         0.5         mg/kg            <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acetophenone                       | 98-86-2          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Isophorone         78-59-1         0.5         mg/kg            <-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nitrobenzene                       | 98-95-3          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 24-Dinitrotoluene         606-20-2         1.0         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Isophorone                         | 78-59-1          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 24.2         1.0         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6-Dinitrotoluene                 | 606-20-2         | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| 1-Naphthylamine         134-32-7         0.5         mg/kg            <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4-Dinitrotoluene                 | 121-14-2         | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| 4-Nitroquinoline-N-oxide         56-57.5         0.5         mg/kg           <-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-Naphthylamine                    | 134-32-7         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 5-Nitro-o-toluidine         99-55-8         0.5         mg/kg           <-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Nitroquinoline-N-oxide           | 56-57-5          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Azobenzene         103-33-3         1         mg/kg            <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-Nitro-o-toluidine                | 99-55-8          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 1.3.5-Trinitrobenzene         99-354         0.5         mg/kg            <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Azobenzene                         | 103-33-3         | 1           | mg/kg          |                   |                   |                   | <1                |                   |
| Phenacetin         62-44-2         0.5         mg/kg            <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.3.5-Trinitrobenzene              | 99-35-4          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 4-Aminobiphenyl         92-67-1         0.5         mg/kg            <-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phenacetin                         | 62-44-2          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Pentachloronitrobenzene         82-68-8         0.5         mg/kg           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Aminobiphenyl                    | 92-67-1          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Pronamide         23950-58-5         0.5         mg/kg            <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pentachloronitrobenzene            | 82-68-8          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Dimethylaminoazobenzene         60-11-7         0.5         mg/kg            <-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pronamide                          | 23950-58-5       | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Chlorobenzilate         510-15-6         0.5         mg/kg           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dimethylaminoazobenzene            | 60-11-7          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| EP075F: Haloethers           Bis(2-chloroethyl) ether         111-444         0.5         mg/kg           <-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chlorobenzilate                    | 510-15-6         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Bis(2-chloroethyl) ether         111-444         0.5         mg/kg           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EP075F: Haloethers                 |                  |             |                |                   |                   |                   |                   |                   |
| Bis(2-chloroethoxy) methane         111-91-1         0.5         mg/kg           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bis(2-chloroethyl) ether           | 111-44-4         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 4-Chlorophenyl phenyl ether         7005-72-3         0.5         mg/kg           <-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bis(2-chloroethoxy) methane        | 111-91-1         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 4-Bromophenyl phenyl ether         101-55-3         0.5         mg/kg           <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-Chlorophenyl phenyl ether        | 7005-72-3        | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| EP075G: Chlorinated Hydrocarbons           1.3-Dichlorobenzene         541-73-1         0.5         mg/kg           <         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-Bromophenyl phenyl ether         | 101-55-3         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 1.3-Dichlorobenzene         541-73-1         0.5         mg/kg           <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EP075G: Chlorinated Hydrocarbons   |                  |             |                |                   |                   |                   |                   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3-Dichlorobenzene                | 541-73-1         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| <b>1.4-Dichlorobenzene</b> 106-46-7 0.5 mg/kg < <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4-Dichlorobenzene                | 106-46-7         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |

| Page       | : 13 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID  |             |                | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                | ient sampli | ng date / time | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                           | CAS Number        | LOR         | Unit           | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                    |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075G: Chlorinated Hydrocarbons - | Continued         |             |                |                   |                   |                   |                   |                   |
| 1.2-Dichlorobenzene                | 95-50-1           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Hexachloroethane                   | 67-72-1           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 1.2.4-Trichlorobenzene             | 120-82-1          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Hexachloropropylene                | 1888-71-7         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Hexachlorobutadiene                | 87-68-3           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Hexachlorocyclopentadiene          | 77-47-4           | 2.5         | mg/kg          |                   |                   |                   | <2.5              |                   |
| Pentachlorobenzene                 | 608-93-5          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Hexachlorobenzene (HCB)            | 118-74-1          | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| EP075H: Anilines and Benzidines    |                   |             |                |                   |                   |                   |                   |                   |
| Aniline                            | 62-53-3           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 4-Chloroaniline                    | 106-47-8          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 2-Nitroaniline                     | 88-74-4           | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| 3-Nitroaniline                     | 99-09-2           | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| Dibenzofuran                       | 132-64-9          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 4-Nitroaniline                     | 100-01-6          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Carbazole                          | 86-74-8           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 3.3`-Dichlorobenzidine             | 91-94-1           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| EP075I: Organochlorine Pesticides  |                   |             |                |                   |                   |                   |                   |                   |
| alpha-BHC                          | 319-84-6          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| beta-BHC                           | 319-85-7          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| gamma-BHC                          | 58-89-9           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| delta-BHC                          | 319-86-8          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Heptachlor                         | 76-44-8           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Aldrin                             | 309-00-2          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Heptachlor epoxide                 | 1024-57-3         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| alpha-Endosulfan                   | 959-98-8          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 4.4`-DDE                           | 72-55-9           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Dieldrin                           | 60-57-1           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Endrin                             | 72-20-8           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| beta-Endosulfan                    | 33213-65-9        | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 4.4`-DDD                           | 72-54-8           | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Endosulfan sulfate                 | 1031-07-8         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| 4.4`-DDT                           | 50-29-3           | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| ^ Sum of DDD + DDE + DDT           | 72-54-8/72-55-9/5 | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
|                                    | 0-2               |             |                |                   |                   |                   |                   |                   |

| Page       | : 14 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID |             | VC14_1.3-1.4   | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |                   |
|-----------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                         | Cli              | ent samplii | ng date / time | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                                | CAS Number       | LOR         | Unit           | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                         |                  |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075I: Organochlorine Pesticides - Cor | ntinued          |             |                |                   |                   |                   |                   |                   |
| ^ Sum of Aldrin + Dieldrin              | 309-00-2/60-57-1 | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| EP075J: Organophosphorus Pesticides     |                  |             |                |                   |                   |                   |                   |                   |
| Dichlorvos                              | 62-73-7          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Dimethoate                              | 60-51-5          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Diazinon                                | 333-41-5         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Chlorpyrifos-methyl                     | 5598-13-0        | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Malathion                               | 121-75-5         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Fenthion                                | 55-38-9          | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Chlorpyrifos                            | 2921-88-2        | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Pirimphos-ethyl                         | 23505-41-1       | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Chlorfenvinphos                         | 470-90-6         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Prothiofos                              | 34643-46-4       | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| Ethion                                  | 563-12-2         | 0.5         | mg/kg          |                   |                   |                   | <0.5              |                   |
| EP080/071: Total Petroleum Hydrocarbo   | ons              |             |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                        |                  | 10          | mg/kg          |                   | <10               | <10               |                   | <10               |
| EP080/071: Total Recoverable Hydrocar   | bons - NEPM 201  | 3 Fractio   | าร             |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                       | C6_C10           | 10          | mg/kg          |                   | <10               | <10               |                   | <10               |
| >C10 - C16 Fraction                     |                  | 3           | mg/kg          |                   |                   |                   | <12               |                   |
| >C16 - C34 Fraction                     |                  | 3           | mg/kg          |                   |                   |                   | 185               |                   |
| >C34 - C40 Fraction                     |                  | 5           | mg/kg          |                   |                   |                   | 72                |                   |
| >C10 - C40 Fraction (sum)               |                  | 3           | mg/kg          |                   |                   |                   | 257               |                   |
| >C10 - C16 Fraction minus Naphthalene   |                  | 3           | mg/kg          |                   |                   |                   | <12               |                   |
| (F2)                                    |                  |             |                |                   |                   |                   |                   |                   |
| EP080-SD / EP071-SD: Total Petroleum    | Hydrocarbons     |             |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                        |                  | 3           | mg/kg          |                   |                   |                   | <3                |                   |
| C10 - C14 Fraction                      |                  | 3           | mg/kg          |                   |                   |                   | <6                |                   |
| C15 - C28 Fraction                      |                  | 3           | mg/kg          |                   |                   |                   | 109               |                   |
| C29 - C36 Fraction                      |                  | 5           | mg/kg          |                   |                   |                   | 112               |                   |
| ^ C10 - C36 Fraction (sum)              |                  | 3           | mg/kg          |                   |                   |                   | 221               |                   |
| EP080-SD / EP071-SD: Total Recoverab    | le Hydrocarbons  |             |                |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                       | C6_C10           | 3           | mg/kg          |                   |                   |                   | <3                |                   |
| C6 - C10 Fraction minus BTEX            | C6_C10-BTEX      | 3.0         | mg/kg          |                   |                   |                   | <3.0              |                   |
| (F1)                                    |                  |             |                |                   |                   |                   |                   |                   |
| EP080-SD: BTEXN                         |                  |             |                |                   |                   |                   |                   |                   |

| Page       | : 15 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID            |      |         | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|------------------------------------|-----------------------------|------|---------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Client sampling date / time |      |         | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                           | CAS Number                  | LOR  | Unit    | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                    |                             |      |         | Result            | Result            | Result            | Result            | Result            |
| EP080-SD: BTEXN - Continued        |                             |      |         |                   |                   |                   |                   |                   |
| Benzene                            | 71-43-2                     | 0.2  | mg/kg   |                   |                   |                   | <0.2              |                   |
| Toluene                            | 108-88-3                    | 0.2  | mg/kg   |                   |                   |                   | <0.2              |                   |
| Ethylbenzene                       | 100-41-4                    | 0.2  | mg/kg   |                   |                   |                   | <0.2              |                   |
| meta- & para-Xylene                | 108-38-3 106-42-3           | 0.2  | mg/kg   |                   |                   |                   | <0.2              |                   |
| ortho-Xylene                       | 95-47-6                     | 0.2  | mg/kg   |                   |                   |                   | <0.2              |                   |
| ^ Total Xylenes                    |                             | 0.5  | mg/kg   |                   |                   |                   | <0.5              |                   |
| ^ Sum of BTEX                      |                             | 0.2  | mg/kg   |                   |                   |                   | <0.2              |                   |
| Naphthalene                        | 91-20-3                     | 0.2  | mg/kg   |                   |                   |                   | <0.2              |                   |
| EP090: Organotin Compounds         |                             |      |         |                   |                   |                   |                   |                   |
| Tributyltin                        | 56573-85-4                  | 0.5  | µgSn/kg |                   |                   |                   | 6.9               |                   |
| EP130A: Organophosphorus Pest      | ticides (Ultra-trace)       |      |         |                   |                   |                   |                   |                   |
| Bromophos-ethyl                    | 4824-78-6                   | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Carbophenothion                    | 786-19-6                    | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Chlorfenvinphos (E)                | 18708-86-6                  | 10.0 | µg/kg   |                   |                   |                   | <10.0             |                   |
| Chlorfenvinphos (Z)                | 18708-87-7                  | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Chlorpyrifos                       | 2921-88-2                   | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Chlorpyrifos-methyl                | 5598-13-0                   | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Demeton-S-methyl                   | 919-86-8                    | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Diazinon                           | 333-41-5                    | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Dichlorvos                         | 62-73-7                     | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Dimethoate                         | 60-51-5                     | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Ethion                             | 563-12-2                    | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Fenamiphos                         | 22224-92-6                  | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Fenthion                           | 55-38-9                     | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Malathion                          | 121-75-5                    | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Azinphos Methyl                    | 86-50-0                     | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Monocrotophos                      | 6923-22-4                   | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Parathion                          | 56-38-2                     | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Parathion-methyl                   | 298-00-0                    | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Pirimphos-ethyl                    | 23505-41-1                  | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| Prothiofos                         | 34643-46-4                  | 10   | µg/kg   |                   |                   |                   | <10               |                   |
| EP131A: Organochlorine Pesticid    | es                          |      |         |                   |                   |                   |                   |                   |
| Aldrin                             | 309-00-2                    | 0.50 | µg/kg   |                   |                   |                   | <0.50             |                   |
| alpha-BHC                          | 319-84-6                    | 0.50 | µg/kg   |                   |                   |                   | <0.50             |                   |

| Page       | : 16 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID        |              |                | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|------------------------------------|-------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli                     | ient samplii | ng date / time | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                           | CAS Number              | LOR          | Unit           | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                    |                         |              |                | Result            | Result            | Result            | Result            | Result            |
| EP131A: Organochlorine Pesticides  | - Continued             |              |                |                   |                   |                   |                   |                   |
| beta-BHC                           | 319-85-7                | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| delta-BHC                          | 319-86-8                | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| 4.4`-DDD                           | 72-54-8                 | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| 4.4`-DDE                           | 72-55-9                 | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| 4.4`-DDT                           | 50-29-3                 | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| ^ Sum of DDD + DDE + DDT           | 72-54-8/72-55-9/5       | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| Dieldrin                           | 60 57 1                 | 0.50         | ua/ka          |                   |                   |                   | <0.50             |                   |
| alpha-Endosulfan                   | 00-07-1                 | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| beta-Endosulfan                    | 22212 65 0              | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| Endosulfan sulfate                 | 1021 07 9               | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| ^ Endosulfan (sum)                 | 115 20 7                | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| Endrin                             | 72.20.9                 | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| Endrin aldebyde                    | 72-20-0                 | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| Endrin kotono                      | 7421-93-4<br>52404 70 5 | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| Hentachlor                         | 55494-70-5              | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
| Hentachlor enovide                 | 1024 57 2               | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
|                                    | 11024-37-3              | 0.50         | µg/kg          |                   |                   |                   | <0.50             |                   |
|                                    | FR 90.0                 | 0.00         | µg/kg          |                   |                   |                   | <0.00             |                   |
| Motheyychlor                       |                         | 0.20         | µg/kg          |                   |                   |                   | <0.20             |                   |
|                                    | 72-43-3                 | 0.30         | µg/kg          |                   |                   |                   | <0.25             |                   |
|                                    | 5103-71-9               | 0.25         | µg/kg          |                   |                   |                   | <0.25             |                   |
| ^ Total Chlordano (sum)            | 5103-74-2               | 0.25         | µg/kg          |                   |                   |                   | <0.25             |                   |
|                                    |                         | 0.25         | µg/kg          |                   |                   |                   | <0.20             |                   |
|                                    | 27304-13-8              | 0.50         | μg/kg          |                   |                   |                   | -0.50             |                   |
| EP131B: Polychlorinated Biphenyls  | (as Aroclors)           | 5.0          | ua/ka          |                   |                   |                   | 34.6              |                   |
| Aroclor 1016                       | 1267/ 11 2              | 5.0          | µg/kg          |                   |                   |                   | <5.0              |                   |
| Aroclor 1221                       | 11104 28 2              | 5.0          | ua/ka          |                   |                   |                   | <5.0              |                   |
| Aroclor 1232                       | 11141-16-5              | 5.0          | µg/kg          |                   |                   |                   | <5.0              |                   |
| Aroclor 1242                       | 53460 21 0              | 5.0          | µg/kg          |                   |                   |                   | <5.0              |                   |
| Aroclor 1242                       | 12672-20.6              | 5.0          | ua/ka          |                   |                   | <br>              | <5.0              |                   |
| Aroclor 1254                       | 11007_60 1              | 5.0          | ug/kg          |                   |                   |                   | 34.6              |                   |
| Aroclor 1260                       | 11006-82.5              | 5.0          | ug/ka          |                   |                   |                   | <5.0              |                   |
| EP132B: Polynuclear Aromatic Hydr  | ocarbons                | 0.0          | P.33           |                   |                   |                   | 0.0               |                   |
| Naphthalene                        | 91-20-3                 | 5            | µg/kg          |                   |                   |                   | 10                |                   |

| Page       | : 17 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                             | Clie | ent sample ID | VC14_1.3-1.4      | VC06_0.0-0.1      | VC12_1.0-1.1      | VC12_0.0-0.5      | VC0S_0.0-0.1      |
|------------------------------------|-----------------------------|------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Client sampling date / time |      |               | 31-Oct-2019 22:15 | 31-Oct-2019 20:00 | 31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |
| Compound                           | CAS Number                  | LOR  | Unit          | ES1936183-016     | ES1936183-017     | ES1936183-028     | ES1936183-029     | ES1936183-031     |
|                                    |                             |      |               | Result            | Result            | Result            | Result            | Result            |
| EP132B: Polynuclear Aromatic H     | ydrocarbons - Continued     |      |               |                   |                   |                   |                   |                   |
| 2-Methylnaphthalene                | 91-57-6                     | 5    | µg/kg         |                   |                   |                   | <5                |                   |
| Acenaphthylene                     | 208-96-8                    | 4    | µg/kg         |                   |                   |                   | 60                |                   |
| Acenaphthene                       | 83-32-9                     | 4    | µg/kg         |                   |                   |                   | <4                |                   |
| Fluorene                           | 86-73-7                     | 4    | µg/kg         |                   |                   |                   | 8                 |                   |
| Phenanthrene                       | 85-01-8                     | 4    | µg/kg         |                   |                   |                   | 96                |                   |
| Anthracene                         | 120-12-7                    | 4    | µg/kg         |                   |                   |                   | 37                |                   |
| Fluoranthene                       | 206-44-0                    | 4    | µg/kg         |                   |                   |                   | 201               |                   |
| Pyrene                             | 129-00-0                    | 4    | µg/kg         |                   |                   |                   | 217               |                   |
| Benz(a)anthracene                  | 56-55-3                     | 4    | µg/kg         |                   |                   |                   | 147               |                   |
| Chrysene                           | 218-01-9                    | 4    | µg/kg         |                   |                   |                   | 122               |                   |
| Benzo(b+j)fluoranthene             | 205-99-2 205-82-3           | 4    | µg/kg         |                   |                   |                   | 226               |                   |
| Benzo(k)fluoranthene               | 207-08-9                    | 4    | µg/kg         |                   |                   |                   | 116               |                   |
| Benzo(e)pyrene                     | 192-97-2                    | 4    | µg/kg         |                   |                   |                   | 117               |                   |
| Benzo(a)pyrene                     | 50-32-8                     | 4    | µg/kg         |                   |                   |                   | 255               |                   |
| Perylene                           | 198-55-0                    | 4    | µg/kg         |                   |                   |                   | 55                |                   |
| Benzo(g.h.i)perylene               | 191-24-2                    | 4    | µg/kg         |                   |                   |                   | 197               |                   |
| Dibenz(a.h)anthracene              | 53-70-3                     | 4    | µg/kg         |                   |                   |                   | 40                |                   |
| Indeno(1.2.3.cd)pyrene             | 193-39-5                    | 4    | µg/kg         |                   |                   |                   | 155               |                   |
| Coronene                           | 191-07-1                    | 5    | µg/kg         |                   |                   |                   | 126               |                   |
| ^ Sum of PAHs                      |                             | 4    | µg/kg         |                   |                   |                   | 2180              |                   |
| EP066S: PCB Surrogate              |                             |      |               |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                 | 2051-24-3                   | 0.1  | %             |                   | 78.6              | 83.8              |                   | 71.4              |
| EP068S: Organochlorine Pesticio    | de Surrogate                |      |               |                   |                   |                   |                   |                   |
| Dibromo-DDE                        | 21655-73-2                  | 0.05 | %             |                   | 95.3              | 91.6              |                   | 94.5              |
| EP068T: Organophosphorus Pes       | sticide Surrogate           |      |               |                   |                   |                   |                   |                   |
| DEF                                | 78-48-8                     | 0.05 | %             |                   | 96.1              | 73.3              |                   | 86.7              |
| EP074S: VOC Surrogates             |                             |      |               |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4              | 17060-07-0                  | 0.5  | %             |                   | 85.4              | 82.9              |                   | 84.6              |
| Toluene-D8                         | 2037-26-5                   | 0.5  | %             |                   | 112               | 106               |                   | 105               |
| 4-Bromofluorobenzene               | 460-00-4                    | 0.5  | %             |                   | 112               | 105               |                   | 101               |
| EP075(SIM)S: Phenolic Compour      | nd Surrogates               |      |               |                   |                   |                   |                   |                   |
| Phenol-d6                          | 13127-88-3                  | 0.5  | %             |                   | 72.0              | 76.1              | 79.2              | 76.2              |
| 2-Chlorophenol-D4                  | 93951-73-6                  | 0.5  | %             |                   | 80.3              | 85.6              | 79.6              | 85.9              |
| 2.4.6-Tribromophenol               | 118-79-6                    | 0.5  | %             |                   | 67.8              | 66.5              | 64.0              | 71.0              |
|                                    |                             |      |               |                   |                   |                   |                   |                   |

| Page       | : 18 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| (Matrix: SOIL)                                                                                            | VC12_0.0-0.5      | VC0S_0.0-0.1      |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------|-------------------|--|--|--|--|--|--|--|--|
| Client sampling date / time         31-Oct-2019 22:15         31-Oct-2019 20:00         31-Oct-2019 20:30 | 31-Oct-2019 20:30 | 31-Oct-2019 20:45 |  |  |  |  |  |  |  |  |
| Compound CAS Number LOR Unit ES1936183-016 ES1936183-017 ES1936183-028                                    | ES1936183-029     | ES1936183-031     |  |  |  |  |  |  |  |  |
| Result Result Result                                                                                      | Result            | Result            |  |  |  |  |  |  |  |  |
| EP075(SIM)T: PAH Surrogates                                                                               |                   |                   |  |  |  |  |  |  |  |  |
| 2-Fluorobiphenyl 321-60-8 0.5 % 94.4 102                                                                  | 90.9              | 101               |  |  |  |  |  |  |  |  |
| Anthracene-d10 1719-06-8 0.5 % 88.2 96.0                                                                  | 87.0              | 92.4              |  |  |  |  |  |  |  |  |
| 4-Terphenyl-d14 1718-51-0 0.5 % 78.9 86.0                                                                 | 95.7              | 83.6              |  |  |  |  |  |  |  |  |
| EP075S: Acid Extractable Surrogates                                                                       |                   |                   |  |  |  |  |  |  |  |  |
| 2-Fluorophenol 367-12-4 0.5 %                                                                             | 94.3              |                   |  |  |  |  |  |  |  |  |
| Phenol-d6 13127-88-3 0.5 %                                                                                | 88.5              |                   |  |  |  |  |  |  |  |  |
| 2-Chlorophenol-D4 93951-73-6 0.5 %                                                                        | 93.0              |                   |  |  |  |  |  |  |  |  |
| <b>2.4.6-Tribromophenol</b> 118-79-6 0.5 %                                                                | 60.2              |                   |  |  |  |  |  |  |  |  |
| EP075T: Base/Neutral Extractable Surrogates                                                               |                   |                   |  |  |  |  |  |  |  |  |
| Nitrobenzene-D5 4165-60-0 0.5 %                                                                           | 88.1              |                   |  |  |  |  |  |  |  |  |
| <b>1.2-Dichlorobenzene-D4</b> 2199-69-1 0.5 %                                                             | 82.6              |                   |  |  |  |  |  |  |  |  |
| 2-Fluorobiphenyl 321-60-8 0.5 %                                                                           | 103               |                   |  |  |  |  |  |  |  |  |
| Anthracene-d10 1719-06-8 0.5 %                                                                            | 84.0              |                   |  |  |  |  |  |  |  |  |
| 4-Terphenyl-d14 1718-51-0 0.5 %                                                                           | 93.2              |                   |  |  |  |  |  |  |  |  |
| EP080S: TPH(V)/BTEX Surrogates                                                                            |                   |                   |  |  |  |  |  |  |  |  |
| 1.2-Dichloroethane-D4 17060-07-0 0.2 % 82.3 80.4                                                          |                   | 81.3              |  |  |  |  |  |  |  |  |
| Toluene-D8         2037-26-5         0.2         %          101         95.5                              |                   | 94.8              |  |  |  |  |  |  |  |  |
| 4-Bromofluorobenzene 460-00-4 0.2 % 106 97.1                                                              |                   | 94.7              |  |  |  |  |  |  |  |  |
| EP080-SD: TPH(V)/BTEX Surrogates                                                                          |                   |                   |  |  |  |  |  |  |  |  |
| 1.2-Dichloroethane-D4 17060-07-0 0.2 %                                                                    | 124               |                   |  |  |  |  |  |  |  |  |
| Toluene-D8 2037-26-5 0.2 %                                                                                | 131               |                   |  |  |  |  |  |  |  |  |
| 4-Bromofluorobenzene 460-00-4 0.2 %                                                                       | 137               |                   |  |  |  |  |  |  |  |  |
| EP090S: Organotin Surrogate                                                                               |                   |                   |  |  |  |  |  |  |  |  |
| Tripropyltin 0.5 %                                                                                        | 82.0              |                   |  |  |  |  |  |  |  |  |
| EP130S: Organophosphorus Pesticide Surrogate                                                              |                   |                   |  |  |  |  |  |  |  |  |
| DEF 78-48-8 10 %                                                                                          | 69.2              |                   |  |  |  |  |  |  |  |  |
| EP131S: OC Pesticide Surrogate                                                                            |                   |                   |  |  |  |  |  |  |  |  |
| Dibromo-DDE 21655-73-2 0.50 %                                                                             | 44.1              |                   |  |  |  |  |  |  |  |  |
| EP131T: PCB Surrogate                                                                                     |                   |                   |  |  |  |  |  |  |  |  |
| Decachlorobiphenyl 2051-24-3 0.5 %                                                                        | 57.5              |                   |  |  |  |  |  |  |  |  |
| EP132T: Base/Neutral Extractable Surrogates                                                               |                   |                   |  |  |  |  |  |  |  |  |
| 2-Fluorobiphenyl 321-60-8 10 %                                                                            | 79.8              |                   |  |  |  |  |  |  |  |  |
| Anthracene-d10 1719-06-8 10 %                                                                             | 80.7              |                   |  |  |  |  |  |  |  |  |
| 4-Terphenyl-d14 1718-51-0 10 %                                                                            | 94.9              |                   |  |  |  |  |  |  |  |  |

| Page       | : 19 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID            |      |       | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |
|-----------------------------------------|-----------------------------|------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                         | Client sampling date / time |      |       | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                | CAS Number                  | LOR  | Unit  | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |
|                                         |                             |      |       | Result            | Result            | Result            | Result            | Result            |
| EA055: Moisture Content (Dried @ 105-   | 110°C)                      |      |       |                   |                   |                   |                   |                   |
| Moisture Content                        |                             | 1.0  | %     | 17.5              | 32.2              | 24.9              |                   |                   |
| EA150: Particle Sizing                  |                             |      |       |                   |                   |                   |                   |                   |
| +75μm                                   |                             | 1    | %     | 44                |                   |                   |                   |                   |
| +150μm                                  |                             | 1    | %     | 35                |                   |                   |                   |                   |
| +300μm                                  |                             | 1    | %     | 18                |                   |                   |                   |                   |
| +425μm                                  |                             | 1    | %     | 10                |                   |                   |                   |                   |
| +600µm                                  |                             | 1    | %     | 3                 |                   |                   |                   |                   |
| +1180μm                                 |                             | 1    | %     | <1                |                   |                   |                   |                   |
| +2.36mm                                 |                             | 1    | %     | <1                |                   |                   |                   |                   |
| +4.75mm                                 |                             | 1    | %     | <1                |                   |                   |                   |                   |
| +9.5mm                                  |                             | 1    | %     | <1                |                   |                   |                   |                   |
| +19.0mm                                 |                             | 1    | %     | <1                |                   |                   |                   |                   |
| +37.5mm                                 |                             | 1    | %     | <1                |                   |                   |                   |                   |
| +75.0mm                                 |                             | 1    | %     | <1                |                   |                   |                   |                   |
| EA150: Soil Classification based on Par | ticle Size                  |      |       |                   |                   |                   |                   |                   |
| Clay (<2 μm)                            |                             | 1    | %     | 33                |                   |                   |                   |                   |
| Silt (2-60 µm)                          |                             | 1    | %     | 19                |                   |                   |                   |                   |
| Sand (0.06-2.00 mm)                     |                             | 1    | %     | 48                |                   |                   |                   |                   |
| Gravel (>2mm)                           |                             | 1    | %     | <1                |                   |                   |                   |                   |
| Cobbles (>6cm)                          |                             | 1    | %     | <1                |                   |                   |                   |                   |
| EG005(ED093)-SD: Total Metals in Sedir  | nents by ICP-AES            | 5    |       |                   |                   |                   |                   |                   |
| Aluminium                               | 7429-90-5                   | 50   | mg/kg | 7220              |                   |                   |                   |                   |
| Iron                                    | 7439-89-6                   | 50   | mg/kg | 3460              |                   |                   |                   |                   |
| EG005(ED093)T: Total Metals by ICP-AE   | S                           |      |       |                   |                   |                   |                   |                   |
| Arsenic                                 | 7440-38-2                   | 5    | mg/kg |                   | 13                | 9                 |                   |                   |
| Beryllium                               | 7440-41-7                   | 1    | mg/kg |                   | <1                | <1                |                   |                   |
| Cadmium                                 | 7440-43-9                   | 1    | mg/kg |                   | <1                | <1                |                   |                   |
| Lead                                    | 7439-92-1                   | 5    | mg/kg |                   | 154               | <5                |                   |                   |
| Molybdenum                              | 7439-98-7                   | 2    | mg/kg |                   | <2                | <2                |                   |                   |
| Nickel                                  | 7440-02-0                   | 2    | mg/kg |                   | 7                 | 3                 |                   |                   |
| Selenium                                | 7782-49-2                   | 5    | mg/kg |                   | <5                | <5                |                   |                   |
| Silver                                  | 7440-22-4                   | 2    | mg/kg |                   | <2                | <2                |                   |                   |
| EG020-SD: Total Metals in Sediments by  |                             |      |       |                   |                   |                   |                   |                   |
| Antimony                                | 7440-36-0                   | 0.50 | mg/kg | <0.50             |                   |                   |                   |                   |

| Page       | : 20 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)    | Client sample ID            |           |       | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |
|---------------------------------------|-----------------------------|-----------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                       | Client sampling date / time |           |       | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                              | CAS Number                  | LOR       | Unit  | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |
|                                       |                             |           |       | Result            | Result            | Result            | Result            | Result            |
| EG020-SD: Total Metals in Sediments b | oy ICPMS - Continue         | ed        |       |                   |                   |                   |                   |                   |
| Arsenic                               | 7440-38-2                   | 1.00      | mg/kg | 3.11              |                   |                   |                   |                   |
| Cadmium                               | 7440-43-9                   | 0.1       | mg/kg | <0.1              |                   |                   |                   |                   |
| Chromium                              | 7440-47-3                   | 1.0       | mg/kg | 10.8              |                   |                   |                   |                   |
| Copper                                | 7440-50-8                   | 1.0       | mg/kg | <1.0              |                   |                   |                   |                   |
| Cobalt                                | 7440-48-4                   | 0.5       | mg/kg | <0.5              |                   |                   |                   |                   |
| Lead                                  | 7439-92-1                   | 1.0       | mg/kg | 14.6              |                   |                   |                   |                   |
| Manganese                             | 7439-96-5                   | 10        | mg/kg | <10               |                   |                   |                   |                   |
| Nickel                                | 7440-02-0                   | 1.0       | mg/kg | 1.2               |                   |                   |                   |                   |
| Selenium                              | 7782-49-2                   | 0.1       | mg/kg | 0.3               |                   |                   |                   |                   |
| Silver                                | 7440-22-4                   | 0.1       | mg/kg | 0.2               |                   |                   |                   |                   |
| Vanadium                              | 7440-62-2                   | 2.0       | mg/kg | 21.3              |                   |                   |                   |                   |
| Zinc                                  | 7440-66-6                   | 1.0       | mg/kg | 3.2               |                   |                   |                   |                   |
| EG035T: Total Recoverable Mercury by  | y FIMS                      |           |       |                   |                   |                   |                   |                   |
| Mercury                               | 7439-97-6                   | 0.01      | mg/kg | 0.05              |                   |                   |                   |                   |
| Mercury                               | 7439-97-6                   | 0.1       | mg/kg |                   | 2.2               | <0.1              |                   |                   |
| EG048: Hexavalent Chromium (Alkaline  | e Digest)                   |           |       |                   |                   |                   |                   |                   |
| Hexavalent Chromium                   | 18540-29-9                  | 0.5       | mg/kg |                   | <0.5              | <0.5              |                   |                   |
| EK026SF: Total CN by Segmented Flow   | w Analyser                  |           |       |                   |                   |                   |                   |                   |
| Total Cyanide                         | 57-12-5                     | 1         | mg/kg | <1                | <1                | <1                |                   |                   |
| EK028SF: Weak Acid Dissociable CN b   | by Segmented Flow           | w Analyse | er    |                   |                   |                   |                   |                   |
| Weak Acid Dissociable Cyanide         |                             | 1         | mg/kg |                   | <1                | <1                |                   |                   |
| EK040T: Fluoride Total                |                             |           |       |                   |                   |                   |                   |                   |
| Fluoride                              | 16984-48-8                  | 40        | mg/kg |                   | 180               | 70                |                   |                   |
| EP003: Total Organic Carbon (TOC) in  | Soil                        |           |       |                   |                   |                   |                   |                   |
| Total Organic Carbon                  |                             | 0.02      | %     | 0.15              | 1.45              | 0.29              |                   |                   |
| EP066: Polychlorinated Biphenyls (PCI | B)                          |           |       |                   |                   |                   |                   |                   |
| Total Polychlorinated biphenyls       |                             | 0.1       | mg/kg |                   | <0.1              | <0.1              |                   |                   |
| EP068A: Organochlorine Pesticides (O  | C)                          |           |       |                   |                   |                   |                   |                   |
| alpha-BHC                             | 319-84-6                    | 0.05      | mg/kg |                   | <0.05             | <0.05             |                   |                   |
| Hexachlorobenzene (HCB)               | 118-74-1                    | 0.05      | mg/kg |                   | <0.05             | <0.05             |                   |                   |
| beta-BHC                              | 319-85-7                    | 0.05      | mg/kg |                   | <0.05             | <0.05             |                   |                   |
| gamma-BHC                             | 58-89-9                     | 0.05      | mg/kg |                   | <0.05             | <0.05             |                   |                   |
| delta-BHC                             | 319-86-8                    | 0.05      | mg/kg |                   | <0.05             | <0.05             |                   |                   |
| Heptachlor                            | 76-44-8                     | 0.05      | mg/kg |                   | <0.05             | <0.05             |                   |                   |

| Page       | : 21 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID            |             |                   | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |
|------------------------------------|-----------------------------|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Client sampling date / time |             |                   | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                           | CAS Number                  | LOR         | Unit              | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |
|                                    |                             |             |                   | Result            | Result            | Result            | Result            | Result            |
| EP068A: Organochlorine Pesticides  | (OC) - Continued            |             |                   |                   |                   |                   |                   |                   |
| Aldrin                             | 309-00-2                    | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| Heptachlor epoxide                 | 1024-57-3                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| ^ Total Chlordane (sum)            |                             | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| trans-Chlordane                    | 5103-74-2                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| alpha-Endosulfan                   | 959-98-8                    | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| cis-Chlordane                      | 5103-71-9                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| Dieldrin                           | 60-57-1                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| 4.4`-DDE                           | 72-55-9                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| Endrin                             | 72-20-8                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| beta-Endosulfan                    | 33213-65-9                  | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| 4.4`-DDD                           | 72-54-8                     | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| Endrin aldehyde                    | 7421-93-4                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| Endosulfan sulfate                 | 1031-07-8                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| 4.4`-DDT                           | 50-29-3                     | 0.2         | mg/kg             |                   | <0.2              | <0.2              |                   |                   |
| EP068B: Organophosphorus Pestici   | des (OP)                    |             |                   |                   |                   |                   |                   |                   |
| Chlorpyrifos                       | 2921-88-2                   | 0.05        | mg/kg             |                   | <0.05             | <0.05             |                   |                   |
| EP071 SG: Total Recoverable Hydro  | carbons - NEPM 201          | 3 Fraction  | is - Silica gel ( | cleanup           |                   |                   |                   |                   |
| >C10 - C16 Fraction                |                             | 50          | mg/kg             |                   | <50               | <50               |                   |                   |
| >C16 - C34 Fraction                |                             | 100         | mg/kg             |                   | 160               | <100              |                   |                   |
| >C34 - C40 Fraction                |                             | 100         | mg/kg             |                   | <100              | <100              |                   |                   |
| ^ >C10 - C40 Fraction (sum)        |                             | 50          | mg/kg             |                   | 160               | <50               |                   |                   |
| EP071 SG-S: Total Petroleum Hydrod | carbons in Soil - Silio     | ca gel clea | anup              |                   |                   |                   |                   |                   |
| C10 - C14 Fraction                 |                             | 50          | mg/kg             |                   | <50               | <50               |                   |                   |
| C15 - C28 Fraction                 |                             | 100         | mg/kg             |                   | <100              | <100              |                   |                   |
| C29 - C36 Fraction                 |                             | 100         | mg/kg             |                   | 100               | <100              |                   |                   |
| ^ C10 - C36 Fraction (sum)         |                             | 50          | mg/kg             |                   | 100               | <50               |                   |                   |
| EP074A: Monocyclic Aromatic Hydro  | ocarbons                    |             |                   |                   |                   |                   |                   |                   |
| Benzene                            | 71-43-2                     | 0.2         | mg/kg             |                   | <0.2              | <0.2              |                   |                   |
| Toluene                            | 108-88-3                    | 0.5         | mg/kg             |                   | <0.5              | <0.5              |                   |                   |
| Ethylbenzene                       | 100-41-4                    | 0.5         | mg/kg             |                   | <0.5              | <0.5              |                   |                   |
| meta- & para-Xylene                | 108-38-3 106-42-3           | 0.5         | mg/kg             |                   | <0.5              | <0.5              |                   |                   |
| Styrene                            | 100-42-5                    | 0.5         | mg/kg             |                   | <0.5              | <0.5              |                   |                   |
| ortho-Xylene                       | 95-47-6                     | 0.5         | mg/kg             |                   | <0.5              | <0.5              |                   |                   |
| EP074B: Oxygenated Compounds       |                             |             |                   |                   |                   |                   |                   |                   |

| Page       | : 22 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID            |     |                   | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2           |
|----------------------------------------|-----------------------------|-----|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
|                                        | Client sampling date / time |     | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |               |
| Compound                               | CAS Number                  | LOR | Unit              | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064 |
|                                        |                             |     |                   | Result            | Result            | Result            | Result            | Result        |
| EP074B: Oxygenated Compounds - Contin  | nued                        |     |                   |                   |                   |                   |                   |               |
| 2-Butanone (MEK)                       | 78-93-3                     | 5   | mg/kg             |                   | <5                | <5                |                   |               |
| EP074E: Halogenated Aliphatic Compour  | nds                         |     |                   |                   |                   |                   |                   |               |
| Vinyl chloride                         | 75-01-4                     | 4   | mg/kg             |                   | <4                | <4                |                   |               |
| 1.1-Dichloroethene                     | 75-35-4                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| Methylene chloride                     | 75-09-2                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| 1.1.1-Trichloroethane                  | 71-55-6                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| Carbon Tetrachloride                   | 56-23-5                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| 1.2-Dichloroethane                     | 107-06-2                    | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| Trichloroethene                        | 79-01-6                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| 1.1.2-Trichloroethane                  | 79-00-5                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| Tetrachloroethene                      | 127-18-4                    | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| 1.1.1.2-Tetrachloroethane              | 630-20-6                    | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| 1.1.2.2-Tetrachloroethane              | 79-34-5                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| EP074F: Halogenated Aromatic Compour   | nds                         |     |                   |                   |                   |                   |                   |               |
| Chlorobenzene                          | 108-90-7                    | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| EP074G: Trihalomethanes                |                             |     |                   |                   |                   |                   |                   |               |
| Chloroform                             | 67-66-3                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| EP075(SIM)A: Phenolic Compounds        |                             |     |                   |                   |                   |                   |                   |               |
| Phenol                                 | 108-95-2                    | 0.5 | mg/kg             | <0.5              | <0.5              | <0.5              |                   |               |
| 2-Chlorophenol                         | 95-57-8                     | 0.5 | mg/kg             | <0.5              |                   |                   |                   |               |
| 2-Methylphenol                         | 95-48-7                     | 0.5 | mg/kg             | <0.5              | <0.5              | <0.5              |                   |               |
| 3- & 4-Methylphenol                    | 1319-77-3                   | 1   | mg/kg             | <1                | <1                | <1                |                   |               |
| 2-Nitrophenol                          | 88-75-5                     | 0.5 | mg/kg             | <0.5              |                   |                   |                   |               |
| 2.4-Dimethylphenol                     | 105-67-9                    | 0.5 | mg/kg             | <0.5              |                   |                   |                   |               |
| 2.4-Dichlorophenol                     | 120-83-2                    | 0.5 | mg/kg             | <0.5              |                   |                   |                   |               |
| 2.6-Dichlorophenol                     | 87-65-0                     | 0.5 | mg/kg             | <0.5              |                   |                   |                   |               |
| 4-Chloro-3-methylphenol                | 59-50-7                     | 0.5 | mg/kg             | <0.5              | <0.5              | <0.5              |                   |               |
| 2.4.6-Trichlorophenol                  | 88-06-2                     | 0.5 | mg/kg             | <0.5              | <0.5              | <0.5              |                   |               |
| 2.4.5-Trichlorophenol                  | 95-95-4                     | 0.5 | mg/kg             | <0.5              | <0.5              | <0.5              |                   |               |
| Pentachlorophenol                      | 87-86-5                     | 2   | mg/kg             | <2                | <2                | <2                |                   |               |
| EP075(SIM)B: Polynuclear Aromatic Hydr | rocarbons                   |     |                   |                   |                   |                   |                   |               |
| Naphthalene                            | 91-20-3                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| Acenaphthylene                         | 208-96-8                    | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |
| Acenaphthene                           | 83-32-9                     | 0.5 | mg/kg             |                   | <0.5              | <0.5              |                   |               |

# Page : 23 of 37 Work Order : ES1936183 Client : GHD PTY LTD Project : 12517046



| Sub-Matrix: SOIL<br>(Matrix: SOIL)       | Client sample ID   |              |                | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |
|------------------------------------------|--------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                          | Cli                | ient samplii | ng date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                 | CAS Number         | LOR          | Unit           | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |
|                                          |                    |              |                | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)B: Polynuclear Aromatic H      | ydrocarbons - Cont | inued        |                |                   |                   |                   |                   |                   |
| Fluorene                                 | 86-73-7            | 0.5          | mg/kg          |                   | <0.5              | <0.5              |                   |                   |
| Phenanthrene                             | 85-01-8            | 0.5          | mg/kg          |                   | <0.5              | <0.5              |                   |                   |
| Anthracene                               | 120-12-7           | 0.5          | mg/kg          |                   | <0.5              | <0.5              |                   |                   |
| Fluoranthene                             | 206-44-0           | 0.5          | mg/kg          |                   | 1.4               | <0.5              |                   |                   |
| Pyrene                                   | 129-00-0           | 0.5          | mg/kg          |                   | 1.5               | <0.5              |                   |                   |
| Benz(a)anthracene                        | 56-55-3            | 0.5          | mg/kg          |                   | 0.7               | <0.5              |                   |                   |
| Chrysene                                 | 218-01-9           | 0.5          | mg/kg          |                   | 0.6               | <0.5              |                   |                   |
| Benzo(b+j)fluoranthene                   | 205-99-2 205-82-3  | 0.5          | mg/kg          |                   | 1.1               | <0.5              |                   |                   |
| Benzo(k)fluoranthene                     | 207-08-9           | 0.5          | mg/kg          |                   | <0.5              | <0.5              |                   |                   |
| Benzo(a)pyrene                           | 50-32-8            | 0.5          | mg/kg          |                   | 1.0               | <0.5              |                   |                   |
| Indeno(1.2.3.cd)pyrene                   | 193-39-5           | 0.5          | mg/kg          |                   | <0.5              | <0.5              |                   |                   |
| Dibenz(a.h)anthracene                    | 53-70-3            | 0.5          | mg/kg          |                   | <0.5              | <0.5              |                   |                   |
| Benzo(g.h.i)perylene                     | 191-24-2           | 0.5          | mg/kg          |                   | 0.6               | <0.5              |                   |                   |
| ^ Sum of polycyclic aromatic hydrocarbon | s                  | 0.5          | mg/kg          |                   | 6.9               | <0.5              |                   |                   |
| ^ Benzo(a)pyrene TEQ (zero)              |                    | 0.5          | mg/kg          |                   | 1.2               | <0.5              |                   |                   |
| ^ Benzo(a)pyrene TEQ (half LOR)          |                    | 0.5          | mg/kg          |                   | 1.5               | 0.6               |                   |                   |
| ^ Benzo(a)pyrene TEQ (LOR)               |                    | 0.5          | mg/kg          |                   | 1.8               | 1.2               |                   |                   |
| EP075A: Phenolic Compounds               |                    |              |                |                   |                   |                   |                   |                   |
| Phenol                                   | 108-95-2           | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2-Chlorophenol                           | 95-57-8            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2-Methylphenol                           | 95-48-7            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 3- & 4-Methylphenol                      | 1319-77-3          | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2-Nitrophenol                            | 88-75-5            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2.4-Dimethylphenol                       | 105-67-9           | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2.4-Dichlorophenol                       | 120-83-2           | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2.6-Dichlorophenol                       | 87-65-0            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 4-Chloro-3-methylphenol                  | 59-50-7            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2.4.6-Trichlorophenol                    | 88-06-2            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2.4.5-Trichlorophenol                    | 95-95-4            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| Pentachlorophenol                        | 87-86-5            | 1            | mg/kg          | <1                |                   |                   |                   |                   |
| EP075B: Polynuclear Aromatic Hydrod      | carbons            |              |                |                   |                   |                   |                   |                   |
| Naphthalene                              | 91-20-3            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2-Methylnaphthalene                      | 91-57-6            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2-Chloronaphthalene                      | 91-58-7            | 0.5          | mg/kg          | <0.5              |                   |                   |                   |                   |

| Page       | : 24 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                    |                   | Clie       | ent sample ID  | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |  |  |  |
|-------------------------------------------------------|-------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|--|
|                                                       | Cli               | ent sampli | ng date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |  |
| Compound                                              | CAS Number        | LOR        | Unit           | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |  |  |  |
|                                                       |                   |            |                | Result            | Result            | Result            | Result            | Result            |  |  |  |
| EP075B: Polynuclear Aromatic Hydrocarbons - Continued |                   |            |                |                   |                   |                   |                   |                   |  |  |  |
| Acenaphthylene                                        | 208-96-8          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Acenaphthene                                          | 83-32-9           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Fluorene                                              | 86-73-7           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Phenanthrene                                          | 85-01-8           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Anthracene                                            | 120-12-7          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Fluoranthene                                          | 206-44-0          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Pyrene                                                | 129-00-0          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| N-2-Fluorenyl Acetamide                               | 53-96-3           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Benz(a)anthracene                                     | 56-55-3           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Chrysene                                              | 218-01-9          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Benzo(b+j) &                                          | 205-99-2 207-08-9 | 1          | mg/kg          | <1                |                   |                   |                   |                   |  |  |  |
| Benzo(k)fluoranthene                                  |                   |            |                |                   |                   |                   |                   |                   |  |  |  |
| 7.12-Dimethylbenz(a)anthracene                        | 57-97-6           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Benzo(a)pyrene                                        | 50-32-8           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| 3-Methylcholanthrene                                  | 56-49-5           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Indeno(1.2.3.cd)pyrene                                | 193-39-5          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Dibenz(a.h)anthracene                                 | 53-70-3           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Benzo(g.h.i)perylene                                  | 191-24-2          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| ^ Sum of PAHs                                         |                   | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| ^ Benzo(a)pyrene TEQ (zero)                           |                   | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| ^ Benzo(a)pyrene TEQ (half LOR)                       |                   | 0.5        | mg/kg          | 0.6               |                   |                   |                   |                   |  |  |  |
| ^ Benzo(a)pyrene TEQ (LOR)                            |                   | 0.5        | mg/kg          | 1.2               |                   |                   |                   |                   |  |  |  |
| EP075C: Phthalate Esters                              |                   |            |                |                   |                   |                   |                   |                   |  |  |  |
| Dimethyl phthalate                                    | 131-11-3          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Diethyl phthalate                                     | 84-66-2           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Di-n-butyl phthalate                                  | 84-74-2           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| Butyl benzyl phthalate                                | 85-68-7           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| bis(2-ethylhexyl) phthalate                           | 117-81-7          | 5.0        | mg/kg          | <5.0              |                   |                   |                   |                   |  |  |  |
| Di-n-octylphthalate                                   | 117-84-0          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| EP075D: Nitrosamines                                  |                   |            |                |                   |                   |                   |                   |                   |  |  |  |
| N-Nitrosomethylethylamine                             | 10595-95-6        | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| N-Nitrosodiethylamine                                 | 55-18-5           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| N-Nitrosopyrrolidine                                  | 930-55-2          | 1.0        | mg/kg          | <1.0              |                   |                   |                   |                   |  |  |  |
| N-Nitrosomorpholine                                   | 59-89-2           | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |
| N-Nitrosodi-n-propylamine                             | 621-64-7          | 0.5        | mg/kg          | <0.5              |                   |                   |                   |                   |  |  |  |

| Page       | : 25 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                  | Clie       | ent sample ID  | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1                                              | TS2           | TB2           |
|------------------------------------|------------------|------------|----------------|-------------------|-------------------|-----------------------------------------------------------|---------------|---------------|
|                                    | Cli              | ent sampli | ng date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 2019 21:45 31-Oct-2019 22:15 31-Oct-2019 00:00 31-Oct-201 |               |               |
| Compound                           | CAS Number       | LOR        | Unit           | ES1936183-040     | ES1936183-041     | ES1936183-052                                             | ES1936183-063 | ES1936183-064 |
|                                    |                  |            |                | Result            | Result            | Result                                                    | Result        | Result        |
| EP075D: Nitrosamines - Continued   |                  |            |                |                   |                   |                                                           |               |               |
| N-Nitrosopiperidine                | 100-75-4         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| N-Nitrosodibutylamine              | 924-16-3         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| N-Nitrosodiphenyl &                | 86-30-6 122-39-4 | 1.0        | mg/kg          | <1.0              |                   |                                                           |               |               |
| Diphenylamine                      |                  |            |                |                   |                   |                                                           |               |               |
| Methapyrilene                      | 91-80-5          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| EP075E: Nitroaromatics and Ketones |                  |            |                |                   |                   |                                                           |               |               |
| 2-Picoline                         | 109-06-8         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Acetophenone                       | 98-86-2          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Nitrobenzene                       | 98-95-3          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Isophorone                         | 78-59-1          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| 2.6-Dinitrotoluene                 | 606-20-2         | 1.0        | mg/kg          | <1.0              |                   |                                                           |               |               |
| 2.4-Dinitrotoluene                 | 121-14-2         | 1.0        | mg/kg          | <1.0              |                   |                                                           |               |               |
| 1-Naphthylamine                    | 134-32-7         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| 4-Nitroquinoline-N-oxide           | 56-57-5          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| 5-Nitro-o-toluidine                | 99-55-8          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Azobenzene                         | 103-33-3         | 1          | mg/kg          | <1                |                   |                                                           |               |               |
| 1.3.5-Trinitrobenzene              | 99-35-4          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Phenacetin                         | 62-44-2          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| 4-Aminobiphenyl                    | 92-67-1          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Pentachloronitrobenzene            | 82-68-8          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Pronamide                          | 23950-58-5       | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Dimethylaminoazobenzene            | 60-11-7          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Chlorobenzilate                    | 510-15-6         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| EP075F: Haloethers                 |                  |            |                |                   |                   |                                                           |               |               |
| Bis(2-chloroethyl) ether           | 111-44-4         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Bis(2-chloroethoxy) methane        | 111-91-1         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| 4-Chlorophenyl phenyl ether        | 7005-72-3        | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| 4-Bromophenyl phenyl ether         | 101-55-3         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| EP075G: Chlorinated Hydrocarbons   |                  |            |                |                   |                   |                                                           |               |               |
| 1.3-Dichlorobenzene                | 541-73-1         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| 1.4-Dichlorobenzene                | 106-46-7         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| 1.2-Dichlorobenzene                | 95-50-1          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| Hexachloroethane                   | 67-72-1          | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |
| 1.2.4-Trichlorobenzene             | 120-82-1         | 0.5        | mg/kg          | <0.5              |                   |                                                           |               |               |

| Page       | : 26 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                   | Clie        | ent sample ID  | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |
|------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl                | ient sampli | ng date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                           | CAS Number        | LOR         | Unit           | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |
|                                    |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075G: Chlorinated Hydrocarbons   | - Continued       |             |                |                   |                   |                   |                   |                   |
| Hexachloropropylene                | 1888-71-7         | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Hexachlorobutadiene                | 87-68-3           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Hexachlorocyclopentadiene          | 77-47-4           | 2.5         | mg/kg          | <2.5              |                   |                   |                   |                   |
| Pentachlorobenzene                 | 608-93-5          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Hexachlorobenzene (HCB)            | 118-74-1          | 1.0         | mg/kg          | <1.0              |                   |                   |                   |                   |
| EP075H: Anilines and Benzidines    |                   |             |                |                   |                   |                   |                   |                   |
| Aniline                            | 62-53-3           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| 4-Chloroaniline                    | 106-47-8          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| 2-Nitroaniline                     | 88-74-4           | 1.0         | mg/kg          | <1.0              |                   |                   |                   |                   |
| 3-Nitroaniline                     | 99-09-2           | 1.0         | mg/kg          | <1.0              |                   |                   |                   |                   |
| Dibenzofuran                       | 132-64-9          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| 4-Nitroaniline                     | 100-01-6          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Carbazole                          | 86-74-8           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| 3.3`-Dichlorobenzidine             | 91-94-1           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| EP075I: Organochlorine Pesticides  |                   |             |                |                   |                   |                   |                   |                   |
| alpha-BHC                          | 319-84-6          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| beta-BHC                           | 319-85-7          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| gamma-BHC                          | 58-89-9           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| delta-BHC                          | 319-86-8          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Heptachlor                         | 76-44-8           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Aldrin                             | 309-00-2          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Heptachlor epoxide                 | 1024-57-3         | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| alpha-Endosulfan                   | 959-98-8          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| 4.4`-DDE                           | 72-55-9           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Dieldrin                           | 60-57-1           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Endrin                             | 72-20-8           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| beta-Endosulfan                    | 33213-65-9        | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| 4.4`-DDD                           | 72-54-8           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Endosulfan sulfate                 | 1031-07-8         | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| 4.4`-DDT                           | 50-29-3           | 1.0         | mg/kg          | <1.0              |                   |                   |                   |                   |
| ^ Sum of DDD + DDE + DDT           | 72-54-8/72-55-9/5 | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
|                                    | 0-2               |             |                |                   |                   |                   |                   |                   |
| ^ Sum of Aldrin + Dieldrin         | 309-00-2/60-57-1  | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| EP075J: Organophosphorus Pestici   | des               |             |                |                   |                   |                   |                   |                   |



#### **QUALITY CONTROL REPORT**

| Work Order              | : ES1936183                                                     | Page                    | : 1 of 35                                             |
|-------------------------|-----------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : GHD PTY LTD                                                   | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | : MS CARMEN YI                                                  | Contact                 | : Customer Services ES                                |
| Address                 | ELEVEL 15, 133 CASTLEREAGH STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | : +61 0451 962 988                                              | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                                                      | Date Samples Received   | : 01-Nov-2019                                         |
| Order number            | :                                                               | Date Analysis Commenced | : 05-Nov-2019                                         |
| C-O-C number            | :                                                               | Issue Date              | 20-Nov-2019                                           |
| Sampler                 | : SARAH ECCLESHALL                                              |                         | Hac-MRA NATA                                          |
| Site                    | :                                                               |                         |                                                       |
| Quote number            | : SY/522/19                                                     |                         | Accreditation No. 825                                 |
| No. of samples received | : 66                                                            |                         | Accredited for compliance with                        |
| No. of samples analysed | : 27                                                            |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories         | Position                         | Accreditation Category                      |
|---------------------|----------------------------------|---------------------------------------------|
| Alison Graham       | Supervisor - Inorganic           | Newcastle - Inorganics, Mayfield West, NSW  |
| Ankit Joshi         | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |
| Ben Felgendrejeris  | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |
| Diana Mesa          | 2IC Organic Chemist              | Brisbane Organics, Stafford, QLD            |
| Dianne Blane        | Laboratory Coordinator (2IC)     | Newcastle - Inorganics, Mayfield West, NSW  |
| Edwandy Fadjar      | Organic Coordinator              | Sydney Organics, Smithfield, NSW            |
| Evie Sidarta        | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |
| Ivan Taylor         | Analyst                          | Sydney Inorganics, Smithfield, NSW          |
| Kim McCabe          | Senior Inorganic Chemist         | Brisbane Acid Sulphate Soils, Stafford, QLD |
| Minh Wills          | 2IC Organic Chemist              | Brisbane Organics, Stafford, QLD            |
| Satishkumar Trivedi | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |

| Page       | : 2 of 35     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                         |                                  |            | Laboratory Duplicate (DUP) R |         |                 |                  | port    |                     |  |
|----------------------|-------------------------|----------------------------------|------------|------------------------------|---------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID        | Method: Compound                 | CAS Number | LOR                          | Unit    | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EG005(ED093)-SD: 1   | Total Metals in Sedimer | nts by ICP-AES (QC Lot: 2691340) |            |                              |         |                 |                  |         |                     |  |
| ES1936183-029        | VC12_0.0-0.5            | EG005-SD: Aluminium              | 7429-90-5  | 50                           | mg/kg   | 4790            | 4620             | 3.72    | 0% - 20%            |  |
|                      |                         | EG005-SD: Iron                   | 7439-89-6  | 50                           | mg/kg   | 4290            | 3780             | 12.7    | 0% - 20%            |  |
| EG005(ED093)T: To    | al Metals by ICP-AES    | (QC Lot: 2691120)                |            |                              |         |                 |                  |         |                     |  |
| ES1936183-017        | VC06_0.0-0.1            | EG005T: Nickel                   | 7440-02-0  | 2                            | mg/kg   | 10              | 10               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Arsenic                  | 7440-38-2  | 5                            | mg/kg   | 18              | 20               | 8.11    | No Limit            |  |
|                      |                         | EG005T: Lead                     | 7439-92-1  | 5                            | mg/kg   | 224             | 245              | 8.82    | 0% - 20%            |  |
|                      |                         | EG005T: Selenium                 | 7782-49-2  | 5                            | mg/kg   | <5              | 5                | 0.00    | No Limit            |  |
| ES1935800-002        | Anonymous               | EG005T: Beryllium                | 7440-41-7  | 1                            | mg/kg   | <1              | <1               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Cadmium                  | 7440-43-9  | 1                            | mg/kg   | <1              | <1               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Molybdenum               | 7439-98-7  | 2                            | mg/kg   | <2              | <2               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Nickel                   | 7440-02-0  | 2                            | mg/kg   | 3               | 3                | 0.00    | No Limit            |  |
|                      |                         | EG005T: Silver                   | 7440-22-4  | 2                            | mg/kg   | <2              | <2               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Arsenic                  | 7440-38-2  | 5                            | mg/kg   | <5              | <5               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Lead                     | 7439-92-1  | 5                            | mg/kg   | 14              | 14               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Selenium                 | 7782-49-2  | 5                            | mg/kg   | 5               | <5               | 0.00    | No Limit            |  |
| ES1936183-017        | VC06_0.0-0.1            | EG005T: Beryllium                | 7440-41-7  | 1                            | mg/kg   | <1              | <1               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Cadmium                  | 7440-43-9  | 1                            | mg/kg   | <1              | <1               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Molybdenum               | 7439-98-7  | 2                            | mg/kg   | <2              | <2               | 0.00    | No Limit            |  |
|                      |                         | EG005T: Silver                   | 7440-22-4  | 2                            | mg/kg   | <2              | <2               | 0.00    | No Limit            |  |
| EG035T: Total Reco   | overable Mercury by Fll | MS (Low Level) (QC Lot: 2691342) |            |                              |         |                 |                  |         |                     |  |
| ES1936183-029        | VC12_0.0-0.5            | EG035T-LL: Mercury               | 7439-97-6  | 0.01                         | mg/kg   | 0.12            | 0.13             | 0.00    | 0% - 50%            |  |
| EA037: Ass Field S   | creening Analysis (QC   | Lot: 2684166)                    |            |                              |         |                 |                  |         |                     |  |
| ES1936029-033        | Anonymous               | EA037: pH (F)                    |            | 0.1                          | pH Unit | 7.9             | 7.9              | 0.00    | 0% - 20%            |  |
|                      |                         | EA037: pH (Fox)                  |            | 0.1                          | pH Unit | 5.9             | 5.9              | 0.00    | 0% - 20%            |  |

| Page       | : 3 of 35     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Laboratory sample ID         Verta sample ID         Memory Consumption (%)         Deglease Result         PRP (%)         Recovar Linkin (%)           EA37: ASE Floid Screening Analysis (OC Lot: 264166) - continued         0.1         pH Unit         7.3         7.1         1.67         0%: 20%           EA37: ASE Floid Screening Analysis (OC Lot: 264166)         EA37: pH (F)          0.1         pH Unit         7.3         7.1         1.67         0%: 20%           EA37: PH (F)          0.1         pH Unit         8.66         8.6         0.00         0%: 20%           EA35: PH (F)          0.1         pH Unit         8.6         8.5         0.00         0%: 20%           EA35: Mosture Content (Proc)         COL Lot: 26254241          0.1         %         25.2         24.1         4.51         0%: 20%           E3036178-0026         Anonymous         E4055: Masture Content          0.1         %         25.2         24.1         4.51         0%: 20%           E3036178-0026         Anonymous         E4055: Masture Content                                                                                                                                                                   | Sub-Matrix: SOIL     |                            |                                        |            | Laboratory Duplicate (DUP) Report |         |                 |                  |         |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|----------------------------------------|------------|-----------------------------------|---------|-----------------|------------------|---------|---------------------|
| EAD37: Ass Field Screening Analysis (QC Lot: 264169) - continued           EAD37: Ass Field Screening Analysis (QC Lot: 264167)           EAD37: H(Fo)          0.1         pH unit         6.5         6.4         0.0         0.1         PH unit         Colspan="2">0.1         PH unit         Colspan="2">0.1         PH unit         0.1         PH unit         Colspan="2">PH unit         Colspan="2"         Colspan="2"                                                                                                                                                                                                                                                                                   | Laboratory sample ID | Client sample ID           | Method: Compound                       | CAS Number | LOR                               | Unit    | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| ES1938183-005         VC12_1.0-1.1         EA037: pH (F)          0.1         pH Unit         7.3         7.1         1.6.7         0%-20%           EA037: Ass Field Screening Analysis (OC Lot: 2684167)         EA037: pH (Fo:          0.1         pH Unit         5.6         5.6         0.00         0%-20%           EA037: Ass Field Screening Analysis (OC Lot: 2684167)         EA037: pH (Fo:          0.1         pH Unit         8.6         8.5         0.00         0%-20%           EA037: PM (Fo:          0.1         pH Unit         8.6         8.5         0.00         0%-20%           EA035: Moisture Content (Dried @105-110*C)         GC Lot: 2687440          0.1         %1         18.2         24.1         4.61         0.5         0.64         0.00         0%-20%           EA035: Moisture Content (Dried @105-110*C)         GC Lot: 2697441          0.1         %5         18.2         24.1         4.61         0.5         0.5           E103050-026         Anonymous         EA035: Moisture Content          0.1         mg/kg         4.0.1         4.0.1         0.00         No Limit           E103050-020         Moisture Content         F772-442         0.1                                 | EA037: Ass Field Sci | reening Analysis (QC Lot:  | 2684166) - continued                   |            |                                   |         |                 |                  |         |                     |
| EA037 chi (Fox)          0.1         pH Unit         5.6         5.6         0.00         0%-20%           EA037 chi Si GCL Cut: 2684167)          0.1         pH Unit         6.6         8.5         0.00         0%-20%           E303813-015         VC14_1-0.1.6         EA037: pH (Fox)          0.1         pH Unit         6.6         8.5         0.00         0%-20%           EA053: Motitore Content (Drind @ 105-1107: (O C Lot: 268242)          0.1         %         25.2         24.1         4.51         0% -20%           E51936183-029         Anonymous         EA055: Motitore Content          0.1         %         25.2         24.1         4.51         0% -20%           E51936183-029         Monymous         EA055: Motitore Content          0.1         %         18.7         18.2         2.88         0% -20%           E51936183-029         VC12_0-0.5         E602-50: Content         778/49-20         1         mg/kg         0.0         No Limit           E6020-50: Colati         778/49-24         0.1         mg/kg         4.05         -050         0.00         No Limit           E6020-50: Colati         740-448         0.5         mg/kg<                                                 | ES1936183-005        | VC12_1.0-1.1               | EA037: pH (F)                          |            | 0.1                               | pH Unit | 7.3             | 7.1              | 1.67    | 0% - 20%            |
| EA037: Ase Field Screening Analysis (QC Lot: 2834187)           ES1938183:016         VC14_1.0.1.1         EA037; pH (F)          0.1         pH Unit         8.6         8.6         0.00         0%: 20%           EA055: Molsture Content (Orled @ 105-110*C) (QC Lot: 282542)          0.1         pH Unit         8.6         8.6         0.00         0%: 20%           ES1038170:009         Anonymous         EA055: Molsture Content          0.1         %         18.7         18.2         2.88         0%: 20%           E0020-SD: Total Motals in Sediments by ICPMS         GC Lot: 2601341)          0.1         %         18.7         18.2         2.88         0%: 50%           E0020-SD: Cadmium         740-434         0.1         mg/kg         <-0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                            | EA037: pH (Fox)                        |            | 0.1                               | pH Unit | 5.6             | 5.6              | 0.00    | 0% - 20%            |
| ES1939183-015         VC14_1.6-1.1         EA37: pH (F)          0.1         pH Unit         6.8         8.5         0.00         0%-20%           EA055: Moisture Content (Dried @ 105-110°C) (0C Lot: 262542)          0.1         pH Unit         6.6         6.4         0.00         0%-20%           ES193507-025         Anonymous         EA055: Moisture Content          0.1         %         25.2         24.1         4.51         0%-20%           ES193507-000         Anonymous         EA055: Moisture Content          0.1         %         18.7         18.2         28.8         0%-50%           EG020-SD: Total Motal=         in Sodiments by ICPMS         (QC Lot: 2691341)          0.1         mg/sg         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EA037: Ass Field Sci | reening Analysis (QC Lot:  | 2684167)                               |            |                                   |         |                 |                  |         |                     |
| EA035: ph (Fox)          0.1         pH Unit         6.5         6.4         0.00         0%-20%           EA055: Moisture Content (Dried @ 105-110°C) (QC Lot: 282242)         EA055: Moisture Content          0.1         %         25.2         24.1         4.51         0%-20%           ES193980-025         Anonymous         EA055: Moisture Content          0.1         %         18.7         18.2         2.88         0%-50%           EG020-SD: Total Metals in Sediments by ICPMS         (QC Lot: 2691340)          0.1         mg/kg         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ES1936183-015        | VC14_1.0-1.1               | EA037: pH (F)                          |            | 0.1                               | pH Unit | 8.6             | 8.5              | 0.00    | 0% - 20%            |
| EA85: Moisture Content (Dried @ 105-110°C) (QC Lot: 2682542)           ES1933800-025         Anonymous         EA65: Moisture Content          0.1         %         25.2         24.1         4.51         0% - 20%           ES1933800-025         Anonymous         EA65: Moisture Content          0.1         %         18.2         28.8         0% - 60%           EG020-SD: Total Metals In Sediments by ICPMS         (CC Lot: 2691341)          0.1         mg/kg         40.1         40.0         No Limit           EG020-SD: Solver         7440439         0.1         mg/kg         40.1         40.0         No Limit           EG020-SD: Solver         7440424         0.1         mg/kg         40.5         40.0         No Limit           EG020-SD: Charintomy         7440484         0.5         mg/kg         40.5         40.0         No Limit           EG020-SD: Chromium         7440-484         0.5         mg/kg         40.5         40.7         No Limit           EG020-SD: Chromium         7440-484         1         mg/kg         6.0         5.9         2.22         No Limit           EG020-SD: Chromium         7440-473         1         mg/kg         4.5         5.4         17.7         No L  |                      |                            | EA037: pH (Fox)                        |            | 0.1                               | pH Unit | 6.5             | 6.4              | 0.00    | 0% - 20%            |
| ES193800-025         Anonymous         EA055: Moisture Content          0.1         %         25.2         24.1         4.51         0%- 20%           ES1938179-009         Anonymous         EA055: Moisture Content          0.1         %         18.7         18.2         2.88         0%- 50%           EG020-SD: Total Metals in Sodiments by ICPMS         QC Lot: 2681341          0.1         mg/kg         -0.1          0.1         0.00         No Limit           ES1938183-029         VC12_0.0-0.5         EG02-SD: Cadmium         740-43-9         0.1         mg/kg         -0.1         -0.00         No Limit           EG020-SD: Selenium         740-224         0.1         mg/kg         -0.5         0.00         No Limit           EG020-SD: Antimony         7440-36-0         0.5         mg/kg         -0.5         0.00         No Limit           EG020-SD: Cobalt         7440-84         0.5         mg/kg         6.0         5.9         2.22         No Limit           EG020-SD: Cobalt         7440-45-8         1         mg/kg         6.1         1.7         No Limit           EG020-SD: Isola         7440-65-8         1         mg/kg         1.1         0.10         <                          | EA055: Moisture Con  | tent (Dried @ 105-110°C) ( |                                        |            |                                   |         |                 |                  |         |                     |
| ES1938179-009         Anonymous         EA055: Moisture Content          0.1         %         18.7         18.2         2.88         0%- 50%           EG020-SD: Total Metals in Sediments by ICPMS         OC Lot: 261341)           0.1         %         18.7         18.2         2.88         0%- 50%           EG020-SD: Other Minimer         EG020-SD: Calmium         7440-39         0.1         mg/kg         <-0.1         <0.00         No Limit           EG020-SD: Solver         F6020-SD: Solver         7440-224         0.1         mg/kg         <0.50         0.00         No Limit           EG020-SD: Solver         7440-350         0.55         mg/kg         <0.50         0.60         No Limit           EG020-SD: Chonium         7440-360         0.55         mg/kg         <0.50         <0.00         No Limit           EG020-SD: Chonium         7440-380         1         mg/kg         <0.60         S0         No Limit           EG020-SD: Chonium         7440-47-3         1         mg/kg         <0.60         No Limit           EG020-SD: Chonium         7440-47-3         1         mg/kg         <0.60         No Limit           EG020-SD: Ninkel         7440-56         1                    | ES1935800-025        | Anonymous                  | EA055: Moisture Content                |            | 0.1                               | %       | 25.2            | 24.1             | 4.51    | 0% - 20%            |
| EG020-SD: Total Metals in Sediments by ICPMS (QC Lot: 2691341)         EG020-SD: Calmium         740-43-9         0.1         mg/kg         <0.1         <0.00         No Limit           ES1936183-029         VC12_0.0-0.5         EG020-SD: Selenium         7782-49-2         0.1         mg/kg         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ES1936179-009        | Anonymous                  | EA055: Moisture Content                |            | 0.1                               | %       | 18.7            | 18.2             | 2.88    | 0% - 50%            |
| ES1936183-029         VC12_0.0-0.5         EG020-SD: Cadmium         7440-43-9         0.1         mg/kg         <0.1         <0.1         0.00         No Limit           EG020-SD: Selenium         7782-49-2         0.1         mg/kg         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EG020-SD: Total Meta | als in Sediments by ICPMS  | (QC Lot: 2691341)                      |            |                                   |         |                 |                  |         |                     |
| EG020-SD: Selenium         7782-49-2         0.1         mg/kg         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ES1936183-029        | VC12_0.0-0.5               | EG020-SD: Cadmium                      | 7440-43-9  | 0.1                               | mg/kg   | <0.1            | <0.1             | 0.00    | No Limit            |
| EG020-SD: Silver         7440-224         0.1         mg/kg         0.2         0.1         0.00         No Limit           EG020-SD: Antimony         7440-36-0         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                            | EG020-SD: Selenium                     | 7782-49-2  | 0.1                               | mg/kg   | <0.1            | <0.1             | 0.00    | No Limit            |
| EG020-SD: Antimony         740-38-0         0.5         mg/kg         <0.50         <0.50         0.00         No Limit           EG020-SD: Cobalt         740-484         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                            | EG020-SD: Silver                       | 7440-22-4  | 0.1                               | mg/kg   | 0.2             | 0.1              | 0.00    | No Limit            |
| EG020-SD: Cobalt         740-48-4         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                            | EG020-SD: Antimony                     | 7440-36-0  | 0.5                               | mg/kg   | <0.50           | <0.50            | 0.00    | No Limit            |
| EG020-SD: Arsenic         7440-38-2         1         mg/kg         2.20         2.01         9.07         No Limit           EG020-SD: Chromium         7440-73         1         mg/kg         6.0         5.9         2.2         No Limit           EG020-SD: Chromium         7440-67-8         1         mg/kg         6.0         5.9         12.7         No Limit           EG020-SD: Chromium         7440-67-8         1         mg/kg         4.5         5.4         17.7         No Limit           EG020-SD: Lead         7439-92-1         1         mg/kg         4.10         5.4         12.1         12.7         0% - 50%           EG020-SD: Nickel         7440-62-0         1         mg/kg         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            | EG020-SD: Cobalt                       | 7440-48-4  | 0.5                               | mg/kg   | <0.5            | <0.5             | 0.00    | No Limit            |
| EG020-SD: Chromium         7440-47-3         1         mg/kg         6.0         5.9         2.22         No Limit           EG020-SD: Copper         7440-50-8         1         mg/kg         4.5         5.4         17.7         No Limit           EG020-SD: Lead         7439-92-1         1         mg/kg         10.6         12.1         12.7         0% - 50%           EG020-SD: Nickel         7440-62-0         1         mg/kg         4.10         0.00         No Limit           EG020-SD: Nickel         7440-66-6         1         mg/kg         4.10         1.5         19.1         0% - 50%           EG020-SD: Vanadium         7440-66-6         1         mg/kg         4.10         4.10         0.00         No Limit           EG020-SD: Vanadium         7440-62-2         2         mg/kg         11.0         19.9         No Limit           EG020-SD: Vanadium         7440-62-2         2         mg/kg         3.5         11.0         19.9         No Limit           EG035T: Mercury by FIMS (QC Lot: 269119)         EG035T: Mercury         7439-97-6         0.1         mg/kg         3.4         3.2         5.79         0% - 20%           ES1935800-002         Anonymous         EG035T: Mercury |                      |                            | EG020-SD: Arsenic                      | 7440-38-2  | 1                                 | mg/kg   | 2.20            | 2.01             | 9.07    | No Limit            |
| EG020-SD: Copper         7440-50-8         1         mg/kg         4.5         5.4         17.7         No Limit           EG020-SD: Lead         7439-92-1         1         mg/kg         10.6         12.1         12.7         0% - 50%           EG020-SD: Lead         7440-60-6         1         mg/kg         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                            | EG020-SD: Chromium                     | 7440-47-3  | 1                                 | mg/kg   | 6.0             | 5.9              | 2.22    | No Limit            |
| EG020-SD: Lead         7439-92-1         1         mg/kg         10.6         12.1         12.7         0%-50%           EG020-SD: Nickel         7440-02-0         1         mg/kg         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            | EG020-SD: Copper                       | 7440-50-8  | 1                                 | mg/kg   | 4.5             | 5.4              | 17.7    | No Limit            |
| EG020-SD: Nickel         7440-02-0         1         mg/kg         <1.0         <1.0         No Limit           EG020-SD: Zinc         7440-66-6         1         mg/kg         14.4         17.5         19.1         0% - 50%           EG020-SD: Manganese         7439-96-5         10         mg/kg         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                            | EG020-SD: Lead                         | 7439-92-1  | 1                                 | mg/kg   | 10.6            | 12.1             | 12.7    | 0% - 50%            |
| EG020-SD: Zinc         7440-66-6         1         mg/kg         14.4         17.5         19.1         0%-50%           EG020-SD: Manganese         7439-96-5         10         mg/kg         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            | EG020-SD: Nickel                       | 7440-02-0  | 1                                 | mg/kg   | <1.0            | <1.0             | 0.00    | No Limit            |
| EG020-SD: Manganese         7439-96-5         10         mg/kg         <10         <10         0.00         No Limit           EG020-SD: Vanadium         7440-62-2         2         mg/kg         13.5         11.0         19.9         No Limit           EG035T: Total Recoverable Mercury by FIMS (QC Lot: 2691119)         EG035T: Mercury         7439-97-6         0.1         mg/kg         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                            | EG020-SD: Zinc                         | 7440-66-6  | 1                                 | mg/kg   | 14.4            | 17.5             | 19.1    | 0% - 50%            |
| EG020-SD: Vanadium         7440-62-2         2         mg/kg         13.5         11.0         19.9         No Limit           EG035T: Total Recovrable Mercury by FIMS (QC Lot: 2691119)         ES1935800-002         Anonymous         EG035T: Mercury         7439-97-6         0.1         mg/kg         <0.1         <0.00         No Limit           ES1935800-002         Anonymous         EG035T: Mercury         7439-97-6         0.1         mg/kg         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                            | EG020-SD: Manganese                    | 7439-96-5  | 10                                | mg/kg   | <10             | <10              | 0.00    | No Limit            |
| EG035T: Total Recoverable Mercury by FIMS (QC Lot: 2691119)           ES1935800-002         Anonymous         EG035T: Mercury         7439-97-6         0.1         mg/kg         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                            | EG020-SD: Vanadium                     | 7440-62-2  | 2                                 | mg/kg   | 13.5            | 11.0             | 19.9    | No Limit            |
| ES1935800-002         Anonymous         EG035T: Mercury         7439-97-6         0.1         mg/kg         <0.1         0.00         No Limit           ES1936183-017         VC06_0.0-0.1         EG035T: Mercury         7439-97-6         0.1         mg/kg         3.4         3.2         5.79         0% - 20%           EG048: Hexavalent Chromium (Alkaline Digest) (QC Lot: 2684699)         QC Lot: 2684699         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EG035T: Total Recov  | verable Mercury by FIMS (  | QC Lot: 2691119)                       |            |                                   |         |                 |                  |         |                     |
| ES1936183-017         VC06_0.0-0.1         EG035T: Mercury         7439-97-6         0.1         mg/kg         3.4         3.2         5.79         0% - 20%           EG048: Hexavalent Chromium (Alkaline Digest) (QC Lot: 2684699)         QC Lot: 2684699         0.5         mg/kg         3.0         3.0         0.00         No Limit           ES1935800-011         Anonymous         EG048G: Hexavalent Chromium         18540-29-9         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           ES1936425-002         Anonymous         EG048G: Hexavalent Chromium         18540-29-9         0.5         mg/kg         3.0         3.0         0.00         No Limit           ES1936183-028         VC12_1.0-1.1         EK026SF: Total Cyanide         57-12-5         1         mg/kg         <1         <10.00         No Limit           ES1935800-011         Anonymous         EK026SF: Total Cyanide         57-12-5         1         mg/kg         <1         <10.00         No Limit                                                                                                                                                                                                       | ES1935800-002        | Anonymous                  | EG035T: Mercury                        | 7439-97-6  | 0.1                               | mg/kg   | <0.1            | <0.1             | 0.00    | No Limit            |
| EG048: Hexavalent Chromium (Alkaline Digest) (QC Lot: 2684699)           ES1935800-011         Anonymous         EG048G: Hexavalent Chromium         18540-29-9         0.5         mg/kg         <0.5         <0.00         No Limit           ES1936425-002         Anonymous         EG048G: Hexavalent Chromium         18540-29-9         0.5         mg/kg         3.0         3.0         0.00         No Limit           ES1936425-002         Anonymous         CC Lot: 2682540           ES1936183-028         VC12_1.0-1.1         EK026SF: Total Cyanide         57-12-5         1         mg/kg         <1         <1.000         No Limit           ES1935800-011         Anonymous         EK026SF: Total Cyanide         57-12-5         1         mg/kg         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ES1936183-017        | VC06_0.0-0.1               | EG035T: Mercury                        | 7439-97-6  | 0.1                               | mg/kg   | 3.4             | 3.2              | 5.79    | 0% - 20%            |
| ES1935800-011         Anonymous         EG048G: Hexavalent Chromium         18540-29-9         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           ES1936425-002         Anonymous         EG048G: Hexavalent Chromium         18540-29-9         0.5         mg/kg         3.0         3.0         0.00         No Limit           ES1936425-002         Anonymous         EG048G: Hexavalent Chromium         18540-29-9         0.5         mg/kg         3.0         3.0         0.00         No Limit           EK026SF: Total CN by Segmented Flow Analyser         (QC Lot: 2682540)         VC12_1.0-1.1         EK026SF: Total Cyanide         57-12-5         1         mg/kg         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EG048: Hexavalent C  | hromium (Alkaline Digest)  | (QC Lot: 2684699)                      |            |                                   |         |                 |                  |         |                     |
| ES1936425-002         Anonymous         EG048G: Hexavalent Chromium         18540-29-9         0.5         mg/kg         3.0         3.0         0.00         No Limit           EK026SF: Total CN by Segmented Flow Analyser         (QC Lot: 2682540)         EK026SF: Total Cyanide         57-12-5         1         mg/kg         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ES1935800-011        | Anonymous                  | EG048G: Hexavalent Chromium            | 18540-29-9 | 0.5                               | mg/kg   | <0.5            | <0.5             | 0.00    | No Limit            |
| EK026SF: Total CN by Segmented Flow Analyser (QC Lot: 2682540)           ES1936183-028         VC12_1.0-1.1         EK026SF: Total Cyanide         57-12-5         1         mg/kg         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ES1936425-002        | Anonymous                  | EG048G: Hexavalent Chromium            | 18540-29-9 | 0.5                               | mg/kg   | 3.0             | 3.0              | 0.00    | No Limit            |
| ES1936183-028         VC12_1.0-1.1         EK026SF: Total Cyanide         57-12-5         1         mg/kg         <1         <1         0.00         No Limit           ES1935800-011         Anonymous         EK026SF: Total Cyanide         57-12-5         1         mg/kg         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EK026SF: Total CN b  | y Segmented Flow Analys    | er (QC Lot: 2682540)                   |            |                                   |         |                 |                  |         |                     |
| ES1935800-011 Anonymous EK026SE: Total Cvanide 57-12-5 1 ma/kg <1 <1 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ES1936183-028        | VC12_1.0-1.1               | EK026SF: Total Cyanide                 | 57-12-5    | 1                                 | mg/kg   | <1              | <1               | 0.00    | No Limit            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ES1935800-011        | Anonymous                  | EK026SF: Total Cyanide                 | 57-12-5    | 1                                 | mg/kg   | <1              | <1               | 0.00    | No Limit            |
| EK028SF: Weak Acid Dissociable CN by Segmented Flow Analyser (QC Lot: 2682539)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EK028SF: Weak Acid   | Dissociable CN by Segme    | ented Flow Analyser (QC Lot: 2682539)  |            |                                   |         |                 |                  |         |                     |
| ES1935800-011 Anonymous EK028SF: Weak Acid Dissociable Cyanide 1 mg/kg <1 <1 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ES1935800-011        | Anonymous                  | EK028SF: Weak Acid Dissociable Cyanide |            | 1                                 | mg/kg   | <1              | <1               | 0.00    | No Limit            |
| EK040T: Fluoride Total (QC Lot: 2685561)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EK040T: Fluoride Tot | al (QC Lot: 2685561)       |                                        |            |                                   |         |                 |                  |         |                     |
| EB1928345-001 Anonymous EK040T: Fluoride 16984-48-8 40 mg/kg 180 150 12.8 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EB1928345-001        | Anonymous                  | EK040T: Fluoride                       | 16984-48-8 | 40                                | mg/kg   | 180             | 150              | 12.8    | No Limit            |
| ES1935800-011 Anonymous EK040T: Fluoride 16984-48-8 40 mg/kg 60 50 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ES1935800-011        | Anonymous                  | EK040T: Fluoride                       | 16984-48-8 | 40                                | mg/kg   | 60              | 50               | 0.00    | No Limit            |
| EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 2690237)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EP003: Total Organic | Carbon (TOC) in Soil (QC   | Lot: 2690237)                          |            |                                   |         |                 |                  |         |                     |
| EM1918482-001 Anonymous EP003: Total Organic Carbon 0.02 % 0.07 0.07 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EM1918482-001        | Anonymous                  | EP003: Total Organic Carbon            |            | 0.02                              | %       | 0.07            | 0.07             | 0.00    | No Limit            |

| Page       | : 4 of 35     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL                                         |                                  |                                                     | Laboratory Duplicate (DUP) Report |      |       |                 |                  |         |                     |
|----------------------------------------------------------|----------------------------------|-----------------------------------------------------|-----------------------------------|------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID                                     | Client sample ID                 | Method: Compound                                    | CAS Number                        | LOR  | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP003: Total Organic                                     | Carbon (TOC) in Soil (QC L       | .ot: 2690237) - continued                           |                                   |      |       |                 |                  |         |                     |
| ES1936183-041                                            | VC13_0.0-0.1                     | EP003: Total Organic Carbon                         |                                   | 0.02 | %     | 1.45            | 1.40             | 3.22    | 0% - 20%            |
| EP003: Total Organic                                     | Carbon (TOC) in Soil (QC L       | ot: 2693466)                                        |                                   |      |       |                 |                  |         |                     |
| ES1936183-040                                            | VC08_1.0-1.5                     | EP003: Total Organic Carbon                         |                                   | 0.02 | %     | 0.15            | 0.15             | 0.00    | No Limit            |
| EP066: Polychlorinate                                    | ed Biphenyls (PCB) (QC Lo        | : 2682735)                                          |                                   |      |       |                 |                  |         |                     |
| ES1935800-011                                            | Anonymous                        | EP066: Total Polychlorinated biphenyls              |                                   | 0.1  | mg/kg | <0.1            | <0.1             | 0.00    | No Limit            |
| EP068A: Organochlorine Pesticides (OC) (QC Lot: 2682733) |                                  |                                                     |                                   |      |       |                 |                  |         |                     |
| ES1935800-011                                            | Anonymous                        | EP068: alpha-BHC                                    | 319-84-6                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: Hexachlorobenzene (HCB)                      | 118-74-1                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: beta-BHC                                     | 319-85-7                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: gamma-BHC                                    | 58-89-9                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: delta-BHC                                    | 319-86-8                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: Heptachlor                                   | 76-44-8                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: Aldrin                                       | 309-00-2                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: Heptachlor epoxide                           | 1024-57-3                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: trans-Chlordane                              | 5103-74-2                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: alpha-Endosulfan                             | 959-98-8                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: cis-Chlordane                                | 5103-71-9                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: Dieldrin                                     | 60-57-1                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: 4.4`-DDE                                     | 72-55-9                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: Endrin                                       | 72-20-8                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: beta-Endosulfan                              | 33213-65-9                        | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: 4.4`-DDD                                     | 72-54-8                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: Endrin aldehyde                              | 7421-93-4                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: Endosulfan sulfate                           | 1031-07-8                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                          |                                  | EP068: 4.4`-DDT                                     | 50-29-3                           | 0.2  | mg/kg | <0.2            | <0.2             | 0.00    | No Limit            |
| EP068B: Organophos                                       | phorus Pesticides (OP) (Q        | C Lot: 2682733)                                     |                                   |      |       |                 |                  |         |                     |
| ES1935800-011                                            | Anonymous                        | EP068: Chlorpyrifos                                 | 2921-88-2                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
| EP071 SG: Total Petr                                     | oleum Hydrocarbons - Silica      | a gel cleanup  (QC Lot: 2682734)                    |                                   |      |       |                 |                  |         |                     |
| ES1935800-011                                            | Anonymous                        | EP071SG-S: C15 - C28 Fraction                       |                                   | 100  | mg/kg | <100            | <100             | 0.00    | No Limit            |
|                                                          |                                  | EP071SG-S: C29 - C36 Fraction                       |                                   | 100  | mg/kg | <100            | <100             | 0.00    | No Limit            |
|                                                          |                                  | EP071SG-S: C10 - C14 Fraction                       |                                   | 50   | mg/kg | <50             | <50              | 0.00    | No Limit            |
|                                                          |                                  | EP071SG-S: C10 - C36 Fraction (sum)                 |                                   | 50   | mg/kg | <50             | <50              | 0.00    | No Limit            |
| EP071 SG: Total Reco                                     | overable Hydrocarbons - NE       | PM 2013 Fractions - Silica gel cleanup (QC Lot: 268 | 2734)                             |      |       |                 |                  |         |                     |
| ES1935800-011                                            | Anonymous                        | EP071SG-S: >C16 - C34 Fraction                      |                                   | 100  | mg/kg | 150             | 150              | 0.00    | No Limit            |
|                                                          |                                  | EP071SG-S: >C34 - C40 Fraction                      |                                   | 100  | mg/kg | <100            | <100             | 0.00    | No Limit            |
|                                                          |                                  | EP071SG-S: >C10 - C16 Fraction                      |                                   | 50   | mg/kg | <50             | <50              | 0.00    | No Limit            |
| EP074A: Monocyclic                                       | Aromatic Hyd <u>rocarbons (Q</u> | C Lot: 2684260)                                     |                                   |      |       |                 |                  |         |                     |
| ES1935800-011                                            | Anonymous                        | EP074: Benzene                                      | 71-43-2                           | 0.2  | mg/kg | <0.2            | <0.2             | 0.00    | No Limit            |
|                                                          |                                  | EP074: Toluene                                      | 108-88-3                          | 0.5  | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |

| Page       | : 5 of 35     |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                          |                                  |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|--------------------------|----------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                 | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP074A: Monocyclic   | Aromatic Hydrocarbons (C | C Lot: 2684260) - continued      |            |                                   |       |                 |                  |         |                     |
| ES1935800-011        | Anonymous                | EP074: Ethylbenzene              | 100-41-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: meta- & para-Xylene       | 108-38-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          |                                  | 106-42-3   |                                   |       |                 |                  |         |                     |
|                      |                          | EP074: Styrene                   | 100-42-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: ortho-Xylene              | 95-47-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EW1904707-002        | Anonymous                | EP074: Benzene                   | 71-43-2    | 0.2                               | mg/kg | <0.2            | <0.2             | 0.00    | No Limit            |
|                      |                          | EP074: Toluene                   | 108-88-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Ethylbenzene              | 100-41-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: meta- & para-Xylene       | 108-38-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          |                                  | 106-42-3   |                                   |       |                 |                  |         |                     |
|                      |                          | EP074: Styrene                   | 100-42-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: ortho-Xylene              | 95-47-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP074B: Oxygenated   | Compounds (QC Lot: 268   | 4260)                            |            |                                   |       |                 |                  |         |                     |
| ES1935800-011        | Anonymous                | EP074: 2-Butanone (MEK)          | 78-93-3    | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
| EW1904707-002        | Anonymous                | EP074: 2-Butanone (MEK)          | 78-93-3    | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
| EP074E: Halogenated  | Aliphatic Compounds (QC  | C Lot: 2684260)                  |            |                                   |       |                 |                  |         |                     |
| ES1935800-011        | Anonymous                | EP074: 1.1-Dichloroethene        | 75-35-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Methylene chloride        | 75-09-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.1.1-Trichloroethane     | 71-55-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Carbon Tetrachloride      | 56-23-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.2-Dichloroethane        | 107-06-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Trichloroethene           | 79-01-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.1.2-Trichloroethane     | 79-00-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Tetrachloroethene         | 127-18-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.1.1.2-Tetrachloroethane | 630-20-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.1.2.2-Tetrachloroethane | 79-34-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Vinyl chloride            | 75-01-4    | 5                                 | mg/kg | <4              | <4               | 0.00    | No Limit            |
| EW1904707-002        | Anonymous                | EP074: 1.1-Dichloroethene        | 75-35-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Methylene chloride        | 75-09-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.1.1-Trichloroethane     | 71-55-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Carbon Tetrachloride      | 56-23-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.2-Dichloroethane        | 107-06-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Trichloroethene           | 79-01-6    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.1.2-Trichloroethane     | 79-00-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Tetrachloroethene         | 127-18-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.1.1.2-Tetrachloroethane | 630-20-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: 1.1.2.2-Tetrachloroethane | 79-34-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          | EP074: Vinyl chloride            | 75-01-4    | 5                                 | mg/kg | <4              | <4               | 0.00    | No Limit            |
| EP074F: Halogenated  | Aromatic Compounds (Q    | C Lot: 2684260)                  |            |                                   |       |                 |                  |         |                     |
| ES1935800-011        | Anonymous                | EP074: Chlorobenzene             | 108-90-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                          |                                  |            |                                   |       |                 |                  |         |                     |

| Page       | : 6 of 35     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                     |                                     |            |     |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|---------------------|-------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID    | Method: Compound                    | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP074F: Halogenate   | d Aromatic Compoun  | ds (QC Lot: 2684260) - continued    |            |     |       |                 |                        |         |                     |
| EW1904707-002        | Anonymous           | EP074: Chlorobenzene                | 108-90-7   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP074G: Trihalomet   | hanes (QC Lot: 2684 | 260)                                | ·          |     |       |                 |                        |         |                     |
| ES1935800-011        | Anonymous           | EP074: Chloroform                   | 67-66-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EW1904707-002        | Anonymous           | EP074: Chloroform                   | 67-66-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM)A: Phene   | olic Compounds (QC  | Lot: 2682732)                       |            |     |       |                 |                        |         |                     |
| ES1935800-011        | Anonymous           | EP075(SIM): Phenol                  | 108-95-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2-Methylphenol          | 95-48-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4-Dimethylphenol      | 105-67-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4-Dichlorophenol      | 120-83-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.6-Dichlorophenol      | 87-65-0    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4.6-Trichlorophenol   | 88-06-2    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4.5-Trichlorophenol   | 95-95-4    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 3- & 4-Methylphenol     | 1319-77-3  | 1   | mg/kg | <1              | <1                     | 0.00    | No Limit            |
|                      |                     | EP075(SIM): Pentachlorophenol       | 87-86-5    | 2   | mg/kg | <2              | <2                     | 0.00    | No Limit            |
| EP075(SIM)A: Phen    | olic Compounds (QC  | Lot: 2682755)                       |            |     |       |                 |                        |         |                     |
| ES1936232-001        | Anonymous           | EP075(SIM): Phenol                  | 108-95-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2-Methylphenol          | 95-48-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4-Dimethylphenol      | 105-67-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4-Dichlorophenol      | 120-83-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.6-Dichlorophenol      | 87-65-0    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4.6-Trichlorophenol   | 88-06-2    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4.5-Trichlorophenol   | 95-95-4    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 3- & 4-Methylphenol     | 1319-77-3  | 1   | mg/kg | <1              | <1                     | 0.00    | No Limit            |
|                      |                     | EP075(SIM): Pentachlorophenol       | 87-86-5    | 2   | mg/kg | <2              | <2                     | 0.00    | No Limit            |
| ES1935800-001        | Anonymous           | EP075(SIM): Phenol                  | 108-95-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2-Methylphenol          | 95-48-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4-Dimethylphenol      | 105-67-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4-Dichlorophenol      | 120-83-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.6-Dichlorophenol      | 87-65-0    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4.6-Trichlorophenol   | 88-06-2    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                     | EP075(SIM): 2.4.5-Trichlorophenol   | 95-95-4    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |

| Page       | : 7 of 35     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                           |                                        |           | Laboratory Duplicate (DUP) Report |                  |         |                     |      |          |
|----------------------|---------------------------|----------------------------------------|-----------|-----------------------------------|------------------|---------|---------------------|------|----------|
| Laboratory sample ID | CAS Number                | LOR                                    | Unit      | Original Result                   | Duplicate Result | RPD (%) | Recovery Limits (%) |      |          |
| EP075(SIM)A: Phenol  | ic Compounds (QC Lot: 2   | 682755) - continued                    |           |                                   |                  |         |                     |      |          |
| ES1935800-001        | Anonymous                 | EP075(SIM): 3- & 4-Methylphenol        | 1319-77-3 | 1                                 | mg/kg            | <1      | <1                  | 0.00 | No Limit |
|                      |                           | EP075(SIM): Pentachlorophenol          | 87-86-5   | 2                                 | mg/kg            | <2      | <2                  | 0.00 | No Limit |
| EP075(SIM)B: Polynu  | clear Aromatic Hydrocarbo | ons (QC Lot: 2682732)                  |           |                                   |                  |         |                     |      |          |
| ES1935800-011        | Anonymous                 | EP075(SIM): Naphthalene                | 91-20-3   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Acenaphthylene             | 208-96-8  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Acenaphthene               | 83-32-9   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Fluorene                   | 86-73-7   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Phenanthrene               | 85-01-8   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Anthracene                 | 120-12-7  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Fluoranthene               | 206-44-0  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Pyrene                     | 129-00-0  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Benz(a)anthracene          | 56-55-3   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Chrysene                   | 218-01-9  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Benzo(b+j)fluoranthene     | 205-99-2  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           |                                        | 205-82-3  |                                   |                  |         |                     |      |          |
|                      |                           | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Benzo(a)pyrene             | 50-32-8   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Sum of polycyclic aromatic |           | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | hydrocarbons                           |           |                                   |                  |         |                     |      |          |
|                      |                           | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |           | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
| EP075(SIM)B: Polynu  | clear Aromatic Hydrocarbo | ons (QC Lot: 2682755)                  |           |                                   |                  |         |                     |      |          |
| ES1936232-001        | Anonymous                 | EP075(SIM): Naphthalene                | 91-20-3   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Acenaphthylene             | 208-96-8  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Acenaphthene               | 83-32-9   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Fluorene                   | 86-73-7   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Phenanthrene               | 85-01-8   | 0.5                               | mg/kg            | 0.9     | 0.9                 | 0.00 | No Limit |
|                      |                           | EP075(SIM): Anthracene                 | 120-12-7  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Fluoranthene               | 206-44-0  | 0.5                               | mg/kg            | 1.6     | 1.5                 | 0.00 | No Limit |
|                      |                           | EP075(SIM): Pyrene                     | 129-00-0  | 0.5                               | mg/kg            | 1.5     | 1.4                 | 0.00 | No Limit |
|                      |                           | EP075(SIM): Benz(a)anthracene          | 56-55-3   | 0.5                               | mg/kg            | 0.8     | 0.7                 | 0.00 | No Limit |
|                      |                           | EP075(SIM): Chrysene                   | 218-01-9  | 0.5                               | mg/kg            | 0.7     | 0.7                 | 0.00 | No Limit |
|                      |                           | EP075(SIM): Benzo(b+j)fluoranthene     | 205-99-2  | 0.5                               | mg/kg            | 0.8     | 0.9                 | 0.00 | No Limit |
|                      |                           |                                        | 205-82-3  |                                   |                  |         |                     |      |          |
|                      |                           | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Benzo(a)pyrene             | 50-32-8   | 0.5                               | mg/kg            | 0.8     | 0.8                 | 0.00 | No Limit |
|                      |                           | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5  | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
|                      |                           | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3   | 0.5                               | mg/kg            | <0.5    | <0.5                | 0.00 | No Limit |
| Page       | : 8 of 35    |
|------------|--------------|
| Work Order | : ES1936183  |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Sub-Matrix: SOIL     |                            |                                        |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|----------------------------|----------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                       | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP075(SIM)B: Polyn   | uclear Aromatic Hydrocarbo | ons (QC Lot: 2682755) - continued      |            |                                   |       |                 |                  |         |                     |
| ES1936232-001        | Anonymous                  | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5                               | mg/kg | 0.5             | 0.6              | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Sum of polycyclic aromatic |            | 0.5                               | mg/kg | 7.6             | 7.5              | 1.32    | 0% - 50%            |
|                      |                            | hydrocarbons                           |            |                                   |       |                 |                  |         |                     |
|                      |                            | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |            | 0.5                               | mg/kg | 1.0             | 1.0              | 0.00    | No Limit            |
| ES1935800-001        | Anonymous                  | EP075(SIM): Naphthalene                | 91-20-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Fluorene                   | 86-73-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Anthracene                 | 120-12-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Fluoranthene               | 206-44-0   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Pyrene                     | 129-00-0   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Benz(a)anthracene          | 56-55-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Chrysene                   | 218-01-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Benzo(b+j)fluoranthene     | 205-99-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            |                                        | 205-82-3   |                                   |       |                 |                  |         |                     |
|                      |                            | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Benzo(a)pyrene             | 50-32-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075(SIM): Sum of polycyclic aromatic |            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | hydrocarbons                           |            |                                   |       |                 |                  |         |                     |
|                      |                            | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP075A: Phenolic Co  | ompounds (QC Lot: 269063   | 36)                                    |            |                                   |       |                 |                  |         |                     |
| ES1936183-029        | VC12_0.0-0.5               | EP075: Phenol                          | 108-95-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 2-Chlorophenol                  | 95-57-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 2-Methylphenol                  | 95-48-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 3- & 4-Methylphenol             | 1319-77-3  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 2-Nitrophenol                   | 88-75-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 2.4-Dimethylphenol              | 105-67-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 2.4-Dichlorophenol              | 120-83-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 2.6-Dichlorophenol              | 87-65-0    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 4-Chloro-3-methylphenol         | 59-50-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 2.4.6-Trichlorophenol           | 88-06-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 2.4.5-Trichlorophenol           | 95-95-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: Pentachlorophenol               | 87-86-5    | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EP075B: Polynuclea   | r Aromatic Hydrocarbons (  | QC Lot: 2690636)                       |            |                                   |       |                 |                  |         |                     |
| ES1936183-029        | VC12 0.0-0.5               | EP075: Naphthalene                     | 91-20-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                            | EP075: 2-Methylnaphthalene             | 91-57-6    | 0.5                               | ma/ka | <0.5            | <0.5             | 0.00    | No Limit            |
| 1                    |                            |                                        |            |                                   | 5.5   |                 | 1                |         | 1 1 1               |

| Page       | : 9 of 35    |
|------------|--------------|
| Work Order | ES1936183    |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Sub-Matrix: SOIL     |                            |                                          |            |     |       | Laboratory L    | Duplicate (DUP) Report |         |                     |
|----------------------|----------------------------|------------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                         | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP075B: Polynuclear  | Aromatic Hydrocarbons (    | QC Lot: 2690636) - continued             |            |     |       |                 |                        |         |                     |
| ES1936183-029        | VC12_0.0-0.5               | EP075: 2-Chloronaphthalene               | 91-58-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Acenaphthylene                    | 208-96-8   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Acenaphthene                      | 83-32-9    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Fluorene                          | 86-73-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Phenanthrene                      | 85-01-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Anthracene                        | 120-12-7   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Fluoranthene                      | 206-44-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Pyrene                            | 129-00-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: N-2-Fluorenyl Acetamide           | 53-96-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Benz(a)anthracene                 | 56-55-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Chrysene                          | 218-01-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: 7.12-Dimethylbenz(a)anthracene    | 57-97-6    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Benzo(a)pyrene                    | 50-32-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: 3-Methylcholanthrene              | 56-49-5    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Indeno(1.2.3.cd)pyrene            | 193-39-5   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Dibenz(a.h)anthracene             | 53-70-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Benzo(g.h.i)perylene              | 191-24-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Benzo(b+j) & Benzo(k)fluoranthene | 205-99-2   | 1   | mg/kg | <1              | <1                     | 0.00    | No Limit            |
|                      |                            |                                          | 207-08-9   |     |       |                 |                        |         |                     |
| EP075C: Phthalate Es | sters (QC Lot: 2690636)    |                                          |            |     |       |                 |                        |         |                     |
| ES1936183-029        | VC12_0.0-0.5               | EP075: Dimethyl phthalate                | 131-11-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Diethyl phthalate                 | 84-66-2    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Di-n-butyl phthalate              | 84-74-2    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Butyl benzyl phthalate            | 85-68-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Di-n-octylphthalate               | 117-84-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075D: Nitrosamine  | s (QC Lot: 2690636)        |                                          |            |     |       |                 |                        |         |                     |
| ES1936183-029        | VC12_0.0-0.5               | EP075: N-Nitrosomethylethylamine         | 10595-95-6 | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: N-Nitrosodiethylamine             | 55-18-5    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: N-Nitrosopyrrolidine              | 930-55-2   | 0.5 | mg/kg | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                            | EP075: N-Nitrosomorpholine               | 59-89-2    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: N-Nitrosodi-n-propylamine         | 621-64-7   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: N-Nitrosopiperidine               | 100-75-4   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: N-Nitrosodibutylamine             | 924-16-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: N-Nitrosodiphenyl & Diphenylamine | 86-30-6    | 0.5 | mg/kg | <1.0            | <1.0                   | 0.00    | No Limit            |
|                      |                            |                                          | 122-39-4   |     |       |                 |                        |         |                     |
|                      |                            | EP075: Methapyrilene                     | 91-80-5    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075E: Nitroaromat  | ics and Ketones (QC Lot: 2 | 2690636)                                 |            |     |       |                 |                        |         |                     |
| ES1936183-029        | VC12_0.0-0.5               | EP075: 2-Picoline                        | 109-06-8   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Acetophenone                      | 98-86-2    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                            | EP075: Nitrobenzene                      | 98-95-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |

| Page       | : 10 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                         |                                    |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|-------------------------|------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                   | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP075E: Nitroaromat  | tics and Ketones (QC L  | ot: 2690636) - continued           |            |                                   |       |                 |                  |         |                     |
| ES1936183-029        | VC12_0.0-0.5            | EP075: Isophorone                  | 78-59-1    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 2.6-Dinitrotoluene          | 606-20-2   | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                         | EP075: 2.4-Dinitrotoluene          | 121-14-2   | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                         | EP075: 1-Naphthylamine             | 134-32-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 4-Nitroquinoline-N-oxide    | 56-57-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 5-Nitro-o-toluidine         | 99-55-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 1.3.5-Trinitrobenzene       | 99-35-4    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Phenacetin                  | 62-44-2    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 4-Aminobiphenyl             | 92-67-1    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Pentachloronitrobenzene     | 82-68-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Pronamide                   | 23950-58-5 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Dimethylaminoazobenzene     | 60-11-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Chlorobenzilate             | 510-15-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Azobenzene                  | 103-33-3   | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EP075F: Haloethers   | (QC Lot: 2690636)       |                                    |            |                                   |       |                 |                  |         |                     |
| ES1936183-029        | VC12_0.0-0.5            | EP075: Bis(2-chloroethyl) ether    | 111-44-4   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Bis(2-chloroethoxy) methane | 111-91-1   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 4-Chlorophenyl phenyl ether | 7005-72-3  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 4-Bromophenyl phenyl ether  | 101-55-3   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP075G: Chlorinated  | Hydrocarbons (QC Lo     | t: 2690636)                        |            |                                   |       |                 |                  |         |                     |
| ES1936183-029        | VC12_0.0-0.5            | EP075: 1.3-Dichlorobenzene         | 541-73-1   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 1.4-Dichlorobenzene         | 106-46-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 1.2-Dichlorobenzene         | 95-50-1    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Hexachloroethane            | 67-72-1    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 1.2.4-Trichlorobenzene      | 120-82-1   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Hexachloropropylene         | 1888-71-7  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Hexachlorobutadiene         | 87-68-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Pentachlorobenzene          | 608-93-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Hexachlorobenzene (HCB)     | 118-74-1   | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                         | EP075: Hexachlorocyclopentadiene   | 77-47-4    | 2.5                               | mg/kg | <2.5            | <2.5             | 0.00    | No Limit            |
| EP075H: Anilines an  | d Benzidines (QC Lot: 2 | 2690636)                           |            |                                   |       |                 |                  |         |                     |
| ES1936183-029        | VC12_0.0-0.5            | EP075: Aniline                     | 62-53-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 4-Chloroaniline             | 106-47-8   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 2-Nitroaniline              | 88-74-4    | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                         | EP075: 3-Nitroaniline              | 99-09-2    | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
|                      |                         | EP075: Dibenzofuran                | 132-64-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 4-Nitroaniline              | 100-01-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: Carbazole                   | 86-74-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                         | EP075: 3.3 - Dichlorobenzidine     | 91-94-1    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |

| Page       | : 11 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL             |                                   |                                      |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|------------------------------|-----------------------------------|--------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID         | Client sample ID                  | Method: Compound                     | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP075I: Organochlori         | ne Pesticides (QC Lot: 269        | 0636)                                |            |                                   |       |                 |                  |         |                     |
| ES1936183-029                | VC12_0.0-0.5                      | EP075: alpha-BHC                     | 319-84-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: beta-BHC                      | 319-85-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: gamma-BHC                     | 58-89-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: delta-BHC                     | 319-86-8   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Heptachlor                    | 76-44-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Aldrin                        | 309-00-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Heptachlor epoxide            | 1024-57-3  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: alpha-Endosulfan              | 959-98-8   | 0.5                               | mg/kg | <0.5            | 0.6              | 22.1    | No Limit            |
|                              |                                   | EP075: 4.4`-DDE                      | 72-55-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Dieldrin                      | 60-57-1    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Endrin                        | 72-20-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: beta-Endosulfan               | 33213-65-9 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: 4.4`-DDD                      | 72-54-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Endosulfan sulfate            | 1031-07-8  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: 4.4`-DDT                      | 50-29-3    | 0.5                               | mg/kg | <1.0            | <1.0             | 0.00    | No Limit            |
| EP075J: Organophos           | phorus Pesticides (QC Lot         | : 2690636)                           |            |                                   |       |                 |                  |         |                     |
| ES1936183-029                | VC12_0.0-0.5                      | EP075: Dichlorvos                    | 62-73-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Dimethoate                    | 60-51-5    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Diazinon                      | 333-41-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Chlorpyrifos-methyl           | 5598-13-0  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Malathion                     | 121-75-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Fenthion                      | 55-38-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Chlorpyrifos                  | 2921-88-2  | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Pirimphos-ethyl               | 23505-41-1 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Chlorfenvinphos               | 470-90-6   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Prothiofos                    | 34643-46-4 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                              |                                   | EP075: Ethion                        | 563-12-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP080/071: Total Petr        | oleum Hydrocarbons (QC            | Lot: 2684261)                        |            |                                   |       |                 |                  |         |                     |
| ES1935800-011                | Anonymous                         | EP080: C6 - C9 Fraction              |            | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| EW1904707-002                | Anonymous                         | EP080: C6 - C9 Fraction              |            | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| EP080/071: Total Petr        | oleum Hydrocarbons (QC            | Lot: 2687451)                        |            |                                   |       | ·               |                  |         |                     |
| ES1936325-001                | Anonymous                         | EP080: C6 - C9 Fraction              |            | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| ES1936325-005                | Anonymous                         | EP080: C6 - C9 Fraction              |            | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| EP080/071: Total Rec         | overable Hydrocarbons - N         | EPM 2013 Fractions (QC Lot: 2684261) |            |                                   |       |                 |                  |         |                     |
| ES1935800-011                | Anonymous                         | EP080: C6 - C10 Fraction             | C6_C10     | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| EW1904707-002                | Anonymous                         | EP080: C6 - C10 Fraction             | <br>C6_C10 | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| EP080/071: Tota <u>l Rec</u> | overable Hydrocarb <u>ons - N</u> | EPM 2013 Fractions (QC Lot: 2687451) | _          |                                   |       |                 | · · · · · ·      |         |                     |
| ES1936325-001                | Anonymous                         | EP080: C6 - C10 Fraction             | C6 C10     | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
| ES1936325-005                | Anonymous                         | EP080: C6 - C10 Fraction             | <br>C6_C10 | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |

| Page       | : 12 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                                |                                    | Laboratory Duplicate (DUP) Report |     |       |                 |                  |         |                     |
|----------------------|--------------------------------|------------------------------------|-----------------------------------|-----|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID               | Method: Compound                   | CAS Number                        | LOR | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP080: BTEXN (QC     | Lot: 2684261)                  |                                    |                                   |     |       |                 |                  |         |                     |
| ES1935800-011        | Anonymous                      | EP080: Benzene                     | 71-43-2                           | 0.2 | mg/kg | <0.2            | <0.2             | 0.00    | No Limit            |
|                      |                                | EP080: Toluene                     | 108-88-3                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: Ethylbenzene                | 100-41-4                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: meta- & para-Xylene         | 108-38-3                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                |                                    | 106-42-3                          |     |       |                 |                  |         |                     |
|                      |                                | EP080: ortho-Xylene                | 95-47-6                           | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: Naphthalene                 | 91-20-3                           | 1   | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EW1904707-002        | Anonymous                      | EP080: Benzene                     | 71-43-2                           | 0.2 | mg/kg | <0.2            | <0.2             | 0.00    | No Limit            |
|                      |                                | EP080: Toluene                     | 108-88-3                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: Ethylbenzene                | 100-41-4                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: meta- & para-Xylene         | 108-38-3                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                |                                    | 106-42-3                          |     |       |                 |                  |         |                     |
|                      |                                | EP080: ortho-Xylene                | 95-47-6                           | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: Naphthalene                 | 91-20-3                           | 1   | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EP080: BTEXN (QC     | Lot: 2687451)                  |                                    |                                   |     |       |                 |                  |         |                     |
| ES1936325-001        | Anonymous                      | EP080: Benzene                     | 71-43-2                           | 0.2 | mg/kg | <0.2            | <0.2             | 0.00    | No Limit            |
|                      |                                | EP080: Toluene                     | 108-88-3                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: Ethylbenzene                | 100-41-4                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: meta- & para-Xylene         | 108-38-3                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                |                                    | 106-42-3                          |     |       |                 |                  |         |                     |
|                      |                                | EP080: ortho-Xylene                | 95-47-6                           | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: Naphthalene                 | 91-20-3                           | 1   | mg/kg | <1              | <1               | 0.00    | No Limit            |
| ES1936325-005        | Anonymous                      | EP080: Benzene                     | 71-43-2                           | 0.2 | mg/kg | <0.2            | <0.2             | 0.00    | No Limit            |
|                      |                                | EP080: Toluene                     | 108-88-3                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: Ethylbenzene                | 100-41-4                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: meta- & para-Xylene         | 108-38-3                          | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                |                                    | 106-42-3                          |     |       |                 |                  |         |                     |
|                      |                                | EP080: ortho-Xylene                | 95-47-6                           | 0.5 | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                                | EP080: Naphthalene                 | 91-20-3                           | 1   | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EP080-SD / EP071-S   | D: Total Petroleum Hy          | drocarbons (QC Lot: 2685373)       |                                   |     |       |                 |                  |         |                     |
| ES1936183-029        | VC12_0.0-0.5                   | EP071-SD: C10 - C14 Fraction       |                                   | 3   | mg/kg | <6              | <6               | 0.00    | No Limit            |
|                      |                                | EP071-SD: C15 - C28 Fraction       |                                   | 3   | mg/kg | 109             | 109              | 0.00    | No Limit            |
|                      |                                | EP071-SD: C10 - C36 Fraction (sum) |                                   | 3   | mg/kg | 221             | 222              | 0.451   | 0% - 50%            |
|                      |                                | EP071-SD: C29 - C36 Fraction       |                                   | 5   | mg/kg | 112             | 113              | 0.00    | No Limit            |
| EP080-SD / EP071-S   | D: Total Petroleum Hy          | drocarbons (QC Lot: 2687455)       |                                   |     |       |                 |                  |         |                     |
| ES1936183-029        | VC12_0.0-0.5                   | EP080-SD: C6 - C9 Fraction         |                                   | 3   | mg/kg | <3              | <3               | 0.00    | No Limit            |
| ES1936700-012        | Anonymous                      | EP080-SD: C6 - C9 Fraction         |                                   | 3   | mg/kg | <3              | <3               | 0.00    | No Limit            |
| EP080-SD / EP071-S   | D: Total Recover <u>able I</u> | Hydrocarbons (QC Lot: 2685373)     |                                   |     |       |                 |                  |         |                     |
| ES1936183-029        | VC12 0.0-0.5                   | EP071-SD: >C10 - C16 Fraction      |                                   | 3   | mg/kg | <12             | <12              | 0.00    | No Limit            |
|                      | -                              | EP071-SD: >C16 - C34 Fraction      |                                   | 3   | mg/kg | 185             | 184              | 0.00    | 0% - 50%            |

| Page       | : 13 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                       |                                            |            |     |         | Laboratory I    | Duplicate (DUP) Repor | t       |                     |
|----------------------|-----------------------|--------------------------------------------|------------|-----|---------|-----------------|-----------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                           | CAS Number | LOR | Unit    | Original Result | Duplicate Result      | RPD (%) | Recovery Limits (%) |
| EP080-SD / EP071-S   | SD: Total Recoverable | Hydrocarbons (QC Lot: 2685373) - continued |            |     |         |                 |                       |         |                     |
| ES1936183-029        | VC12_0.0-0.5          | EP071-SD: >C10 - C40 Fraction (sum)        |            | 3   | mg/kg   | 257             | 257                   | 0.00    | 0% - 20%            |
|                      |                       | EP071-SD: >C34 - C40 Fraction              |            | 5   | mg/kg   | 72              | 73                    | 2.28    | No Limit            |
| EP080-SD: BTEXN      | (QC Lot: 2687455)     |                                            |            |     |         |                 |                       |         |                     |
| ES1936183-029        | VC12 0.0-0.5          | EP080-SD: Benzene                          | 71-43-2    | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
|                      |                       | EP080-SD: Toluene                          | 108-88-3   | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
|                      |                       | EP080-SD: Ethylbenzene                     | 100-41-4   | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
|                      |                       | EP080-SD: meta- & para-Xylene              | 108-38-3   | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
|                      |                       |                                            | 106-42-3   |     |         |                 |                       |         |                     |
|                      |                       | EP080-SD: ortho-Xylene                     | 95-47-6    | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
| ES1936700-012        | Anonymous             | EP080-SD: Benzene                          | 71-43-2    | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
|                      |                       | EP080-SD: Toluene                          | 108-88-3   | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
|                      |                       | EP080-SD: Ethylbenzene                     | 100-41-4   | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
|                      |                       | EP080-SD: meta- & para-Xylene              | 108-38-3   | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
|                      |                       |                                            | 106-42-3   |     |         |                 |                       |         |                     |
|                      |                       | EP080-SD: ortho-Xylene                     | 95-47-6    | 0.2 | mg/kg   | <0.2            | <0.2                  | 0.00    | No Limit            |
| EP090: Organotin C   | ompounds (QC Lot: 2   | 2689830)                                   |            |     |         |                 |                       |         |                     |
| ES1936183-040        | VC08_1.0-1.5          | EP090: Tributyltin                         | 56573-85-4 | 0.5 | µgSn/kg | <0.5            | <0.5                  | 0.00    | No Limit            |
| EP090: Organotin C   | ompounds (QC Lot: 2   | 2698344)                                   |            |     |         |                 |                       |         |                     |
| EM1919013-021        | Anonymous             | EP090: Tributyltin                         | 56573-85-4 | 0.5 | µgSn/kg | 4.8             | 3.5                   | 30.2    | No Limit            |
| ES1936183-029        | VC12_0.0-0.5          | EP090: Tributyltin                         | 56573-85-4 | 0.5 | µgSn/kg | 6.9             | 5.3                   | 26.4    | 0% - 50%            |
| EP130A: Organoph     | osphorus Pesticides ( | Ultra-trace) (QC Lot: 2685368)             |            |     |         |                 |                       |         |                     |
| ES1936183-029        | VC12_0.0-0.5          | EP130: Bromophos-ethyl                     | 4824-78-6  | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Carbophenothion                     | 786-19-6   | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Chlorfenvinphos (E)                 | 18708-86-6 | 10  | µg/kg   | <10.0           | <10.0                 | 0.00    | No Limit            |
|                      |                       | EP130: Chlorfenvinphos (Z)                 | 18708-87-7 | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Chlorpyrifos                        | 2921-88-2  | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Chlorpyrifos-methyl                 | 5598-13-0  | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Demeton-S-methyl                    | 919-86-8   | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Diazinon                            | 333-41-5   | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Dichlorvos                          | 62-73-7    | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Dimethoate                          | 60-51-5    | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Ethion                              | 563-12-2   | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Fenamiphos                          | 22224-92-6 | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Fenthion                            | 55-38-9    | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Malathion                           | 121-75-5   | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Azinphos Methyl                     | 86-50-0    | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Monocrotophos                       | 6923-22-4  | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Parathion                           | 56-38-2    | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Parathion-methyl                    | 298-00-0   | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |
|                      |                       | EP130: Pirimphos-ethyl                     | 23505-41-1 | 10  | µg/kg   | <10             | <10                   | 0.00    | No Limit            |

| Page       | : 14 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                                           |                                           |                |      |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------------------------|-------------------------------------------|----------------|------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID                          | Method: Compound                          | CAS Number     | LOR  | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP130A: Organopho    | sphorus Pesticides (UI                    | ltra-trace) (QC Lot: 2685368) - continued |                |      |       |                 |                        |         |                     |
| ES1936183-029        | VC12_0.0-0.5                              | EP130: Prothiofos                         | 34643-46-4     | 10   | µg/kg | <10             | <10                    | 0.00    | No Limit            |
| EP131A: Organochlo   | rine Pesticides (QC Lo                    | ot: 2685370)                              |                |      |       |                 |                        |         |                     |
| ES1936183-029        | VC12_0.0-0.5                              | EP131A: gamma-BHC                         | 58-89-9        | 0.25 | µg/kg | <0.25           | <0.25                  | 0.00    | No Limit            |
|                      |                                           | EP131A: cis-Chlordane                     | 5103-71-9      | 0.25 | µg/kg | <0.25           | <0.25                  | 0.00    | No Limit            |
|                      |                                           | EP131A: trans-Chlordane                   | 5103-74-2      | 0.25 | µg/kg | <0.25           | <0.25                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Total Chlordane (sum)             |                | 0.25 | µg/kg | <0.25           | <0.25                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Aldrin                            | 309-00-2       | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: alpha-BHC                         | 319-84-6       | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: beta-BHC                          | 319-85-7       | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: delta-BHC                         | 319-86-8       | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: 4.4`-DDD                          | 72-54-8        | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: 4.4`-DDE                          | 72-55-9        | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: 4.4`-DDT                          | 50-29-3        | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Sum of DDD + DDE + DDT            | 72-54-8/72-55- | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           |                                           | 9/50-2         |      |       |                 |                        |         |                     |
|                      |                                           | EP131A: Dieldrin                          | 60-57-1        | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: alpha-Endosulfan                  | 959-98-8       | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: beta-Endosulfan                   | 33213-65-9     | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Endosulfan sulfate                | 1031-07-8      | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Endosulfan (sum)                  | 115-29-7       | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      | EP131A: Endrin<br>EP131A: Endrin aldehyde |                                           |                | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           |                                           |                | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Endrin ketone                     | 53494-70-5     | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Heptachlor                        | 76-44-8        | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Heptachlor epoxide                | 1024-57-3      | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Hexachlorobenzene (HCB)           | 118-74-1       | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
|                      |                                           | EP131A: Methoxychlor                      | 72-43-5        | 0.5  | µg/kg | <0.50           | <0.50                  | 0.00    | No Limit            |
| EP131B: Polychlorin  | ated Biphenyls (as Aro                    | oclors) (QC Lot: 2685369)                 |                |      |       |                 |                        |         |                     |
| ES1936183-029        | VC12_0.0-0.5                              | EP131B: Total Polychlorinated biphenyls   |                | 5    | µg/kg | 34.6            | 37.1                   | 6.96    | No Limit            |
|                      |                                           | EP131B: Aroclor 1016                      | 12674-11-2     | 5    | µg/kg | <5.0            | <5.0                   | 0.00    | No Limit            |
|                      |                                           | EP131B: Aroclor 1221                      | 11104-28-2     | 5    | µg/kg | <5.0            | <5.0                   | 0.00    | No Limit            |
|                      |                                           | EP131B: Aroclor 1232                      | 11141-16-5     | 5    | µg/kg | <5.0            | <5.0                   | 0.00    | No Limit            |
|                      |                                           | EP131B: Aroclor 1242                      | 53469-21-9     | 5    | µg/kg | <5.0            | <5.0                   | 0.00    | No Limit            |
|                      |                                           | EP131B: Aroclor 1248                      | 12672-29-6     | 5    | µg/kg | <5.0            | <5.0                   | 0.00    | No Limit            |
|                      |                                           | EP131B: Aroclor 1254                      | 11097-69-1     | 5    | µg/kg | 34.6            | 37.1                   | 6.90    | No Limit            |
|                      | 11096-82-5                                | 5                                         | µg/kg          | <5.0 | <5.0  | 0.00            | No Limit               |         |                     |
| EP132B: Polynuclear  | · Aromatic Hydrocarbo                     | ons (QC Lot: 2685372)                     |                |      |       |                 |                        |         |                     |
| ES1936183-029        | VC12_0.0-0.5                              | EP132B-SD: Acenaphthylene                 | 208-96-8       | 4    | µg/kg | 60              | 73                     | 19.2    | 0% - 50%            |
|                      |                                           | EP132B-SD: Acenaphthene                   | 83-32-9        | 4    | µg/kg | <4              | 5                      | 0.00    | No Limit            |
|                      |                                           | EP132B-SD: Fluorene                       | 86-73-7        | 4    | µg/kg | 8               | 13                     | 45.8    | No Limit            |

| Page       | : 15 of 35    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                   |                        |                                   |            |        |       | Laboratory      | Duplicate (DUP) Repor | t        |                     |
|----------------------------------------------------|------------------------|-----------------------------------|------------|--------|-------|-----------------|-----------------------|----------|---------------------|
| Laboratory sample ID                               | Client sample ID       | Method: Compound                  | CAS Number | LOR    | Unit  | Original Result | Duplicate Result      | RPD (%)  | Recovery Limits (%) |
| EP132B: Polynuclea                                 | ar Aromatic Hydrocarbo | ons (QC Lot: 2685372) - continued |            |        |       |                 |                       |          |                     |
| ES1936183-029 VC12_0.0-0.5 EP132B-SD: Phenanthrene |                        |                                   | 85-01-8    | 4      | µg/kg | 96              | 102                   | 6.92     | 0% - 20%            |
|                                                    |                        | EP132B-SD: Anthracene             |            |        | µg/kg | 37              | 49                    | 28.0     | 0% - 50%            |
|                                                    |                        | EP132B-SD: Fluoranthene           | 206-44-0   | 4      | µg/kg | 201             | 231                   | 13.9     | 0% - 20%            |
|                                                    |                        | EP132B-SD: Pyrene                 | 129-00-0   | 4      | µg/kg | 217             | 244                   | 12.1     | 0% - 20%            |
|                                                    |                        | EP132B-SD: Benz(a)anthracene      | 56-55-3    | 4      | µg/kg | 147             | 171                   | 15.3     | 0% - 20%            |
|                                                    |                        | EP132B-SD: Chrysene               | 218-01-9   | 4      | µg/kg | 122             | 133                   | 8.70     | 0% - 20%            |
|                                                    |                        | EP132B-SD: Benzo(b+j)fluoranthene | 205-99-2   | 4      | µg/kg | 226             | 268                   | 16.9     | 0% - 20%            |
|                                                    |                        |                                   | 205-82-3   |        |       |                 |                       |          |                     |
|                                                    |                        | EP132B-SD: Benzo(k)fluoranthene   | 207-08-9   | 4      | µg/kg | 116             | 129                   | 10.3     | 0% - 20%            |
|                                                    |                        | EP132B-SD: Benzo(e)pyrene         | 192-97-2   | 4      | µg/kg | 117             | 132                   | 12.6     | 0% - 20%            |
|                                                    |                        | EP132B-SD: Benzo(a)pyrene         | 50-32-8    | 4      | µg/kg | 255             | 291                   | 13.3     | 0% - 20%            |
|                                                    |                        | EP132B-SD: Perylene               | 198-55-0   | 4      | µg/kg | 55              | 63                    | 12.8     | 0% - 50%            |
|                                                    |                        | EP132B-SD: Benzo(g.h.i)perylene   | 191-24-2   | 4      | µg/kg | 197             | 213                   | 7.57     | 0% - 20%            |
|                                                    | 53-70-3                | 4                                 | µg/kg      | 40     | 44    | 10.2            | 0% - 50%              |          |                     |
| EP132B-SD: Indeno(1.2.3.cd)pyrene                  |                        | 193-39-5                          | 4          | µg/kg  | 155   | 168             | 8.27                  | 0% - 20% |                     |
|                                                    |                        | EP132B-SD: Sum of PAHs            |            | 4      | µg/kg | 2180            | 2460                  | 11.7     | 0% - 20%            |
|                                                    |                        | EP132B-SD: Naphthalene            | 91-20-3    | 5      | µg/kg | 10              | 11                    | 14.0     | No Limit            |
|                                                    |                        | EP132B-SD: 2-Methylnaphthalene    | 91-57-6    | 5      | µg/kg | <5              | <5                    | 0.00     | No Limit            |
|                                                    |                        | EP132B-SD: Coronene               | 191-07-1   | 5      | µg/kg | 126             | 117                   | 6.80     | 0% - 20%            |
| Sub-Matrix: WATER                                  |                        |                                   |            |        |       | Laboratory      | Duplicate (DUP) Repor | t        |                     |
| Laboratory sample ID                               | Client sample ID       | Method: Compound                  | CAS Number | LOR    | Unit  | Original Result | Duplicate Result      | RPD (%)  | Recovery Limits (%) |
| EG020T: Total Meta                                 | Is by ICP-MS (QC Lot:  | 2682925)                          |            |        |       |                 |                       |          |                     |
| EP1911242-021                                      | Anonymous              | EG020A-T: Cadmium                 | 7440-43-9  | 0.0001 | mg/L  | <0.0001         | <0.0001               | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Arsenic                 | 7440-38-2  | 0.001  | mg/L  | <0.001          | <0.001                | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Chromium                | 7440-47-3  | 0.001  | mg/L  | <0.001          | <0.001                | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Copper                  | 7440-50-8  | 0.001  | mg/L  | <0.001          | <0.001                | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Lead                    | 7439-92-1  | 0.001  | mg/L  | <0.001          | <0.001                | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Nickel                  | 7440-02-0  | 0.001  | mg/L  | <0.001          | <0.001                | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Zinc                    | 7440-66-6  | 0.005  | mg/L  | <0.005          | 0.026                 | 132      | No Limit            |
| ES1936242-004                                      | Anonymous              | EG020A-T: Cadmium                 | 7440-43-9  | 0.0001 | mg/L  | <0.0001         | <0.0001               | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Arsenic                 | 7440-38-2  | 0.001  | mg/L  | 1.47            | 1.49                  | 1.35     | 0% - 20%            |
|                                                    |                        | EG020A-T: Chromium                | 7440-47-3  | 0.001  | mg/L  | 0.001           | 0.001                 | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Copper                  | 7440-50-8  | 0.001  | mg/L  | <0.001          | <0.001                | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Lead                    | 7439-92-1  | 0.001  | mg/L  | 0.002           | 0.002                 | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Nickel                  | 7440-02-0  | 0.001  | mg/L  | 0.002           | 0.001                 | 0.00     | No Limit            |
|                                                    |                        | EG020A-T: Zinc                    | 7440-66-6  | 0.005  | mg/L  | 0.027           | 0.026                 | 0.00     | No Limit            |
| EG035T: Total Reco                                 | overable Mercury by Fl | MS (QC Lot: 2687534)              |            |        |       |                 |                       |          |                     |
| ES1936219-001                                      | Anonymous              | EG035T: Mercury                   | 7439-97-6  | 0.0001 | mg/L  | <0.0001         | <0.0001               | 0.00     | No Limit            |
| EP080/07 <u>1: Total Pe</u>                        | troleum Hydrocarbons   | (QC Lot: 2683791)                 |            |        |       |                 |                       |          |                     |
| EP1911242-021                                      | Anonymous              | EP080: C6 - C9 Eraction           |            | 20     | ua/L  | <20             | <20                   | 0.00     | No Limit            |

| Page       | : 16 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: WATER              |                           |                                      |            |     |      | Laboratory L    | Duplicate (DUP) Report |         |                     |
|--------------------------------|---------------------------|--------------------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID           | Client sample ID          | Method: Compound                     | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP080/071: Total Pet           | roleum Hydrocarbons (QC   | Lot: 2683791) - continued            |            |     |      |                 |                        |         |                     |
| EP1911368-002                  | Anonymous                 | EP080: C6 - C9 Fraction              |            | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| EP080/071: Total Rec           | overable Hydrocarbons - N | EPM 2013 Fractions (QC Lot: 2683791) |            |     |      |                 |                        |         |                     |
| EP1911242-021                  | Anonymous                 | EP080: C6 - C10 Fraction             | C6_C10     | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| EP1911368-002                  | Anonymous                 | EP080: C6 - C10 Fraction             | C6_C10     | 20  | μg/L | <20             | <20                    | 0.00    | No Limit            |
| EP080: BTEXN (QC Lot: 2683791) |                           |                                      |            |     |      |                 |                        |         |                     |
| EP1911242-021                  | Anonymous                 | EP080: Benzene                       | 71-43-2    | 1   | μg/L | <1              | <1                     | 0.00    | No Limit            |
|                                |                           | EP080: Toluene                       | 108-88-3   | 2   | µg/L | <2              | <2                     | 0.00    | No Limit            |
|                                |                           | EP080: Ethylbenzene                  | 100-41-4   | 2   | µg/L | <2              | <2                     | 0.00    | No Limit            |
|                                |                           | EP080: meta- & para-Xylene           | 108-38-3   | 2   | µg/L | <2              | <2                     | 0.00    | No Limit            |
|                                |                           |                                      | 106-42-3   |     |      |                 |                        |         |                     |
|                                |                           | EP080: ortho-Xylene                  | 95-47-6    | 2   | µg/L | <2              | <2                     | 0.00    | No Limit            |
|                                |                           | EP080: Naphthalene                   | 91-20-3    | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |
| EP1911368-002                  | Anonymous                 | EP080: Benzene                       | 71-43-2    | 1   | µg/L | <1              | <1                     | 0.00    | No Limit            |
|                                |                           | EP080: Toluene                       | 108-88-3   | 2   | µg/L | <2              | <2                     | 0.00    | No Limit            |
|                                |                           | EP080: Ethylbenzene                  | 100-41-4   | 2   | µg/L | <2              | <2                     | 0.00    | No Limit            |
|                                |                           | EP080: meta- & para-Xylene           | 108-38-3   | 2   | µg/L | <2              | <2                     | 0.00    | No Limit            |
|                                |                           |                                      | 106-42-3   |     |      |                 |                        |         |                     |
|                                |                           | EP080: ortho-Xylene                  | 95-47-6    | 2   | µg/L | <2              | <2                     | 0.00    | No Limit            |
|                                |                           | EP080: Naphthalene                   | 91-20-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                                       |                                                         |      |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|------------------------------------------------------------------------|---------------------------------------------------------|------|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                                        |                                                         |      |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                                       | CAS Number                                              | LOR  | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EG005(ED093)-SD: Total Metals in Sediments by ICP-AES (QCLot: 2691340) |                                                         |      |       |                   |                                       |                    |          |            |  |  |
| EG005-SD: Aluminium                                                    | 7429-90-5                                               | 50   | mg/kg | <50               | 6134 mg/kg                            | 102                | 88.2     | 136        |  |  |
| EG005-SD: Iron                                                         | 7439-89-6                                               | 50   | mg/kg | <50               | 8400 mg/kg                            | 71.8               | 70.0     | 109        |  |  |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 2691                    | EG005(ED093)T: Total Metals by ICP-AES (QCLot: 2691120) |      |       |                   |                                       |                    |          |            |  |  |
| EG005T: Arsenic                                                        | 7440-38-2                                               | 5    | mg/kg | <5                | 21.7 mg/kg                            | 101                | 86.0     | 126        |  |  |
| EG005T: Beryllium                                                      | 7440-41-7                                               | 1    | mg/kg | <1                | 5.63 mg/kg                            | 104                | 90.0     | 113        |  |  |
| EG005T: Cadmium                                                        | 7440-43-9                                               | 1    | mg/kg | <1                | 4.64 mg/kg                            | 85.7               | 83.0     | 113        |  |  |
| EG005T: Lead                                                           | 7439-92-1                                               | 5    | mg/kg | <5                | 40 mg/kg                              | 96.3               | 80.0     | 114        |  |  |
| EG005T: Molybdenum                                                     | 7439-98-7                                               | 2    | mg/kg | <2                |                                       |                    |          |            |  |  |
| EG005T: Nickel                                                         | 7440-02-0                                               | 2    | mg/kg | <2                | 55 mg/kg                              | 100                | 87.0     | 123        |  |  |
| EG005T: Selenium                                                       | 7782-49-2                                               | 5    | mg/kg | <5                | 5.37 mg/kg                            | 131                | 75.0     | 131        |  |  |
| EG005T: Silver                                                         | 7440-22-4                                               | 2    | mg/kg | <2                | 2.1 mg/kg                             | 94.2               | 77.0     | 117        |  |  |
| EG035T: Total Recoverable Mercury by FIMS (Low Lev                     | el) (QCLot: 269134                                      | 2)   |       |                   |                                       |                    |          |            |  |  |
| EG035T-LL: Mercury                                                     | 7439-97-6                                               | 0.01 | mg/kg | <0.01             | 0.257 mg/kg                           | 91.2               | 72.0     | 116        |  |  |
| EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 2691341)          |                                                         |      |       |                   |                                       |                    |          |            |  |  |
| EG020-SD: Antimony                                                     | 7440-36-0                                               | 0.5  | mg/kg | <0.50             | 4.6 mg/kg                             | 82.6               | 70.0     | 130        |  |  |
| EG020-SD: Arsenic                                                      | 7440-38-2                                               | 1    | mg/kg | <1.00             | 21.7 mg/kg                            | 90.5               | 80.0     | 139        |  |  |
| EG020-SD: Cadmium                                                      | 7440-43-9                                               | 0.1  | mg/kg | <0.1              | 4.64 mg/kg                            | 88.4               | 83.0     | 127        |  |  |
| EG020-SD: Chromium                                                     | 7440-47-3                                               | 1    | mg/kg | <1.0              | 43.9 mg/kg                            | 73.9               | 73.0     | 130        |  |  |
| EG020-SD: Copper                                                       | 7440-50-8                                               | 1    | mg/kg | <1.0              | 32 mg/kg                              | 89.7               | 76.0     | 130        |  |  |
| EG020-SD: Cobalt                                                       | 7440-48-4                                               | 0.5  | mg/kg | <0.5              | 16 mg/kg                              | 94.4               | 81.0     | 130        |  |  |
| EG020-SD: Lead                                                         | 7439-92-1                                               | 1    | mg/kg | <1.0              | 40 mg/kg                              | 91.0               | 74.0     | 130        |  |  |
| EG020-SD: Manganese                                                    | 7439-96-5                                               | 10   | mg/kg | <10               | 130 mg/kg                             | 92.9               | 76.0     | 130        |  |  |
| EG020-SD: Nickel                                                       | 7440-02-0                                               | 1    | mg/kg | <1.0              | 55 mg/kg                              | 86.3               | 83.0     | 130        |  |  |
| EG020-SD: Selenium                                                     | 7782-49-2                                               | 0.1  | mg/kg | <0.1              | 5.37 mg/kg                            | 118                | 71.0     | 130        |  |  |
| EG020-SD: Silver                                                       | 7440-22-4                                               | 0.1  | mg/kg | <0.1              | 4 mg/kg                               | 81.8               | 64.0     | 148        |  |  |
| EG020-SD: Vanadium                                                     | 7440-62-2                                               | 2    | mg/kg | <2.0              | 29.6 mg/kg                            | 94.6               | 84.0     | 131        |  |  |
| EG020-SD: Zinc                                                         | 7440-66-6                                               | 1    | mg/kg | <1.0              | 60.8 mg/kg                            | 93.4               | 82.0     | 137        |  |  |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: )                    | 2691119)                                                |      |       |                   |                                       |                    |          |            |  |  |
| EG035T: Mercury                                                        | 7439-97-6                                               | 0.1  | mg/kg | <0.1              | 2.57 mg/kg                            | 82.0               | 70.0     | 105        |  |  |
| EG048: Hexavalent Chromium (Alkaline Digest) (QCLo                     | :: 2684699)                                             |      |       |                   |                                       |                    |          |            |  |  |
| EG048G: Hexavalent Chromium                                            | 18540-29-9                                              | 0.5  | mg/kg | <0.5              | 20 mg/kg                              | 101                | 68.0     | 114        |  |  |
|                                                                        |                                                         |      |       | <0.5              | 40 mg/kg                              | 82.8               | 68.0     | 114        |  |  |
| EK026SF: Total CN by Segmented Flow Analyser (QCI                      | _ot: 2682540)                                           |      |       |                   |                                       |                    |          |            |  |  |
| EK026SF: Total Cyanide                                                 | 57-12-5                                                 | 1    | mg/kg | <1                | 40 mg/kg                              | 107                | 81.0     | 129        |  |  |

| Page       | : 18 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                                                                     |                        |        |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|------------------------------------------------------------------------------------------------------|------------------------|--------|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                                                                      |                        |        |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                                                                     | CAS Number             | LOR    | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |
| EK028SF: Weak Acid Dissociable CN by Segmented Flow Analyser (QCLot: 2682539)                        |                        |        |       |                   |                                       |                    |          |            |  |
| EK028SF: Weak Acid Dissociable Cyanide                                                               |                        | 1      | mg/kg | <1                | 40 mg/kg                              | 107                | 70.0     | 130        |  |
| EK040T: Fluoride Total (OCLot: 2685561)                                                              |                        |        |       |                   |                                       |                    |          |            |  |
| EK040T: Fluoride                                                                                     | 16984-48-8             | 40     | mg/kg | <40               | 400 mg/kg                             | 85.2               | 67.2     | 96.3       |  |
| EP003: Total Organic Carbon (TOC) in Soil (QCI o                                                     | t: 2690237)            |        |       |                   |                                       |                    |          |            |  |
| EP003: Total Organic Carbon                                                                          |                        | 0.02   | %     | <0.02             | 8.4 %                                 | 101                | 70.0     | 130        |  |
|                                                                                                      |                        |        |       | <0.02             | 0.48 %                                | 111                | 70.0     | 130        |  |
| EP003: Total Organic Carbon (TOC) in Soil (QCLo                                                      | t: 2693466)            |        |       |                   |                                       |                    |          |            |  |
| EP003: Total Organic Carbon                                                                          |                        | 0.02   | %     | <0.02             | 0.44 %                                | 97.8               | 70.0     | 130        |  |
|                                                                                                      |                        |        |       | <0.02             | 0.48 %                                | 91.3               | 70.0     | 130        |  |
| EP066: Polychlorinated Biphenyls (PCB) (QCLot:                                                       | 2682735)               |        |       |                   |                                       |                    |          |            |  |
| EP066: Total Polychlorinated biphenyls                                                               |                        | 0.1    | mg/kg | <0.1              | 1 mg/kg                               | 108                | 62.0     | 126        |  |
| EP068A: Organochlorine Pesticides (OC) (OCLot:                                                       | 2682733)               |        |       |                   |                                       |                    |          |            |  |
| EP068: alpha-BHC                                                                                     | 319-84-6               | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 86.3               | 69.0     | 113        |  |
| EP068: Hexachlorobenzene (HCB)                                                                       | 118-74-1               | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 88.6               | 65.0     | 117        |  |
| EP068: beta-BHC                                                                                      | 319-85-7               | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 88.3               | 67.0     | 119        |  |
| EP068: gamma-BHC                                                                                     | 58-89-9                | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 86.1               | 68.0     | 116        |  |
| EP068: delta-BHC                                                                                     | 319-86-8               | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 85.6               | 65.0     | 117        |  |
| EP068: Heptachlor                                                                                    | 76-44-8                | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 84.4               | 67.0     | 115        |  |
| EP068: Aldrin                                                                                        | 309-00-2               | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 86.3               | 69.0     | 115        |  |
| EP068: Heptachlor epoxide                                                                            | 1024-57-3              | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 87.6               | 62.0     | 118        |  |
| EP068: trans-Chlordane                                                                               | 5103-74-2              | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 84.9               | 63.0     | 117        |  |
| EP068: alpha-Endosulfan                                                                              | 959-98-8               | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 84.6               | 66.0     | 116        |  |
| EP068: cis-Chlordane                                                                                 | 5103-71-9              | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 84.9               | 64.0     | 116        |  |
| EP068: Dieldrin                                                                                      | 60-57-1                | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 78.9               | 66.0     | 116        |  |
| EP068: 4.4`-DDE                                                                                      | 72-55-9                | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 85.9               | 67.0     | 115        |  |
| EP068: Endrin                                                                                        | 72-20-8                | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 83.5               | 67.0     | 123        |  |
| EP068: beta-Endosulfan                                                                               | 33213-65-9             | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 86.2               | 69.0     | 115        |  |
| EP068: 4.4`-DDD                                                                                      | 72-54-8                | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 85.0               | 69.0     | 121        |  |
| EP068: Endrin aldehyde                                                                               | 7421-93-4              | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 77.3               | 56.0     | 120        |  |
| EP068: Endosulfan sulfate                                                                            | 1031-07-8              | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 86.0               | 62.0     | 124        |  |
| EP068: 4.4`-DDT                                                                                      | 50-29-3                | 0.2    | mg/kg | <0.2              | 0.5 mg/kg                             | 86.2               | 66.0     | 120        |  |
| EP068B: Organophosphorus Pesticides (OP) (QC                                                         | Lot: 2682733)          |        |       |                   |                                       |                    |          |            |  |
| EP068: Chlorpyrifos                                                                                  | 2921-88-2              | 0.05   | mg/kg | <0.05             | 0.5 mg/kg                             | 81.0               | 76.0     | 118        |  |
| EP071 SG: Total Petroleum Hydrocarbons - Silica                                                      | gel cleanup (QCLot: 26 | 82734) |       |                   |                                       |                    |          |            |  |
| EP071SG-S: C10 - C14 Fraction                                                                        |                        | 50     | mg/kg | <50               | 300 mg/kg                             | 93.3               | 80.0     | 116        |  |
| EP071SG-S: C15 - C28 Fraction                                                                        |                        | 100    | mg/kg | <100              | 450 mg/kg                             | 93.5               | 85.0     | 115        |  |
| EP071SG-S: C29 - C36 Fraction                                                                        |                        | 100    | mg/kg | <100              | 300 mg/kg                             | 99.9               | 75.0     | 123        |  |
| EP071 SG: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Silica gel cleanup (QCLot: 2682734) |                        |        |       |                   |                                       |                    |          |            |  |

| Page       | : 19 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                                                                                 |            |     | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                               |      |            |
|------------------------------------------------------------------------------------------------------------------|------------|-----|-------------------|---------------------------------------|---------------|-------------------------------|------|------------|
|                                                                                                                  |            |     |                   | Report                                | Spike         | Spike Recovery (%) Recovery L |      | Limits (%) |
| Method: Compound                                                                                                 | CAS Number | LOR | Unit              | Result                                | Concentration | LCS                           | Low  | High       |
| EP071 SG: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Silica gel cleanup (QCLot: 2682734) - continued |            |     |                   |                                       |               |                               |      |            |
| EP071SG-S: >C10 - C16 Fraction                                                                                   |            | 50  | mg/kg             | <50                                   | 375 mg/kg     | 96.2                          | 89.0 | 109        |
| EP071SG-S: >C16 - C34 Fraction                                                                                   |            | 100 | mg/kg             | <100                                  | 525 mg/kg     | 93.3                          | 84.0 | 112        |
| EP071SG-S: >C34 - C40 Fraction                                                                                   |            | 100 | mg/kg             | <100                                  | 225 mg/kg     | 110                           | 71.0 | 119        |
| EP074A: Monocyclic Aromatic Hydrocarbons (QCLot:                                                                 | 2684260)   |     |                   |                                       |               |                               |      |            |
| EP074: Benzene                                                                                                   | 71-43-2    | 0.2 | mg/kg             | <0.2                                  | 1 mg/kg       | 96.2                          | 71.0 | 121        |
| EP074: Toluene                                                                                                   | 108-88-3   | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 90.1                          | 65.0 | 131        |
| EP074: Ethylbenzene                                                                                              | 100-41-4   | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 89.1                          | 72.0 | 114        |
| EP074: meta- & para-Xylene                                                                                       | 108-38-3   | 0.5 | mg/kg             | <0.5                                  | 2 mg/kg       | 89.6                          | 70.0 | 116        |
| EP074 <sup>,</sup> Styrene                                                                                       | 100-42-5   | 0.5 | ma/ka             | <0.5                                  | 1 ma/ka       | 91.5                          | 67.0 | 113        |
| EP074: ortho-Xvlene                                                                                              | 95-47-6    | 0.5 | ma/ka             | <0.5                                  | 1 mg/kg       | 88.9                          | 75.0 | 115        |
| EP074B: Oxygenated Compounds (OCL ot: 2684260)                                                                   |            |     |                   |                                       |               |                               |      |            |
| EP074: 2-Butanone (MEK)                                                                                          | 78-93-3    | 5   | mg/kg             | <5                                    | 10 mg/kg      | 96.8                          | 58.0 | 136        |
| EP074E: Halogenated Aliphatic Compounds (QCLot:                                                                  | 2684260)   |     |                   |                                       |               |                               |      |            |
| EP074: Vinvl chloride                                                                                            | 75-01-4    | 5   | mg/kg             | <5                                    | 10 mg/kg      | 56.9                          | 43.0 | 147        |
| EP074: 1.1-Dichloroethene                                                                                        | 75-35-4    | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 89.0                          | 54.0 | 126        |
| EP074: Methylene chloride                                                                                        | 75-09-2    | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 106                           | 58.0 | 148        |
| EP074: 1.1.1-Trichloroethane                                                                                     | 71-55-6    | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 80.2                          | 65.0 | 117        |
| EP074: Carbon Tetrachloride                                                                                      | 56-23-5    | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 76.9                          | 59.0 | 125        |
| EP074: 1.2-Dichloroethane                                                                                        | 107-06-2   | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 76.3                          | 65.0 | 125        |
| EP074: Trichloroethene                                                                                           | 79-01-6    | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 86.3                          | 70.0 | 118        |
| EP074: 1.1.2-Trichloroethane                                                                                     | 79-00-5    | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 95.2                          | 64.0 | 126        |
| EP074: Tetrachloroethene                                                                                         | 127-18-4   | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 81.8                          | 67.0 | 143        |
| EP074: 1.1.1.2-Tetrachloroethane                                                                                 | 630-20-6   | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 86.3                          | 62.0 | 122        |
| EP074: 1.1.2.2-Tetrachloroethane                                                                                 | 79-34-5    | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 91.0                          | 65.0 | 121        |
| EP074F: Halogenated Aromatic Compounds (QCLot: :                                                                 | 2684260)   |     |                   |                                       |               |                               |      |            |
| EP074: Chlorobenzene                                                                                             | 108-90-7   | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 89.2                          | 68.0 | 116        |
| EP074G: Trihalomethanes (QCLot: 2684260)                                                                         |            |     |                   |                                       |               |                               |      |            |
| EP074: Chloroform                                                                                                | 67-66-3    | 0.5 | mg/kg             | <0.5                                  | 1 mg/kg       | 83.1                          | 66.0 | 124        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 2682732)                                                                 | )          |     |                   |                                       |               |                               |      |            |
| EP075(SIM): Phenol                                                                                               | 108-95-2   | 0.5 | mg/kg             | <0.5                                  | 6 mg/kg       | 88.9                          | 71.0 | 125        |
| EP075(SIM): 2-Chlorophenol                                                                                       | 95-57-8    | 0.5 | mg/kg             | <0.5                                  | 6 mg/kg       | 94.2                          | 72.0 | 124        |
| EP075(SIM): 2-Methylphenol                                                                                       | 95-48-7    | 0.5 | mg/kg             | <0.5                                  | 6 mg/kg       | 94.3                          | 71.0 | 123        |
| EP075(SIM): 3- & 4-Methylphenol                                                                                  | 1319-77-3  | 1   | mg/kg             | <1                                    | 12 mg/kg      | 103                           | 67.0 | 127        |
| EP075(SIM): 2-Nitrophenol                                                                                        | 88-75-5    | 0.5 | mg/kg             | <0.5                                  | 6 mg/kg       | 76.0                          | 54.0 | 114        |
| EP075(SIM): 2.4-Dimethylphenol                                                                                   | 105-67-9   | 0.5 | mg/kg             | <0.5                                  | 6 mg/kg       | 73.6                          | 68.0 | 126        |
| EP075(SIM): 2.4-Dichlorophenol                                                                                   | 120-83-2   | 0.5 | mg/kg             | <0.5                                  | 6 mg/kg       | 91.8                          | 66.0 | 120        |
| EP075(SIM): 2.6-Dichlorophenol                                                                                   | 87-65-0    | 0.5 | mg/kg             | <0.5                                  | 6 mg/kg       | 97.3                          | 70.0 | 120        |

| Page       | : 20 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                             |                 |     |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|--------------------------------------------------------------|-----------------|-----|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                              |                 |     |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                             | CAS Number      | LOR | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |
| EP075(SIM)A: Phenolic Compounds (QCLot: 2682732) - continued |                 |     |       |                   |                                       |                    |          |            |  |
| EP075(SIM): 4-Chloro-3-methylphenol                          | 59-50-7         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 90.3               | 70.0     | 116        |  |
| EP075(SIM): 2.4.6-Trichlorophenol                            | 88-06-2         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 86.1               | 54.0     | 114        |  |
| EP075(SIM): 2.4.5-Trichlorophenol                            | 95-95-4         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 86.2               | 60.0     | 114        |  |
| EP075(SIM): Pentachlorophenol                                | 87-86-5         | 2   | mg/kg | <2                | 12 mg/kg                              | 11.8               | 10.0     | 57.0       |  |
| EP075(SIM)A: Phenolic Compounds (QCLot: 268275               | 5)              |     |       |                   |                                       |                    |          |            |  |
| EP075(SIM): Phenol                                           | 108-95-2        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 98.7               | 71.0     | 125        |  |
| EP075(SIM): 2-Chlorophenol                                   | 95-57-8         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 99.5               | 72.0     | 124        |  |
| EP075(SIM): 2-Methylphenol                                   | 95-48-7         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 95.8               | 71.0     | 123        |  |
| EP075(SIM): 3- & 4-Methylphenol                              | 1319-77-3       | 1   | mg/kg | <1                | 12 mg/kg                              | 98.1               | 67.0     | 127        |  |
| EP075(SIM): 2-Nitrophenol                                    | 88-75-5         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 77.6               | 54.0     | 114        |  |
| EP075(SIM): 2.4-Dimethylphenol                               | 105-67-9        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 79.0               | 68.0     | 126        |  |
| EP075(SIM): 2.4-Dichlorophenol                               | 120-83-2        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 94.4               | 66.0     | 120        |  |
| EP075(SIM): 2.6-Dichlorophenol                               | 87-65-0         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 98.6               | 70.0     | 120        |  |
| EP075(SIM): 4-Chloro-3-methylphenol                          | 59-50-7         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 95.1               | 70.0     | 116        |  |
| EP075(SIM): 2.4.6-Trichlorophenol                            | 88-06-2         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 87.3               | 54.0     | 114        |  |
| EP075(SIM): 2.4.5-Trichlorophenol                            | 95-95-4         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 81.6               | 60.0     | 114        |  |
| EP075(SIM): Pentachlorophenol                                | 87-86-5         | 2   | mg/kg | <2                | 12 mg/kg                              | 28.3               | 10.0     | 57.0       |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(              | QCLot: 2682732) |     |       |                   |                                       |                    |          |            |  |
| EP075(SIM): Naphthalene                                      | 91-20-3         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 103                | 77.0     | 125        |  |
| EP075(SIM): Acenaphthylene                                   | 208-96-8        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 110                | 72.0     | 124        |  |
| EP075(SIM): Acenaphthene                                     | 83-32-9         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 101                | 73.0     | 127        |  |
| EP075(SIM): Fluorene                                         | 86-73-7         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 109                | 72.0     | 126        |  |
| EP075(SIM): Phenanthrene                                     | 85-01-8         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 103                | 75.0     | 127        |  |
| EP075(SIM): Anthracene                                       | 120-12-7        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 103                | 77.0     | 127        |  |
| EP075(SIM): Fluoranthene                                     | 206-44-0        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 111                | 73.0     | 127        |  |
| EP075(SIM): Pyrene                                           | 129-00-0        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 110                | 74.0     | 128        |  |
| EP075(SIM): Benz(a)anthracene                                | 56-55-3         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 96.0               | 69.0     | 123        |  |
| EP075(SIM): Chrysene                                         | 218-01-9        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 94.0               | 75.0     | 127        |  |
| EP075(SIM): Benzo(b+j)fluoranthene                           | 205-99-2        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 86.4               | 68.0     | 116        |  |
|                                                              | 205-82-3        |     |       |                   |                                       |                    |          |            |  |
| EP075(SIM): Benzo(k)fluoranthene                             | 207-08-9        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 101                | 74.0     | 126        |  |
| EP075(SIM): Benzo(a)pyrene                                   | 50-32-8         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 102                | 70.0     | 126        |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                           | 193-39-5        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 88.0               | 61.0     | 121        |  |
| EP075(SIM): Dibenz(a.h)anthracene                            | 53-70-3         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 87.6               | 62.0     | 118        |  |
| EP075(SIM): Benzo(g.h.i)perylene                             | 191-24-2        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 81.3               | 63.0     | 121        |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(              | QCLot: 2682755) |     |       |                   |                                       |                    |          |            |  |
| EP075(SIM): Naphthalene                                      | 91-20-3         | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 103                | 77.0     | 125        |  |
| EP075(SIM): Acenaphthylene                                   | 208-96-8        | 0.5 | mg/kg | <0.5              | 6 mg/kg                               | 104                | 72.0     | 124        |  |

| Page       | : 21 of 35    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                           |                      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |        |               |                    |          |            |
|------------------------------------------------------------|----------------------|-------------------|---------------------------------------|--------|---------------|--------------------|----------|------------|
|                                                            |                      |                   |                                       | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                           | CAS Number           | LOR               | Unit                                  | Result | Concentration | LCS                | Low      | High       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (           | QCLot: 2682755) - co | ontinued          |                                       |        |               |                    |          |            |
| EP075(SIM): Acenaphthene                                   | 83-32-9              | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 103                | 73.0     | 127        |
| EP075(SIM): Fluorene                                       | 86-73-7              | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 104                | 72.0     | 126        |
| EP075(SIM): Phenanthrene                                   | 85-01-8              | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 108                | 75.0     | 127        |
| EP075(SIM): Anthracene                                     | 120-12-7             | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 108                | 77.0     | 127        |
| EP075(SIM): Fluoranthene                                   | 206-44-0             | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 106                | 73.0     | 127        |
| EP075(SIM): Pyrene                                         | 129-00-0             | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 105                | 74.0     | 128        |
| EP075(SIM): Benz(a)anthracene                              | 56-55-3              | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 103                | 69.0     | 123        |
| EP075(SIM): Chrysene                                       | 218-01-9             | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 106                | 75.0     | 127        |
| EP075(SIM): Benzo(b+j)fluoranthene                         | 205-99-2             | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 90.0               | 68.0     | 116        |
|                                                            | 205-82-3             |                   |                                       |        |               |                    |          |            |
| EP075(SIM): Benzo(k)fluoranthene                           | 207-08-9             | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 106                | 74.0     | 126        |
| EP075(SIM): Benzo(a)pyrene                                 | 50-32-8              | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 106                | 70.0     | 126        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                         | 193-39-5             | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 92.5               | 61.0     | 121        |
| EP075(SIM): Dibenz(a.h)anthracene                          | 53-70-3              | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 86.6               | 62.0     | 118        |
| EP075(SIM): Benzo(g.h.i)perylene                           | 191-24-2             | 0.5               | mg/kg                                 | <0.5   | 6 mg/kg       | 102                | 63.0     | 121        |
| EP075A: Phenolic Compounds (QCLot: 2690636)                |                      |                   |                                       |        |               |                    |          |            |
| EP075: Phenol                                              | 108-95-2             | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 93.2               | 64.0     | 114        |
| EP075: 2-Chlorophenol                                      | 95-57-8              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 93.0               | 57.0     | 115        |
| EP075: 2-Methylphenol                                      | 95-48-7              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 90.7               | 55.0     | 117        |
| EP075: 3- & 4-Methylphenol                                 | 1319-77-3            | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 89.1               | 46.0     | 122        |
| EP075: 2-Nitrophenol                                       | 88-75-5              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 82.4               | 47.0     | 117        |
| EP075: 2.4-Dimethylphenol                                  | 105-67-9             | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 86.8               | 13.7     | 108        |
| EP075: 2.4-Dichlorophenol                                  | 120-83-2             | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 84.4               | 47.0     | 105        |
| EP075: 2.6-Dichlorophenol                                  | 87-65-0              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 81.4               | 48.0     | 110        |
| EP075: 4-Chloro-3-methylphenol                             | 59-50-7              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 95.1               | 57.0     | 113        |
| EP075: 2.4.6-Trichlorophenol                               | 88-06-2              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 80.8               | 49.0     | 109        |
| EP075: 2.4.5-Trichlorophenol                               | 95-95-4              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 82.3               | 49.0     | 107        |
| EP075: Pentachlorophenol                                   | 87-86-5              | 1                 | mg/kg                                 | <1     | 3 mg/kg       | 18.4               | 12.0     | 76.0       |
| EP075B: Polynuclear Aromatic Hydrocarbons (QCLot: 2690636) |                      |                   |                                       |        |               |                    |          |            |
| EP075: Naphthalene                                         | 91-20-3              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 92.5               | 62.0     | 118        |
| EP075: 2-Methylnaphthalene                                 | 91-57-6              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 92.9               | 58.0     | 116        |
| EP075: 2-Chloronaphthalene                                 | 91-58-7              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 92.0               | 54.0     | 112        |
| EP075: Acenaphthylene                                      | 208-96-8             | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 96.8               | 56.0     | 114        |
| EP075: Acenaphthene                                        | 83-32-9              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.9               | 62.0     | 112        |
| EP075: Fluorene                                            | 86-73-7              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 96.9               | 59.0     | 115        |
| EP075: Phenanthrene                                        | 85-01-8              | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 89.1               | 63.0     | 113        |
| EP075: Anthracene                                          | 120-12-7             | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.8               | 57.0     | 111        |
| EP075: Fluoranthene                                        | 206-44-0             | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 92.8               | 58.0     | 114        |
| EP075: Pyrene                                              | 129-00-0             | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.9               | 57.0     | 117        |

| Page       | : 22 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                 |                        |     | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                             |      |              |  |
|--------------------------------------------------|------------------------|-----|-------------------|---------------------------------------|---------------|-----------------------------|------|--------------|--|
|                                                  |                        |     |                   | Report                                | Spike         | Spike Recovery (%) Recovery |      | ∉ Limits (%) |  |
| Method: Compound                                 | CAS Number             | LOR | Unit              | Result                                | Concentration | LCS                         | Low  | High         |  |
| EP075B: Polynuclear Aromatic Hydrocarbons (QCLo  | ot: 2690636) - continu | led |                   |                                       |               |                             |      |              |  |
| EP075: N-2-Fluorenyl Acetamide                   | 53-96-3                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 81.2                        | 58.0 | 114          |  |
| EP075: Benz(a)anthracene                         | 56-55-3                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 92.4                        | 59.0 | 115          |  |
| EP075: Chrysene                                  | 218-01-9               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 97.9                        | 61.0 | 117          |  |
| EP075: Benzo(b+j) & Benzo(k)fluoranthene         | 205-99-2               | 1   | mg/kg             | <1                                    | 3 mg/kg       | 79.0                        | 57.0 | 119          |  |
| EP075: 7 12-Dimethylbenz(a)anthracene            | 57-97-6                | 0.5 | ma/ka             | <0.5                                  | 1.5 ma/ka     | 81.8                        | 48.1 | 106          |  |
| EP075: Benzo(a)pyrene                            | 50-32-8                | 0.5 | ma/ka             | <0.5                                  | 1.5 mg/kg     | 75.6                        | 56.0 | 116          |  |
| EP075: 3-Methylcholanthrene                      | 56-49-5                | 0.5 | ma/ka             | <0.5                                  | 1.5 mg/kg     | 62.4                        | 50.0 | 116          |  |
| EP075: Indeno(1.2.3.cd)pyrene                    | 193-39-5               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 68.7                        | 55.0 | 117          |  |
| EP075: Dibenz(a,h)anthracene                     | 53-70-3                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 69.9                        | 53.0 | 119          |  |
| EP075: Benzo(g.h.i)pervlene                      | 191-24-2               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 69.1                        | 56.0 | 120          |  |
| EP075C: Phthalate Esters (QCLot: 2690636)        |                        |     |                   |                                       |               |                             |      |              |  |
| EP075: Dimethyl phthalate                        | 131-11-3               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 99.4                        | 60.0 | 118          |  |
| EP075: Diethyl phthalate                         | 84-66-2                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 96.0                        | 65.0 | 115          |  |
| EP075: Di-n-butyl phthalate                      | 84-74-2                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 93.4                        | 65.0 | 121          |  |
| EP075: Butyl benzyl phthalate                    | 85-68-7                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 93.8                        | 62.0 | 116          |  |
| EP075: bis(2-ethylhexyl) phthalate               | 117-81-7               |     | mg/kg             |                                       | 1.5 mg/kg     | 83.9                        | 69.0 | 133          |  |
| EP075: Di-n-octylphthalate                       | 117-84-0               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 80.7                        | 62.0 | 124          |  |
| EP075D: Nitrosamines (QCLot: 2690636)            |                        |     |                   |                                       |               |                             |      |              |  |
| EP075: N-Nitrosomethylethylamine                 | 10595-95-6             | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 106                         | 39.4 | 124          |  |
| EP075: N-Nitrosodiethylamine                     | 55-18-5                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 90.9                        | 59.0 | 117          |  |
| EP075: N-Nitrosopyrrolidine                      | 930-55-2               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 94.5                        | 53.0 | 125          |  |
| EP075: N-Nitrosomorpholine                       | 59-89-2                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 95.0                        | 65.0 | 121          |  |
| EP075: N-Nitrosodi-n-propylamine                 | 621-64-7               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 97.1                        | 59.0 | 123          |  |
| EP075: N-Nitrosopiperidine                       | 100-75-4               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 89.8                        | 57.0 | 115          |  |
| EP075: N-Nitrosodibutylamine                     | 924-16-3               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 88.5                        | 57.0 | 119          |  |
| EP075: N-Nitrosodiphenyl & Diphenylamine         | 86-30-6<br>122-39-4    | 0.5 | mg/kg             | <0.6                                  | 3 mg/kg       | 95.4                        | 42.0 | 112          |  |
| EP075: Methapyrilene                             | 91-80-5                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 66.5                        | 16.3 | 123          |  |
| EP075E: Nitroaromatics and Ketones (QCLot: 26906 | 36)                    |     |                   |                                       |               |                             |      |              |  |
| EP075: 2-Picoline                                | 109-06-8               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 106                         | 27.3 | 129          |  |
| EP075: Acetophenone                              | 98-86-2                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 94.3                        | 60.0 | 116          |  |
| EP075: Nitrobenzene                              | 98-95-3                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 89.9                        | 65.0 | 119          |  |
| EP075: Isophorone                                | 78-59-1                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 87.5                        | 62.0 | 116          |  |
| EP075: 2.6-Dinitrotoluene                        | 606-20-2               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 96.6                        | 58.0 | 118          |  |
| EP075: 2.4-Dinitrotoluene                        | 121-14-2               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 93.4                        | 59.0 | 115          |  |
| EP075: 1-Naphthylamine                           | 134-32-7               | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 33.2                        | 18.0 | 112          |  |
| EP075: 4-Nitroquinoline-N-oxide                  | 56-57-5                | 0.5 | mg/kg             | <0.5                                  | 1.5 mg/kg     | 65.0                        | 10.0 | 87.0         |  |

| Page       | : 23 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                                |            | Method Blank (MB) | Laboratory Control Spike (LCS) Report |        |               |                             |      |            |
|-----------------------------------------------------------------|------------|-------------------|---------------------------------------|--------|---------------|-----------------------------|------|------------|
|                                                                 |            |                   |                                       | Report | Spike         | Spike Recovery (%) Recovery |      | Limits (%) |
| Method: Compound                                                | CAS Number | LOR               | Unit                                  | Result | Concentration | LCS                         | Low  | High       |
| EP075E: Nitroaromatics and Ketones (QCLot: 2690636) - continued |            |                   |                                       |        |               |                             |      |            |
| EP075: 5-Nitro-o-toluidine                                      | 99-55-8    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 93.1                        | 48.3 | 98.5       |
| EP075: Azobenzene                                               | 103-33-3   | 1                 | mg/kg                                 | <1     | 1.5 mg/kg     | 94.0                        | 62.0 | 118        |
| EP075: 1.3.5-Trinitrobenzene                                    | 99-35-4    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 63.6                        | 36.0 | 114        |
| EP075: Phenacetin                                               | 62-44-2    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.0                        | 62.0 | 114        |
| EP075: 4-Aminobiphenyl                                          | 92-67-1    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 82.3                        | 36.1 | 102        |
| EP075: Pentachloronitrobenzene                                  | 82-68-8    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 93.4                        | 56.0 | 110        |
| EP075: Pronamide                                                | 23950-58-5 | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 87.2                        | 54.0 | 110        |
| EP075: Dimethylaminoazobenzene                                  | 60-11-7    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 86.8                        | 48.0 | 108        |
| EP075: Chlorobenzilate                                          | 510-15-6   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 87.7                        | 57.4 | 112        |
| EP075F: Haloethers (QCLot: 2690636)                             |            |                   |                                       |        |               |                             |      |            |
| EP075: Bis(2-chloroethyl) ether                                 | 111-44-4   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 75.2                        | 63.0 | 121        |
| EP075: Bis(2-chloroethoxy) methane                              | 111-91-1   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 87.6                        | 59.0 | 115        |
| EP075: 4-Chlorophenyl phenyl ether                              | 7005-72-3  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 96.1                        | 58.0 | 112        |
| EP075: 4-Bromophenyl phenyl ether                               | 101-55-3   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 98.1                        | 58.0 | 110        |
| EP075G: Chlorinated Hydrocarbons (QCLot: 2690636)               |            |                   |                                       |        |               |                             |      |            |
| EP075: 1.3-Dichlorobenzene                                      | 541-73-1   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 91.3                        | 58.0 | 112        |
| EP075: 1.4-Dichlorobenzene                                      | 106-46-7   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.5                        | 58.0 | 116        |
| EP075: 1.2-Dichlorobenzene                                      | 95-50-1    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.4                        | 57.0 | 115        |
| EP075: Hexachloroethane                                         | 67-72-1    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 91.3                        | 54.0 | 116        |
| EP075: 1.2.4-Trichlorobenzene                                   | 120-82-1   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 92.9                        | 62.9 | 108        |
| EP075: Hexachloropropylene                                      | 1888-71-7  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 72.2                        | 39.1 | 110        |
| EP075: Hexachlorobutadiene                                      | 87-68-3    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.7                        | 59.0 | 117        |
| EP075: Hexachlorocyclopentadiene                                | 77-47-4    | 2.5               | mg/kg                                 | <2.5   | 1.5 mg/kg     | 35.9                        | 24.3 | 108        |
| EP075: Pentachlorobenzene                                       | 608-93-5   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 91.0                        | 57.0 | 109        |
| EP075: Hexachlorobenzene (HCB)                                  | 118-74-1   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.3                        | 59.0 | 111        |
| EP075H: Anilines and Benzidines (QCLot: 2690636)                |            |                   |                                       |        |               |                             |      |            |
| EP075: Aniline                                                  | 62-53-3    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 82.8                        | 13.2 | 108        |
| EP075: 4-Chloroaniline                                          | 106-47-8   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 40.9                        | 20.5 | 99.0       |
| EP075: 2-Nitroaniline                                           | 88-74-4    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 95.8                        | 52.0 | 112        |
| EP075: 3-Nitroaniline                                           | 99-09-2    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 78.5                        | 31.5 | 93.7       |
| EP075: Dibenzofuran                                             | 132-64-9   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 94.6                        | 60.0 | 110        |
| EP075: 4-Nitroaniline                                           | 100-01-6   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 84.6                        | 42.0 | 112        |
| EP075: Carbazole                                                | 86-74-8    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 90.7                        | 59.0 | 111        |
| EP075: 3.3'-Dichlorobenzidine                                   | 91-94-1    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 71.9                        | 23.1 | 113        |
| EP075I: Organochlorine Pesticides (QCLot: 2690636)              |            |                   |                                       |        |               |                             |      |            |
| EP075: alpha-BHC                                                | 319-84-6   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 96.3                        | 63.0 | 113        |
| EP075: beta-BHC                                                 | 319-85-7   | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 91.6                        | 57.0 | 113        |
| EP075: gamma-BHC                                                | 58-89-9    | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg     | 84.3                        | 61.0 | 117        |

| Page       | : 24 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                              |                          | Method Blank (MB) | Laboratory Control Spike (LCS) Report |        |                    |          |            |      |
|-----------------------------------------------|--------------------------|-------------------|---------------------------------------|--------|--------------------|----------|------------|------|
|                                               | Report                   |                   | Report                                | Spike  | Spike Recovery (%) | Recovery | _imits (%) |      |
| Method: Compound                              | CAS Number               | LOR               | Unit                                  | Result | Concentration      | LCS      | Low        | High |
| EP075I: Organochlorine Pesticides (QCLot: 269 | 90636) - continued       |                   |                                       |        |                    |          |            |      |
| EP075: delta-BHC                              | 319-86-8                 | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 87.5     | 64.0       | 118  |
| EP075: Heptachlor                             | 76-44-8                  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 83.3     | 55.0       | 115  |
| EP075: Aldrin                                 | 309-00-2                 | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 89.2     | 61.0       | 115  |
| EP075: Heptachlor epoxide                     | 1024-57-3                | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 81.9     | 56.0       | 118  |
| EP075: alpha-Endosulfan                       | 959-98-8                 | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 90.7     | 65.0       | 125  |
| EP075: 4.4`-DDE                               | 72-55-9                  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 96.1     | 60.0       | 116  |
| EP075: Dieldrin                               | 60-57-1                  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 90.6     | 64.0       | 118  |
| EP075: Endrin                                 | 72-20-8                  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 85.9     | 53.0       | 117  |
| EP075: beta-Endosulfan                        | 33213-65-9               | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 95.7     | 65.0       | 115  |
| EP075: 4.4`-DDD                               | 72-54-8                  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 104      | 62.0       | 118  |
| EP075: Endosulfan sulfate                     | 1031-07-8                | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 97.4     | 63.0       | 129  |
| EP075: 4.4`-DDT                               | 50-29-3                  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 64.4     | 46.0       | 122  |
| EP075: Sum of DDD + DDE + DDT                 | 72-54-8/72-5             | 0.5               | mg/kg                                 | <0.5   |                    |          |            |      |
| ED075: Sum of Aldrin + Dioldrin               | 200 00 2/60              | 0.5               | ma/ka                                 | <0.5   |                    |          |            |      |
|                                               | 57-1                     | 0.0               | ing/kg                                | -0.0   |                    |          |            |      |
| EP075J: Organophosphorus Pesticides (QCLot    | t: 2690636)              |                   |                                       |        |                    |          |            |      |
| EP075: Dichlorvos                             | 62-73-7                  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 83.0     | 46.0       | 112  |
| EP075: Dimethoate                             | 60-51-5                  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 92.4     | 63.0       | 119  |
| EP075: Diazinon                               | 333-41-5                 | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 98.2     | 68.0       | 134  |
| EP075: Chlorpyrifos-methyl                    | 5598-13-0                | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 93.6     | 60.0       | 130  |
| EP075: Malathion                              | 121-75-5                 | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 105      | 65.0       | 127  |
| EP075: Fenthion                               | 55-38-9                  | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 95.4     | 60.0       | 116  |
| EP075: Chlorpyrifos                           | 2921-88-2                | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 88.2     | 63.0       | 113  |
| EP075: Pirimphos-ethyl                        | 23505-41-1               | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 92.1     | 65.0       | 115  |
| EP075: Chlorfenvinphos                        | 470-90-6                 | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 85.1     | 59.0       | 103  |
| EP075: Prothiofos                             | 34643-46-4               | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 91.6     | 59.0       | 119  |
| EP075: Ethion                                 | 563-12-2                 | 0.5               | mg/kg                                 | <0.5   | 1.5 mg/kg          | 97.3     | 62.0       | 118  |
| EP080/071: Total Petroleum Hydrocarbons (QC   | Lot: 2684261)            |                   |                                       |        |                    |          |            |      |
| EP080: C6 - C9 Fraction                       |                          | 10                | mg/kg                                 | <10    | 26 mg/kg           | 74.2     | 68.4       | 128  |
| EP080/071: Total Petroleum Hydrocarbons (QC   | Lot: 2687451)            |                   |                                       |        |                    |          |            |      |
| EP080: C6 - C9 Fraction                       |                          | 10                | mg/kg                                 | <10    | 26 mg/kg           | 86.8     | 68.4       | 128  |
| EP080/071: Total Recoverable Hydrocarbons - N | NEPM 2013 Fractions (QCL | .ot: 2684261)     |                                       |        |                    |          |            |      |
| EP080: C6 - C10 Fraction                      | C6_C10                   | 10                | mg/kg                                 | <10    | 31 mg/kg           | 74.1     | 68.4       | 128  |
| EP080/071: Total Recoverable Hydrocarbons - N | NEPM 2013 Fractions (QCL | .ot: 2687451)     |                                       |        |                    |          |            |      |
| EP080: C6 - C10 Fraction                      | C6_C10                   | 10                | mg/kg                                 | <10    | 31 mg/kg           | 86.0     | 68.4       | 128  |
| EP080: BTEXN (QCLot: 2684261)                 |                          |                   |                                       |        |                    |          |            |      |
| EP080: Benzene                                | 71-43-2                  | 0.2               | mg/kg                                 | <0.2   | 1 mg/kg            | 97.0     | 62.0       | 116  |

| Page       | : 25 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL Method                          |                       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |               |            |      |      |  |
|--------------------------------------------------|-----------------------|-------------------|---------------------------------------|--------------------|---------------|------------|------|------|--|
|                                                  |                       | Report            | Spike                                 | Spike Recovery (%) | Recovery      | Limits (%) |      |      |  |
| Method: Compound                                 | CAS Number            | LOR               | Unit                                  | Result             | Concentration | LCS        | Low  | High |  |
| EP080: BTEXN (QCLot: 2684261) - continued        |                       |                   |                                       |                    |               |            |      |      |  |
| EP080: Toluene                                   | 108-88-3              | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 93.1       | 67.0 | 121  |  |
| EP080: Ethylbenzene                              | 100-41-4              | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 92.2       | 65.0 | 117  |  |
| EP080: meta- & para-Xylene                       | 108-38-3              | 0.5               | mg/kg                                 | <0.5               | 2 mg/kg       | 91.7       | 66.0 | 118  |  |
|                                                  | 106-42-3              |                   |                                       |                    |               |            |      |      |  |
| EP080: ortho-Xylene                              | 95-47-6               | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 95.5       | 68.0 | 120  |  |
| EP080: Naphthalene                               | 91-20-3               | 1                 | mg/kg                                 | <1                 | 1 mg/kg       | 99.6       | 63.0 | 119  |  |
| EP080: BTEXN (QCLot: 2687451)                    |                       |                   |                                       |                    |               |            |      |      |  |
| EP080: Benzene                                   | 71-43-2               | 0.2               | mg/kg                                 | <0.2               | 1 mg/kg       | 92.4       | 62.0 | 116  |  |
| EP080: Toluene                                   | 108-88-3              | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 87.1       | 67.0 | 121  |  |
| EP080: Ethylbenzene                              | 100-41-4              | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 83.4       | 65.0 | 117  |  |
| EP080: meta- & para-Xylene                       | 108-38-3              | 0.5               | mg/kg                                 | <0.5               | 2 mg/kg       | 82.4       | 66.0 | 118  |  |
|                                                  | 106-42-3              |                   |                                       |                    |               |            |      |      |  |
| EP080: ortho-Xylene                              | 95-47-6               | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 90.7       | 68.0 | 120  |  |
| EP080: Naphthalene                               | 91-20-3               | 1                 | mg/kg                                 | <1                 | 1 mg/kg       | 82.0       | 63.0 | 119  |  |
| EP080-SD / EP071-SD: Total Petroleum Hydrocarbo  | ns (QCLot: 2685373)   |                   |                                       |                    |               |            |      |      |  |
| EP071-SD: C10 - C14 Fraction                     |                       | 3                 | mg/kg                                 | <3                 | 5 mg/kg       | 90.0       | 78.0 | 118  |  |
| EP071-SD: C15 - C28 Fraction                     |                       | 3                 | mg/kg                                 | <3                 | 7.5 mg/kg     | 94.6       | 84.0 | 118  |  |
| EP071-SD: C29 - C36 Fraction                     |                       | 5                 | mg/kg                                 | <5                 | 5 mg/kg       | 99.8       | 73.0 | 119  |  |
| EP071-SD: C10 - C36 Fraction (sum)               |                       | 3                 | mg/kg                                 | <3                 |               |            |      |      |  |
| EP080-SD / EP071-SD: Total Petroleum Hydrocarbo  | ns (QCLot: 2687455)   |                   |                                       |                    |               |            |      |      |  |
| EP080-SD: C6 - C9 Fraction                       |                       | 3                 | mg/kg                                 | <3                 | 6.2 mg/kg     | 73.8       | 61.0 | 133  |  |
| EP080-SD / EP071-SD: Total Recoverable Hydrocart | oons (QCLot: 2685373) |                   |                                       |                    |               |            |      |      |  |
| EP071-SD: >C10 - C16 Fraction                    |                       | 3                 | mg/kg                                 | <3                 | 6.25 mg/kg    | 98.8       | 70.0 | 130  |  |
| EP071-SD: >C16 - C34 Fraction                    |                       | 3                 | mg/kg                                 | <3                 | 8.75 mg/kg    | 98.1       | 74.0 | 138  |  |
| EP071-SD: >C34 - C40 Fraction                    |                       | 5                 | mg/kg                                 | <5                 | 3.75 mg/kg    | 76.5       | 63.0 | 131  |  |
| EP071-SD: >C10 - C40 Fraction (sum)              |                       | 3                 | mg/kg                                 | <3                 |               |            |      |      |  |
| EP080-SD: BTEXN (QCLot: 2687455)                 |                       |                   |                                       |                    |               |            |      |      |  |
| EP080-SD: Benzene                                | 71-43-2               | 0.2               | mg/kg                                 | <0.2               | 0.2 mg/kg     | 99.6       | 66.0 | 122  |  |
| EP080-SD: Toluene                                | 108-88-3              | 0.2               | mg/kg                                 | <0.2               | 0.2 mg/kg     | 95.8       | 70.0 | 130  |  |
| EP080-SD: Ethylbenzene                           | 100-41-4              | 0.2               | mg/kg                                 | <0.2               | 0.2 mg/kg     | 96.6       | 66.0 | 126  |  |
| EP080-SD: meta- & para-Xylene                    | 108-38-3              | 0.2               | mg/kg                                 | <0.2               | 0.4 mg/kg     | 98.3       | 59.0 | 129  |  |
|                                                  | 106-42-3              |                   |                                       |                    |               |            |      |      |  |
| EP080-SD: ortho-Xylene                           | 95-47-6               | 0.2               | mg/kg                                 | <0.2               | 0.2 mg/kg     | 96.1       | 66.0 | 126  |  |
| EP090: Organotin Compounds (QCLot: 2689830)      |                       |                   |                                       |                    |               |            |      |      |  |
| EP090: Tributyltin                               | 56573-85-4            | 0.5               | µgSn/kg                               | <0.5               | 1.25 µgSn/kg  | 89.4       | 52.0 | 139  |  |
| EP090: Organotin Compounds (QCLot: 2698344)      |                       |                   |                                       |                    |               |            |      |      |  |
| EP090: Tributyltin                               | 56573-85-4            | 0.5               | µgSn/kg                               | <0.5               | 1.25 µgSn/kg  | 135        | 52.0 | 139  |  |
| EP130A: Organophosphorus Pesticides (Ultra-trace | ) (QCLot: 2685368)    |                   |                                       |                    |               |            |      |      |  |

| Page       | : 26 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                |                       |           |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |            |            |
|-------------------------------------------------|-----------------------|-----------|-------|-------------------|---------------------------------------|--------------------|------------|------------|
|                                                 |                       |           |       | Report            | Spike                                 | Spike Recovery (%) | Recovery I | Limits (%) |
| Method: Compound                                | CAS Number            | LOR       | Unit  | Result            | Concentration                         | LCS                | Low        | High       |
| EP130A: Organophosphorus Pesticides (Ultra-trac | e) (QCLot: 2685368) - | continued |       |                   |                                       |                    |            |            |
| EP130: Bromophos-ethyl                          | 4824-78-6             | 10        | µg/kg | <10               | 50 µg/kg                              | 82.6               | 49.0       | 117        |
| EP130: Carbophenothion                          | 786-19-6              | 10        | µg/kg | <10               | 50 µg/kg                              | 79.3               | 54.0       | 104        |
| EP130: Chlorfenvinphos (E)                      | 18708-86-6            | 10        | µg/kg | <10.0             | 5 µg/kg                               | 78.1               | 48.0       | 156        |
| EP130: Chlorfenvinphos (Z)                      | 18708-87-7            | 10        | µg/kg | <10               | 50 µg/kg                              | 84.7               | 53.0       | 119        |
| EP130: Chlorpyrifos                             | 2921-88-2             | 10        | µg/kg | <10               | 50 µg/kg                              | 92.8               | 54.0       | 112        |
| EP130: Chlorpyrifos-methyl                      | 5598-13-0             | 10        | µg/kg | <10               | 50 µg/kg                              | 97.2               | 52.0       | 108        |
| EP130: Demeton-S-methyl                         | 919-86-8              | 10        | µg/kg | <10               | 50 µg/kg                              | 88.3               | 51.0       | 109        |
| EP130: Diazinon                                 | 333-41-5              | 10        | µg/kg | <10               | 50 µg/kg                              | 95.8               | 57.0       | 121        |
| EP130: Dichlorvos                               | 62-73-7               | 10        | µg/kg | <10               | 50 µg/kg                              | 80.8               | 48.0       | 104        |
| EP130: Dimethoate                               | 60-51-5               | 10        | µg/kg | <10               | 50 µg/kg                              | 90.0               | 52.0       | 120        |
| EP130: Ethion                                   | 563-12-2              | 10        | µg/kg | <10               | 50 µg/kg                              | 92.9               | 51.0       | 121        |
| EP130: Fenamiphos                               | 22224-92-6            | 10        | µg/kg | <10               | 50 µg/kg                              | 89.1               | 50.0       | 120        |
| EP130: Fenthion                                 | 55-38-9               | 10        | µg/kg | <10               | 50 µg/kg                              | 97.4               | 48.0       | 112        |
| EP130: Malathion                                | 121-75-5              | 10        | µg/kg | <10               | 50 µg/kg                              | 86.8               | 51.0       | 121        |
| EP130: Azinphos Methyl                          | 86-50-0               | 10        | µg/kg | <10               | 50 µg/kg                              | 94.6               | 45.0       | 127        |
| EP130: Monocrotophos                            | 6923-22-4             | 10        | µg/kg | <10               | 50 µg/kg                              | 84.2               | 48.0       | 128        |
| EP130: Parathion                                | 56-38-2               | 10        | µg/kg | <10               | 50 µg/kg                              | 95.6               | 49.0       | 125        |
| EP130: Parathion-methyl                         | 298-00-0              | 10        | µg/kg | <10               | 50 µg/kg                              | 98.8               | 51.0       | 119        |
| EP130: Pirimphos-ethyl                          | 23505-41-1            | 10        | µg/kg | <10               | 50 µg/kg                              | 81.7               | 48.0       | 120        |
| EP130: Prothiofos                               | 34643-46-4            | 10        | µg/kg | <10               | 50 µg/kg                              | 90.7               | 51.0       | 117        |
| EP131A: Organochlorine Pesticides (QCLot: 2685  | 370)                  |           |       |                   |                                       |                    |            |            |
| EP131A: Aldrin                                  | 309-00-2              | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 78.1               | 38.0       | 139        |
| EP131A: alpha-BHC                               | 319-84-6              | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 78.4               | 17.6       | 136        |
| EP131A: beta-BHC                                | 319-85-7              | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 91.2               | 30.5       | 131        |
| EP131A: delta-BHC                               | 319-86-8              | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 59.0               | 37.0       | 140        |
| EP131A: 4.4`-DDD                                | 72-54-8               | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 73.9               | 25.9       | 141        |
| EP131A: 4.4`-DDE                                | 72-55-9               | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 74.5               | 35.0       | 129        |
| EP131A: 4.4`-DDT                                | 50-29-3               | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 68.3               | 23.4       | 138        |
| EP131A: Sum of DDD + DDE + DDT                  | 72-54-8/72-5          | 0.5       | µg/kg | <0.50             |                                       |                    |            |            |
|                                                 | 5-9/50-2              |           |       |                   |                                       |                    |            |            |
| EP131A: Dieldrin                                | 60-57-1               | 0.5       | µg/kg | <0.50             | 5 μg/kg                               | 88.9               | 30.2       | 140        |
| EP131A: alpha-Endosulfan                        | 959-98-8              | 0.5       | µg/kg | <0.50             | 5 μg/kg                               | 74.7               | 38.0       | 140        |
| EP131A: beta-Endosulfan                         | 33213-65-9            | 0.5       | µg/kg | <0.50             | 5 μg/kg                               | 92.5               | 32.0       | 152        |
| EP131A: Endosulfan sulfate                      | 1031-07-8             | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 67.0               | 36.0       | 155        |
| EP131A: Endosulfan (sum)                        | 115-29-7              | 0.5       | µg/kg | <0.50             |                                       |                    |            |            |
| EP131A: Endrin                                  | 72-20-8               | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 118                | 25.8       | 158        |
| EP131A: Endrin aldehyde                         | 7421-93-4             | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 78.2               | 20.1       | 118        |
| EP131A: Endrin ketone                           | 53494-70-5            | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 67.1               | 13.4       | 135        |
| EP131A: Heptachlor                              | 76-44-8               | 0.5       | µg/kg | <0.50             | 5 µg/kg                               | 62.9               | 39.0       | 155        |

| Page       | : 27 of 35   |
|------------|--------------|
| Work Order | : ES1936183  |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Sub-Matrix: SOIL                                |                    |      |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |
|-------------------------------------------------|--------------------|------|-------|-------------------|---------------------------------------|--------------------|----------|------------|
|                                                 |                    |      |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                | CAS Number         | LOR  | Unit  | Result            | Concentration                         | LCS                | Low      | High       |
| EP131A: Organochlorine Pesticides (QCLot: 268   | 5370) - continued  |      |       |                   |                                       |                    |          |            |
| EP131A: Heptachlor epoxide                      | 1024-57-3          | 0.5  | μg/kg | <0.50             | 5 µg/kg                               | 90.6               | 34.0     | 148        |
| EP131A: Hexachlorobenzene (HCB)                 | 118-74-1           | 0.5  | μg/kg | <0.50             | 5 µg/kg                               | 85.9               | 26.1     | 152        |
| EP131A: gamma-BHC                               | 58-89-9            | 0.25 | μg/kg | <0.25             | 5 µg/kg                               | 78.5               | 31.2     | 137        |
| EP131A: Methoxychlor                            | 72-43-5            | 0.5  | µg/kg | <0.50             | 5 µg/kg                               | 54.3               | 36.0     | 152        |
| EP131A: cis-Chlordane                           | 5103-71-9          | 0.25 | μg/kg | <0.25             | 5 µg/kg                               | 76.2               | 36.0     | 142        |
| EP131A: trans-Chlordane                         | 5103-74-2          | 0.25 | μg/kg | <0.25             | 5 µg/kg                               | 82.4               | 29.5     | 138        |
| EP131A: Total Chlordane (sum)                   |                    | 0.25 | µg/kg | <0.25             |                                       |                    |          |            |
| EP131B: Polychlorinated Biphenyls (as Aroclors) | ) (QCLot: 2685369) |      |       |                   |                                       |                    |          |            |
| EP131B: Total Polychlorinated biphenyls         |                    | 5    | μg/kg | <5.0              | 50 µg/kg                              | 64.1               | 45.0     | 115        |
| EP131B: Aroclor 1016                            | 12674-11-2         | 5    | μg/kg | <5.0              |                                       |                    |          |            |
| EP131B: Aroclor 1221                            | 11104-28-2         | 5    | µg/kg | <5.0              |                                       |                    |          |            |
| EP131B: Aroclor 1232                            | 11141-16-5         | 5    | µg/kg | <5.0              |                                       |                    |          |            |
| EP131B: Aroclor 1242                            | 53469-21-9         | 5    | μg/kg | <5.0              |                                       |                    |          |            |
| EP131B: Aroclor 1248                            | 12672-29-6         | 5    | μg/kg | <5.0              |                                       |                    |          |            |
| EP131B: Aroclor 1254                            | 11097-69-1         | 5    | µg/kg | <5.0              | 50 µg/kg                              | 64.1               | 45.0     | 115        |
| EP131B: Aroclor 1260                            | 11096-82-5         | 5    | µg/kg | <5.0              |                                       |                    |          |            |
| EP132B: Polynuclear Aromatic Hydrocarbons(Q     | CLot: 2685372)     |      |       |                   |                                       |                    |          |            |
| EP132B-SD: Naphthalene                          | 91-20-3            | 5    | µg/kg | <5                | 25 µg/kg                              | 92.9               | 63.0     | 129        |
| EP132B-SD: 2-Methylnaphthalene                  | 91-57-6            | 5    | μg/kg | <5                | 25 µg/kg                              | 80.8               | 64.0     | 128        |
| EP132B-SD: Acenaphthylene                       | 208-96-8           | 4    | μg/kg | <4                | 25 µg/kg                              | 81.5               | 65.0     | 129        |
| EP132B-SD: Acenaphthene                         | 83-32-9            | 4    | μg/kg | <4                | 25 µg/kg                              | 84.4               | 68.0     | 132        |
| EP132B-SD: Fluorene                             | 86-73-7            | 4    | µg/kg | <4                | 25 µg/kg                              | 86.4               | 68.0     | 124        |
| EP132B-SD: Phenanthrene                         | 85-01-8            | 4    | µg/kg | <4                | 25 µg/kg                              | 80.1               | 64.0     | 134        |
| EP132B-SD: Anthracene                           | 120-12-7           | 4    | µg/kg | <4                | 25 µg/kg                              | 84.0               | 65.0     | 131        |
| EP132B-SD: Fluoranthene                         | 206-44-0           | 4    | µg/kg | <4                | 25 µg/kg                              | 80.0               | 64.0     | 130        |
| EP132B-SD: Pyrene                               | 129-00-0           | 4    | μg/kg | <4                | 25 µg/kg                              | 88.3               | 67.0     | 133        |
| EP132B-SD: Benz(a)anthracene                    | 56-55-3            | 4    | μg/kg | <4                | 25 µg/kg                              | 78.4               | 62.0     | 130        |
| EP132B-SD: Chrysene                             | 218-01-9           | 4    | μg/kg | <4                | 25 µg/kg                              | 80.6               | 65.0     | 133        |
| EP132B-SD: Benzo(b+j)fluoranthene               | 205-99-2           | 4    | μg/kg | <4                | 25 µg/kg                              | 96.3               | 68.0     | 120        |
|                                                 | 205-82-3           |      |       |                   |                                       |                    | 1        | 1          |
| EP132B-SD: Benzo(k)fluoranthene                 | 207-08-9           | 4    | µg/kg | <4                | 25 µg/kg                              | 89.7               | 61.0     | 133        |
| EP132B-SD: Benzo(e)pyrene                       | 192-97-2           | 4    | µg/kg | <4                | 25 µg/kg                              | 96.1               | 63.0     | 127        |
| EP132B-SD: Benzo(a)pyrene                       | 50-32-8            | 4    | µg/kg | <4                | 25 µg/kg                              | 91.6               | 66.0     | 118        |
| EP132B-SD: Perylene                             | 198-55-0           | 4    | µg/kg | <4                | 25 µg/kg                              | 93.3               | 69.0     | 119        |
| EP132B-SD: Benzo(g.h.i)perylene                 | 191-24-2           | 4    | µg/kg | <4                | 25 µg/kg                              | 94.8               | 66.0     | 120        |
| EP132B-SD: Dibenz(a.h)anthracene                | 53-70-3            | 4    | µg/kg | <4                | 25 µg/kg                              | 93.2               | 64.0     | 122        |
| EP132B-SD: Indeno(1.2.3.cd)pyrene               | 193-39-5           | 4    | µg/kg | <4                | 25 µg/kg                              | 93.7               | 64.0     | 120        |
| EP132B-SD: Coronene                             | 191-07-1           | 5    | µg/kg | <5                | 25 µg/kg                              | 112                | 68.0     | 136        |
| EP132B-SD: Sum of PAHs                          |                    | 4    | µg/kg | <4                |                                       |                    |          |            |

| Page       | : 28 of 35   |
|------------|--------------|
| Work Order | ES1936183    |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Sub-Matrix: WATER                               |                       |               |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |
|-------------------------------------------------|-----------------------|---------------|------|-------------------|---------------------------------------|--------------------|----------|------------|
|                                                 |                       |               |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                | CAS Number            | LOR           | Unit | Result            | Concentration                         | LCS                | Low      | High       |
| EG020T: Total Metals by ICP-MS (QCLot: 2682925) |                       |               |      |                   |                                       |                    |          |            |
| EG020A-T: Arsenic                               | 7440-38-2             | 0.001         | mg/L | <0.001            | 0.1 mg/L                              | 99.1               | 82.0     | 114        |
| EG020A-T: Cadmium                               | 7440-43-9             | 0.0001        | mg/L | <0.0001           | 0.1 mg/L                              | 98.8               | 84.0     | 112        |
| EG020A-T: Chromium                              | 7440-47-3             | 0.001         | mg/L | <0.001            | 0.1 mg/L                              | 97.8               | 86.0     | 116        |
| EG020A-T: Copper                                | 7440-50-8             | 0.001         | mg/L | <0.001            | 0.1 mg/L                              | 96.5               | 83.0     | 118        |
| EG020A-T: Lead                                  | 7439-92-1             | 0.001         | mg/L | <0.001            | 0.1 mg/L                              | 91.6               | 85.0     | 115        |
| EG020A-T: Nickel                                | 7440-02-0             | 0.001         | mg/L | <0.001            | 0.1 mg/L                              | 95.6               | 84.0     | 116        |
| EG020A-T: Zinc                                  | 7440-66-6             | 0.005         | mg/L | <0.005            | 0.1 mg/L                              | 95.8               | 79.0     | 117        |
| EG035T: Total Recoverable Mercury by FIMS (QCL  | .ot: 2687534)         |               |      |                   |                                       |                    |          |            |
| EG035T: Mercury                                 | 7439-97-6             | 0.0001        | mg/L | <0.0001           | 0.01 mg/L                             | 97.3               | 77.0     | 111        |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons  | (QCLot: 2681721)      |               |      |                   |                                       |                    |          |            |
| EP075(SIM): Naphthalene                         | 91-20-3               | 1             | μg/L | <1.0              | 5 µg/L                                | 68.4               | 50.0     | 94.0       |
| EP075(SIM): Acenaphthylene                      | 208-96-8              | 1             | μg/L | <1.0              | 5 µg/L                                | 75.1               | 63.6     | 114        |
| EP075(SIM): Acenaphthene                        | 83-32-9               | 1             | μg/L | <1.0              | 5 µg/L                                | 69.1               | 62.2     | 113        |
| EP075(SIM): Fluorene                            | 86-73-7               | 1             | μg/L | <1.0              | 5 µg/L                                | 75.8               | 63.9     | 115        |
| EP075(SIM): Phenanthrene                        | 85-01-8               | 1             | μg/L | <1.0              | 5 µg/L                                | 82.0               | 62.6     | 116        |
| EP075(SIM): Anthracene                          | 120-12-7              | 1             | μg/L | <1.0              | 5 µg/L                                | 76.8               | 64.3     | 116        |
| EP075(SIM): Fluoranthene                        | 206-44-0              | 1             | μg/L | <1.0              | 5 µg/L                                | 97.6               | 63.6     | 118        |
| EP075(SIM): Pyrene                              | 129-00-0              | 1             | μg/L | <1.0              | 5 µg/L                                | 100                | 63.1     | 118        |
| EP075(SIM): Benz(a)anthracene                   | 56-55-3               | 1             | μg/L | <1.0              | 5 µg/L                                | 82.4               | 64.1     | 117        |
| EP075(SIM): Chrysene                            | 218-01-9              | 1             | μg/L | <1.0              | 5 µg/L                                | 82.2               | 62.5     | 116        |
| EP075(SIM): Benzo(b+j)fluoranthene              | 205-99-2              | 1             | µg/L | <1.0              | 5 µg/L                                | 77.7               | 61.7     | 119        |
|                                                 | 205-82-3              |               |      |                   |                                       |                    |          |            |
| EP075(SIM): Benzo(k)fluoranthene                | 207-08-9              | 1             | μg/L | <1.0              | 5 µg/L                                | 74.7               | 63.0     | 115        |
| EP075(SIM): Benzo(a)pyrene                      | 50-32-8               | 0.5           | μg/L | <0.5              | 5 µg/L                                | 95.9               | 63.3     | 117        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene              | 193-39-5              | 1             | μg/L | <1.0              | 5 µg/L                                | 100                | 59.9     | 118        |
| EP075(SIM): Dibenz(a.h)anthracene               | 53-70-3               | 1             | μg/L | <1.0              | 5 µg/L                                | 93.3               | 61.2     | 117        |
| EP075(SIM): Benzo(g.h.i)perylene                | 191-24-2              | 1             | μg/L | <1.0              | 5 µg/L                                | 96.4               | 59.1     | 118        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: | 2681720)              |               |      |                   |                                       |                    |          |            |
| EP071: C10 - C14 Fraction                       |                       | 50            | µg/L | <50               | 2000 µg/L                             | 101                | 55.8     | 112        |
| EP071: C15 - C28 Fraction                       |                       | 100           | µg/L | <100              | 3000 µg/L                             | 91.2               | 71.6     | 113        |
| EP071: C29 - C36 Fraction                       |                       | 50            | µg/L | <50               | 2000 µg/L                             | 96.3               | 56.0     | 121        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: | 2683791)              |               |      |                   |                                       |                    |          |            |
| EP080: C6 - C9 Fraction                         |                       | 20            | μg/L | <20               | 260 µg/L                              | 80.6               | 75.0     | 127        |
| EP080/071: Total Recoverable Hydrocarbons - NEP | M 2013 Fractions (QCL | .ot: 2681720) |      |                   |                                       |                    |          |            |
| EP071: >C10 - C16 Fraction                      |                       | 100           | μg/L | <100              | 2500 μg/L                             | 66.5               | 57.9     | 119        |
| EP071: >C16 - C34 Fraction                      |                       | 100           | µg/L | <100              | 3500 μg/L                             | 95.2               | 62.5     | 110        |
| EP071: >C34 - C40 Fraction                      |                       | 100           | µg/L | <100              | 1500 μg/L                             | 81.7               | 61.5     | 121        |
| EP080/071: Total Recoverable Hydrocarbons - NEP | M 2013 Fractions (QCL | .ot: 2683791) |      |                   |                                       |                    |          |            |

| Page       | : 29 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: WATER                                                                            |            |     |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |  |
|----------------------------------------------------------------------------------------------|------------|-----|------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|--|
|                                                                                              |            |     |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |  |
| Method: Compound                                                                             | CAS Number | LOR | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 2683791) - continued |            |     |      |                   |                                       |                    |          |            |  |  |  |
| EP080: C6 - C10 Fraction                                                                     | C6_C10     | 20  | µg/L | <20               | 310 µg/L                              | 82.6               | 75.0     | 127        |  |  |  |
| EP080: BTEXN (QCLot: 2683791)                                                                |            |     |      |                   |                                       |                    |          |            |  |  |  |
| EP080: Benzene                                                                               | 71-43-2    | 1   | μg/L | <1                | 10 µg/L                               | 93.5               | 70.0     | 122        |  |  |  |
| EP080: Toluene                                                                               | 108-88-3   | 2   | μg/L | <2                | 10 µg/L                               | 95.5               | 69.0     | 123        |  |  |  |
| EP080: Ethylbenzene                                                                          | 100-41-4   | 2   | μg/L | <2                | 10 µg/L                               | 99.2               | 70.0     | 120        |  |  |  |
| EP080: meta- & para-Xylene                                                                   | 108-38-3   | 2   | μg/L | <2                | 10 µg/L                               | 100                | 69.0     | 121        |  |  |  |
|                                                                                              | 106-42-3   |     |      |                   |                                       |                    |          |            |  |  |  |
| EP080: ortho-Xylene                                                                          | 95-47-6    | 2   | μg/L | <2                | 10 µg/L                               | 101                | 72.0     | 122        |  |  |  |
| EP080: Naphthalene                                                                           | 91-20-3    | 5   | µg/L | <5                | 10 µg/L                               | 105                | 70.0     | 120        |  |  |  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL     |                                                      |                             |            |               | Matrix Spike (MS) Report |            |           |  |  |
|----------------------|------------------------------------------------------|-----------------------------|------------|---------------|--------------------------|------------|-----------|--|--|
|                      |                                                      |                             |            | Spike         | SpikeRecovery(%)         | Recovery L | imits (%) |  |  |
| Laboratory sample ID | Client sample ID                                     | Method: Compound            | CAS Number | Concentration | MS                       | Low        | High      |  |  |
| EG005(ED093)T: T     | otal Metals by ICP-AES (QCLot: 2691120)              |                             |            |               |                          |            |           |  |  |
| ES1935800-002        | Anonymous                                            | EG005T: Arsenic             | 7440-38-2  | 50 mg/kg      | 94.3                     | 70.0       | 130       |  |  |
|                      |                                                      | EG005T: Cadmium             | 7440-43-9  | 50 mg/kg      | 101                      | 70.0       | 130       |  |  |
|                      |                                                      | EG005T: Lead                | 7439-92-1  | 250 mg/kg     | 99.1                     | 70.0       | 130       |  |  |
|                      |                                                      | EG005T: Nickel              | 7440-02-0  | 50 mg/kg      | 101                      | 70.0       | 130       |  |  |
| EG035T: Total Red    | coverable Mercury by FIMS (Low Level) (QCLot: 269134 | 2)                          |            |               |                          |            |           |  |  |
| ES1936183-029        | VC12_0.0-0.5                                         | EG035T-LL: Mercury          | 7439-97-6  | 0.05 mg/kg    | 128                      | 70.0       | 130       |  |  |
| EG020-SD: Total M    | etals in Sediments by ICPMS (QCLot: 2691341)         |                             |            |               |                          |            |           |  |  |
| ES1936183-040        | VC08_1.0-1.5                                         | EG020-SD: Arsenic           | 7440-38-2  | 50 mg/kg      | 93.5                     | 70.0       | 130       |  |  |
|                      |                                                      | EG020-SD: Cadmium           | 7440-43-9  | 50 mg/kg      | 90.8                     | 70.0       | 130       |  |  |
|                      |                                                      | EG020-SD: Chromium          | 7440-47-3  | 50 mg/kg      | 92.3                     | 70.0       | 130       |  |  |
|                      |                                                      | EG020-SD: Copper            | 7440-50-8  | 250 mg/kg     | 94.8                     | 70.0       | 130       |  |  |
|                      |                                                      | EG020-SD: Lead              | 7439-92-1  | 250 mg/kg     | 99.3                     | 70.0       | 130       |  |  |
|                      |                                                      | EG020-SD: Nickel            | 7440-02-0  | 50 mg/kg      | 90.1                     | 70.0       | 130       |  |  |
|                      |                                                      | EG020-SD: Zinc              | 7440-66-6  | 250 mg/kg     | 91.8                     | 70.0       | 130       |  |  |
| EG035T: Total Red    | coverable Mercury by FIMS (QCLot: 2691119)           |                             |            |               |                          |            |           |  |  |
| ES1935800-002        | Anonymous                                            | EG035T: Mercury             | 7439-97-6  | 5 mg/kg       | 100                      | 70.0       | 130       |  |  |
| EG048: Hexavalent    | t Chromium (Alkaline Digest) (QCLot: 2684699)        |                             |            |               |                          |            |           |  |  |
| ES1935800-022        | Anonymous                                            | EG048G: Hexavalent Chromium | 18540-29-9 | 20 mg/kg      | # 2.00                   | 70.0       | 130       |  |  |
| ES1935800-022        | Anonymous                                            | EG048G: Hexavalent Chromium | 18540-29-9 | 20 mg/kg      | # 2.00                   | 70.0       | 130       |  |  |

| Page       | : 30 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                                                        |                                        |            | Ма            | trix Spike (MS) Report |              |          |
|----------------------|--------------------------------------------------------|----------------------------------------|------------|---------------|------------------------|--------------|----------|
|                      |                                                        |                                        |            | Spike         | SpikeRecovery(%)       | Recovery Lin | nits (%) |
| Laboratory sample ID | Client sample ID                                       | Method: Compound                       | CAS Number | Concentration | MS                     | Low          | High     |
| EK026SF: Total CN    | by Segmented Flow Analyser (QCLot: 2682540)            |                                        |            |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EK026SF: Total Cyanide                 | 57-12-5    | 40 mg/kg      | 115                    | 70.0         | 130      |
| EK028SF: Weak Ac     | id Dissociable CN by Segmented Flow Analyser(QCLo      | ot: 2682539)                           |            |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EK028SF: Weak Acid Dissociable Cyanide |            | 40 mg/kg      | 109                    | 70.0         | 130      |
| EK040T: Fluoride To  | otal (QCLot: 2685561)                                  |                                        |            |               |                        |              |          |
| EB1928345-001        | Anonymous                                              | EK040T: Fluoride                       | 16984-48-8 | 400 mg/kg     | 106                    | 70.0         | 130      |
| EP066: Polychlorina  | ated Biphenyls (PCB) (QCLot: 2682735)                  |                                        | ·          |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EP066: Total Polychlorinated biphenyls |            | 1 mg/kg       | 121                    | 70.0         | 130      |
| EP068A: Organochl    | orine Pesticides (OC) (QCLot: 2682733)                 |                                        |            |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EP068: gamma-BHC                       | 58-89-9    | 0.5 mg/kg     | 92.1                   | 70.0         | 130      |
|                      |                                                        | EP068: Heptachlor                      | 76-44-8    | 0.5 mg/kg     | 82.7                   | 70.0         | 130      |
|                      |                                                        | EP068: Aldrin                          | 309-00-2   | 0.5 mg/kg     | 97.0                   | 70.0         | 130      |
|                      |                                                        | EP068: Dieldrin                        | 60-57-1    | 0.5 mg/kg     | 86.4                   | 70.0         | 130      |
|                      |                                                        | EP068: Endrin                          | 72-20-8    | 2 mg/kg       | 81.2                   | 70.0         | 130      |
|                      |                                                        | EP068: 4.4`-DDT                        | 50-29-3    | 2 mg/kg       | 89.1                   | 70.0         | 130      |
| EP071 SG: Total Pet  | troleum Hydrocarbons - Silica gel cleanup  (QCLot: 268 | 2734)                                  |            |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EP071SG-S: C10 - C14 Fraction          |            | 523 mg/kg     | 108                    | 43.0         | 139      |
|                      |                                                        | EP071SG-S: C15 - C28 Fraction          |            | 2319 mg/kg    | 116                    | 49.0         | 131      |
|                      |                                                        | EP071SG-S: C29 - C36 Fraction          |            | 1714 mg/kg    | 128                    | 64.0         | 158      |
| EP071 SG: Total Re   | coverable Hydrocarbons - NEPM 2013 Fractions - Silica  | gel cleanup (QCLot: 2682734)           |            |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EP071SG-S: >C10 - C16 Fraction         |            | 860 mg/kg     | 108                    | 33.0         | 137      |
|                      |                                                        | EP071SG-S: >C16 - C34 Fraction         |            | 3223 mg/kg    | 124                    | 40.0         | 137      |
|                      |                                                        | EP071SG-S: >C34 - C40 Fraction         |            | 1058 mg/kg    | 110                    | 30.0         | 190      |
| EP074A: Monocyclic   | c Aromatic Hydrocarbons (QCLot: 2684260)               |                                        |            |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EP074: Benzene                         | 71-43-2    | 2.5 mg/kg     | 101                    | 70.0         | 130      |
|                      |                                                        | EP074: Toluene                         | 108-88-3   | 2.5 mg/kg     | 99.5                   | 70.0         | 130      |
| EP074E: Halogenate   | ed Aliphatic Compounds (QCLot: 2684260)                |                                        |            |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EP074: 1.1-Dichloroethene              | 75-35-4    | 2.5 mg/kg     | 97.9                   | 70.0         | 130      |
|                      |                                                        | EP074: Trichloroethene                 | 79-01-6    | 2.5 mg/kg     | 93.0                   | 70.0         | 130      |
| EP074F: Halogenate   | ed Aromatic Compounds (QCLot: 2684260)                 |                                        |            |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EP074: Chlorobenzene                   | 108-90-7   | 2.5 mg/kg     | 96.0                   | 70.0         | 130      |
| EP075(SIM)A: Phene   | olic Compounds (QCLot: 2682732)                        |                                        |            |               |                        |              |          |
| ES1935800-011        | Anonymous                                              | EP075(SIM): Phenol                     | 108-95-2   | 10 mg/kg      | 88.4                   | 70.0         | 130      |
|                      |                                                        | EP075(SIM): 2-Chlorophenol             | 95-57-8    | 10 mg/kg      | 94.4                   | 70.0         | 130      |
|                      |                                                        | EP075(SIM): 2-Nitrophenol              | 88-75-5    | 10 mg/kg      | 79.7                   | 60.0         | 130      |
|                      |                                                        | EP075(SIM): 4-Chloro-3-methylphenol    | 59-50-7    | 10 mg/kg      | 91.6                   | 70.0         | 130      |

| Page       | : 31 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                                                    |                                     |            | Matrix Spike (MS) Report |                  |             |          |  |
|----------------------|----------------------------------------------------|-------------------------------------|------------|--------------------------|------------------|-------------|----------|--|
|                      |                                                    |                                     |            | Spike                    | SpikeRecovery(%) | Recovery Li | mits (%) |  |
| Laboratory sample ID | Client sample ID                                   | Method: Compound                    | CAS Number | Concentration            | MS               | Low         | High     |  |
| EP075(SIM)A: Phe     | nolic Compounds (QCLot: 2682732) - continued       |                                     |            |                          |                  |             |          |  |
| ES1935800-011        | Anonymous                                          | EP075(SIM): Pentachlorophenol       | 87-86-5    | 10 mg/kg                 | 21.4             | 20.0        | 130      |  |
| EP075(SIM)A: Phe     | nolic Compounds (QCLot: 2682755)                   |                                     |            |                          |                  |             |          |  |
| ES1935800-001        | Anonymous                                          | EP075(SIM): Phenol                  | 108-95-2   | 10 mg/kg                 | 89.4             | 70.0        | 130      |  |
|                      |                                                    | EP075(SIM): 2-Chlorophenol          | 95-57-8    | 10 mg/kg                 | 96.5             | 70.0        | 130      |  |
|                      |                                                    | EP075(SIM): 2-Nitrophenol           | 88-75-5    | 10 mg/kg                 | 98.1             | 60.0        | 130      |  |
|                      |                                                    | EP075(SIM): 4-Chloro-3-methylphenol | 59-50-7    | 10 mg/kg                 | 93.1             | 70.0        | 130      |  |
|                      |                                                    | EP075(SIM): Pentachlorophenol       | 87-86-5    | 10 mg/kg                 | 94.9             | 20.0        | 130      |  |
| EP075(SIM)B: Poly    | nuclear Aromatic Hydrocarbons (QCLot: 2682732)     |                                     |            |                          |                  |             |          |  |
| ES1935800-011        | Anonymous                                          | EP075(SIM): Acenaphthene            | 83-32-9    | 10 mg/kg                 | 98.8             | 70.0        | 130      |  |
|                      |                                                    | EP075(SIM): Pyrene                  | 129-00-0   | 10 mg/kg                 | 110              | 70.0        | 130      |  |
| EP075(SIM)B: Poly    | nuclear Aromatic Hydrocarbons (QCLot: 2682755)     |                                     |            |                          |                  |             |          |  |
| ES1935800-001        | Anonymous                                          | EP075(SIM): Acenaphthene            | 83-32-9    | 10 mg/kg                 | 99.0             | 70.0        | 130      |  |
|                      |                                                    | EP075(SIM): Pyrene                  | 129-00-0   | 10 mg/kg                 | 114              | 70.0        | 130      |  |
| EP075A: Phenolic     | Compounds (QCLot: 2690636)                         |                                     |            |                          |                  | İ           |          |  |
| ES1936183-029        | VC12_0.0-0.5                                       | EP075: Phenol                       | 108-95-2   | 10 mg/kg                 | 104              | 60.0        | 130      |  |
|                      |                                                    | EP075: 2-Chlorophenol               | 95-57-8    | 10 mg/kg                 | 108              | 60.0        | 130      |  |
|                      |                                                    | EP075: 2-Nitrophenol                | 88-75-5    | 10 mg/kg                 | 106              | 50.0        | 130      |  |
|                      |                                                    | EP075: 4-Chloro-3-methylphenol      | 59-50-7    | 10 mg/kg                 | 113              | 50.0        | 130      |  |
|                      |                                                    | EP075: Pentachlorophenol            | 87-86-5    | 10 mg/kg                 | 60.2             | 10.0        | 130      |  |
| EP075B: Polynucle    | ear Aromatic Hydrocarbons (QCLot: 2690636)         |                                     |            |                          |                  |             |          |  |
| ES1936183-029        | VC12_0.0-0.5                                       | EP075: Acenaphthene                 | 83-32-9    | 10 mg/kg                 | 101              | 50.0        | 130      |  |
|                      |                                                    | EP075: Pyrene                       | 129-00-0   | 10 mg/kg                 | 106              | 50.0        | 130      |  |
| EP075D: Nitrosam     | ines (QCLot: 2690636)                              |                                     |            |                          |                  |             |          |  |
| ES1936183-029        | VC12_0.0-0.5                                       | EP075: N-Nitrosodi-n-propylamine    | 621-64-7   | 10 mg/kg                 | 107              | 50.0        | 130      |  |
| EP075E: Nitroaron    | natics and Ketones (QCLot: 2690636)                |                                     |            |                          |                  |             |          |  |
| ES1936183-029        | VC12_0.0-0.5                                       | EP075: 2.4-Dinitrotoluene           | 121-14-2   | 10 mg/kg                 | 105              | 40.0        | 130      |  |
| EP075G: Chlorinat    | ed Hydrocarbons (QCLot: 2690636)                   |                                     |            |                          |                  |             |          |  |
| ES1936183-029        | VC12_0.0-0.5                                       | EP075: 1.4-Dichlorobenzene          | 106-46-7   | 10 mg/kg                 | 107              | 60.0        | 130      |  |
|                      |                                                    | EP075: 1.2.4-Trichlorobenzene       | 120-82-1   | 10 mg/kg                 | 108              | 50.0        | 130      |  |
| EP080/071: Total P   | Petroleum Hydrocarbons (QCLot: 2684261)            |                                     |            |                          |                  | İ           |          |  |
| ES1935800-011        | Anonymous                                          | EP080: C6 - C9 Fraction             |            | 32.5 mg/kg               | 92.3             | 70.0        | 130      |  |
| EP080/071: Total P   | Petroleum Hydrocarbons (QCLot: 2687451)            |                                     |            |                          |                  |             |          |  |
| ES1936325-001        | Anonymous                                          | EP080: C6 - C9 Fraction             |            | 32.5 mg/kg               | 93.2             | 70.0        | 130      |  |
| EP080/071: Total R   | Recoverable Hydrocarbons - NEPM 2013 Fractions (QC | Lot: 2684261)                       |            |                          |                  |             |          |  |
| ES1935800-011        | Anonymous                                          | EP080: C6 - C10 Fraction            | C6_C10     | 37.5 mg/kg               | 89.0             | 70.0        | 130      |  |

| Page       | : 32 of 35    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     | ub-Matrix: SOIL                                     |                               |            | Matrix Spike (MS) Report |                  |            |           |
|----------------------|-----------------------------------------------------|-------------------------------|------------|--------------------------|------------------|------------|-----------|
|                      |                                                     |                               |            | Spike                    | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                    | Method: Compound              | CAS Number | Concentration            | MS               | Low        | High      |
| EP080/071: Total R   | ecoverable Hydrocarbons - NEPM 2013 Fractions(QC    | Lot: 2687451)                 |            |                          |                  |            |           |
| ES1936325-001        | Anonymous                                           | EP080: C6 - C10 Fraction      | C6_C10     | 37.5 mg/kg               | 93.1             | 70.0       | 130       |
| EP080: BTEXN (Q      | CLot: 2684261)                                      |                               |            |                          |                  |            |           |
| ES1935800-011        | Anonymous                                           | EP080: Benzene                | 71-43-2    | 2.5 mg/kg                | 105              | 70.0       | 130       |
|                      |                                                     | EP080: Toluene                | 108-88-3   | 2.5 mg/kg                | 98.5             | 70.0       | 130       |
|                      |                                                     | EP080: Ethylbenzene           | 100-41-4   | 2.5 mg/kg                | 101              | 70.0       | 130       |
|                      |                                                     | EP080: meta- & para-Xylene    | 108-38-3   | 2.5 mg/kg                | 100              | 70.0       | 130       |
|                      |                                                     |                               | 106-42-3   |                          |                  |            |           |
|                      |                                                     | EP080: ortho-Xylene           | 95-47-6    | 2.5 mg/kg                | 101              | 70.0       | 130       |
|                      |                                                     | EP080: Naphthalene            | 91-20-3    | 2.5 mg/kg                | 88.6             | 70.0       | 130       |
| EP080: BTEXN (Q      | CLot: 2687451)                                      |                               |            |                          |                  |            |           |
| ES1936325-001        | Anonymous                                           | EP080: Benzene                | 71-43-2    | 2.5 mg/kg                | 93.0             | 70.0       | 130       |
|                      |                                                     | EP080: Toluene                | 108-88-3   | 2.5 mg/kg                | 92.5             | 70.0       | 130       |
|                      |                                                     | EP080: Ethylbenzene           | 100-41-4   | 2.5 mg/kg                | 101              | 70.0       | 130       |
|                      |                                                     | EP080: meta- & para-Xylene    | 108-38-3   | 2.5 mg/kg                | 100              | 70.0       | 130       |
|                      |                                                     |                               | 106-42-3   |                          |                  |            |           |
|                      |                                                     | EP080: ortho-Xylene           | 95-47-6    | 2.5 mg/kg                | 102              | 70.0       | 130       |
|                      |                                                     | EP080: Naphthalene            | 91-20-3    | 2.5 mg/kg                | 104              | 70.0       | 130       |
| EP080-SD / EP071-    | SD: Total Petroleum Hydrocarbons (QCLot: 2685373)   |                               |            |                          |                  |            |           |
| ES1936183-029        | VC12_0.0-0.5                                        | EP071-SD: C10 - C14 Fraction  |            | 14 mg/kg                 | 80.6             | 70.0       | 130       |
|                      |                                                     | EP071-SD: C15 - C28 Fraction  |            | 59 mg/kg                 | 110              | 70.0       | 130       |
|                      |                                                     | EP071-SD: C29 - C36 Fraction  |            | 42 mg/kg                 | 100              | 70.0       | 130       |
| EP080-SD / EP071-    | SD: Total Petroleum Hydrocarbons (QCLot: 2687455)   |                               |            |                          |                  |            |           |
| ES1936183-029        | VC12_0.0-0.5                                        | EP080-SD: C6 - C9 Fraction    |            | 6.5 mg/kg                | 86.6             | 70.0       | 130       |
| EP080-SD: BTEXN      | (QCLot: 2687455)                                    |                               |            |                          |                  |            |           |
| ES1936183-029        | VC12_0.0-0.5                                        | EP080-SD: Benzene             | 71-43-2    | 0.5 mg/kg                | 87.2             | 70.0       | 130       |
|                      |                                                     | EP080-SD: Toluene             | 108-88-3   | 0.5 mg/kg                | 87.9             | 70.0       | 130       |
|                      |                                                     | EP080-SD: Ethylbenzene        | 100-41-4   | 0.5 mg/kg                | 90.9             | 70.0       | 130       |
|                      |                                                     | EP080-SD: meta- & para-Xylene | 108-38-3   | 0.5 mg/kg                | 89.5             | 70.0       | 130       |
|                      |                                                     |                               | 106-42-3   |                          |                  |            |           |
|                      |                                                     | EP080-SD: ortho-Xylene        | 95-47-6    | 0.5 mg/kg                | 91.2             | 70.0       | 130       |
| EP090: Organotin     | Compounds (QCLot: 2698344)                          |                               |            |                          |                  |            |           |
| EM1919013-022        | Anonymous                                           | EP090: Tributyltin            | 56573-85-4 | 1.25 µgSn/kg             | # 866            | 20.0       | 130       |
| EP130A: Organoph     | nosphorus Pesticides (Ultra-trace) (QCLot: 2685368) |                               |            |                          |                  |            |           |
| ES1936183-029        | VC12_0.0-0.5                                        | EP130: Bromophos-ethyl        | 4824-78-6  | 50 µg/kg                 | 66.1             | 36.0       | 144       |
|                      |                                                     | EP130: Carbophenothion        | 786-19-6   | 50 µg/kg                 | 54.0             | 38.0       | 120       |
|                      |                                                     | EP130: Chlorfenvinphos (E)    | 18708-86-6 | 5 µg/kg                  | 63.6             | 49.0       | 157       |
|                      |                                                     | EP130: Chlorfenvinphos (Z)    | 18708-87-7 | 50 µg/kg                 | 58.3             | 53.0       | 145       |

| Page       | : 33 of 35    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| ub-Matrix: SOIL      |                                                     |                                 | Matrix Spike (MS) Report |               |                  |            |           |
|----------------------|-----------------------------------------------------|---------------------------------|--------------------------|---------------|------------------|------------|-----------|
|                      |                                                     |                                 |                          | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                    | Method: Compound                | CAS Number               | Concentration | MS               | Low        | High      |
| EP130A: Organopl     | nosphorus Pesticides (Ultra-trace) (QCLot: 2685368) | - continued                     |                          |               |                  |            |           |
| ES1936183-029        | VC12 0.0-0.5                                        | EP130: Chlorpyrifos             | 2921-88-2                | 50 µg/kg      | 65.0             | 60.0       | 140       |
|                      | _                                                   | EP130: Chlorpyrifos-methyl      | 5598-13-0                | 50 µg/kg      | 73.1             | 56.0       | 126       |
|                      |                                                     | EP130: Demeton-S-methyl         | 919-86-8                 | 50 µg/kg      | 64.8             | 9.70       | 148       |
|                      |                                                     | EP130: Diazinon                 | 333-41-5                 | 50 µg/kg      | 67.7             | 60.0       | 122       |
|                      |                                                     | EP130: Dichlorvos               | 62-73-7                  | 50 µg/kg      | 61.1             | 33.0       | 123       |
|                      |                                                     | EP130: Dimethoate               | 60-51-5                  | 50 µg/kg      | 66.1             | 36.0       | 142       |
|                      |                                                     | EP130: Ethion                   | 563-12-2                 | 50 µg/kg      | 52.4             | 48.0       | 136       |
|                      |                                                     | EP130: Fenamiphos               | 22224-92-6               | 50 µg/kg      | 55.2             | 42.0       | 136       |
|                      |                                                     | EP130: Fenthion                 | 55-38-9                  | 50 µg/kg      | 65.4             | 35.0       | 131       |
|                      |                                                     | EP130: Malathion                | 121-75-5                 | 50 µg/kg      | 59.5             | 55.0       | 141       |
|                      |                                                     | EP130: Azinphos Methyl          | 86-50-0                  | 50 µg/kg      | 57.2             | 23.5       | 132       |
|                      |                                                     | EP130: Monocrotophos            | 6923-22-4                | 50 µg/kg      | 55.0             | 35.0       | 153       |
|                      |                                                     | EP130: Parathion                | 56-38-2                  | 50 µg/kg      | 60.5             | 57.0       | 147       |
|                      |                                                     | EP130: Parathion-methyl         | 298-00-0                 | 50 µg/kg      | 63.4             | 48.0       | 140       |
|                      |                                                     | EP130: Pirimphos-ethyl          | 23505-41-1               | 50 µg/kg      | 53.0             | 45.0       | 137       |
|                      |                                                     | EP130: Prothiofos               | 34643-46-4               | 50 µg/kg      | 57.0             | 51.0       | 137       |
| EP131A: Organoch     | lorine Pesticides (QCLot: 2685370)                  |                                 |                          |               |                  |            |           |
| ES1936183-029        | VC12_0.0-0.5                                        | EP131A: Aldrin                  | 309-00-2                 | 5 µg/kg       | 66.5             | 23.4       | 153       |
|                      |                                                     | EP131A: alpha-BHC               | 319-84-6                 | 5 µg/kg       | 52.8             | 17.6       | 156       |
|                      |                                                     | EP131A: beta-BHC                | 319-85-7                 | 5 µg/kg       | 70.6             | 24.9       | 153       |
|                      |                                                     | EP131A: delta-BHC               | 319-86-8                 | 5 µg/kg       | 63.4             | 25.2       | 147       |
|                      |                                                     | EP131A: 4.4`-DDD                | 72-54-8                  | 5 µg/kg       | 55.5             | 25.9       | 150       |
|                      |                                                     | EP131A: 4.4`-DDE                | 72-55-9                  | 5 µg/kg       | 65.4             | 31.2       | 125       |
|                      |                                                     | EP131A: 4.4`-DDT                | 50-29-3                  | 5 µg/kg       | 89.0             | 23.4       | 163       |
|                      |                                                     | EP131A: Dieldrin                | 60-57-1                  | 5 µg/kg       | 54.6             | 30.2       | 140       |
|                      |                                                     | EP131A: alpha-Endosulfan        | 959-98-8                 | 5 µg/kg       | 49.8             | 28.8       | 135       |
|                      |                                                     | EP131A: beta-Endosulfan         | 33213-65-9               | 5 µg/kg       | 58.4             | 22.6       | 141       |
|                      |                                                     | EP131A: Endosulfan sulfate      | 1031-07-8                | 5 µg/kg       | 50.7             | 16.1       | 156       |
|                      |                                                     | EP131A: Endrin                  | 72-20-8                  | 5 µg/kg       | 86.4             | 17.7       | 162       |
|                      |                                                     | EP131A: Endrin aldehyde         | 7421-93-4                | 5 µg/kg       | 56.8             | 20.1       | 116       |
|                      |                                                     | EP131A: Endrin ketone           | 53494-70-5               | 5 µg/kg       | 45.1             | 13.4       | 151       |
|                      |                                                     | EP131A: Heptachlor              | 76-44-8                  | 5 µg/kg       | 49.7             | 23.8       | 170       |
|                      |                                                     | EP131A: Heptachlor epoxide      | 1024-57-3                | 5 µg/kg       | 57.3             | 28.3       | 140       |
|                      |                                                     | EP131A: Hexachlorobenzene (HCB) | 118-74-1                 | 5 µg/kg       | 61.0             | 17.7       | 144       |
|                      |                                                     | EP131A: gamma-BHC               | 58-89-9                  | 5 µg/kg       | 52.6             | 21.8       | 158       |
|                      |                                                     | EP131A: Methoxychlor            | 72-43-5                  | 5 µg/kg       | 62.6             | 24.4       | 158       |
|                      |                                                     | EP131A: cis-Chlordane           | 5103-71-9                | 5 µg/kg       | 65.7             | 27.3       | 139       |
|                      |                                                     | EP131A: trans-Chlordane         | 5103-74-2                | 5 µg/kg       | 54.5             | 29.5       | 138       |
| EP131B: Polychlor    | inated Biphenyls (as Aroclors) (QCLot: 2685369)     |                                 |                          |               |                  |            |           |

| Page       | : 34 of 35    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL       | -Matrix: SOIL                                |                                         |            | Matrix Spike (MS) Report |                        |            |           |
|------------------------|----------------------------------------------|-----------------------------------------|------------|--------------------------|------------------------|------------|-----------|
|                        |                                              |                                         |            | Spike                    | SpikeRecovery(%)       | Recovery L | imits (%) |
| Laboratory sample ID   | Client sample ID                             | Method: Compound                        | CAS Number | Concentration            | MS                     | Low        | High      |
| EP131B: Polychlor      | inated Biphenyls (as Aroclors) (QCLot: 26853 | 69) - continued                         |            |                          |                        |            |           |
| ES1936183-040          | VC08_1.0-1.5                                 | EP131B: Total Polychlorinated biphenyls |            | 50 µg/kg                 | 66.4                   | 44.0       | 136       |
|                        |                                              | EP131B: Aroclor 1254                    | 11097-69-1 | 50 µg/kg                 | 66.4                   | 44.0       | 136       |
| EP132B: Polynucle      | ear Aromatic Hydrocarbons (QCLot: 2685372)   |                                         |            |                          |                        |            |           |
| ES1936183-029          | VC12 0.0-0.5                                 | EP132B-SD: Naphthalene                  | 91-20-3    | 25 µg/kg                 | 116                    | 70.0       | 130       |
|                        |                                              | EP132B-SD: 2-Methylnaphthalene          | 91-57-6    | 25 µg/kg                 | 95.3                   | 70.0       | 130       |
|                        |                                              | EP132B-SD: Acenaphthylene               | 208-96-8   | 25 µg/kg                 | 105                    | 70.0       | 130       |
|                        |                                              | EP132B-SD: Acenaphthene                 | 83-32-9    | 25 µg/kg                 | 98.6                   | 70.0       | 130       |
|                        |                                              | EP132B-SD: Fluorene                     | 86-73-7    | 25 µg/kg                 | 117                    | 70.0       | 130       |
|                        |                                              | EP132B-SD: Phenanthrene                 | 85-01-8    | 25 µg/kg                 | 81.9                   | 70.0       | 130       |
|                        |                                              | EP132B-SD: Anthracene                   | 120-12-7   | 25 µg/kg                 | 88.1                   | 70.0       | 130       |
|                        |                                              | EP132B-SD: Fluoranthene                 | 206-44-0   | 25 µg/kg                 | # Not                  | 70.0       | 130       |
|                        |                                              |                                         |            |                          | Determined             |            |           |
|                        |                                              | EP132B-SD: Pyrene                       | 129-00-0   | 25 µg/kg                 | # Not                  | 70.0       | 130       |
|                        |                                              |                                         |            |                          | Determined             |            |           |
|                        |                                              | EP132B-SD: Benz(a)anthracene            | 56-55-3    | 25 µg/kg                 | # Not                  | 70.0       | 130       |
|                        |                                              |                                         |            |                          | Determined             |            |           |
|                        |                                              | EP132B-SD: Chrysene                     | 218-01-9   | 25 µg/kg                 | 71.3                   | 70.0       | 130       |
|                        |                                              | EP132B-SD: Benzo(b+j)fluoranthene       | 205-99-2   | 25 µg/kg                 | # Not                  | 70.0       | 130       |
|                        |                                              |                                         | 205-82-3   |                          | Determined             |            |           |
|                        |                                              | EP132B-SD: Benzo(k)fluoranthene         | 207-08-9   | 25 µg/kg                 | 82.7                   | 70.0       | 130       |
|                        |                                              | EP132B-SD: Benzo(e)pyrene               | 192-97-2   | 25 µg/kg                 | 93.0                   | 70.0       | 130       |
|                        |                                              | EP132B-SD: Benzo(a)pyrene               | 50-32-8    | 25 µg/kg                 | # Not                  | 70.0       | 130       |
|                        |                                              |                                         |            |                          | Determined             |            |           |
|                        |                                              | EP132B-SD: Perylene                     | 198-55-0   | 25 µg/kg                 | 101                    | 70.0       | 130       |
|                        |                                              | EP132B-SD: Benzo(g.h.i)perylene         | 191-24-2   | 25 µg/kg                 | # Not                  | 70.0       | 130       |
|                        |                                              |                                         | 50 70 0    | 05                       | Determined             | 70.0       | 400       |
|                        |                                              | EP132B-SD: Dibenz(a.h)anthracene        | 53-70-3    | 25 µg/kg                 | 89.6                   | 70.0       | 130       |
|                        |                                              | EP132B-SD: Indeno(1.2.3.cd)pyrene       | 193-39-5   | 25 µg/kg                 | # Not                  | 70.0       | 130       |
|                        |                                              |                                         | 101 07 1   |                          | Determined             | 70.0       | 120       |
|                        |                                              | EP132B-SD: Coronene                     | 191-07-1   | 25 µg/kg                 | 123                    | 70.0       | 130       |
| Sub-Matrix: WATER      |                                              |                                         |            | Ma                       | atrix Spike (MS) Repor | t          |           |
| Laboratoria anna la ID | Olivert commute ID                           |                                         | 040 Number | <i>Spike</i>             | SpikeRecovery(%)       | Recovery L | imits (%) |
| Laboratory sample ID   |                                              | Method: Compound                        | CAS Number | Concentration            | MS                     | Low        | High      |
| EG020T: Total Met      | als by ICP-MS (QCLot: 2682925)               |                                         |            |                          |                        |            |           |
| ES1936183-062          | RIN_02                                       | EG020A-T: Arsenic                       | 7440-38-2  | 1 mg/L                   | 96.7                   | 70.0       | 130       |
|                        |                                              | EG020A-T: Cadmium                       | 7440-43-9  | 0.25 mg/L                | 99.1                   | 70.0       | 130       |
|                        |                                              | EG020A-T: Chromium                      | 7440-47-3  | 1 mg/L                   | 102                    | 70.0       | 130       |
|                        |                                              | EG020A-T: Copper                        | 7440-50-8  | 1 mg/L                   | 95.3                   | 70.0       | 130       |
|                        |                                              | EG020A-T: Lead                          | 7439-92-1  | 1 mg/L                   | 99.4                   | 70.0       | 130       |

| Page       | : 35 of 35   |
|------------|--------------|
| Work Order | : ES1936183  |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Sub-Matrix: WATER                                          |                                                    | Γ                          | Matrix Spike (MS) Report |               |                  |             |          |
|------------------------------------------------------------|----------------------------------------------------|----------------------------|--------------------------|---------------|------------------|-------------|----------|
|                                                            |                                                    |                            |                          | Spike         | SpikeRecovery(%) | Recovery Li | mits (%) |
| Laboratory sample ID                                       | Client sample ID                                   | Method: Compound           | CAS Number               | Concentration | MS               | Low         | High     |
| EG020T: Total Meta                                         | Is by ICP-MS (QCLot: 2682925) - continued          |                            |                          |               |                  |             |          |
| ES1936183-062                                              | RIN_02                                             | EG020A-T: Nickel           | 7440-02-0                | 1 mg/L        | 95.8             | 70.0        | 130      |
|                                                            |                                                    | EG020A-T: Zinc             | 7440-66-6                | 1 mg/L        | 96.1             | 70.0        | 130      |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: 2687534) |                                                    |                            |                          |               |                  |             |          |
| EP1911242-021                                              | Anonymous                                          | EG035T: Mercury            | 7439-97-6                | 0.01 mg/L     | 90.3             | 70.0        | 130      |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 2683791)   |                                                    |                            |                          |               |                  |             |          |
| EP1911242-021                                              | Anonymous                                          | EP080: C6 - C9 Fraction    |                          | 325 µg/L      | 97.4             | 70.0        | 130      |
| EP080/071: Total R                                         | ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL | ot: 2683791)               |                          |               |                  |             |          |
| EP1911242-021                                              | Anonymous                                          | EP080: C6 - C10 Fraction   | C6_C10                   | 375 µg/L      | 96.5             | 70.0        | 130      |
| EP080: BTEXN (QC                                           | CLot: 2683791)                                     |                            |                          |               |                  |             |          |
| EP1911242-021                                              | Anonymous                                          | EP080: Benzene             | 71-43-2                  | 25 µg/L       | 101              | 70.0        | 130      |
|                                                            |                                                    | EP080: Toluene             | 108-88-3                 | 25 µg/L       | 96.1             | 70.0        | 130      |
|                                                            |                                                    | EP080: Ethylbenzene        | 100-41-4                 | 25 µg/L       | 99.5             | 70.0        | 130      |
|                                                            |                                                    | EP080: meta- & para-Xylene | 108-38-3                 | 25 µg/L       | 99.3             | 70.0        | 130      |
|                                                            |                                                    |                            | 106-42-3                 |               |                  |             |          |
|                                                            |                                                    | EP080: ortho-Xylene        | 95-47-6                  | 25 µg/L       | 102              | 70.0        | 130      |
|                                                            |                                                    | EP080: Naphthalene         | 91-20-3                  | 25 µg/L       | 84.0             | 70.0        | 130      |

| Page       | : 27 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        |                   | Clie        | ent sample ID  | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |
|-------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                           | Cli               | ent samplii | ng date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                  | CAS Number        | LOR         | Unit           | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |
|                                           |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075J: Organophosphorus Pesticide        | s - Continued     |             |                |                   |                   |                   |                   |                   |
| Dichlorvos                                | 62-73-7           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Dimethoate                                | 60-51-5           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Diazinon                                  | 333-41-5          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Chlorpyrifos-methyl                       | 5598-13-0         | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Malathion                                 | 121-75-5          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Fenthion                                  | 55-38-9           | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Chlorpyrifos                              | 2921-88-2         | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Pirimphos-ethyl                           | 23505-41-1        | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Chlorfenvinphos                           | 470-90-6          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Prothiofos                                | 34643-46-4        | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| Ethion                                    | 563-12-2          | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |
| EP080/071: Total Petroleum Hydrocart      | oons              |             |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                          |                   | 10          | mg/kg          |                   | <10               | <10               |                   | <10               |
| EP080/071: Total Recoverable Hydroca      | arbons - NEPM 201 | 3 Fractio   | າຣ             |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                         | C6_C10            | 10          | mg/kg          |                   | <10               | <10               |                   | <10               |
| >C10 - C16 Fraction                       |                   | 3           | mg/kg          | <3                |                   |                   |                   |                   |
| <sup>^</sup> C6 - C10 Fraction minus BTEX | C6_C10-BTEX       | 10          | mg/kg          |                   |                   |                   |                   | <10               |
| (F1)                                      |                   |             |                |                   |                   |                   |                   |                   |
| >C16 - C34 Fraction                       |                   | 3           | mg/kg          | 66                |                   |                   |                   |                   |
| >C34 - C40 Fraction                       |                   | 5           | mg/kg          | 48                |                   |                   |                   |                   |
| >C10 - C40 Fraction (sum)                 |                   | 3           | mg/kg          | 114               |                   |                   |                   |                   |
| >C10 - C16 Fraction minus Naphthalene     |                   | 3           | mg/kg          | <3                |                   |                   |                   |                   |
| (F2)                                      |                   |             |                |                   |                   |                   |                   |                   |
| EP080: BTEXN                              |                   |             |                |                   |                   |                   |                   |                   |
| Benzene                                   | 71-43-2           | 0.2         | mg/kg          |                   |                   |                   | <0.2              | <0.2              |
| Toluene                                   | 108-88-3          | 0.5         | mg/kg          |                   |                   |                   | 8.3               | <0.5              |
| Ethylbenzene                              | 100-41-4          | 0.5         | mg/kg          |                   |                   |                   | 1.5               | <0.5              |
| meta- & para-Xylene                       | 108-38-3 106-42-3 | 0.5         | mg/kg          |                   |                   |                   | 8.3               | <0.5              |
| ortho-Xylene                              | 95-47-6           | 0.5         | mg/kg          |                   |                   |                   | 3.6               | <0.5              |
| ^ Total Xylenes                           |                   | 0.5         | mg/kg          |                   |                   |                   | 11.9              | <0.5              |
| ^ Sum of BTEX                             |                   | 0.2         | mg/kg          |                   |                   |                   | 21.7              | <0.2              |
| Naphthalene                               | 91-20-3           | 1           | mg/kg          |                   |                   |                   | <1                | <1                |
| EP080-SD / EP071-SD: Total Petroleum      | n Hydrocarbons    |             |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                          |                   | 3           | mg/kg          | <3                |                   |                   |                   |                   |

| Page       | : 28 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                  |                     | Clie        | ent sample ID  | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |  |
|-----------------------------------------------------|---------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                     | Cli                 | ient sampli | ng date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |
| Compound                                            | CAS Number          | LOR         | Unit           | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |  |
|                                                     |                     |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EP080-SD / EP071-SD: Total Petroleu                 | um Hydrocarbons - C | ontinued    |                |                   |                   |                   |                   |                   |  |
| C10 - C14 Fraction                                  |                     | 3           | mg/kg          | <3                |                   |                   |                   |                   |  |
| C15 - C28 Fraction                                  |                     | 3           | mg/kg          | 18                |                   |                   |                   |                   |  |
| C29 - C36 Fraction                                  |                     | 5           | mg/kg          | 70                |                   |                   |                   |                   |  |
| ^ C10 - C36 Fraction (sum)                          |                     | 3           | mg/kg          | 88                |                   |                   |                   |                   |  |
| EP080-SD / EP071-SD: Total Recoverable Hydrocarbons |                     |             |                |                   |                   |                   |                   |                   |  |
| C6 - C10 Fraction                                   | C6_C10              | 3           | mg/kg          | <3                |                   |                   |                   |                   |  |
| C6 - C10 Fraction minus BTEX                        | C6_C10-BTEX         | 3.0         | mg/kg          | <3.0              |                   |                   |                   |                   |  |
| (F1)                                                |                     |             |                |                   |                   |                   |                   |                   |  |
| EP080-SD: BTEXN                                     |                     |             |                |                   |                   |                   |                   |                   |  |
| Benzene                                             | 71-43-2             | 0.2         | mg/kg          | <0.2              |                   |                   |                   |                   |  |
| Toluene                                             | 108-88-3            | 0.2         | mg/kg          | <0.2              |                   |                   |                   |                   |  |
| Ethylbenzene                                        | 100-41-4            | 0.2         | mg/kg          | <0.2              |                   |                   |                   |                   |  |
| meta- & para-Xylene                                 | 108-38-3 106-42-3   | 0.2         | mg/kg          | <0.2              |                   |                   |                   |                   |  |
| ortho-Xylene                                        | 95-47-6             | 0.2         | mg/kg          | <0.2              |                   |                   |                   |                   |  |
| ^ Total Xylenes                                     |                     | 0.5         | mg/kg          | <0.5              |                   |                   |                   |                   |  |
| ^ Sum of BTEX                                       |                     | 0.2         | mg/kg          | <0.2              |                   |                   |                   |                   |  |
| Naphthalene                                         | 91-20-3             | 0.2         | mg/kg          | <0.2              |                   |                   |                   |                   |  |
| EP090: Organotin Compounds                          |                     |             |                |                   |                   |                   |                   |                   |  |
| Tributyltin                                         | 56573-85-4          | 0.5         | µgSn/kg        | <0.5              |                   |                   |                   |                   |  |
| EP130A: Organophosphorus Pestici                    | des (Ultra-trace)   |             |                |                   |                   |                   |                   |                   |  |
| Bromophos-ethyl                                     | 4824-78-6           | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Carbophenothion                                     | 786-19-6            | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Chlorfenvinphos (E)                                 | 18708-86-6          | 10.0        | µg/kg          | <10.0             |                   |                   |                   |                   |  |
| Chlorfenvinphos (Z)                                 | 18708-87-7          | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Chlorpyrifos                                        | 2921-88-2           | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Chlorpyrifos-methyl                                 | 5598-13-0           | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Demeton-S-methyl                                    | 919-86-8            | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Diazinon                                            | 333-41-5            | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Dichlorvos                                          | 62-73-7             | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Dimethoate                                          | 60-51-5             | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Ethion                                              | 563-12-2            | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Fenamiphos                                          | 22224-92-6          | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Fenthion                                            | 55-38-9             | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |
| Malathion                                           | 121-75-5            | 10          | µg/kg          | <10               |                   |                   |                   |                   |  |

| Page       | : 29 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                            | Client sample ID  |              |                | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |  |  |
|---------------------------------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                                               | Cli               | ient sampliı | ng date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |
| Compound                                                      | CAS Number        | LOR          | Unit           | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |  |  |
|                                                               |                   |              |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EP130A: Organophosphorus Pesticides (Ultra-trace) - Continued |                   |              |                |                   |                   |                   |                   |                   |  |  |
| Azinphos Methyl                                               | 86-50-0           | 10           | µg/kg          | <10               |                   |                   |                   |                   |  |  |
| Monocrotophos                                                 | 6923-22-4         | 10           | µg/kg          | <10               |                   |                   |                   |                   |  |  |
| Parathion                                                     | 56-38-2           | 10           | µg/kg          | <10               |                   |                   |                   |                   |  |  |
| Parathion-methyl                                              | 298-00-0          | 10           | µg/kg          | <10               |                   |                   |                   |                   |  |  |
| Pirimphos-ethyl                                               | 23505-41-1        | 10           | µg/kg          | <10               |                   |                   |                   |                   |  |  |
| Prothiofos                                                    | 34643-46-4        | 10           | µg/kg          | <10               |                   |                   |                   |                   |  |  |
| EP131A: Organochlorine Pesticides                             |                   |              |                |                   |                   |                   |                   |                   |  |  |
| Aldrin                                                        | 309-00-2          | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| alpha-BHC                                                     | 319-84-6          | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| beta-BHC                                                      | 319-85-7          | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| delta-BHC                                                     | 319-86-8          | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| 4.4`-DDD                                                      | 72-54-8           | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| 4.4`-DDE                                                      | 72-55-9           | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| 4.4`-DDT                                                      | 50-29-3           | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| ^ Sum of DDD + DDE + DDT                                      | 72-54-8/72-55-9/5 | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
|                                                               | 0-2               |              |                |                   |                   |                   |                   |                   |  |  |
| Dieldrin                                                      | 60-57-1           | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| alpha-Endosulfan                                              | 959-98-8          | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| beta-Endosulfan                                               | 33213-65-9        | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| Endosulfan sulfate                                            | 1031-07-8         | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| ^ Endosulfan (sum)                                            | 115-29-7          | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| Endrin                                                        | 72-20-8           | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| Endrin aldehyde                                               | 7421-93-4         | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| Endrin ketone                                                 | 53494-70-5        | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| Heptachlor                                                    | 76-44-8           | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| Heptachlor epoxide                                            | 1024-57-3         | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| Hexachlorobenzene (HCB)                                       | 118-74-1          | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| gamma-BHC                                                     | 58-89-9           | 0.25         | µg/kg          | <0.25             |                   |                   |                   |                   |  |  |
| Methoxychlor                                                  | 72-43-5           | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| cis-Chlordane                                                 | 5103-71-9         | 0.25         | µg/kg          | <0.25             |                   |                   |                   |                   |  |  |
| trans-Chlordane                                               | 5103-74-2         | 0.25         | µg/kg          | <0.25             |                   |                   |                   |                   |  |  |
| ^ Total Chlordane (sum)                                       |                   | 0.25         | µg/kg          | <0.25             |                   |                   |                   |                   |  |  |
| Oxychlordane                                                  | 27304-13-8        | 0.50         | µg/kg          | <0.50             |                   |                   |                   |                   |  |  |
| EP131B: Polychlorinated Biphenyls (a                          | s Aroclors)       |              |                |                   |                   |                   |                   |                   |  |  |
| ^ Total Polychlorinated biphenyls                             |                   | 5.0          | µg/kg          | <5.0              |                   |                   |                   |                   |  |  |

| Page       | : 30 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                          | Client sample ID  |              |                | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |  |
|-------------------------------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                             | Cli               | ient samplii | ng date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |
| Compound                                                    | CAS Number        | LOR          | Unit           | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |  |
|                                                             |                   |              |                | Result            | Result            | Result            | Result            | Result            |  |
| EP131B: Polychlorinated Biphenyls (as Aroclors) - Continued |                   |              |                |                   |                   |                   |                   |                   |  |
| Aroclor 1016                                                | 12674-11-2        | 5.0          | µg/kg          | <5.0              |                   |                   |                   |                   |  |
| Aroclor 1221                                                | 11104-28-2        | 5.0          | µg/kg          | <5.0              |                   |                   |                   |                   |  |
| Aroclor 1232                                                | 11141-16-5        | 5.0          | µg/kg          | <5.0              |                   |                   |                   |                   |  |
| Aroclor 1242                                                | 53469-21-9        | 5.0          | µg/kg          | <5.0              |                   |                   |                   |                   |  |
| Aroclor 1248                                                | 12672-29-6        | 5.0          | µg/kg          | <5.0              |                   |                   |                   |                   |  |
| Aroclor 1254                                                | 11097-69-1        | 5.0          | µg/kg          | <5.0              |                   |                   |                   |                   |  |
| Aroclor 1260                                                | 11096-82-5        | 5.0          | µg/kg          | <5.0              |                   |                   |                   |                   |  |
| EP132B: Polynuclear Aromatic Hyd                            | rocarbons         |              |                |                   |                   |                   |                   |                   |  |
| Naphthalene                                                 | 91-20-3           | 5            | µg/kg          | <5                |                   |                   |                   |                   |  |
| 2-Methylnaphthalene                                         | 91-57-6           | 5            | µg/kg          | <5                |                   |                   |                   |                   |  |
| Acenaphthylene                                              | 208-96-8          | 4            | µg/kg          | <4                |                   |                   |                   |                   |  |
| Acenaphthene                                                | 83-32-9           | 4            | µg/kg          | <4                |                   |                   |                   |                   |  |
| Fluorene                                                    | 86-73-7           | 4            | µg/kg          | <4                |                   |                   |                   |                   |  |
| Phenanthrene                                                | 85-01-8           | 4            | µg/kg          | 16                |                   |                   |                   |                   |  |
| Anthracene                                                  | 120-12-7          | 4            | µg/kg          | <4                |                   |                   |                   |                   |  |
| Fluoranthene                                                | 206-44-0          | 4            | µg/kg          | 10                |                   |                   |                   |                   |  |
| Pyrene                                                      | 129-00-0          | 4            | µg/kg          | 11                |                   |                   |                   |                   |  |
| Benz(a)anthracene                                           | 56-55-3           | 4            | µg/kg          | 6                 |                   |                   |                   |                   |  |
| Chrysene                                                    | 218-01-9          | 4            | µg/kg          | 5                 |                   |                   |                   |                   |  |
| Benzo(b+j)fluoranthene                                      | 205-99-2 205-82-3 | 4            | µg/kg          | 9                 |                   |                   |                   |                   |  |
| Benzo(k)fluoranthene                                        | 207-08-9          | 4            | µg/kg          | <4                |                   |                   |                   |                   |  |
| Benzo(e)pyrene                                              | 192-97-2          | 4            | µg/kg          | <4                |                   |                   |                   |                   |  |
| Benzo(a)pyrene                                              | 50-32-8           | 4            | µg/kg          | 10                |                   |                   |                   |                   |  |
| Perylene                                                    | 198-55-0          | 4            | µg/kg          | <4                |                   |                   |                   |                   |  |
| Benzo(g.h.i)perylene                                        | 191-24-2          | 4            | µg/kg          | 6                 |                   |                   |                   |                   |  |
| Dibenz(a.h)anthracene                                       | 53-70-3           | 4            | µg/kg          | <4                |                   |                   |                   |                   |  |
| Indeno(1.2.3.cd)pyrene                                      | 193-39-5          | 4            | µg/kg          | 6                 |                   |                   |                   |                   |  |
| Coronene                                                    | 191-07-1          | 5            | µg/kg          | <5                |                   |                   |                   |                   |  |
| ^ Sum of PAHs                                               |                   | 4            | µg/kg          | 79                |                   |                   |                   |                   |  |
| EP066S: PCB Surrogate                                       |                   |              |                |                   |                   |                   |                   |                   |  |
| Decachlorobiphenyl                                          | 2051-24-3         | 0.1          | %              |                   | 84.9              | 86.7              |                   |                   |  |
| EP068S: Organochlorine Pesticide S                          | Surrogate         |              |                |                   |                   |                   |                   |                   |  |
| Dibromo-DDE                                                 | 21655-73-2        | 0.05         | %              |                   | 98.0              | 96.0              |                   |                   |  |
| EP068T: Organophosphorus Pestic                             | ide Surrogate     |              |                |                   |                   |                   |                   |                   |  |

| Page       | : 31 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                       | Client sample ID |             |                | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |  |  |
|----------------------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                                          | Cli              | ient sampli | ng date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |
| Compound                                                 | CAS Number       | LOR         | Unit           | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |  |  |
|                                                          |                  |             |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EP068T: Organophosphorus Pesticide Surrogate - Continued |                  |             |                |                   |                   |                   |                   |                   |  |  |
| DEF                                                      | 78-48-8          | 0.05        | %              |                   | 91.1              | 78.0              |                   |                   |  |  |
| EP074S: VOC Surrogates                                   |                  |             |                |                   |                   |                   |                   |                   |  |  |
| 1.2-Dichloroethane-D4                                    | 17060-07-0       | 0.5         | %              |                   | 98.9              | 74.7              |                   |                   |  |  |
| Toluene-D8                                               | 2037-26-5        | 0.5         | %              |                   | 123               | 105               |                   |                   |  |  |
| 4-Bromofluorobenzene                                     | 460-00-4         | 0.5         | %              |                   | 117               | 103               |                   |                   |  |  |
| EP075(SIM)S: Phenolic Compound Sur                       | rrogates         |             |                |                   |                   |                   |                   |                   |  |  |
| Phenol-d6                                                | 13127-88-3       | 0.5         | %              | 78.8              | 73.7              | 77.8              |                   |                   |  |  |
| 2-Chlorophenol-D4                                        | 93951-73-6       | 0.5         | %              | 80.5              | 82.4              | 87.0              |                   |                   |  |  |
| 2.4.6-Tribromophenol                                     | 118-79-6         | 0.5         | %              | 62.1              | 70.3              | 64.5              |                   |                   |  |  |
| EP075(SIM)T: PAH Surrogates                              |                  |             |                |                   |                   |                   |                   |                   |  |  |
| 2-Fluorobiphenyl                                         | 321-60-8         | 0.5         | %              | 91.7              | 98.7              | 103               |                   |                   |  |  |
| Anthracene-d10                                           | 1719-06-8        | 0.5         | %              | 86.6              | 92.0              | 95.8              |                   |                   |  |  |
| 4-Terphenyl-d14                                          | 1718-51-0        | 0.5         | %              | 97.5              | 81.8              | 86.2              |                   |                   |  |  |
| EP075S: Acid Extractable Surrogates                      |                  |             |                |                   |                   |                   |                   |                   |  |  |
| 2-Fluorophenol                                           | 367-12-4         | 0.5         | %              | 101               |                   |                   |                   |                   |  |  |
| Phenol-d6                                                | 13127-88-3       | 0.5         | %              | 104               |                   |                   |                   |                   |  |  |
| 2-Chlorophenol-D4                                        | 93951-73-6       | 0.5         | %              | 108               |                   |                   |                   |                   |  |  |
| 2.4.6-Tribromophenol                                     | 118-79-6         | 0.5         | %              | 72.1              |                   |                   |                   |                   |  |  |
| EP075T: Base/Neutral Extractable Surr                    | rogates          |             |                |                   |                   |                   |                   |                   |  |  |
| Nitrobenzene-D5                                          | 4165-60-0        | 0.5         | %              | 103               |                   |                   |                   |                   |  |  |
| 1.2-Dichlorobenzene-D4                                   | 2199-69-1        | 0.5         | %              | 99.8              |                   |                   |                   |                   |  |  |
| 2-Fluorobiphenyl                                         | 321-60-8         | 0.5         | %              | 96.1              |                   |                   |                   |                   |  |  |
| Anthracene-d10                                           | 1719-06-8        | 0.5         | %              | 104               |                   |                   |                   |                   |  |  |
| 4-Terphenyl-d14                                          | 1718-51-0        | 0.5         | %              | 113               |                   |                   |                   |                   |  |  |
| EP080S: TPH(V)/BTEX Surrogates                           |                  |             |                |                   |                   |                   |                   |                   |  |  |
| 1.2-Dichloroethane-D4                                    | 17060-07-0       | 0.2         | %              |                   | 95.7              | 73.2              | 99.3              | 99.4              |  |  |
| Toluene-D8                                               | 2037-26-5        | 0.2         | %              |                   | 111               | 95.3              | 104               | 108               |  |  |
| 4-Bromofluorobenzene                                     | 460-00-4         | 0.2         | %              |                   | 109               | 96.3              | 117               | 116               |  |  |
| EP080-SD: TPH(V)/BTEX Surrogates                         |                  |             |                |                   |                   |                   |                   |                   |  |  |
| 1.2-Dichloroethane-D4                                    | 17060-07-0       | 0.2         | %              | 107               |                   |                   |                   |                   |  |  |
| Toluene-D8                                               | 2037-26-5        | 0.2         | %              | 112               |                   |                   |                   |                   |  |  |
| 4-Bromofluorobenzene                                     | 460-00-4         | 0.2         | %              | 120               |                   |                   |                   |                   |  |  |
| EP090S: Organotin Surrogate                              |                  |             |                |                   |                   |                   |                   |                   |  |  |
| Tripropyltin                                             |                  | 0.5         | %              | 89.9              |                   |                   |                   |                   |  |  |
|                                                          |                  |             |                |                   |                   |                   |                   |                   |  |  |

| Page       | : 32 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)           | Client sample ID |            |                 | VC08_1.0-1.5      | VC13_0.0-0.1      | VC14_1.0-1.1      | TS2               | TB2               |
|----------------------------------------------|------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cli              | ent sampli | ing date / time | 31-Oct-2019 20:45 | 31-Oct-2019 21:45 | 31-Oct-2019 22:15 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                     | CAS Number       | LOR        | Unit            | ES1936183-040     | ES1936183-041     | ES1936183-052     | ES1936183-063     | ES1936183-064     |
|                                              |                  |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP130S: Organophosphorus Pesticide Surrogate |                  |            |                 |                   |                   |                   |                   |                   |
| DEF                                          | 78-48-8          | 10         | %               | 55.3              |                   |                   |                   |                   |
| EP131S: OC Pesticide Surrogate               |                  |            |                 |                   |                   |                   |                   |                   |
| Dibromo-DDE                                  | 21655-73-2       | 0.50       | %               | 55.6              |                   |                   |                   |                   |
| EP131T: PCB Surrogate                        |                  |            |                 |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                           | 2051-24-3        | 0.5        | %               | 56.9              |                   |                   |                   |                   |
| EP132T: Base/Neutral Extractable Surrogates  |                  |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                             | 321-60-8         | 10         | %               | 83.3              |                   |                   |                   |                   |
| Anthracene-d10                               | 1719-06-8        | 10         | %               | 91.2              |                   |                   |                   |                   |
| 4-Terphenyl-d14                              | 1718-51-0        | 10         | %               | 86.4              |                   |                   |                   |                   |

| Page       | : 33 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID  |              |                | Trip Spike control | <br> | <br> |
|------------------------------------|-------------------|--------------|----------------|--------------------|------|------|
|                                    | Cli               | ient samplii | ng date / time | 31-Oct-2019 00:00  | <br> | <br> |
| Compound                           | CAS Number        | LOR          | Unit           | ES1936183-065      | <br> | <br> |
|                                    |                   |              |                | Result             | <br> | <br> |
| EP080: BTEXN                       |                   |              |                |                    |      |      |
| Benzene                            | 71-43-2           | 0.2          | mg/kg          | <0.2               | <br> | <br> |
| Toluene                            | 108-88-3          | 0.5          | mg/kg          | 10.9               | <br> | <br> |
| Ethylbenzene                       | 100-41-4          | 0.5          | mg/kg          | 1.9                | <br> | <br> |
| meta- & para-Xylene                | 108-38-3 106-42-3 | 0.5          | mg/kg          | 10.4               | <br> | <br> |
| ortho-Xylene                       | 95-47-6           | 0.5          | mg/kg          | 4.5                | <br> | <br> |
| ^ Total Xylenes                    |                   | 0.5          | mg/kg          | 14.9               | <br> | <br> |
| ^ Sum of BTEX                      |                   | 0.2          | mg/kg          | 27.7               | <br> | <br> |
| Naphthalene                        | 91-20-3           | 1            | mg/kg          | <1                 | <br> | <br> |
| EP080S: TPH(V)/BTEX Surrogates     |                   |              |                |                    |      |      |
| 1.2-Dichloroethane-D4              | 17060-07-0        | 0.2          | %              | 102                | <br> | <br> |
| Toluene-D8                         | 2037-26-5         | 0.2          | %              | 109                | <br> | <br> |
| 4-Bromofluorobenzene               | 460-00-4          | 0.2          | %              | 115                | <br> | <br> |

| Page       | : 34 of 37    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: WATER<br>(Matrix: WATER)    | Client sample ID  |               |                | RIN_02            | <br> | <br> |
|-----------------------------------------|-------------------|---------------|----------------|-------------------|------|------|
|                                         | Cl                | lient samplii | ng date / time | 31-Oct-2019 00:00 | <br> | <br> |
| Compound                                | CAS Number        | LOR           | Unit           | ES1936183-062     | <br> | <br> |
|                                         |                   |               |                | Result            | <br> | <br> |
| EG020T: Total Metals by ICP-MS          |                   |               |                |                   |      |      |
| Arsenic                                 | 7440-38-2         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Cadmium                                 | 7440-43-9         | 0.0001        | mg/L           | <0.0001           | <br> | <br> |
| Chromium                                | 7440-47-3         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Copper                                  | 7440-50-8         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Lead                                    | 7439-92-1         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Nickel                                  | 7440-02-0         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Zinc                                    | 7440-66-6         | 0.005         | mg/L           | <0.005            | <br> | <br> |
| EG035T: Total Recoverable Mercury       | by FIMS           |               |                |                   |      |      |
| Mercury                                 | 7439-97-6         | 0.0001        | mg/L           | <0.0001           | <br> | <br> |
| EP075(SIM)B: Polynuclear Aromatic       | Hydrocarbons      |               |                |                   |      |      |
| Naphthalene                             | 91-20-3           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Acenaphthylene                          | 208-96-8          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Acenaphthene                            | 83-32-9           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Fluorene                                | 86-73-7           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Phenanthrene                            | 85-01-8           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Anthracene                              | 120-12-7          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Fluoranthene                            | 206-44-0          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Pyrene                                  | 129-00-0          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benz(a)anthracene                       | 56-55-3           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Chrysene                                | 218-01-9          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benzo(b+j)fluoranthene                  | 205-99-2 205-82-3 | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benzo(k)fluoranthene                    | 207-08-9          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benzo(a)pyrene                          | 50-32-8           | 0.5           | µg/L           | <0.5              | <br> | <br> |
| Indeno(1.2.3.cd)pyrene                  | 193-39-5          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Dibenz(a.h)anthracene                   | 53-70-3           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benzo(g.h.i)perylene                    | 191-24-2          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| ^ Sum of polycyclic aromatic hydrocarbo | ons               | 0.5           | µg/L           | <0.5              | <br> | <br> |
| ^ Benzo(a)pyrene TEQ (zero)             |                   | 0.5           | µg/L           | <0.5              | <br> | <br> |
| EP080/071: Total Petroleum Hydroca      | rbons             |               |                |                   |      |      |
| C6 - C9 Fraction                        |                   | 20            | µg/L           | <20               | <br> | <br> |
| C10 - C14 Fraction                      |                   | 50            | µg/L           | <50               | <br> | <br> |
| C15 - C28 Fraction                      |                   | 100           | µg/L           | <100              | <br> | <br> |
| C29 - C36 Fraction                      |                   | 50            | µg/L           | <50               | <br> | <br> |
| ^ C10 - C36 Fraction (sum)              |                   | 50            | µg/L           | <50               | <br> | <br> |
| Page       | : 35 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: WATER<br>(Matrix: WATER)      | Client sample ID  |                             | RIN_02 | <br>              | <br> |      |
|-------------------------------------------|-------------------|-----------------------------|--------|-------------------|------|------|
|                                           | Cli               | Client sampling date / time |        | 31-Oct-2019 00:00 | <br> | <br> |
| Compound                                  | CAS Number        | LOR                         | Unit   | ES1936183-062     | <br> | <br> |
|                                           |                   |                             |        | Result            | <br> | <br> |
| EP080/071: Total Recoverable Hydroca      | arbons - NEPM 201 | 3 Fractio                   | าร     |                   |      |      |
| C6 - C10 Fraction                         | C6_C10            | 20                          | µg/L   | <20               | <br> | <br> |
| <sup>^</sup> C6 - C10 Fraction minus BTEX | C6_C10-BTEX       | 20                          | µg/L   | <20               | <br> | <br> |
| (F1)                                      |                   |                             |        |                   |      |      |
| >C10 - C16 Fraction                       |                   | 100                         | µg/L   | <100              | <br> | <br> |
| >C16 - C34 Fraction                       |                   | 100                         | µg/L   | <100              | <br> | <br> |
| >C34 - C40 Fraction                       |                   | 100                         | µg/L   | <100              | <br> | <br> |
| ^ >C10 - C40 Fraction (sum)               |                   | 100                         | µg/L   | <100              | <br> | <br> |
| ^ >C10 - C16 Fraction minus Naphthalene   |                   | 100                         | µg/L   | <100              | <br> | <br> |
| (F2)                                      |                   |                             |        |                   |      |      |
| EP080: BTEXN                              |                   |                             |        |                   |      |      |
| Benzene                                   | 71-43-2           | 1                           | µg/L   | <1                | <br> | <br> |
| Toluene                                   | 108-88-3          | 2                           | µg/L   | <2                | <br> | <br> |
| Ethylbenzene                              | 100-41-4          | 2                           | µg/L   | <2                | <br> | <br> |
| meta- & para-Xylene                       | 108-38-3 106-42-3 | 2                           | µg/L   | <2                | <br> | <br> |
| ortho-Xylene                              | 95-47-6           | 2                           | µg/L   | <2                | <br> | <br> |
| ^ Total Xylenes                           |                   | 2                           | µg/L   | <2                | <br> | <br> |
| ^ Sum of BTEX                             |                   | 1                           | µg/L   | <1                | <br> | <br> |
| Naphthalene                               | 91-20-3           | 5                           | µg/L   | <5                | <br> | <br> |
| EP075(SIM)S: Phenolic Compound Su         | rrogates          |                             |        |                   |      |      |
| Phenol-d6                                 | 13127-88-3        | 1.0                         | %      | 19.2              | <br> | <br> |
| 2-Chlorophenol-D4                         | 93951-73-6        | 1.0                         | %      | 54.7              | <br> | <br> |
| 2.4.6-Tribromophenol                      | 118-79-6          | 1.0                         | %      | 47.8              | <br> | <br> |
| EP075(SIM)T: PAH Surrogates               |                   |                             |        |                   |      |      |
| 2-Fluorobiphenyl                          | 321-60-8          | 1.0                         | %      | 94.4              | <br> | <br> |
| Anthracene-d10                            | 1719-06-8         | 1.0                         | %      | 87.7              | <br> | <br> |
| 4-Terphenyl-d14                           | 1718-51-0         | 1.0                         | %      | 75.7              | <br> | <br> |
| EP080S: TPH(V)/BTEX Surrogates            |                   |                             |        |                   |      |      |
| 1.2-Dichloroethane-D4                     | 17060-07-0        | 2                           | %      | 125               | <br> | <br> |
| Toluene-D8                                | 2037-26-5         | 2                           | %      | 110               | <br> | <br> |
| 4-Bromofluorobenzene                      | 460-00-4          | 2                           | %      | 105               | <br> | <br> |

| Page       | : 36 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



### Surrogate Control Limits

| Sub-Matrix: SOIL                             |            | Recovery | Limits (%) |
|----------------------------------------------|------------|----------|------------|
| Compound                                     | CAS Number | Low      | High       |
| EP066S: PCB Surrogate                        |            |          |            |
| Decachlorobiphenyl                           | 2051-24-3  | 39       | 149        |
| EP068S: Organochlorine Pesticide Surrogate   |            |          |            |
| Dibromo-DDE                                  | 21655-73-2 | 49       | 147        |
| EP068T: Organophosphorus Pesticide Surrogate |            |          |            |
| DEF                                          | 78-48-8    | 35       | 143        |
| EP074S: VOC Surrogates                       |            |          |            |
| 1.2-Dichloroethane-D4                        | 17060-07-0 | 64       | 130        |
| Toluene-D8                                   | 2037-26-5  | 66       | 136        |
| 4-Bromofluorobenzene                         | 460-00-4   | 60       | 122        |
| EP075(SIM)S: Phenolic Compound Surrogates    |            |          |            |
| Phenol-d6                                    | 13127-88-3 | 63       | 123        |
| 2-Chlorophenol-D4                            | 93951-73-6 | 66       | 122        |
| 2.4.6-Tribromophenol                         | 118-79-6   | 40       | 138        |
| EP075(SIM)T: PAH Surrogates                  |            |          |            |
| 2-Fluorobiphenyl                             | 321-60-8   | 70       | 122        |
| Anthracene-d10                               | 1719-06-8  | 66       | 128        |
| 4-Terphenyl-d14                              | 1718-51-0  | 65       | 129        |
| EP075S: Acid Extractable Surrogates          |            |          |            |
| 2-Fluorophenol                               | 367-12-4   | 29       | 149        |
| Phenol-d6                                    | 13127-88-3 | 32       | 128        |
| 2-Chlorophenol-D4                            | 93951-73-6 | 32       | 128        |
| 2.4.6-Tribromophenol                         | 118-79-6   | 13       | 121        |
| EP075T: Base/Neutral Extractable Surrogates  |            |          |            |
| Nitrobenzene-D5                              | 4165-60-0  | 33       | 125        |
| 1.2-Dichlorobenzene-D4                       | 2199-69-1  | 34       | 108        |
| 2-Fluorobiphenyl                             | 321-60-8   | 35       | 121        |
| Anthracene-d10                               | 1719-06-8  | 35       | 123        |
| 4-Terphenyl-d14                              | 1718-51-0  | 33       | 125        |
| EP080S: TPH(V)/BTEX Surrogates               |            |          |            |
| 1.2-Dichloroethane-D4                        | 17060-07-0 | 73       | 133        |
| Toluene-D8                                   | 2037-26-5  | 74       | 132        |
| 4-Bromofluorobenzene                         | 460-00-4   | 72       | 130        |
| EP080-SD: TPH(V)/BTEX Surrogates             |            |          |            |
| 1.2-Dichloroethane-D4                        | 17060-07-0 | 67       | 137        |
| Toluene-D8                                   | 2037-26-5  | 74       | 134        |
| 4-Bromofluorobenzene                         | 460-00-4   | 73       | 137        |
| EP090S: Organotin Surrogate                  |            |          |            |

| Page       | : 37 of 37    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| ub-Matrix: SOIL                             |            | Recovery Limits (%) |            |  |  |
|---------------------------------------------|------------|---------------------|------------|--|--|
| Compound                                    | CAS Number | Low                 | High       |  |  |
| EP090S: Organotin Surrogate - Continued     |            |                     |            |  |  |
| Tripropyltin                                |            | 35                  | 130        |  |  |
| EP130S: Organophosphorus Pesticide Surrog   | ate        |                     |            |  |  |
| DEF                                         | 78-48-8    | 14                  | 102        |  |  |
| EP131S: OC Pesticide Surrogate              |            |                     |            |  |  |
| Dibromo-DDE                                 | 21655-73-2 | 10                  | 119        |  |  |
| EP131T: PCB Surrogate                       |            |                     |            |  |  |
| Decachlorobiphenyl                          | 2051-24-3  | 10                  | 106        |  |  |
| EP132T: Base/Neutral Extractable Surrogates |            |                     |            |  |  |
| 2-Fluorobiphenyl                            | 321-60-8   | 55                  | 135        |  |  |
| Anthracene-d10                              | 1719-06-8  | 70                  | 136        |  |  |
| 4-Terphenyl-d14                             | 1718-51-0  | 57                  | 127        |  |  |
| Sub-Matrix: WATER                           |            | Recovery            | Limits (%) |  |  |
| Compound                                    | CAS Number | Low                 | High       |  |  |
| EP075(SIM)S: Phenolic Compound Surrogates   | ;          |                     |            |  |  |
| Phenol-d6                                   | 13127-88-3 | 10                  | 44         |  |  |
| 2-Chlorophenol-D4                           | 93951-73-6 | 14                  | 94         |  |  |
| 2.4.6-Tribromophenol                        | 118-79-6   | 17                  | 125        |  |  |
| EP075(SIM)T: PAH Surrogates                 |            |                     |            |  |  |
| 2-Fluorobiphenyl                            | 321-60-8   | 20                  | 104        |  |  |
| Anthracene-d10                              | 1719-06-8  | 27                  | 113        |  |  |
| 4-Terphenyl-d14                             | 1718-51-0  | 32                  | 112        |  |  |
| EP080S: TPH(V)/BTEX Surrogates              |            |                     |            |  |  |
| 1.2-Dichloroethane-D4                       | 17060-07-0 | 71                  | 137        |  |  |
| Toluene-D8                                  | 2037-26-5  | 79                  | 131        |  |  |
| 4-Bromofluorobenzene                        | 460-00-4   | 70                  | 128        |  |  |



| QA/QC Compliance Assessment to assist with Quality Review |                    |                         |                                 |  |  |  |
|-----------------------------------------------------------|--------------------|-------------------------|---------------------------------|--|--|--|
| Work Order                                                | : ES1936183        | Page                    | : 1 of 17                       |  |  |  |
| Client                                                    | : GHD PTY LTD      | Laboratory              | : Environmental Division Sydney |  |  |  |
| Contact                                                   | : MS CARMEN YI     | Telephone               | : +61-2-8784 8555               |  |  |  |
| Project                                                   | : 12517046         | Date Samples Received   | : 01-Nov-2019                   |  |  |  |
| Site                                                      | :                  | Issue Date              | : 20-Nov-2019                   |  |  |  |
| Sampler                                                   | : SARAH ECCLESHALL | No. of samples received | : 66                            |  |  |  |
| Order number                                              | :                  | No. of samples analysed | : 27                            |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

| Page       | : 2 of 17     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                          | Laboratory Sample ID | Client Sample ID | Analyte                | CAS Number        | Data       | Limits    | Comment                               |
|----------------------------------------------|----------------------|------------------|------------------------|-------------------|------------|-----------|---------------------------------------|
| Matrix Spike (MS) Recoveries                 |                      |                  |                        |                   |            |           |                                       |
| EG048: Hexavalent Chromium (Alkaline Digest) | ES1935800022         | Anonymous        | Hexavalent Chromium    | 18540-29-9        | 2.00 %     | 70.0-130% | Recovery less than lower data quality |
|                                              |                      |                  |                        |                   |            |           | objective                             |
| EG048: Hexavalent Chromium (Alkaline Digest) | ES1935800022         | Anonymous        | Hexavalent Chromium    | 18540-29-9        | 2.00 %     | 70.0-130% | Recovery less than lower data quality |
|                                              |                      |                  |                        |                   |            |           | objective                             |
| EP090: Organotin Compounds                   | EM1919013022         | Anonymous        | Tributyltin            | 56573-85-4        | 866 %      | 20.0-130% | Recovery greater than upper data      |
|                                              |                      |                  |                        |                   |            |           | quality objective                     |
| EP132B: Polynuclear Aromatic Hydrocarbons    | ES1936183029         | VC12_0.0-0.5     | Fluoranthene           | 206-44-0          | Not        |           | MS recovery not determined,           |
|                                              |                      |                  |                        |                   | Determined |           | background level greater than or      |
|                                              |                      |                  |                        |                   |            |           | equal to 4x spike level.              |
| EP132B: Polynuclear Aromatic Hydrocarbons    | ES1936183029         | VC12_0.0-0.5     | Pyrene                 | 129-00-0          | Not        |           | MS recovery not determined,           |
|                                              |                      |                  |                        |                   | Determined |           | background level greater than or      |
|                                              |                      |                  |                        |                   |            |           | equal to 4x spike level.              |
| EP132B: Polynuclear Aromatic Hydrocarbons    | ES1936183029         | VC12_0.0-0.5     | Benz(a)anthracene      | 56-55-3           | Not        |           | MS recovery not determined,           |
|                                              |                      |                  |                        |                   | Determined |           | background level greater than or      |
|                                              |                      |                  |                        |                   |            |           | equal to 4x spike level.              |
| EP132B: Polynuclear Aromatic Hydrocarbons    | ES1936183029         | VC12_0.0-0.5     | Benzo(b+j)fluoranthene | 205-99-2 205-82-3 | Not        |           | MS recovery not determined,           |
|                                              |                      |                  |                        |                   | Determined |           | background level greater than or      |
|                                              |                      |                  |                        |                   |            |           | equal to 4x spike level.              |
| EP132B: Polynuclear Aromatic Hydrocarbons    | ES1936183029         | VC12_0.0-0.5     | Benzo(a)pyrene         | 50-32-8           | Not        |           | MS recovery not determined,           |
|                                              |                      |                  |                        |                   | Determined |           | background level greater than or      |
|                                              |                      |                  |                        |                   |            |           | equal to 4x spike level.              |
| EP132B: Polynuclear Aromatic Hydrocarbons    | ES1936183029         | VC12_0.0-0.5     | Benzo(g.h.i)perylene   | 191-24-2          | Not        |           | MS recovery not determined,           |
|                                              |                      |                  |                        |                   | Determined |           | background level greater than or      |
|                                              |                      |                  |                        |                   |            |           | equal to 4x spike level.              |
| EP132B: Polynuclear Aromatic Hydrocarbons    | ES1936183029         | VC12_0.0-0.5     | Indeno(1.2.3.cd)pyrene | 193-39-5          | Not        |           | MS recovery not determined,           |
|                                              |                      |                  |                        |                   | Determined |           | background level greater than or      |
|                                              |                      |                  |                        |                   |            |           | equal to 4x spike level.              |

### **Outliers : Frequency of Quality Control Samples**

| Matrix: SOIL                |    |         |        |          |                                |
|-----------------------------|----|---------|--------|----------|--------------------------------|
| Quality Control Sample Type | Co | Count   |        | e (%)    | Quality Control Specification  |
| Method                      | QC | Regular | Actual | Expected |                                |
| Laboratory Duplicates (DUP) |    |         |        |          |                                |
| Moisture Content            | 2  | 21      | 9.52   | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| Matrix: WATER               |    |         |        |          |                                |
| Quality Control Sample Type | Co | ount    | Rate   | e (%)    | Quality Control Specification  |
| Method                      | QC | Regular | Actual | Expected |                                |
| Laboratory Duplicates (DUP) |    |         |        |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0  | 3       | 0.00   | 10.00    | NEPM 2013 B3 & ALS QC Standard |
|                             |    |         |        |          | 1                              |

| Page       | : 3 of 17     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



#### Matrix: WATER

Matrix: SOIL

| Quality Control Sample Type             | Co | unt     | Rate   | e (%)    | Quality Control Specification  |
|-----------------------------------------|----|---------|--------|----------|--------------------------------|
| Method                                  | QC | Regular | Actual | Expected |                                |
| Laboratory Duplicates (DUP) - Continued |    |         |        |          |                                |
| TRH - Semivolatile Fraction             | 0  | 5       | 0.00   | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)                      |    |         |        |          |                                |
| PAH/Phenols (GC/MS - SIM)               | 0  | 3       | 0.00   | 5.00     | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction             | 0  | 5       | 0.00   | 5.00     | NEPM 2013 B3 & ALS QC Standard |

#### Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: \* = Holding time breach ;  $\checkmark$  = Within holding time.

|                                                   |               |                                      |                |                    |            |               | ,                |              |
|---------------------------------------------------|---------------|--------------------------------------|----------------|--------------------|------------|---------------|------------------|--------------|
| Method                                            |               | Sample Date Extraction / Preparation |                | Analysis           |            |               |                  |              |
| Container / Client Sample ID(s)                   |               |                                      | Date extracted | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation   |
| EA037: Ass Field Screening Analysis               |               |                                      |                |                    |            |               |                  |              |
| Snap Lock Bag - frozen (EA037)                    |               |                                      |                |                    |            |               |                  |              |
| VC13_0.5-0.6,                                     | VC13_1.0-1.1  | 30-Oct-2019                          | 06-Nov-2019    | 27-Apr-2020        | 1          | 07-Nov-2019   | 27-Apr-2020      | ✓            |
| Snap Lock Bag - frozen (EA037)                    |               |                                      |                |                    |            |               |                  |              |
| VC06_0.0-0.1,                                     | VC06_0.5-0.6, | 31-Oct-2019                          | 06-Nov-2019    | 28-Apr-2020        | 1          | 07-Nov-2019   | 28-Apr-2020      | ✓            |
| VC12_0.0-0.1,                                     | VC12_0.5-0.6, |                                      |                |                    |            |               |                  |              |
| VC12_1.0-1.1,                                     | VC08_0.0-0.1, |                                      |                |                    |            |               |                  |              |
| VC08_0.5-0.6,                                     | VC08_1.0-1.1, |                                      |                |                    |            |               |                  |              |
| VC08_1.5-1.6,                                     | VC13_0.0-0.1, |                                      |                |                    |            |               |                  |              |
| VC14_0.0-0.1,                                     | VC14_0.5-0.6, |                                      |                |                    |            |               |                  |              |
| VC14_1.0-1.1,                                     | VC14_1.3-1.4  |                                      |                |                    |            |               |                  |              |
| EA055: Moisture Content (Dried @ 105-110°C)       |               |                                      |                |                    |            |               |                  |              |
| Soil Glass Jar - Unpreserved (EA055)              |               |                                      |                |                    |            |               |                  |              |
| VC06_0.0-0.1,                                     | VC12_1.0-1.1, | 31-Oct-2019                          |                |                    |            | 05-Nov-2019   | 14-Nov-2019      | ✓            |
| VC12_0.0-0.5,                                     | VC0S_0.0-0.1, |                                      |                |                    |            |               |                  |              |
| VC08_1.0-1.5,                                     | VC13_0.0-0.1, |                                      |                |                    |            |               |                  |              |
| VC14_1.0-1.1                                      |               |                                      |                |                    |            |               |                  |              |
| EA150: Particle Sizing                            |               |                                      |                |                    |            |               |                  |              |
| Snap Lock Bag (EA150H)                            |               |                                      |                |                    |            |               |                  |              |
| VC12_0.0-0.5,                                     | VC08_1.0-1.5  | 31-Oct-2019                          |                |                    |            | 11-Nov-2019   | 28-Apr-2020      | $\checkmark$ |
| EA150: Soil Classification based on Particle Size |               |                                      |                |                    |            |               |                  |              |
| Snap Lock Bag (EA150H)                            |               |                                      |                |                    |            |               |                  |              |
| VC12_0.0-0.5,                                     | VC08_1.0-1.5  | 31-Oct-2019                          |                |                    |            | 11-Nov-2019   | 28-Apr-2020      | $\checkmark$ |

| Page       | : 4 of 17     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                                  |                     |             |                          |                    | Evaluation | n: × = Holding time | breach ; ✓ = With | in holding time. |
|-----------------------------------------------|---------------------|-------------|--------------------------|--------------------|------------|---------------------|-------------------|------------------|
| Method                                        |                     | Sample Date | Extraction / Preparation |                    |            | Analysis            |                   |                  |
| Container / Client Sample ID(s)               |                     |             | Date extracted           | Due for extraction | Evaluation | Date analysed       | Due for analysis  | Evaluation       |
| EG005(ED093)-SD: Total Metals in Sediments by | y ICP-AES           |             |                          |                    |            |                     |                   |                  |
| Soil Glass Jar - Unpreserved (EG005-SD)       |                     |             |                          |                    | _          |                     |                   | _                |
| VC12_0.0-0.5,                                 | VC08_1.0-1.5        | 31-Oct-2019 | 08-Nov-2019              | 28-Apr-2020        | ~          | 08-Nov-2019         | 28-Apr-2020       | ✓                |
| EG005(ED093)T: Total Metals by ICP-AES        |                     |             | 1                        |                    |            |                     |                   |                  |
| Soil Glass Jar - Unpreserved (EG005T)         |                     | 24.0-+ 2040 | 00 Nov 0040              | 29 Apr 2020        |            | 00 Nov 0040         | 29 Apr 2020       |                  |
| VC06_0.0-0.1,                                 | VC12_1.0-1.1,       | 31-Oct-2019 | 08-NOV-2019              | 20-Api-2020        | ~          | 08-NOV-2019         | 20-Api-2020       | ✓                |
| VC0S_0.0-0.1,                                 | VC13_0.0-0.1,       |             |                          |                    |            |                     |                   |                  |
| VC14_1.0-1.1                                  |                     |             |                          |                    |            |                     |                   |                  |
| EG020-SD: Total Metals in Sediments by ICPMS  |                     |             |                          |                    |            | 1                   | I                 |                  |
| Soil Glass Jar - Unpreserved (EG020-SD)       |                     | 31-Oct-2019 | 08-Nov-2019              | 28-Apr-2020        |            | 08-Nov-2019         | 28-Apr-2020       |                  |
| VC12_0.0-0.3,                                 | VC06_1.0-1.5        | 31-000-2013 | 00-1404-2013             | 20-Api-2020        | ~          | 00-1107-2013        | 20-Api-2020       | <b>v</b>         |
| EG035T: Total Recoverable Mercury by FIMS     |                     |             |                          |                    |            | 1                   |                   |                  |
| Soli Glass Jar - Unpreserved (EG0351)         | VC12 1011           | 31-Oct-2019 | 08-Nov-2019              | 28-Nov-2019        |            | 11-Nov-2019         | 28-Nov-2019       |                  |
| VC12 0.0.05                                   | VC12_1.0-1.1,       | 01-000-2010 | 00-1107-2013             | 201101 2010        | ~          | 11-1101-2013        | 201101 2010       | •                |
| VC12_0.0-0.3,                                 | VC13_0.0_0.1        |             |                          |                    |            |                     |                   |                  |
| VC14_1_0-1_1                                  | VC13_0.0-0.1,       |             |                          |                    |            |                     |                   |                  |
| V014_1.0-1.1                                  |                     |             |                          |                    |            |                     |                   |                  |
| EG048: Hexavalent Chromium (Alkaline Digest)  |                     |             |                          |                    |            |                     |                   |                  |
| VC06_0_0_0_1                                  | VC12 10-11          | 31-Oct-2019 | 06-Nov-2019              | 28-Nov-2019        |            | 06-Nov-2019         | 13-Nov-2019       |                  |
| VC0S_0.0_01                                   | VC13_0.0-0_1        |             |                          |                    |            |                     |                   | •                |
| VC14 1 0-1 1                                  | vo to_0.0 0.1,      |             |                          |                    |            |                     |                   |                  |
| EK026SEL Total CN by Segmented Elevy Analys   |                     |             |                          |                    |            | 1                   |                   |                  |
| Soil Glass Jar - Unpreserved (EK026SE)        | ei                  |             |                          |                    |            |                     |                   |                  |
| VC06 0.0-0.1.                                 | VC12 1.0-1.1.       | 31-Oct-2019 | 05-Nov-2019              | 14-Nov-2019        | 1          | 06-Nov-2019         | 19-Nov-2019       | 1                |
| VC12 0.0-0.5.                                 | VC0S_0.0-0.1.       |             |                          |                    | _          |                     |                   |                  |
| VC08 1.0-1.5.                                 | VC13 0.0-0.1.       |             |                          |                    |            |                     |                   |                  |
| VC14 1.0-1.1                                  |                     |             |                          |                    |            |                     |                   |                  |
| EK028SF: Weak Acid Dissociable CN by Segme    | ented Flow Analyser |             |                          |                    |            |                     |                   |                  |
| Soil Glass Jar - Unpreserved (EK028SF)        |                     |             |                          |                    |            |                     |                   |                  |
| VC06_0.0-0.1,                                 | VC12_1.0-1.1,       | 31-Oct-2019 | 05-Nov-2019              | 14-Nov-2019        | 1          | 06-Nov-2019         | 19-Nov-2019       | ✓                |
| VC0S_0.0-0.1,                                 | VC13_0.0-0.1,       |             |                          |                    |            |                     |                   |                  |
| VC14_1.0-1.1                                  |                     |             |                          |                    |            |                     |                   |                  |
| EK040T: Fluoride Total                        |                     |             |                          |                    |            |                     |                   |                  |
| Snap Lock Bag (EK040T)                        |                     |             |                          |                    |            |                     |                   |                  |
| VC06_0.0-0.1,                                 | VC12_1.0-1.1,       | 31-Oct-2019 | 05-Nov-2019              | 28-Nov-2019        | 1          | 08-Nov-2019         | 28-Nov-2019       | ✓                |
| VC0S_0.0-0.1,                                 | VC13_0.0-0.1,       |             |                          |                    |            |                     |                   |                  |
| VC14 1.0-1.1                                  |                     |             |                          |                    |            |                     |                   |                  |

| Page       | : 5 of 17     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                                                                               |                                                |  |             |                          |                    | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|--------------------------------------------------------------------------------------------|------------------------------------------------|--|-------------|--------------------------|--------------------|------------|--------------------|--------------------|----------------|
| Method                                                                                     |                                                |  | Sample Date | Extraction / Preparation |                    |            | Analysis           |                    |                |
| Container / Client Sample ID(s)                                                            |                                                |  |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP003: Total Organic Carbon (TOC) in Soil                                                  |                                                |  |             |                          |                    |            |                    |                    |                |
| Pulp Bag (EP003)<br>VC06_0.0-0.1,<br>VC12_0.0-0.5,<br>VC13_0.0-0.1,                        | VC12_1.0-1.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1 |  | 31-Oct-2019 | 08-Nov-2019              | 28-Nov-2019        | ~          | 08-Nov-2019        | 28-Nov-2019        | ~              |
| Pulp Bag (EP003)<br>VC08_1.0-1.5                                                           |                                                |  | 31-Oct-2019 | 11-Nov-2019              | 28-Nov-2019        | ~          | 11-Nov-2019        | 28-Nov-2019        | 1              |
| EP066: Polychlorinated Biphenyls (PCB)                                                     |                                                |  |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP066)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1     | VC12_1.0-1.1,<br>VC13_0.0-0.1,                 |  | 31-Oct-2019 | 06-Nov-2019              | 14-Nov-2019        | ~          | 08-Nov-2019        | 16-Dec-2019        | ~              |
| EP068A: Organochlorine Pesticides (OC)                                                     |                                                |  |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP068)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1     | VC12_1.0-1.1,<br>VC13_0.0-0.1,                 |  | 31-Oct-2019 | 06-Nov-2019              | 14-Nov-2019        | 1          | 08-Nov-2019        | 16-Dec-2019        | 1              |
| EP068B: Organophosphorus Pesticides (OP)                                                   |                                                |  |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP068)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1     | VC12_1.0-1.1,<br>VC13_0.0-0.1,                 |  | 31-Oct-2019 | 06-Nov-2019              | 14-Nov-2019        | 1          | 08-Nov-2019        | 16-Dec-2019        | ~              |
| EP071 SG: Total Recoverable Hydrocarbons - NE                                              | EPM 2013 Fractions - Silica gel cleanun        |  |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP071SG-S)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1 | VC12_1.0-1.1,<br>VC13_0.0-0.1,                 |  | 31-Oct-2019 | 06-Nov-2019              | 14-Nov-2019        | 1          | 08-Nov-2019        | 16-Dec-2019        | ~              |
| EP071 SG-S: Total Petroleum Hydrocarbons in S                                              | Soil - Silica gel cleanup                      |  |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP071SG-S)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1 | VC12_1.0-1.1,<br>VC13_0.0-0.1,                 |  | 31-Oct-2019 | 06-Nov-2019              | 14-Nov-2019        | 1          | 08-Nov-2019        | 16-Dec-2019        | ~              |
| EP074A: Monocyclic Aromatic Hydrocarbons                                                   |                                                |  |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP074)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1     | VC12_1.0-1.1,<br>VC13_0.0-0.1,                 |  | 31-Oct-2019 | 05-Nov-2019              | 07-Nov-2019        | ~          | 06-Nov-2019        | 07-Nov-2019        | ~              |
| EP074B: Oxygenated Compounds                                                               |                                                |  |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP074)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1     | VC12_1.0-1.1,<br>VC13_0.0-0.1,                 |  | 31-Oct-2019 | 05-Nov-2019              | 07-Nov-2019        | 1          | 06-Nov-2019        | 07-Nov-2019        | ~              |
|                                                                                            |                                                |  |             |                          |                    |            |                    |                    |                |

| Page       | : 6 of 17     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                                                                                |                                |             |                |                         | Evaluation | n: × = Holding time | breach ; ✓ = With | in holding time       |  |
|---------------------------------------------------------------------------------------------|--------------------------------|-------------|----------------|-------------------------|------------|---------------------|-------------------|-----------------------|--|
| Method                                                                                      |                                | Sample Date | E              | xtraction / Preparation |            | Analysis            |                   |                       |  |
| Container / Client Sample ID(s)                                                             |                                |             | Date extracted | Due for extraction      | Evaluation | Date analysed       | Due for analysis  | Evaluation            |  |
| EP074E: Halogenated Aliphatic Compounds                                                     |                                |             |                |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP074)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1      | VC12_1.0-1.1,<br>VC13_0.0-0.1, | 31-Oct-2019 | 05-Nov-2019    | 07-Nov-2019             | ~          | 06-Nov-2019         | 07-Nov-2019       | ~                     |  |
| EP074F: Halogenated Aromatic Compounds                                                      |                                |             |                |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP074)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1      | VC12_1.0-1.1,<br>VC13_0.0-0.1, | 31-Oct-2019 | 05-Nov-2019    | 07-Nov-2019             | 1          | 06-Nov-2019         | 07-Nov-2019       | ~                     |  |
| EP074G: Trihalomethanes                                                                     |                                |             |                |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP074)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1      | VC12_1.0-1.1,<br>VC13_0.0-0.1, | 31-Oct-2019 | 05-Nov-2019    | 07-Nov-2019             | 1          | 06-Nov-2019         | 07-Nov-2019       | ~                     |  |
| EP075(SIM)A: Phenolic Compounds                                                             |                                |             |                |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP075(SIM))<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1 | VC12_1.0-1.1,<br>VC13_0.0-0.1, | 31-Oct-2019 | 06-Nov-2019    | 14-Nov-2019             | 1          | 07-Nov-2019         | 16-Dec-2019       | ~                     |  |
| Soil Glass Jar - Unpreserved (EP075(SIM))<br>VC12_0.0-0.5,                                  | VC08_1.0-1.5                   | 31-Oct-2019 | 07-Nov-2019    | 14-Nov-2019             | 1          | 08-Nov-2019         | 17-Dec-2019       | 1                     |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocart                                                 | bons                           |             |                |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP075(SIM))<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1 | VC12_1.0-1.1,<br>VC13_0.0-0.1, | 31-Oct-2019 | 06-Nov-2019    | 14-Nov-2019             | ~          | 07-Nov-2019         | 16-Dec-2019       | ~                     |  |
| EP075A: Phenolic Compounds                                                                  |                                |             |                |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                       | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019    | 14-Nov-2019             | 1          | 08-Nov-2019         | 18-Dec-2019       | 1                     |  |
| EP075B: Polynuclear Aromatic Hydrocarbons                                                   |                                |             |                |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                       | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019    | 14-Nov-2019             | 1          | 08-Nov-2019         | 18-Dec-2019       | ~                     |  |
| EP075C: Phthalate Esters                                                                    |                                |             | 1              |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                       | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019    | 14-Nov-2019             | 1          | 08-Nov-2019         | 18-Dec-2019       | ~                     |  |
| EP075D: Nitrosamines                                                                        |                                |             | I              |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                       | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019    | 14-Nov-2019             | 1          | 08-Nov-2019         | 18-Dec-2019       | ~                     |  |
| EP075E: Nitroaromatics and Ketones                                                          |                                |             |                |                         |            |                     |                   |                       |  |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                       | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019    | 14-Nov-2019             | ~          | 08-Nov-2019         | 18-Dec-2019       | <ul> <li>✓</li> </ul> |  |

| Page       | : 7 of 17     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                                                                           |                                |             |                          |                    | Evaluation | i: × = Holding time | breach ; ✓ = Withi | n holding time | a. |
|----------------------------------------------------------------------------------------|--------------------------------|-------------|--------------------------|--------------------|------------|---------------------|--------------------|----------------|----|
| Method                                                                                 |                                |             | Extraction / Preparation |                    |            |                     |                    |                |    |
| Container / Client Sample ID(s)                                                        |                                |             | Date extracted           | Due for extraction | Evaluation | Date analysed       | Due for analysis   | Evaluation     |    |
| EP075F: Haloethers                                                                     |                                |             |                          |                    |            |                     |                    |                |    |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                  | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019              | 14-Nov-2019        | 1          | 08-Nov-2019         | 18-Dec-2019        | ~              |    |
| EP075G: Chlorinated Hydrocarbons                                                       |                                |             |                          |                    |            |                     |                    |                |    |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                  | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019              | 14-Nov-2019        | ~          | 08-Nov-2019         | 18-Dec-2019        | ✓              |    |
| EP075H: Anilines and Benzidines                                                        |                                |             |                          |                    |            |                     |                    |                |    |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                  | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019              | 14-Nov-2019        | 1          | 08-Nov-2019         | 18-Dec-2019        | ~              |    |
| EP075I: Organochlorine Pesticides                                                      |                                |             |                          |                    |            |                     |                    |                |    |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                  | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019              | 14-Nov-2019        | 1          | 08-Nov-2019         | 18-Dec-2019        | 1              |    |
| EP075J: Organophosphorus Pesticides                                                    |                                |             |                          |                    |            |                     |                    |                |    |
| Soil Glass Jar - Unpreserved (EP075)<br>VC12_0.0-0.5,                                  | VC08_1.0-1.5                   | 31-Oct-2019 | 08-Nov-2019              | 14-Nov-2019        | 1          | 08-Nov-2019         | 18-Dec-2019        | 1              |    |
| EP080/071: Total Petroleum Hydrocarbons                                                |                                |             |                          |                    |            |                     |                    |                |    |
| Soil Glass Jar - Unpreserved (EP080)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14 1.0-1.1 | VC12_1.0-1.1,<br>VC13_0.0-0.1, | 31-Oct-2019 | 05-Nov-2019              | 14-Nov-2019        | ✓          | 06-Nov-2019         | 14-Nov-2019        | ~              |    |
| Soil Glass Jar - Unpreserved (EP080)<br>TB2                                            |                                | 31-Oct-2019 | 07-Nov-2019              | 14-Nov-2019        | 1          | 09-Nov-2019         | 14-Nov-2019        | 1              | -  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM                                       | 2013 Fractions                 |             |                          |                    |            |                     |                    |                |    |
| Soil Glass Jar - Unpreserved (EP080)<br>VC06_0.0-0.1,<br>VC0S_0.0-0.1,<br>VC14_1.0-1.1 | VC12_1.0-1.1,<br>VC13_0.0-0.1, | 31-Oct-2019 | 05-Nov-2019              | 14-Nov-2019        | 1          | 06-Nov-2019         | 14-Nov-2019        | ~              |    |
| Soil Glass Jar - Unpreserved (EP071-SD)<br>VC12_0.0-0.5,                               | VC08_1.0-1.5                   | 31-Oct-2019 | 06-Nov-2019              | 14-Nov-2019        | 1          | 11-Nov-2019         | 16-Dec-2019        | ~              |    |
| Soil Glass Jar - Unpreserved (EP080)<br>TB2                                            |                                | 31-Oct-2019 | 07-Nov-2019              | 14-Nov-2019        | 1          | 09-Nov-2019         | 14-Nov-2019        | 1              |    |
| EP080: BTEXN                                                                           |                                |             |                          |                    |            |                     |                    |                |    |
| Soil Glass Jar - Unpreserved (EP080)<br>TS2,<br>Trip Spike control                     | TB2,                           | 31-Oct-2019 | 07-Nov-2019              | 14-Nov-2019        | ~          | 09-Nov-2019         | 14-Nov-2019        | ~              |    |
| EP080-SD / EP071-SD: Total Petroleum Hydrocarbon                                       | s                              |             |                          |                    |            |                     |                    |                | -  |
| Soil Glass Jar - Unpreserved (EP071-SD)<br>VC12_0.0-0.5,                               | VC08_1.0-1.5                   | 31-Oct-2019 | 06-Nov-2019              | 14-Nov-2019        | 1          | 11-Nov-2019         | 16-Dec-2019        | ~              | _  |
| Soil Glass Jar - Unpreserved (EP080-SD)<br>VC12 0.0-0.5,                               | VC08 1.0-1.5                   | 31-Oct-2019 | 07-Nov-2019              | 14-Nov-2019        | 1          | 09-Nov-2019         | 14-Nov-2019        | 1              |    |

| Page       | : 8 of 17     |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                                                        |              |             |                |                         | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time.  |
|---------------------------------------------------------------------|--------------|-------------|----------------|-------------------------|------------|--------------------|--------------------|------------------|
| Method                                                              |              |             | E              | ktraction / Preparation |            |                    |                    |                  |
| Container / Client Sample ID(s)                                     |              |             | Date extracted | Due for extraction      | Evaluation | Date analysed      | Due for analysis   | Evaluation       |
| EP080-SD / EP071-SD: Total Recoverable Hydrocarbons                 |              |             |                |                         |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP080-SD)<br>VC12_0.0-0.5,            | VC08_1.0-1.5 | 31-Oct-2019 | 07-Nov-2019    | 14-Nov-2019             | 1          | 09-Nov-2019        | 14-Nov-2019        | ~                |
| EP080-SD: BTEXN                                                     |              |             |                |                         |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP080-SD)<br>VC12_0.0-0.5,            | VC08_1.0-1.5 | 31-Oct-2019 | 07-Nov-2019    | 14-Nov-2019             | 1          | 09-Nov-2019        | 14-Nov-2019        | ✓                |
| EP090: Organotin Compounds                                          |              |             |                |                         |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP090)<br>VC08_1.0-1.5                |              | 31-Oct-2019 | 08-Nov-2019    | 14-Nov-2019             | 1          | 11-Nov-2019        | 18-Dec-2019        | ✓                |
| Soil Glass Jar - Unpreserved (EP090)<br>VC12_0.0-0.5                |              | 31-Oct-2019 | 14-Nov-2019    | 14-Nov-2019             | 1          | 15-Nov-2019        | 24-Dec-2019        | ✓                |
| EP130A: Organophosphorus Pesticides (Ultra-trace)                   |              |             |                |                         |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP130)<br>VC12_0.0-0.5,               | VC08_1.0-1.5 | 31-Oct-2019 | 07-Nov-2019    | 14-Nov-2019             | 1          | 11-Nov-2019        | 17-Dec-2019        | ~                |
| EP131A: Organochlorine Pesticides                                   |              |             |                |                         |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP131A)<br>VC12_0.0-0.5,              | VC08_1.0-1.5 | 31-Oct-2019 | 07-Nov-2019    | 14-Nov-2019             | 1          | 11-Nov-2019        | 17-Dec-2019        | ✓                |
| EP131B: Polychlorinated Biphenyls (as Aroclors)                     |              |             |                |                         |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP131B)<br>VC12_0.0-0.5,              | VC08_1.0-1.5 | 31-Oct-2019 | 07-Nov-2019    | 14-Nov-2019             | 1          | 11-Nov-2019        | 17-Dec-2019        | ✓                |
| EP132B: Polynuclear Aromatic Hydrocarbons                           |              |             |                |                         |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP132B-SD)<br>VC12_0.0-0.5,           | VC08_1.0-1.5 | 31-Oct-2019 | 06-Nov-2019    | 14-Nov-2019             | 1          | 07-Nov-2019        | 16-Dec-2019        | ✓                |
| Matrix: WATER                                                       |              |             |                |                         | Evaluation | : × = Holding time | breach ; ✓ = Withi | in holding time. |
| Method                                                              |              | Sample Date | E              | ktraction / Preparation |            |                    | Analysis           |                  |
| Container / Client Sample ID(s)                                     |              |             | Date extracted | Due for extraction      | Evaluation | Date analysed      | Due for analysis   | Evaluation       |
| EG020T: Total Metals by ICP-MS                                      |              |             |                |                         |            |                    |                    |                  |
| Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T)<br>RIN_02 |              | 31-Oct-2019 | 05-Nov-2019    | 28-Apr-2020             | 1          | 05-Nov-2019        | 28-Apr-2020        | ✓                |
| EG035T: Total Recoverable Mercury by FIMS                           |              |             |                |                         |            |                    |                    |                  |
| Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T)<br>RIN_02   |              | 31-Oct-2019 |                |                         |            | 07-Nov-2019        | 28-Nov-2019        | ✓                |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons                      |              |             |                |                         |            |                    |                    |                  |
| Amber Glass Bottle - Unpreserved (EP075(SIM))<br>RIN_02             |              | 31-Oct-2019 | 05-Nov-2019    | 07-Nov-2019             | 4          | 06-Nov-2019        | 15-Dec-2019        | ✓                |
| EP080/071: Total Petroleum Hydrocarbons                             |              |             |                |                         |            |                    |                    |                  |
| Amber Glass Bottle - Unpreserved (EP071)<br>RIN_02                  |              | 31-Oct-2019 | 05-Nov-2019    | 07-Nov-2019             | 1          | 06-Nov-2019        | 15-Dec-2019        | ✓                |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>RIN_02                    |              | 31-Oct-2019 | 06-Nov-2019    | 14-Nov-2019             | ~          | 06-Nov-2019        | 14-Nov-2019        | 1                |

| Page :     | 9 of 17     |
|------------|-------------|
| Work Order | ES1936183   |
| Client     | GHD PTY LTD |
| Project    | 12517046    |



| Matrix: WATER                                                   |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = With | n holding time |
|-----------------------------------------------------------------|-------------|----------------|------------------------|------------|--------------------|-------------------|----------------|
| Method                                                          | Sample Date | Ex             | traction / Preparation |            |                    | Analysis          |                |
| Container / Client Sample ID(s)                                 |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis  | Evaluation     |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions |             |                |                        |            |                    |                   |                |
| Amber Glass Bottle - Unpreserved (EP071)<br>RIN_02              | 31-Oct-2019 | 05-Nov-2019    | 07-Nov-2019            | ~          | 06-Nov-2019        | 15-Dec-2019       | ~              |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>RIN_02                | 31-Oct-2019 | 06-Nov-2019    | 14-Nov-2019            | 1          | 06-Nov-2019        | 14-Nov-2019       | 1              |
| EP080: BTEXN                                                    |             |                |                        |            |                    |                   |                |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>RIN_02                | 31-Oct-2019 | 06-Nov-2019    | 14-Nov-2019            | 1          | 06-Nov-2019        | 14-Nov-2019       | ✓              |

| Page       | : 10 of 17    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



### **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Vlatrix: SOIL Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification |            |    |         |          |          |              |                                |
|---------------------------------------------------------------------------------------------------------------------------------------|------------|----|---------|----------|----------|--------------|--------------------------------|
| Quality Control Sample Type                                                                                                           |            | С  | ount    | Rate (%) |          |              | Quality Control Specification  |
| Analvtical Methods                                                                                                                    | Method     | QC | Reaular | Actual   | Expected | Evaluation   |                                |
| Laboratory Duplicates (DUP)                                                                                                           |            |    |         |          |          |              |                                |
| ASS Field Screening Analysis                                                                                                          | EA037      | 3  | 25      | 12.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Hexavalent Chromium by Alkaline Digestion and DA Finish                                                                               | EG048G     | 2  | 20      | 10.00    | 10.00    | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |
| Moisture Content                                                                                                                      | EA055      | 2  | 21      | 9.52     | 10.00    | ×            | NEPM 2013 B3 & ALS QC Standard |
| Organochlorine Pesticides (Ultra-trace)                                                                                               | EP131A     | 1  | 3       | 33.33    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Organophosphorus Pesticides (Ultra-trace)                                                                                             | EP130      | 1  | 3       | 33.33    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Organotin Analysis                                                                                                                    | EP090      | 3  | 12      | 25.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (SIM)                                                                                                                     | EP075(SIM) | 3  | 25      | 12.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| PAHs in Sediments by GCMS(SIM)                                                                                                        | EP132B-SD  | 1  | 2       | 50.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| PCB's (Ultra-trace)                                                                                                                   | EP131B     | 1  | 3       | 33.33    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Pesticides by GCMS                                                                                                                    | EP068      | 1  | 8       | 12.50    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Polychlorinated Biphenyls (PCB)                                                                                                       | EP066      | 1  | 8       | 12.50    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Semivolatile Organic Compounds                                                                                                        | EP075      | 1  | 2       | 50.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Total Cyanide by Segmented Flow Analyser                                                                                              | EK026SF    | 2  | 15      | 13.33    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Total Fe and AI in Sediments by ICPAES                                                                                                | EG005-SD   | 1  | 2       | 50.00    | 10.00    | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |
| Total Fluoride                                                                                                                        | EK040T     | 2  | 19      | 10.53    | 10.00    | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |
| Total Mercury by FIMS                                                                                                                 | EG035T     | 2  | 20      | 10.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Total Mercury by FIMS (Low Level)                                                                                                     | EG035T-LL  | 1  | 2       | 50.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Total Metals by ICP-AES                                                                                                               | EG005T     | 3  | 20      | 15.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Total Metals in Sediments by ICPMS                                                                                                    | EG020-SD   | 1  | 2       | 50.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Total Organic Carbon                                                                                                                  | EP003      | 3  | 15      | 20.00    | 10.00    | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |
| TPH - Semivolatile Fraction                                                                                                           | EP071-SD   | 1  | 2       | 50.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)                                                                                     | EP071SG-S  | 1  | 9       | 11.11    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| TRH Volatiles/BTEX                                                                                                                    | EP080      | 4  | 32      | 12.50    | 10.00    | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |
| TRH Volatiles/BTEX in Sediments                                                                                                       | EP080-SD   | 2  | 11      | 18.18    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Volatile Organic Compounds                                                                                                            | EP074      | 2  | 12      | 16.67    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| WAD Cyanide by Segmented Flow Analyser                                                                                                | EK028SF    | 1  | 8       | 12.50    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Laboratory Control Samples (LCS)                                                                                                      |            |    |         |          |          |              |                                |
| Hexavalent Chromium by Alkaline Digestion and DA Finish                                                                               | EG048G     | 2  | 20      | 10.00    | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Organochlorine Pesticides (Ultra-trace)                                                                                               | EP131A     | 1  | 3       | 33.33    | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Organophosphorus Pesticides (Ultra-trace)                                                                                             | EP130      | 1  | 3       | 33.33    | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Organotin Analysis                                                                                                                    | EP090      | 2  | 12      | 16.67    | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (SIM)                                                                                                                     | EP075(SIM) | 2  | 25      | 8.00     | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| PAHs in Sediments by GCMS(SIM)                                                                                                        | EP132B-SD  | 1  | 2       | 50.00    | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| PCB's (Ultra-trace)                                                                                                                   | EP131B     | 1  | 3       | 33.33    | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Pesticides by GCMS                                                                                                                    | EP068      | 1  | 8       | 12.50    | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Polychlorinated Biphenyls (PCB)                                                                                                       | EP066      | 1  | 8       | 12.50    | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |

| Page       | : 11 of 17   |
|------------|--------------|
| Work Order | : ES1936183  |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Matrix: SOIL                                            |            | Evaluation: <b>×</b> = Quality Control frequency not within specification ; <b>✓</b> = Quality Control frequency within specification. |         |        |          |              |                                |  |  |
|---------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|--------------|--------------------------------|--|--|
| Quality Control Sample Type                             |            | Сс                                                                                                                                     | ount    |        | Rate (%) |              | Quality Control Specification  |  |  |
| Analytical Methods                                      | Method     | QC                                                                                                                                     | Reaular | Actual | Expected | Evaluation   |                                |  |  |
| Laboratory Control Samples (LCS) - Continued            |            |                                                                                                                                        |         |        |          |              |                                |  |  |
| Semivolatile Organic Compounds                          | EP075      | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 2                                                                                                                                      | 15      | 13.33  | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Fe and AI in Sediments by ICPAES                  | EG005-SD   | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Fluoride                                          | EK040T     | 1                                                                                                                                      | 19      | 5.26   | 5.00     | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Mercury by FIMS                                   | EG035T     | 1                                                                                                                                      | 20      | 5.00   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Mercury by FIMS (Low Level)                       | EG035T-LL  | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Metals by ICP-AES                                 | EG005T     | 1                                                                                                                                      | 20      | 5.00   | 5.00     | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Metals in Sediments by ICPMS                      | EG020-SD   | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Organic Carbon                                    | EP003      | 4                                                                                                                                      | 15      | 26.67  | 10.00    | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| TPH - Semivolatile Fraction                             | EP071-SD   | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1                                                                                                                                      | 9       | 11.11  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| TRH Volatiles/BTEX                                      | EP080      | 2                                                                                                                                      | 32      | 6.25   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| TRH Volatiles/BTEX in Sediments                         | EP080-SD   | 1                                                                                                                                      | 11      | 9.09   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Volatile Organic Compounds                              | EP074      | 1                                                                                                                                      | 12      | 8.33   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1                                                                                                                                      | 8       | 12.50  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Method Blanks (MB)                                      |            |                                                                                                                                        |         |        |          |              |                                |  |  |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 1                                                                                                                                      | 20      | 5.00   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Organochlorine Pesticides (Ultra-trace)                 | EP131A     | 1                                                                                                                                      | 3       | 33.33  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Organophosphorus Pesticides (Ultra-trace)               | EP130      | 1                                                                                                                                      | 3       | 33.33  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Organotin Analysis                                      | EP090      | 2                                                                                                                                      | 12      | 16.67  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 2                                                                                                                                      | 25      | 8.00   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| PAHs in Sediments by GCMS(SIM)                          | EP132B-SD  | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| PCB's (Ultra-trace)                                     | EP131B     | 1                                                                                                                                      | 3       | 33.33  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Pesticides by GCMS                                      | EP068      | 1                                                                                                                                      | 8       | 12.50  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1                                                                                                                                      | 8       | 12.50  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Semivolatile Organic Compounds                          | EP075      | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 1                                                                                                                                      | 15      | 6.67   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Fe and AI in Sediments by ICPAES                  | EG005-SD   | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Fluoride                                          | EK040T     | 1                                                                                                                                      | 19      | 5.26   | 5.00     | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Mercury by FIMS                                   | EG035T     | 1                                                                                                                                      | 20      | 5.00   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Mercury by FIMS (Low Level)                       | EG035T-LL  | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Metals by ICP-AES                                 | EG005T     | 1                                                                                                                                      | 20      | 5.00   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Metals in Sediments by ICPMS                      | EG020-SD   | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Organic Carbon                                    | EP003      | 2                                                                                                                                      | 15      | 13.33  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| TPH - Semivolatile Fraction                             | EP071-SD   | 1                                                                                                                                      | 2       | 50.00  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1                                                                                                                                      | 9       | 11.11  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| TRH Volatiles/BTEX                                      | EP080      | 2                                                                                                                                      | 32      | 6.25   | 5.00     | ~            | NEPM 2013 B3 & ALS QC Standard |  |  |
| TRH Volatiles/BTEX in Sediments                         | EP080-SD   | 1                                                                                                                                      | 11      | 9.09   | 5.00     | ~            | NEPM 2013 B3 & ALS QC Standard |  |  |
| Volatile Organic Compounds                              | EP074      | 1                                                                                                                                      | 12      | 8.33   | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1                                                                                                                                      | 8       | 12.50  | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |  |  |

| Page       | : 12 of 17   |
|------------|--------------|
| Work Order | : ES1936183  |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Matrix: SOIL                                            |            |       |         | Evaluatio                  | n: × = Quality Co | ntrol frequency | not within specification ; ✓ = Quality Control frequency within specification. |
|---------------------------------------------------------|------------|-------|---------|----------------------------|-------------------|-----------------|--------------------------------------------------------------------------------|
| Quality Control Sample Type                             |            | Count |         | Rate (%)                   |                   |                 | Quality Control Specification                                                  |
| Analytical Methods                                      | Method     | OC    | Reaular | Actual Expected Evaluation |                   | Evaluation      |                                                                                |
| Matrix Spikes (MS)                                      |            |       |         |                            |                   |                 |                                                                                |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 2     | 20      | 10.00                      | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Organochlorine Pesticides (Ultra-trace)                 | EP131A     | 1     | 3       | 33.33                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Organophosphorus Pesticides (Ultra-trace)               | EP130      | 1     | 3       | 33.33                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Organotin Analysis                                      | EP090      | 1     | 12      | 8.33                       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 2     | 25      | 8.00                       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| PAHs in Sediments by GCMS(SIM)                          | EP132B-SD  | 1     | 2       | 50.00                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| PCB's (Ultra-trace)                                     | EP131B     | 1     | 3       | 33.33                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Pesticides by GCMS                                      | EP068      | 1     | 8       | 12.50                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1     | 8       | 12.50                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Semivolatile Organic Compounds                          | EP075      | 1     | 2       | 50.00                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 1     | 15      | 6.67                       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Total Fluoride                                          | EK040T     | 1     | 19      | 5.26                       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Total Mercury by FIMS                                   | EG035T     | 1     | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Total Mercury by FIMS (Low Level)                       | EG035T-LL  | 1     | 2       | 50.00                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Total Metals by ICP-AES                                 | EG005T     | 1     | 20      | 5.00                       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Total Metals in Sediments by ICPMS                      | EG020-SD   | 1     | 2       | 50.00                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| TPH - Semivolatile Fraction                             | EP071-SD   | 1     | 2       | 50.00                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1     | 9       | 11.11                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| TRH Volatiles/BTEX                                      | EP080      | 2     | 32      | 6.25                       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| TRH Volatiles/BTEX in Sediments                         | EP080-SD   | 1     | 11      | 9.09                       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| Volatile Organic Compounds                              | EP074      | 1     | 12      | 8.33                       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1     | 8       | 12.50                      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                 |

| atrix: WATER Evaluation: * = Quality Control frequency not within specification; = Quality Control frequency within specification;</th |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Quality Control Sample Type                                                                                                            |                                                                                                                                                                                                                                                                                 | Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rate (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quality Control Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Method                                                                                                                                 | QC                                                                                                                                                                                                                                                                              | Reaular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| EP075(SIM)                                                                                                                             | 0                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| EG035T                                                                                                                                 | 1                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| EG020A-T                                                                                                                               | 2                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| EP071                                                                                                                                  | 0                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| EP080                                                                                                                                  | 2                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| EP075(SIM)                                                                                                                             | 1                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| EG035T                                                                                                                                 | 1                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| EG020A-T                                                                                                                               | 1                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| EP071                                                                                                                                  | 1                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| EP080                                                                                                                                  | 1                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| EP075(SIM)                                                                                                                             | 1                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEPM 2013 B3 & ALS QC Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                        | Method           EP075(SIM)           EG035T           EG020A-T           EP071           EP075           EP075           EP075           EP075           EP075           EP075           EP075           EP075           EP075           EP071           EP075           EP075 | Method         C           Method         QC           EP075(SIM)         0           EG035T         1           EG020A-T         2           EP071         0           EP0780         2           EP075(SIM)         1           EG035T         1           EP075(SIM)         1           EG035T         1           EG035T         1           EG035T         1           EG020A-T         1           EG020A-T         1           EP071         1           EP080         1           EP075(SIM)         1 | Method         Count           Method         QC         Reaular           EP075(SIM)         0         3           EG035T         1         7           EG020A-T         2         15           EP071         0         5           EP080         2         20           EE0035T         1         7           EG0305T         1         7           EE0075(SIM)         1         3           EE0035T         1         7           EG020A-T         1         15           EP071         1         5           EP080         1         20           EP075(SIM)         1         3 | Evaluation           Method         OC         Reaular         Actual           Method         OC         Reaular         Actual           EP075(SIM)         0         3         0.00           EG035T         1         7         14.29           EG020A-T         2         15         13.33           EP071         0         5         0.00           EP080         2         20         10.00           EP075(SIM)         1         3         33.33           EP075(SIM)         1         3         33.33           EG020A-T         1         15         6.67           EP071         1         5         20.00           EP080         1         20         5.00           EP080         1         3         33.33 | Evaluation: * = Quality Colspan="2">Rate (%)           Method         QC         Recular         Actual         Expected           EP075(SIM)         0         3         0.00         10.00           EG035T         1         7         14.29         10.00           EG020A-T         2         15         13.33         10.00           EP071         0         5         0.00         10.00           EP071         0         5         0.00         10.00           EP075(SIM)         1         3         33.33         5.00           EP075(SIM)         1         3         33.33         5.00           EP075(SIM)         1         5         20.00         5.00           EG020A-T         1         15         6.67         5.00           EG020A-T         1         20         5.00         5.00           EP071         1         5         20.00         5.00           EP080         1         20         5.00         5.00           EP075(SIM)         1         3         33.33         5.00 | Evaluation: * = Quality Control frequency i           Count         Rate (%)         Rate (%)           Method         QC         Reaular         Actual         Expected         Evaluation           EP075(SIM)         0         3         0.00         10.00         *           EG035T         1         7         14.29         10.00         *           EG035T         1         7         14.29         10.00         ✓           EG020A-T         2         15         13.33         10.00         ✓           EF071         0         5         0.00         10.00         ✓           EP075(SIM)         1         3         33.33         5.00         ✓           EP075(SIM)         1         3         33.33         5.00         ✓           EG020A-T         1         15         6.67         5.00         ✓           EG020A-T         1         20         5.00         ✓         ✓           EP075(SIM)         1         3         33.33         5.00         ✓           EP075(SIM)         1         3         33.33         5.00         ✓ |  |  |

| Page       | : 13 of 17    |
|------------|---------------|
| Work Order | ES1936183     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: WATER                    | not within specification ; $\checkmark$ = Quality Control frequency within specification. |    |         |        |          |            |                                |
|----------------------------------|-------------------------------------------------------------------------------------------|----|---------|--------|----------|------------|--------------------------------|
| Quality Control Sample Type      |                                                                                           | Co | ount    |        | Rate (%) |            | Quality Control Specification  |
| Analytical Methods               | Method                                                                                    | OC | Reaular | Actual | Expected | Evaluation |                                |
| Method Blanks (MB) - Continued   |                                                                                           |    |         |        |          |            |                                |
| Total Mercury by FIMS            | EG035T                                                                                    | 1  | 7       | 14.29  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Metals by ICP-MS - Suite A | EG020A-T                                                                                  | 1  | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction      | EP071                                                                                     | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| TRH Volatiles/BTEX               | EP080                                                                                     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)               |                                                                                           |    |         |        |          |            |                                |
| PAH/Phenols (GC/MS - SIM)        | EP075(SIM)                                                                                | 0  | 3       | 0.00   | 5.00     | <b>32</b>  | NEPM 2013 B3 & ALS QC Standard |
| Total Mercury by FIMS            | EG035T                                                                                    | 1  | 7       | 14.29  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Metals by ICP-MS - Suite A | EG020A-T                                                                                  | 1  | 15      | 6.67   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction      | EP071                                                                                     | 0  | 5       | 0.00   | 5.00     | £          | NEPM 2013 B3 & ALS QC Standard |
| TRH Volatiles/BTEX               | EP080                                                                                     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |

| Page       | : 14 of 17    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                     | Method    | Matrix | Method Descriptions                                                                                           |
|----------------------------------------|-----------|--------|---------------------------------------------------------------------------------------------------------------|
| ASS Field Screening Analysis           | * EA037   | SOIL   | In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines, version 2.1 June 2004. As received  |
|                                        |           |        | samples are tested for pH field and pH fox and assessed for a reaction rating.                                |
| Moisture Content                       | EA055     | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C.     |
|                                        |           |        | This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).        |
| Particle Size Analysis by Hydrometer   | EA150H    | SOIL   | Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003                                         |
| Total Fe and Al in Sediments by ICPAES | EG005-SD  | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate        |
|                                        |           |        | acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic       |
|                                        |           |        | spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix    |
|                                        |           |        | matched standards. This method is compliant with NEPM (2013) Schedule B(3). LORs per NODG                     |
| Total Metals by ICP-AES                | EG005T    | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate        |
|                                        |           |        | acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic       |
|                                        |           |        | spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix    |
|                                        |           |        | matched standards. This method is compliant with NEPM (2013) Schedule B(3)                                    |
| Total Metals in Sediments by ICPMS     | EG020-SD  | SOIL   | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes         |
|                                        |           |        | a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass     |
|                                        |           |        | spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their       |
|                                        |           |        | measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.                                |
| Total Mercury by FIMS                  | EG035T    | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS)       |
|                                        |           |        | FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an  |
|                                        |           |        | appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then   |
|                                        |           |        | purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This |
|                                        |           |        | method is compliant with NEPM (2013) Schedule B(3)                                                            |
| Total Mercury by FIMS (Low Level)      | EG035T-LL | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)        |
|                                        |           |        | FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an  |
|                                        |           |        | appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then   |
|                                        |           |        | purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This |
|                                        |           |        | method is compliant with NEPM (2013) Schedule B(3)                                                            |
| Hexavalent Chromium by Alkaline        | EG048G    | SOIL   | In house: Referenced to USEPA SW846, Method 3060A. Hexavalent chromium is extracted by alkaline digestion.    |
| Digestion and DA Finish                |           |        | The digest is determined by photometrically by automatic discrete analyser, following pH adjustment. The      |
|                                        |           |        | instrument uses colour development using dephenylcarbazide. Each run of samples is measured against a         |
|                                        |           |        | five-point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                         |

| Page :       | 15 of 17    |
|--------------|-------------|
| Work Order : | ES1936183   |
| Client :     | GHD PTY LTD |
| Project :    | 12517046    |



| Analytical Methods                                   | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------|-----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Cyanide by Segmented Flow<br>Analyser          | EK026SF   | SOIL   | In house: Referenced to APHA 4500-CN C / ASTM D7511. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM (2013) Schedule B(3) |
| WAD Cyanide by Segmented Flow<br>Analyser            | EK028SF   | SOIL   | In house: Referenced to APHA 4500-CN-O. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Hydrogen cyanide is liberated from a slightly acidified (pH 4.5) and is dialysed. Tight cyanide complexes that would not be amenable to oxidation by chlorine are not converted. Iron cyanide complexes are precipitated with zinc acetate.<br>Liberated HCN diffuses through a membrane into a stream of sodium hydroxide where it is carried as CN-The cyanide in caustic solution is buffered to pH 5.2 and further converted to cyanogen chloride by reaction with chloramine-T. Cyanogen chloride subsequently reacts with 4 ¿pyridine carboxylic and 1,3 - dimethylbarbituric acids to give a red colour complex. This colour is measured at 600 nm.<br>This method is compliant with NEPM (2013) Schedule B(3)                             |
| Total Fluoride                                       | EK040T    | SOIL   | (In-house) Total fluoride is determined by ion specific electrode (ISE) in a solution obtained after a Sodium Carbonate / Potassium Carbonate fusion dissolution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Organic Carbon                                 | EP003     | SOIL   | In house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Polychlorinated Biphenyls (PCB)                      | EP066     | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pesticides by GCMS                                   | EP068     | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TPH - Semivolatile Fraction                          | EP071-SD  | SOIL   | In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TRH - Semivolatile Fraction (Silica Gel<br>Clean Up) | EP071SG-S | SOIL   | In house: Referenced to USEPA SW 846 - 8015A. Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Volatile Organic Compounds                           | EP074     | SOIL   | In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS.<br>Quantification is by comparison against an established 5 point calibration curve. This method is compliant with<br>NEPM (2013) Schedule B(3) (Method 501)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Semivolatile Organic Compounds                       | EP075     | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 502)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Page       | : 16 of 17    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Analytical Methods                      | Method     | Matrix | Method Descriptions                                                                                                                       |
|-----------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|
| PAH/Phenols (SIM)                       | EP075(SIM) | SOIL   | In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion                                   |
|                                         |            |        | Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is                           |
|                                         |            |        | compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)                                                                             |
| TRH Volatiles/BTEX                      | EP080      | SOIL   | In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS.                                   |
|                                         |            |        | Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM                                     |
| TDU Valatilas/DTEX in Sadimanta         | 50000.00   | 801    |                                                                                                                                           |
| TRH Volatiles/BTEX III Sediments        | EP080-SD   | SUIL   | In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS.                                    |
| Organotin Analysis                      | EDUOU      | SOIL   | Qualitinication is by comparison against an established 5 point calibration curve.                                                        |
|                                         | LF 090     | SOIL   | with high volume injection, and quanitified against an established calibration curve                                                      |
| Organophosphorus Pesticides             | EP130      | SOIL   | In house: Referenced to USEPA Method 3640 (GPC cleanup) 8141 (GC/EPD - Capillary Column) This technique                                   |
| (Ultra-trace)                           | 2. 100     | 0011   | is compliant with NEPM (2013) Schedule B(3).                                                                                              |
| Organochlorine Pesticides (Ultra-trace) | EP131A     | SOIL   | In house: Referenced to USEPA Method 3640 (GPC cleanup).3620 (Florisil). 8081/8082 (GC/uECD/uECD) This                                    |
|                                         |            |        | technique is compliant with NEPM (2013) Schedule B(3)                                                                                     |
| PCB's (Ultra-trace)                     | EP131B     | SOIL   | In house: Referenced to USEPA Method 3640 (GPC cleanup),3620 (Florisil), 8081/8082 (GC/µECD/µECD) This                                    |
|                                         |            |        | technique is compliant with NEPM (2013) Schedule B(3)                                                                                     |
| PAHs in Sediments by GCMS(SIM)          | EP132B-SD  | SOIL   | In house: Referenced to USEPA 8270D GCMS Capillary column, SIM mode using large volume programmed                                         |
|                                         |            |        | temperature vaporisation injection.                                                                                                       |
| Total Metals by ICP-MS - Suite A        | EG020A-T   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes                                     |
|                                         |            |        | a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass                                 |
|                                         |            |        | spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their                                   |
|                                         |            |        | measurement by a discrete dynode ion detector.                                                                                            |
| Total Mercury by FIMS                   | EG0351     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)                                    |
|                                         |            |        | FIM-AAS is an automated fiameless atomic absorption technique. A bromate/bromide reagent is used to oxidise                               |
|                                         |            |        | any organic mercury compounds in the unilitered sample. The ionic mercury is reduced online to atomic mercury is reduced online to atomic |
|                                         |            |        | absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                           |
| TRH - Semivolatile Fraction             | EP071      | WATER  | In house: Referenced to USEPA SW 846 - 8015A. The sample extract is analysed by Capillary GC/FID and                                      |
|                                         |            |        | quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This                              |
|                                         |            |        | method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                 |
| PAH/Phenols (GC/MS - SIM)               | EP075(SIM) | WATER  | In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode                                  |
|                                         |            |        | and quantification is by comparison against an established 5 point calibration curve. This method is compliant                            |
|                                         |            |        | with NEPM (2013) Schedule B(3)                                                                                                            |
| TRH Volatiles/BTEX                      | EP080      | WATER  | In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by                                       |
|                                         |            |        | Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve.                                     |
|                                         |            |        | Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS                             |
|                                         |            |        | analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                  |
| Preparation Methods                     | Method     | Matrix | Method Descriptions                                                                                                                       |
| NaOH leach for CN in Soils              | CN-PR      | SOIL   | In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.                                                         |
| Alkaline digestion for Hexavalent       | EG048PR    | SOIL   | In house: Referenced to USEPA SW846, Method 3060A.                                                                                        |
| Chromium                                |            |        |                                                                                                                                           |

| Page       | : 17 of 17    |
|------------|---------------|
| Work Order | : ES1936183   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Preparation Methods                                         | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Fluoride                                              | EK040T-PR  | SOIL   | In house: Samples are fused with Sodium Carbonate / Potassium Carbonate flux.                                                                                                                                                                                                                                                                                                                                           |
| Drying only                                                 | EN020D     | SOIL   | In house                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hot Block Digest for metals in soils sediments and sludges  | EN69       | SOIL   | In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202) |
| Dry and Pulverise (up to 100g)                              | GEO30      | SOIL   | #                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Methanolic Extraction of Soils for Purge and Trap           | ORG16      | SOIL   | In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.                                                                                                                                                                                                                                                                       |
| Tumbler Extraction of Solids                                | ORG17      | SOIL   | In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.                                                                                                                                                                          |
| Tumbler Extraction of Solids/ Sample<br>Cleanup             | ORG17A-UTP | SOIL   | In house: Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. Samples are extracted, concentrated (by KD) and exchanged into an appropriate solvent for GPC and florisil cleanup as required.                                                                                                                                          |
| Tumbler Extraction of Solids for LVI<br>(Non-concentrating) | ORG17D     | SOIL   | In house: 10g of sample, Na2SO4 and surrogate are extracted with 50mL 1:1 DCM/Acetone by end over end tumbling. An aliquot is concentrated by nitrogen blowdown to a reduced volume for analysis if required.                                                                                                                                                                                                           |
| Organotin Sample Preparation                                | ORG35      | SOIL   | In house: 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.                            |
| Digestion for Total Recoverable Metals                      | EN25       | WATER  | In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                       |
| Separatory Funnel Extraction of Liquids                     | ORG14      | WATER  | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.                                  |
| Volatiles Water Preparation                                 | ORG16-W    | WATER  | A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.                                                                                                                                                                                                                                                                                                                                   |

# **Certificate of Analysis**

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

## ALS Environmental

**Newcastle, NSW** 



% Passing

| CLIENT:  | CARMEN YI                                  | DATE REPORTED: | 11-Nov-2019         |
|----------|--------------------------------------------|----------------|---------------------|
| COMPANY: | GHD PTY LTD                                | DATE RECEIVED: | 1-Nov-2019          |
| ADDRESS: | Level 15, 133 Castlereagh Street<br>Sydney | REPORT NO:     | ES1936183-029 / PSD |
| PROJECT: | 12517046                                   | SAMPLE ID:     | VC12_0.0-0.5        |

#### **Particle Size Distribution**



#### **Analysis Notes**

Samples analysed as received.

\* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: SAND, FINES

**Test Method:** AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) #N/A

**NATA Accreditation: 825 Site: Newcastle** This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

| <u>Analysed:</u>         | 7-Nov-1 |
|--------------------------|---------|
| Limit of Reporting:      | 1%      |
| <b>Dispersion Method</b> | Shaker  |
| A Dola                   |         |

NALE SECONA

CREDITATION

| 0   |     |
|-----|-----|
| ( ) | n   |
| D   | KUM |
| A   | 00  |

**Dianne Blane** Laboratory Coordinator Authorised Signatory

Page 1 of 1

| 2.36                    | 100%    |
|-------------------------|---------|
| 1.18                    | 99%     |
| 0.600                   | 90%     |
| 0.425                   | 71%     |
| 0.300                   | 48%     |
| 0.150                   | 25%     |
| 0.075                   | 19%     |
| Particle Size (microns) |         |
| 55                      | 19%     |
| 39                      | 17%     |
| 27                      | 17%     |
| 19                      | 17%     |
| 14                      | 17%     |
| 10                      | 17%     |
| 7                       | 16%     |
| 5                       | 15%     |
|                         | 4 5 0 ( |

Particle Size (mm)

| Median Particle Size (mm)* | 0.311 |
|----------------------------|-------|
|                            |       |

:

7-Nov-19

# **Certificate of Analysis**

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

## ALS Environmental

Newcastle, NSW



| CLIENT:  | CARMEN YI                                                   | DATE REPORTED: | 11-Nov-2019         |
|----------|-------------------------------------------------------------|----------------|---------------------|
| COMPANY: | GHD PTY LTD                                                 | DATE RECEIVED: | 1-Nov-2019          |
| ADDRESS: | Level 15, 133 Castlereagh Street<br>Sydney<br>NSW Australia | REPORT NO:     | ES1936183-040 / PSD |
| PROJECT: | 12517046                                                    | SAMPLE ID:     | VC08_1.0-1.5        |

#### Particle Size Distribution



#### **Analysis Notes**

Samples analysed as received.

\* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) #N/A

**NATA Accreditation: 825 Site: Newcastle** This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.



| Particle Size (mm)      | % Passing |
|-------------------------|-----------|
|                         |           |
|                         |           |
|                         |           |
|                         |           |
|                         |           |
|                         |           |
|                         |           |
| 1.18                    | 100%      |
| 0.600                   | 97%       |
| 0.425                   | 90%       |
| 0.300                   | 82%       |
| 0.150                   | 65%       |
| 0.075                   | 56%       |
| Particle Size (microns) |           |
| 50                      | 48%       |
| 35                      | 44%       |
| 25                      | 43%       |
| 18                      | 41%       |
| 13                      | 38%       |
| 10                      | 36%       |
| 7                       | 36%       |
| 5                       | 35%       |
| 1                       | 32%       |

| Median Particle Size (mm)* | 0.056 |
|----------------------------|-------|

Analysed:

7-Nov-19

Limit of Reporting: 1%

Dispersion Method Shaker

Dianne Blane

Laboratory Coordinator Authorised Signatory

| Enu        | ALS                                                                                                                          | CHAIN OF<br>CUSTODY<br>ALS Laboratory:<br>please lick → | HAIN OF     LADELAIDE 21 Etimo Rootd Foorara SA \$195     Last Philos Sa \$195     Last Philos Sa \$195       JSTODY     LINRISBANE 32 Shard Street Street Street Street OLD a053     LinrisBane 32 Shard Street Street Street Street OLD a053     LinrisBane 32 Shard Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Stree |               |                                     | LIMCKAY 75 Harbour Road Mackay OLD 4/40<br>Ph-07 4944 0177 El mackay@elsgisbal.com Ph-02 4014<br>UMLDCUENE 74 Westel Road Sovingvate VIC 317 - UN Skilkay<br>Ph-03 5543 550 El samples melhouma@atsgtsbal.com Ph-06 4302<br>ULLUCGES 71 Sydrey Road Mudgee NSV CK00 ULFER TH -<br>Ph-02 6372 5735 El mudgee mat@atsgtobal.com Ph-06 4302 |              |                                 | 2ASTLE 5/531 Maikanu<br>014 2500 Er samples ne<br>23 A/13 Geary Place Ma<br>23 2063 Er novra@a si<br>HITS hoe Way Maloga 1<br>2097550 Er tampres pe | Rd Mayfield (Vientin SW 2003)<br>www.astre@atsgrobal.com<br>dh Newra NS&b 2543<br>g) stal.com<br>WK 6230<br>wh (@alsglobal.com | List/DHEY 271-XA Meedigark Read Smith fett MSN, 2184<br>Ph. 02 A734 8755 E. san slez symek @alsgbbail.01<br>LITOWNDS LEF "4-15 Desma Co. # Puntur.310 4916<br>Ph. 07 4756 0400 E.<br>LKV0LLCK-SD11 507 Kenny Sireet Woll sny: 19 MSN, 2500<br>Ph. 32 4226 4121 E. poneensta@alsgle.af.con |                                                                              |                                                                                                     |
|------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| CLIENT:    | IENT: GHD TURNAROUND REQUIREMENTS :                                                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 🗹 Stenda                            | rd TAT (List                                                                                                                                                                                                                                                                                                                             | due date):   |                                 |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
| OFFICE:    | FFICE: Level 19, 133 Castlereagh Street Sydney NSW (Slandard TAT may be longer for some lesis e.g.,<br>Ultra Trace Organics) |                                                         | Non S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tanderd or ur | gent TAT (Li                        | st due date)                                                                                                                                                                                                                                                                                                                             | :            |                                 |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
| PROJECT    | ROJĘCT: 12517046 ALS QUOTE NO.: SY-522-                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-19 GHD V2   |                                     |                                                                                                                                                                                                                                                                                                                                          |              | COC SEQ                         | JENCENUMBER                                                                                                                                         | (Circle)                                                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
| ORDER N    | UMBER: 12517046                                                                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                     |                                                                                                                                                                                                                                                                                                                                          |              |                                 | 600                                                                                                                                                 | * 12                                                                                                                           | 345                                                                                                                                                                                                                                                                                       | 6 7                                                                          |                                                                                                     |
| PROJECT    | MANAGER: Carmen Yi                                                                                                           |                                                         | CONTACT F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PH: 9239      | 7530                                |                                                                                                                                                                                                                                                                                                                                          |              |                                 | OF                                                                                                                                                  | 1 2                                                                                                                            | 3 4 1 <sup>5</sup>                                                                                                                                                                                                                                                                        | 5 7                                                                          |                                                                                                     |
| SAMPLER    | t: Carmen Yl                                                                                                                 |                                                         | SAMPLER N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OBILE:        |                                     | RELINQUE                                                                                                                                                                                                                                                                                                                                 | SHED BY: C   | armen Yi                        | REC                                                                                                                                                 | ENED BY:                                                                                                                       | D                                                                                                                                                                                                                                                                                         | RELINQUISHED BY                                                              | RECEIVED BY:                                                                                        |
| COC emai   | lied to ALS? ( <u>YES</u> )                                                                                                  | ·                                                       | EDD FORM/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AT (or de     | fault):                             |                                                                                                                                                                                                                                                                                                                                          | 19           | 27                              | t                                                                                                                                                   | 74,52                                                                                                                          | T                                                                                                                                                                                                                                                                                         |                                                                              |                                                                                                     |
| Email Rep  | orts to (will default to PM                                                                                                  | f no other addresses                                    | are listed) Sarah Ecclesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all@ghd       | com .                               |                                                                                                                                                                                                                                                                                                                                          | 2: 7/11/2019 |                                 | DAT                                                                                                                                                 | ATE/TIME: DATE/TIME:                                                                                                           |                                                                                                                                                                                                                                                                                           | DATE/TIME:                                                                   | DATE/TIME-                                                                                          |
| Email invo | Dice to (will default to PM if                                                                                               | no other addresses a                                    | are listed):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                     |                                                                                                                                                                                                                                                                                                                                          |              |                                 | 81                                                                                                                                                  | ulla                                                                                                                           | ((,))~                                                                                                                                                                                                                                                                                    | -                                                                            |                                                                                                     |
| COMMEN     | TS/SPECIAL HANDLING/                                                                                                         | STORAGE OR DISP                                         | OSAL: Please freeze zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lock baç      | ł                                   |                                                                                                                                                                                                                                                                                                                                          |              |                                 |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
|            |                                                                                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                     |                                                                                                                                                                                                                                                                                                                                          |              | ANA<br>Where Met                | LYSIS REQU<br>als are require                                                                                                                       | RED Includined, specify Tot                                                                                                    | ig SUITES (NB - Suite<br>al (unfiltered bottle re                                                                                                                                                                                                                                         | e Codes must be listed to attract sa<br>quired) or Dissofved (field fittered | ile price)<br>Bottle required). Additional information                                              |
| LABID      | SAMPLE                                                                                                                       | : ID                                                    | DATE / TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MATRIX        | TYPE & PRESERVATIVE<br>codes below) | (refer to                                                                                                                                                                                                                                                                                                                                | TOTAL        | ASS Field Screening<br>Analysis | NSW DECCW Waste<br>Classification (SCC) -<br>Short Suite                                                                                            | 8 Metals + PAH                                                                                                                 | Hold                                                                                                                                                                                                                                                                                      |                                                                              | Comments on likely contaminant levels, dilutions,<br>or samples requiring specific OC analysis etc. |
| 1          | BH05_4.6-4.7                                                                                                                 |                                                         | 7.11.2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s             | Jar, ZLB                            |                                                                                                                                                                                                                                                                                                                                          | 2            | x                               | ×                                                                                                                                                   |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
| ٢          | RIN_03                                                                                                                       | ······································                  | 7.11.2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | w             | V, AG                               |                                                                                                                                                                                                                                                                                                                                          | 3            | ·                               | ·                                                                                                                                                   |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
| 3          | SW04                                                                                                                         |                                                         | 7.11.2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | w             | P                                   |                                                                                                                                                                                                                                                                                                                                          | 1            | 1                               |                                                                                                                                                     |                                                                                                                                | ×                                                                                                                                                                                                                                                                                         |                                                                              | Sydney                                                                                              |
| ۲          | SW05                                                                                                                         |                                                         | 7.11.2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | w             | P                                   |                                                                                                                                                                                                                                                                                                                                          | 1            |                                 |                                                                                                                                                     | -                                                                                                                              | x                                                                                                                                                                                                                                                                                         |                                                                              | Work Order Reference                                                                                |
|            | ·····                                                                                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                     |                                                                                                                                                                                                                                                                                                                                          |              |                                 | ·                                                                                                                                                   |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
|            |                                                                                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 177 18 W. 193                       | , / Split<br>-2 Kaz                                                                                                                                                                                                                                                                                                                      | WO<br>TO A   |                                 |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
|            | •                                                                                                                            |                                                         | ; <u>A</u> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 193-7         | A Charles - # Da.                   |                                                                                                                                                                                                                                                                                                                                          | 1.7.7 ×      | ~~~                             |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
|            |                                                                                                                              |                                                         | Ű,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10            | 12.4363 U.S. ( <b>124400</b> -      |                                                                                                                                                                                                                                                                                                                                          |              |                                 |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              | 1944p1101(9 ; + 01-2-0764 0535                                                                      |
|            |                                                                                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ei            | ALL REAL POINT OF A REAL POINT      | \$~                                                                                                                                                                                                                                                                                                                                      | , 38: N. 179 |                                 |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
|            |                                                                                                                              |                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000           | FRANK / School Frank + 1000         |                                                                                                                                                                                                                                                                                                                                          | _,           |                                 |                                                                                                                                                     |                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                  |                                                                              |                                                                                                     |
|            |                                                                                                                              |                                                         | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | . C                                 | مر این بند ا                                                                                                                                                                                                                                                                                                                             |              |                                 |                                                                                                                                                     | ļ                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
|            |                                                                                                                              |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | £4            | 5 SETTING                           | ai Sho                                                                                                                                                                                                                                                                                                                                   | et:          | ****                            |                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                     |
|            |                                                                                                                              | 1                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | LL - 4 20 ಹಂತಿ ಆರುನ್ತಿಂಗ್           | TOTAL                                                                                                                                                                                                                                                                                                                                    |              | 1                               | 1                                                                                                                                                   | 1                                                                                                                              | 2                                                                                                                                                                                                                                                                                         |                                                                              |                                                                                                     |



### SAMPLE RECEIPT NOTIFICATION (SRN)

| Work Order                                                                              | : ES1936922                                                                                              |                                                                                                                                            |                                                                                                                                                     |                                           |  |  |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| Client<br>Contact<br>Address                                                            | : GHD PTY LTD<br>: Jessica Watson<br>: LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address                                                                                                           | <ul> <li>Environmental Division Sydney</li> <li>Customer Services ES</li> <li>277-289 Woodpark Road Smithfie</li> <li>NSW Australia 2164</li> </ul> |                                           |  |  |  |
| E-mail<br>Telephone<br>Facsimile                                                        | : jessica.watson@ghd.com<br>:<br>:                                                                       | E-mail<br>Telephone<br>Facsimile                                                                                                           | : ALSEnviro<br>: +61-2-878<br>: +61-2-878                                                                                                           | .Sydney@ALSGlobal.com<br>4 8555<br>4 8500 |  |  |  |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler                              | : 12517046<br>: 12517046<br>:<br>:<br>: CARMEN YI                                                        | Page<br>Quote number<br>QC Level                                                                                                           | : 1 of 2<br>: ES2019GHDSER0030 (SY/522/19)<br>: NEPM 2013 B3 & ALS QC Standard                                                                      |                                           |  |  |  |
| Dates Date Samples Received : 08-Nov-2019 11:30 Client Requested Due : 14-Nov-2019 Date |                                                                                                          | Issue Date<br>Scheduled Reportir                                                                                                           | ng Date                                                                                                                                             | : 08-Nov-2019<br>: <b>14-Nov-2019</b>     |  |  |  |
| Delivery Details<br>Mode of Delivery<br>No. of coolers/boxes<br>Receipt Detail          | : Carrier<br>: 2<br>:                                                                                    | Security Seal       : Not Available         Temperature       : 6.3 - Ice present         No. of samples received / analysed       : 4 / 2 |                                                                                                                                                     |                                           |  |  |  |

#### **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- 8 metals analysis has not been added for sample RIN\_03 as no red nitric acid preserved bottle was received.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- ASS analysis to be conducted by ALS Brisbane.
- Total Fluoride analysis to be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exists.

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

#### Matrix: SOIL

| Laboratory sample | Client sampling   | Client sample ID | SOIL - E/ | SOIL - E/ | SOIL - P- |
|-------------------|-------------------|------------------|-----------|-----------|-----------|
| ID                | date / time       |                  | ASS Field | Moisture  | NSW DE    |
| ES1936922-001     | 07-Nov-2019 00:00 | BH05_4.6-4.7     | ✓         | ✓         | ✓         |

7/4 - Short Suite CW Waste Classification (SCC) -

Screening Analysis

037

Content



#### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### **Requested Deliverables**

| Accounts Payable Australia                                                    |       |                           |
|-------------------------------------------------------------------------------|-------|---------------------------|
| - A4 - AU Tax Invoice (INV)                                                   | Email | accountspayableAU@ghd.com |
| SARAH ECCLESHALL                                                              |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | sarah.eccleshall@ghd.com  |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)                           | Email | sarah.eccleshall@ghd.com  |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | sarah.eccleshall@ghd.com  |
| - A4 - AU Tax Invoice (INV)                                                   | Email | sarah.eccleshall@ghd.com  |
| - Chain of Custody (CoC) (COC)                                                | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ENMRG (ENMRG)                                                  | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | sarah.eccleshall@ghd.com  |



### **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1936922                         | Page                    | : 1 of 9                                              |
|-------------------------|-----------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : GHD PTY LTD                     | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : Jessica Watson                  | Contact                 | Customer Services ES                                  |
| Address                 | ELEVEL 15, 133 CASTLEREAGH STREET | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|                         | SYDNEY NSW, AUSTRALIA 2000        |                         |                                                       |
| Telephone               | :                                 | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                        | Date Samples Received   | : 08-Nov-2019 11:30                                   |
| Order number            | : 12517046                        | Date Analysis Commenced | : 11-Nov-2019                                         |
| C-O-C number            | :                                 | Issue Date              | : 15-Nov-2019 15:15                                   |
| Sampler                 | : CARMEN YI                       |                         | Hac-MRA NATA                                          |
| Site                    | :                                 |                         |                                                       |
| Quote number            | : SY/522/19                       |                         | Accreditation No. 925                                 |
| No. of samples received | : 4                               |                         | Accredited for compliance with                        |
| No. of samples analysed | : 2                               |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                         | Accreditation Category                      |
|--------------------|----------------------------------|---------------------------------------------|
| Alison Graham      | Supervisor - Inorganic           | Newcastle - Inorganics, Mayfield West, NSW  |
| Ankit Joshi        | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |
| Ben Felgendrejeris | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |
| Edwandy Fadjar     | Organic Coordinator              | Sydney Organics, Smithfield, NSW            |
| Evie Sidarta       | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |
| Ivan Taylor        | Analyst                          | Sydney Inorganics, Smithfield, NSW          |

| Page       | : 2 of 9      |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

 Key :
 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EG048G: Poor spike recovery for ALkyl Hexavalent Chromium due to matrix interferences(confirmed by re-analysis).
- EG035: Positive Hg result ES1936922 #1 has been confirmed by reanalysis.
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

| Page       | : 3 of 9      |
|------------|---------------|
| Work Order | ES1936922     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Compound         CAS Number         LOR         UR         Parkov 2019 00:00               Compound         CAS Number         LOR         VIII         Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sub-Matrix: SOIL<br>(Matrix: SOIL)       |               | Clie         | ent sample ID  | BH05_4.6-4.7      | <br> | <br> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|--------------|----------------|-------------------|------|------|
| CompoundCAS NumberLORURILES1939822.001CAD37: Ass Field Screening Analysise PH (F)0.1PH Unit6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | Cli           | ient samplii | ng date / time | 07-Nov-2019 00:00 | <br> | <br> |
| LAD37: ASS field Screening Analysis         Result         Re | Compound                                 | CAS Number    | LOR          | Unit           | ES1936922-001     | <br> | <br> |
| Berleid Screening Analysis           opht (r)         0.1         oph Unit         8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |               |              |                | Result            | <br> | <br> |
| op H (F)         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.                                                                                                                      | EA037: Ass Field Screening Analysis      |               |              |                |                   |      |      |
| op pH (pso)         0.1         pH Unit         6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | øpH (F)                                  |               | 0.1          | pH Unit        | 8.1               | <br> | <br> |
| o Rate          I.o.         I.o.         I.o.         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ø pH (Fox)                               |               | 0.1          | pH Unit        | 6.3               | <br> | <br> |
| EA055: Molsture Content (Dried @ 105-110°C)           Moisure Content          1.0         %         47.0                EG005/EF0093/T: Total Metals by (DP.AES         T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ø Reaction Rate                          |               | 1            | -              | 4                 | <br> | <br> |
| Moisture Content          1.0         %         47.0               EG005(ED093)T: Total Metals by ICP-AES         7440-38-2         5         mg/kg         10 <td>EA055: Moisture Content (Dried @ 105-110</td> <td>°C)</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EA055: Moisture Content (Dried @ 105-110 | °C)           |              |                |                   |      |      |
| Berolitis by ICP-AES           Arsenic         7440-38-2         5         mg/kg         10               Beryllium         7440-41-7         1         mg/kg         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Moisture Content                         |               | 1.0          | %              | 47.0              | <br> | <br> |
| Arsenic         7440-38-2         5         mg/kg         10               Beryllum         7440-41-7         1         mg/kg         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EG005(ED093)T: Total Metals by ICP-AES   |               |              |                |                   |      |      |
| Beryllium         7440-41-7         1         mg/kg         <1               Cadmium         7440-41-7         1         mg/kg         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arsenic                                  | 7440-38-2     | 5            | mg/kg          | 10                | <br> | <br> |
| Cadmium         T440-43-9         1         mg/kg         <1                Lead         7439-92-1         5         mg/kg         127                                                                                     .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Beryllium                                | 7440-41-7     | 1            | mg/kg          | <1                | <br> | <br> |
| Lead         7439-92-1         5         mg/kg         127                Molybdenum         7439-92-1         2         mg/kg         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cadmium                                  | 7440-43-9     | 1            | mg/kg          | <1                | <br> | <br> |
| Molybdenum         7439-98-7         2         mg/kg         <2                Nickel         7440-02-0         2         mg/kg         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lead                                     | 7439-92-1     | 5            | mg/kg          | 127               | <br> | <br> |
| Nickel         7440-02-0         2         mg/kg         5                Selenium         7782-49-2         5         mg/kg         <5                 Silver         7440-22-4         2         mg/kg         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Molybdenum                               | 7439-98-7     | 2            | mg/kg          | <2                | <br> | <br> |
| Selenium         7782-49-2         5         mg/kg         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nickel                                   | 7440-02-0     | 2            | mg/kg          | 5                 | <br> | <br> |
| Silver         7440-22-4         2         mg/kg         <2                EG035T: Total Recoverable Mercury by FIMS         Mercury         7439-97-6         0.1         mg/kg         1.1                                                                                <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selenium                                 | 7782-49-2     | 5            | mg/kg          | <5                | <br> | <br> |
| EG035T: Total Recoverable Mercury by FIMS           Mercury         7439-97-6         0.1         mg/kg         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Silver                                   | 7440-22-4     | 2            | mg/kg          | <2                | <br> | <br> |
| Mercury7439-97-60.1mg/kg1.1EG048: Hexavalent Chromium (Alkaline Digest)Hexavalent Chromium18540-29-90.5mg/kg<0.5Hexavalent Chromium18540-29-90.5mg/kg<0.5EK026SF: Total CN by Segmented Flow AnalyserEK028SF: Weak Acid Dissociable CN by Segmented Flow AnalyseWeak Acid Dissociable Cyanide1mg/kg<1EK040T: Fluoride TotalHexa Acid Dissociable Cyanide1mg/kg<160Hexa Acid Dissociable Cyanide1mg/kg160Hexa Acid Dissociable Cyanide1mg/kg160Hexa Acid Dissociable Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EG035T: Total Recoverable Mercury by Fil | MS            |              |                |                   |      |      |
| EG048: Hexavalent Chromium (Alkaline Digest)Hexavalent Chromium18540-29-90.5mg/kg<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mercury                                  | 7439-97-6     | 0.1          | mg/kg          | 1.1               | <br> | <br> |
| Hexavalent Chromium18540-29-90.5mg/kg<0.5EK026SF: Total CN by Segmented Flow Analyser57-12-51mg/kg<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EG048: Hexavalent Chromium (Alkaline Dig | gest)         |              |                |                   |      |      |
| EK026SF: Total CN by Segmented Flow AnalyserTotal Cyanide57-12-51mg/kg<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hexavalent Chromium                      | 18540-29-9    | 0.5          | mg/kg          | <0.5              | <br> | <br> |
| Total Cyanide57-12-51mg/kg<1EK028SF: Weak Acid Dissociable CN by Segmented Flow AnalyserWeak Acid Dissociable Cyanide1mg/kg<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EK026SF: Total CN by Segmented Flow A    | nalyser       |              |                |                   |      |      |
| EK028SF: Weak Acid Dissociable CN by Segmented Flow Analyser         Weak Acid Dissociable Cyanide       1       mg/kg       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Cyanide                            | 57-12-5       | 1            | mg/kg          | <1                | <br> | <br> |
| Weak Acid Dissociable Cyanide          1         mg/kg         <1                EK040T: Fluoride Total </td <td>EK028SF: Weak Acid Dissociable CN by S</td> <td>eamented Flov</td> <td>w Analvse</td> <td>ər</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EK028SF: Weak Acid Dissociable CN by S   | eamented Flov | w Analvse    | ər             |                   |      |      |
| EK040T: Fluoride Total         16984-48-8         40         mg/kg         160                                                                                               <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weak Acid Dissociable Cyanide            |               | 1            | mg/kg          | <1                | <br> | <br> |
| Fluoride 16984-48-8 40 mg/kg 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EK040T: Fluoride Total                   |               |              |                |                   |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fluoride                                 | 16984-48-8    | 40           | mg/kg          | 160               | <br> | <br> |
| EP066: Polychlorinated Binhenvis (PCB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EP066: Polychlorinated Binhenyls (PCB)   |               |              |                |                   |      |      |
| Total Polychlorinated biphenyls         0.1         mg/kg         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Polychlorinated biphenyls          |               | 0.1          | mg/kg          | <0.1              | <br> | <br> |
| EP068A: Organochlorine Pesticides (OC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FP068A: Organochlorine Pesticides (OC)   |               |              |                |                   |      |      |
| alpha-BHC 319-84-6 0.05 mg/kg <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alpha-BHC                                | 319-84-6      | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Hexachlorobenzene (HCB)         118-74-1         0.05         mg/kg         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hexachlorobenzene (HCB)                  | 118-74-1      | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| beta-BHC 319-85-7 0.05 mg/kg <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | beta-BHC                                 | 319-85-7      | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| gamma-BHC 58-89-9 0.05 mg/kg <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gamma-BHC                                | 58-89-9       | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| delta-BHC 319-86-8 0.05 mg/kg <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | delta-BHC                                | 319-86-8      | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Heptachlor 76-44-8 0.05 mg/kg <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heptachlor                               | 76-44-8       | 0.05         | mg/kg          | <0.05             | <br> | <br> |
| Aldrin 309-00-2 0.05 mg/kg <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aldrin                                   | 309-00-2      | 0.05         | mg/kg          | <0.05             | <br> | <br> |

| Page       | : 4 of 9      |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID            |             |                  | BH05_4.6-4.7      | <br> | <br> |
|-------------------------------------|-----------------------------|-------------|------------------|-------------------|------|------|
|                                     | Client sampling date / time |             |                  | 07-Nov-2019 00:00 | <br> | <br> |
| Compound                            | CAS Number                  | LOR         | Unit             | ES1936922-001     | <br> | <br> |
|                                     |                             |             |                  | Result            | <br> | <br> |
| EP068A: Organochlorine Pesticides ( | OC) - Continued             |             |                  |                   |      |      |
| Heptachlor epoxide                  | 1024-57-3                   | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| ^ Total Chlordane (sum)             |                             | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| trans-Chlordane                     | 5103-74-2                   | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| alpha-Endosulfan                    | 959-98-8                    | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| cis-Chlordane                       | 5103-71-9                   | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| Dieldrin                            | 60-57-1                     | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| 4.4`-DDE                            | 72-55-9                     | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| Endrin                              | 72-20-8                     | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| beta-Endosulfan                     | 33213-65-9                  | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| 4.4`-DDD                            | 72-54-8                     | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| Endrin aldehyde                     | 7421-93-4                   | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| Endosulfan sulfate                  | 1031-07-8                   | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| 4.4`-DDT                            | 50-29-3                     | 0.2         | mg/kg            | <0.2              | <br> | <br> |
| EP068B: Organophosphorus Pesticid   | es (OP)                     |             |                  |                   |      |      |
| Chlorpyrifos                        | 2921-88-2                   | 0.05        | mg/kg            | <0.05             | <br> | <br> |
| EP071 SG: Total Recoverable Hydroca | arbons - NEPM 201           | 3 Fraction  | s - Silica gel o | leanup            |      |      |
| >C10 - C16 Fraction                 |                             | 50          | mg/kg            | <50               | <br> | <br> |
| >C16 - C34 Fraction                 |                             | 100         | mg/kg            | 320               | <br> | <br> |
| >C34 - C40 Fraction                 |                             | 100         | mg/kg            | <100              | <br> | <br> |
| ^ >C10 - C40 Fraction (sum)         |                             | 50          | mg/kg            | 320               | <br> | <br> |
| EP071 SG-S: Total Petroleum Hydroca | arbons in Soil - Silio      | ca gel clea | nup              |                   |      |      |
| C10 - C14 Fraction                  |                             | 50          | mg/kg            | <50               | <br> | <br> |
| C15 - C28 Fraction                  |                             | 100         | mg/kg            | 220               | <br> | <br> |
| C29 - C36 Fraction                  |                             | 100         | mg/kg            | 140               | <br> | <br> |
| ^ C10 - C36 Fraction (sum)          |                             | 50          | mg/kg            | 360               | <br> | <br> |
| EP074A: Monocyclic Aromatic Hydroc  | arbons                      |             |                  |                   |      |      |
| Benzene                             | 71-43-2                     | 0.2         | mg/kg            | <0.2              | <br> | <br> |
| Toluene                             | 108-88-3                    | 0.5         | mg/kg            | <0.5              | <br> | <br> |
| Ethylbenzene                        | 100-41-4                    | 0.5         | mg/kg            | <0.5              | <br> | <br> |
| meta- & para-Xylene                 | 108-38-3 106-42-3           | 0.5         | mg/kg            | <0.5              | <br> | <br> |
| Styrene                             | 100-42-5                    | 0.5         | mg/kg            | <0.5              | <br> | <br> |
| ortho-Xylene                        | 95-47-6                     | 0.5         | mg/kg            | <0.5              | <br> | <br> |
| EP074B: Oxygenated Compounds        |                             |             |                  |                   |      |      |
| 2-Butanone (MEK)                    | 78-93-3                     | 5           | mg/kg            | <5                | <br> | <br> |

| Page       | 5 of 9        |
|------------|---------------|
| Work Order | ES1936922     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID            |     |       | BH05_4.6-4.7      |  |  |  |  |
|----------------------------------------|-----------------------------|-----|-------|-------------------|--|--|--|--|
|                                        | Client sampling date / time |     |       | 07-Nov-2019 00:00 |  |  |  |  |
| Compound                               | CAS Number                  | LOR | Unit  | ES1936922-001     |  |  |  |  |
|                                        |                             |     |       | Result            |  |  |  |  |
| EP074E: Halogenated Aliphatic Compou   | nds                         |     |       |                   |  |  |  |  |
| Vinyl chloride                         | 75-01-4                     | 4   | mg/kg | <4                |  |  |  |  |
| 1.1-Dichloroethene                     | 75-35-4                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| Methylene chloride                     | 75-09-2                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| 1.1.1-Trichloroethane                  | 71-55-6                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| Carbon Tetrachloride                   | 56-23-5                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| 1.2-Dichloroethane                     | 107-06-2                    | 0.5 | mg/kg | <0.5              |  |  |  |  |
| Trichloroethene                        | 79-01-6                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| 1.1.2-Trichloroethane                  | 79-00-5                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| Tetrachloroethene                      | 127-18-4                    | 0.5 | mg/kg | <0.5              |  |  |  |  |
| 1.1.1.2-Tetrachloroethane              | 630-20-6                    | 0.5 | mg/kg | <0.5              |  |  |  |  |
| 1.1.2.2-Tetrachloroethane              | 79-34-5                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| EP074F: Halogenated Aromatic Compounds |                             |     |       |                   |  |  |  |  |
| Chlorobenzene                          | 108-90-7                    | 0.5 | mg/kg | <0.5              |  |  |  |  |
| EP074G: Trihalomethanes                |                             |     |       |                   |  |  |  |  |
| Chloroform                             | 67-66-3                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| EP075(SIM)A: Phenolic Compounds        |                             |     |       |                   |  |  |  |  |
| Phenol                                 | 108-95-2                    | 0.5 | mg/kg | <0.5              |  |  |  |  |
| 2-Methylphenol                         | 95-48-7                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| 3- & 4-Methylphenol                    | 1319-77-3                   | 1   | mg/kg | <1                |  |  |  |  |
| 4-Chloro-3-methylphenol                | 59-50-7                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| 2.4.6-Trichlorophenol                  | 88-06-2                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| 2.4.5-Trichlorophenol                  | 95-95-4                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| Pentachlorophenol                      | 87-86-5                     | 2   | mg/kg | <2                |  |  |  |  |
| EP075(SIM)B: Polynuclear Aromatic Hyd  | Irocarbons                  |     |       |                   |  |  |  |  |
| Naphthalene                            | 91-20-3                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| Acenaphthylene                         | 208-96-8                    | 0.5 | mg/kg | 0.5               |  |  |  |  |
| Acenaphthene                           | 83-32-9                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| Fluorene                               | 86-73-7                     | 0.5 | mg/kg | <0.5              |  |  |  |  |
| Phenanthrene                           | 85-01-8                     | 0.5 | mg/kg | 1.4               |  |  |  |  |
| Anthracene                             | 120-12-7                    | 0.5 | mg/kg | 0.6               |  |  |  |  |
| Fluoranthene                           | 206-44-0                    | 0.5 | mg/kg | 4.9               |  |  |  |  |
| Pyrene                                 | 129-00-0                    | 0.5 | mg/kg | 5.7               |  |  |  |  |
| Benz(a)anthracene                      | 56-55-3                     | 0.5 | mg/kg | 2.4               |  |  |  |  |
| Chrysene                               | 218-01-9                    | 0.5 | mg/kg | 2.2               |  |  |  |  |

| Page       | : 6 of 9      |
|------------|---------------|
| Work Order | ES1936922     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      |                     | Clie        | ent sample ID  | BH05_4.6-4.7      |   |   | <br> |
|-----------------------------------------|---------------------|-------------|----------------|-------------------|---|---|------|
|                                         | Cli                 | ient sampli | ng date / time | 07-Nov-2019 00:00 |   |   | <br> |
| Compound                                | CAS Number          | LOR         | Unit           | ES1936922-001     |   |   | <br> |
|                                         |                     |             |                | Result            |   |   | <br> |
| EP075(SIM)B: Polynuclear Aromatic I     | Hydrocarbons - Cont | inued       |                |                   |   |   |      |
| Benzo(b+j)fluoranthene                  | 205-99-2 205-82-3   | 0.5         | mg/kg          | 4.2               |   |   | <br> |
| Benzo(k)fluoranthene                    | 207-08-9            | 0.5         | mg/kg          | 1.7               |   |   | <br> |
| Benzo(a)pyrene                          | 50-32-8             | 0.5         | mg/kg          | 4.0               |   |   | <br> |
| Indeno(1.2.3.cd)pyrene                  | 193-39-5            | 0.5         | mg/kg          | 1.5               |   |   | <br> |
| Dibenz(a.h)anthracene                   | 53-70-3             | 0.5         | mg/kg          | <0.5              |   |   | <br> |
| Benzo(g.h.i)perylene                    | 191-24-2            | 0.5         | mg/kg          | 1.8               |   |   | <br> |
| ^ Sum of polycyclic aromatic hydrocarbo | ns                  | 0.5         | mg/kg          | 30.9              |   |   | <br> |
| ^ Benzo(a)pyrene TEQ (zero)             |                     | 0.5         | mg/kg          | 5.0               |   |   | <br> |
| ^ Benzo(a)pyrene TEQ (half LOR)         |                     | 0.5         | mg/kg          | 5.3               |   |   | <br> |
| ^ Benzo(a)pyrene TEQ (LOR)              |                     | 0.5         | mg/kg          | 5.5               |   |   | <br> |
| EP080/071: Total Petroleum Hydroca      | rbons               |             |                |                   |   |   |      |
| C6 - C9 Fraction                        |                     | 10          | mg/kg          | <10               |   |   | <br> |
| EP080/071: Total Recoverable Hydrod     | 3 Fractio           | ns          |                |                   |   |   |      |
| C6 - C10 Fraction                       | C6_C10              | 10          | mg/kg          | <10               |   |   | <br> |
| EP066S: PCB Surrogate                   |                     |             |                |                   |   |   |      |
| Decachlorobiphenyl                      | 2051-24-3           | 0.1         | %              | 116               |   |   | <br> |
| EP068S: Organochlorine Pesticide St     | urrogate            |             |                |                   |   |   |      |
| Dibromo-DDE                             | 21655-73-2          | 0.05        | %              | 105               |   |   | <br> |
| EP068T: Organophosphorus Pesticid       | e Surrogate         |             |                |                   |   |   |      |
| DEF                                     | 78-48-8             | 0.05        | %              | 69.5              |   |   | <br> |
| EP074S: VOC Surrogates                  |                     |             |                |                   |   |   |      |
| 1.2-Dichloroethane-D4                   | 17060-07-0          | 0.5         | %              | 104               |   |   | <br> |
| Toluene-D8                              | 2037-26-5           | 0.5         | %              | 114               |   |   | <br> |
| 4-Bromofluorobenzene                    | 460-00-4            | 0.5         | %              | 108               |   |   | <br> |
| EP075(SIM)S: Phenolic Compound S        | urrogates           |             |                |                   |   |   |      |
| Phenol-d6                               | 13127-88-3          | 0.5         | %              | 83.8              |   |   | <br> |
| 2-Chlorophenol-D4                       | 93951-73-6          | 0.5         | %              | 102               |   |   | <br> |
| 2.4.6-Tribromophenol                    | 118-79-6            | 0.5         | %              | 72.2              |   |   | <br> |
| EP075(SIM)T: PAH Surrogates             |                     |             |                |                   |   |   |      |
| 2-Fluorobiphenyl                        | 321-60-8            | 0.5         | %              | 111               |   |   | <br> |
| Anthracene-d10                          | 1719-06-8           | 0.5         | %              | 104               |   |   | <br> |
| 4-Terphenyl-d14                         | 1718-51-0           | 0.5         | %              | 103               |   |   | <br> |
| EP080S: TPH(V)/BTEX Surrogates          |                     |             |                |                   |   |   |      |
| 1.2-Dichloroethane-D4                   | 17060-07-0          | 0.2         | %              | 105               |   |   | <br> |
|                                         |                     |             |                |                   | 1 | 1 |      |

| Page       | : 7 of 9      |
|------------|---------------|
| Work Order | ES1936922     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)         |            | Clie | ent sample ID | BH05_4.6-4.7      |  |  |  |  |
|--------------------------------------------|------------|------|---------------|-------------------|--|--|--|--|
| Client sampling date / time                |            |      |               | 07-Nov-2019 00:00 |  |  |  |  |
| Compound                                   | CAS Number | LOR  | Unit          | ES1936922-001     |  |  |  |  |
|                                            |            |      |               | Result            |  |  |  |  |
| EP080S: TPH(V)/BTEX Surrogates - Continued |            |      |               |                   |  |  |  |  |
| Toluene-D8                                 | 2037-26-5  | 0.2  | %             | 113               |  |  |  |  |
| 4-Bromofluorobenzene                       | 460-00-4   | 0.2  | %             | 100               |  |  |  |  |

| Page       | : 8 of 9      |
|------------|---------------|
| Work Order | ES1936922     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: WATER<br>(Matrix: WATER)           | Client sample ID  |             |                | RIN_03            |  |  |  |  |
|------------------------------------------------|-------------------|-------------|----------------|-------------------|--|--|--|--|
|                                                | Cl                | ient sampli | ng date / time | 07-Nov-2019 00:00 |  |  |  |  |
| Compound                                       | CAS Number        | LOR         | Unit           | ES1936922-002     |  |  |  |  |
|                                                |                   |             |                | Result            |  |  |  |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons |                   |             |                |                   |  |  |  |  |
| Naphthalene                                    | 91-20-3           | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Acenaphthylene                                 | 208-96-8          | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Acenaphthene                                   | 83-32-9           | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Fluorene                                       | 86-73-7           | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Phenanthrene                                   | 85-01-8           | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Anthracene                                     | 120-12-7          | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Fluoranthene                                   | 206-44-0          | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Pyrene                                         | 129-00-0          | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Benz(a)anthracene                              | 56-55-3           | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Chrysene                                       | 218-01-9          | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Benzo(b+j)fluoranthene                         | 205-99-2 205-82-3 | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Benzo(k)fluoranthene                           | 207-08-9          | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Benzo(a)pyrene                                 | 50-32-8           | 0.5         | µg/L           | <0.5              |  |  |  |  |
| Indeno(1.2.3.cd)pyrene                         | 193-39-5          | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Dibenz(a.h)anthracene                          | 53-70-3           | 1.0         | µg/L           | <1.0              |  |  |  |  |
| Benzo(g.h.i)perylene                           | 191-24-2          | 1.0         | µg/L           | <1.0              |  |  |  |  |
| ^ Sum of polycyclic aromatic hydrocarbo        | ons               | 0.5         | µg/L           | <0.5              |  |  |  |  |
| ^ Benzo(a)pyrene TEQ (zero)                    |                   | 0.5         | µg/L           | <0.5              |  |  |  |  |
| EP075(SIM)S: Phenolic Compound S               | urrogates         |             |                |                   |  |  |  |  |
| Phenol-d6                                      | 13127-88-3        | 1.0         | %              | 22.4              |  |  |  |  |
| 2-Chlorophenol-D4                              | 93951-73-6        | 1.0         | %              | 44.2              |  |  |  |  |
| 2.4.6-Tribromophenol                           | 118-79-6          | 1.0         | %              | 46.7              |  |  |  |  |
| EP075(SIM)T: PAH Surrogates                    |                   |             |                |                   |  |  |  |  |
| 2-Fluorobiphenyl                               | 321-60-8          | 1.0         | %              | 71.3              |  |  |  |  |
| Anthracene-d10                                 | 1719-06-8         | 1.0         | %              | 64.7              |  |  |  |  |
| 4-Terphenyl-d14                                | 1718-51-0         | 1.0         | %              | 62.1              |  |  |  |  |

| Page       | : 9 of 9      |
|------------|---------------|
| Work Order | ES1936922     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



### Surrogate Control Limits

| Sub-Matrix: SOIL                             |            | Recovery | Limits (%) |
|----------------------------------------------|------------|----------|------------|
| Compound                                     | CAS Number | Low      | High       |
| EP066S: PCB Surrogate                        |            |          |            |
| Decachlorobiphenyl                           | 2051-24-3  | 39       | 149        |
| EP068S: Organochlorine Pesticide Surrogate   |            |          |            |
| Dibromo-DDE                                  | 21655-73-2 | 49       | 147        |
| EP068T: Organophosphorus Pesticide Surrogate |            |          |            |
| DEF                                          | 78-48-8    | 35       | 143        |
| EP074S: VOC Surrogates                       |            |          |            |
| 1.2-Dichloroethane-D4                        | 17060-07-0 | 64       | 130        |
| Toluene-D8                                   | 2037-26-5  | 66       | 136        |
| 4-Bromofluorobenzene                         | 460-00-4   | 60       | 122        |
| EP075(SIM)S: Phenolic Compound Surrogates    |            |          |            |
| Phenol-d6                                    | 13127-88-3 | 63       | 123        |
| 2-Chlorophenol-D4                            | 93951-73-6 | 66       | 122        |
| 2.4.6-Tribromophenol                         | 118-79-6   | 40       | 138        |
| EP075(SIM)T: PAH Surrogates                  |            |          |            |
| 2-Fluorobiphenyl                             | 321-60-8   | 70       | 122        |
| Anthracene-d10                               | 1719-06-8  | 66       | 128        |
| 4-Terphenyl-d14                              | 1718-51-0  | 65       | 129        |
| EP080S: TPH(V)/BTEX Surrogates               |            |          |            |
| 1.2-Dichloroethane-D4                        | 17060-07-0 | 73       | 133        |
| Toluene-D8                                   | 2037-26-5  | 74       | 132        |
| 4-Bromofluorobenzene                         | 460-00-4   | 72       | 130        |
| Sub-Matrix: WATER                            |            | Recoverv | Limits (%) |
| Compound                                     | CAS Number | Low      | High       |
| EP075(SIM)S: Phenolic Compound Surrogates    |            |          | ·          |
| Phenol-d6                                    | 13127-88-3 | 10       | 44         |
| 2-Chlorophenol-D4                            | 93951-73-6 | 14       | 94         |
| 2.4.6-Tribromophenol                         | 118-79-6   | 17       | 125        |
| EP075(SIM)T: PAH Surrogates                  |            |          |            |
| 2-Fluorobiphenyl                             | 321-60-8   | 20       | 104        |
| Anthracene-d10                               | 1719-06-8  | 27       | 113        |
| 4-Terphenyl-d14                              | 1718-51-0  | 32       | 112        |



### **QUALITY CONTROL REPORT**

| Work Order              | : ES1936922                                                      | Page                    | : 1 of 11                    |                                |
|-------------------------|------------------------------------------------------------------|-------------------------|------------------------------|--------------------------------|
| Client                  | : GHD PTY LTD                                                    | Laboratory              | : Environmental Division Syd | dney                           |
| Contact                 | : Jessica Watson                                                 | Contact                 | : Customer Services ES       |                                |
| Address                 | : LEVEL 15, 133 CASTLEREAGH STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road S    | Smithfield NSW Australia 2164  |
| Telephone               | :                                                                | Telephone               | : +61-2-8784 8555            |                                |
| Project                 | : 12517046                                                       | Date Samples Received   | : 08-Nov-2019                | AMUUD.                         |
| Order number            | : 12517046                                                       | Date Analysis Commenced | : 11-Nov-2019                |                                |
| C-O-C number            | :                                                                | Issue Date              | : 15-Nov-2019                | NATA                           |
| Sampler                 | : CARMEN YI                                                      |                         |                              | Hac-MRA NAIA                   |
| Site                    | :                                                                |                         |                              |                                |
| Quote number            | : SY/522/19                                                      |                         |                              | Accreditation No. 825          |
| No. of samples received | : 4                                                              |                         |                              | Accredited for compliance with |
| No. of samples analysed | : 2                                                              |                         |                              | ISO/IEC 17025 - Testing        |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                         | Accreditation Category                      |  |  |  |
|--------------------|----------------------------------|---------------------------------------------|--|--|--|
| Alison Graham      | Supervisor - Inorganic           | Newcastle - Inorganics, Mayfield West, NSW  |  |  |  |
| Ankit Joshi        | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |  |  |  |
| Ben Felgendrejeris | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |  |  |  |
| Edwandy Fadjar     | Organic Coordinator              | Sydney Organics, Smithfield, NSW            |  |  |  |
| Evie Sidarta       | Inorganic Chemist                | Sydney Inorganics, Smithfield, NSW          |  |  |  |
| Ivan Taylor        | Analyst                          | Sydney Inorganics, Smithfield, NSW          |  |  |  |

| Page       | : 2 of 11     |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL                                            |                        |                         | Laboratory Duplicate (DUP) Report |     |         |                 |                  |         |                     |  |  |
|-------------------------------------------------------------|------------------------|-------------------------|-----------------------------------|-----|---------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID                                        | Client sample ID       | Method: Compound        | CAS Number                        | LOR | Unit    | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| EG005(ED093)T: Total Metals by ICP-AES (QC Lot: 2697194)    |                        |                         |                                   |     |         |                 |                  |         |                     |  |  |
| ES1936824-003                                               | Anonymous              | EG005T: Beryllium       | 7440-41-7                         | 1   | mg/kg   | <1              | <1               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Cadmium         | 7440-43-9                         | 1   | mg/kg   | <1              | <1               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Molybdenum      | 7439-98-7                         | 2   | mg/kg   | <2              | <2               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Nickel          | 7440-02-0                         | 2   | mg/kg   | 9               | 9                | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Silver          | 7440-22-4                         | 2   | mg/kg   | <2              | <2               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Arsenic         | 7440-38-2                         | 5   | mg/kg   | 8               | 9                | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Lead            | 7439-92-1                         | 5   | mg/kg   | 17              | 21               | 23.1    | No Limit            |  |  |
|                                                             |                        | EG005T: Selenium        | 7782-49-2                         | 5   | mg/kg   | <5              | <5               | 0.00    | No Limit            |  |  |
| EW1904851-002                                               | Anonymous              | EG005T: Beryllium       | 7440-41-7                         | 1   | mg/kg   | <1              | <1               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Cadmium         | 7440-43-9                         | 1   | mg/kg   | <1              | <1               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Molybdenum      | 7439-98-7                         | 2   | mg/kg   | <2              | <2               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Nickel          | 7440-02-0                         | 2   | mg/kg   | <2              | <2               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Silver          | 7440-22-4                         | 2   | mg/kg   | <2              | <2               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Arsenic         | 7440-38-2                         | 5   | mg/kg   | <5              | <5               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Lead            | 7439-92-1                         | 5   | mg/kg   | <5              | <5               | 0.00    | No Limit            |  |  |
|                                                             |                        | EG005T: Selenium        | 7782-49-2                         | 5   | mg/kg   | <5              | <5               | 0.00    | No Limit            |  |  |
| EA037: Ass Field So                                         | reening Analysis (QC   | C Lot: 2697697)         |                                   |     |         |                 |                  |         |                     |  |  |
| EB1929956-008                                               | Anonymous              | EA037: pH (F)           |                                   | 0.1 | pH Unit | 9.2             | 9.2              | 0.00    | 0% - 20%            |  |  |
|                                                             |                        | EA037: pH (Fox)         |                                   | 0.1 | pH Unit | 6.8             | 6.8              | 0.00    | 0% - 20%            |  |  |
| EA055: Moisture Co                                          | ntent (Dried @ 105-110 | 0°C) (QC Lot: 2695861)  |                                   |     |         |                 |                  |         |                     |  |  |
| ES1936738-020                                               | Anonymous              | EA055: Moisture Content |                                   | 0.1 | %       | 17.8            | 17.4             | 2.67    | 0% - 50%            |  |  |
| ES1936939-005                                               | Anonymous              | EA055: Moisture Content |                                   | 0.1 | %       | 14.1            | 14.4             | 2.12    | 0% - 50%            |  |  |
| EG035T: Total Recoverable Mercury by FIMS (QC Lot: 2697195) |                        |                         |                                   |     |         |                 |                  |         |                     |  |  |
| ES1936824-003                                               | Anonymous              | EG035T: Mercury         | 7439-97-6                         | 0.1 | mg/kg   | <0.1            | <0.1             | 0.00    | No Limit            |  |  |
| Page       | : 3 of 11     |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                                        |                             |                                        | Laboratory Duplicate (DUP) Report |      |       |                 |                  |         |                     |
|-------------------------------------------------------------------------|-----------------------------|----------------------------------------|-----------------------------------|------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID                                                    | Client sample ID            | Method: Compound                       | CAS Number                        | LOR  | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EG035T: Total Recoverable Mercury by FIMS (QC Lot: 2697195) - continued |                             |                                        |                                   |      |       |                 |                  |         |                     |
| EW1904851-002                                                           | Anonymous                   | EG035T: Mercury                        | 7439-97-6                         | 0.1  | mg/kg | <0.1            | <0.1             | 0.00    | No Limit            |
| EG048: Hexavalent C                                                     | hromium (Alkaline Digest)   | (QC Lot: 2698222)                      |                                   |      |       |                 |                  |         |                     |
| ES1936420-001                                                           | Anonymous                   | EG048G: Hexavalent Chromium            | 18540-29-9                        | 0.5  | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| ES1936738-005                                                           | Anonymous                   | EG048G: Hexavalent Chromium            | 18540-29-9                        | 0.5  | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EK026SF: Total CN t                                                     | y Segmented Flow Analyse    | r (QC Lot: 2695855)                    |                                   |      |       |                 |                  |         |                     |
| ES1936731-001                                                           | Anonymous                   | EK026SF: Total Cyanide                 | 57-12-5                           | 1    | mg/kg | <1              | <1               | 0.00    | No Limit            |
| ES1936921-001                                                           | Anonymous                   | EK026SF: Total Cyanide                 | 57-12-5                           | 1    | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EK028SF: Weak Acid                                                      | Dissociable CN by Segme     | nted Flow Analyser (QC Lot: 2695854)   |                                   |      |       |                 |                  |         |                     |
| ES1936420-001                                                           | Anonymous                   | EK028SF: Weak Acid Dissociable Cyanide |                                   | 1    | mg/kg | <1              | <1               | 0.00    | No Limit            |
| EK040T: Fluoride Tot                                                    | al (QC Lot: 2700730)        |                                        |                                   |      |       |                 |                  |         |                     |
| EB1928929-001                                                           | Anonymous                   | EK040T: Fluoride                       | 16984-48-8                        | 40   | mg/kg | 800             | 760              | 4.62    | 0% - 50%            |
| ES1936922-001                                                           | BH05_4.6-4.7                | EK040T: Fluoride                       | 16984-48-8                        | 40   | mg/kg | 160             | 150              | 0.00    | No Limit            |
| EP066: Polychlorinated Biphenyls (PCB) (QC Lot: 2694921)                |                             |                                        |                                   |      |       |                 |                  |         |                     |
| ES1936922-001                                                           | BH05_4.6-4.7                | EP066: Total Polychlorinated biphenyls |                                   | 0.1  | mg/kg | <0.1            | <0.1             | 0.00    | No Limit            |
| EP068A: Organochlo                                                      | rine Pesticides (OC) (QC Lo | ot: 2694919)                           |                                   |      |       |                 |                  |         |                     |
| ES1936922-001                                                           | BH05_4.6-4.7                | EP068: alpha-BHC                       | 319-84-6                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: Hexachlorobenzene (HCB)         | 118-74-1                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: beta-BHC                        | 319-85-7                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: gamma-BHC                       | 58-89-9                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: delta-BHC                       | 319-86-8                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: Heptachlor                      | 76-44-8                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: Aldrin                          | 309-00-2                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: Heptachlor epoxide              | 1024-57-3                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: trans-Chlordane                 | 5103-74-2                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: alpha-Endosulfan                | 959-98-8                          | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: cis-Chlordane                   | 5103-71-9                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: Dieldrin                        | 60-57-1                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: 4.4`-DDE                        | 72-55-9                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: Endrin                          | 72-20-8                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: beta-Endosulfan                 | 33213-65-9                        | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: 4.4`-DDD                        | 72-54-8                           | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: Endrin aldehyde                 | 7421-93-4                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: Endosulfan sulfate              | 1031-07-8                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                         |                             | EP068: 4.4`-DDT                        | 50-29-3                           | 0.2  | mg/kg | <0.2            | <0.2             | 0.00    | No Limit            |
| EP068B: Organophos                                                      | phorus Pesticides (OP) (Q   | C Lot: 2694919)                        |                                   |      |       |                 |                  |         |                     |
| ES1936922-001                                                           | BH05_4.6-4.7                | EP068: Chlorpyrifos                    | 2921-88-2                         | 0.05 | mg/kg | <0.05           | <0.05            | 0.00    | No Limit            |
| EP071 SG: Total Petr                                                    | oleum Hydrocarbons - Silica | a gel cleanup  (QC Lot: 2694920)       |                                   |      |       |                 |                  |         |                     |
| ES1936922-001                                                           | BH05_4.6-4.7                | EP071SG-S: C15 - C28 Fraction          |                                   | 100  | mg/kg | 220             | 210              | 6.76    | No Limit            |
|                                                                         |                             | EP071SG-S: C29 - C36 Fraction          |                                   | 100  | mg/kg | 140             | 130              | 8.38    | No Limit            |

| Page       | : 4 of 11     |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                               |                           |                                                        |              | Laboratory Duplicate (DUP) Report |       |                 |                  |          |                     |
|------------------------------------------------|---------------------------|--------------------------------------------------------|--------------|-----------------------------------|-------|-----------------|------------------|----------|---------------------|
| Laboratory sample ID                           | Client sample ID          | Method: Compound                                       | CAS Number   | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%)  | Recovery Limits (%) |
| EP071 SG: Total Pet                            | troleum Hydrocarbor       | ns - Silica gel cleanup (QC Lot: 2694920) - continued  |              |                                   |       |                 |                  |          |                     |
| ES1936922-001                                  | BH05_4.6-4.7              | EP071SG-S: C10 - C14 Fraction                          |              | 50                                | mg/kg | <50             | <50              | 0.00     | No Limit            |
|                                                |                           | EP071SG-S: C10 - C36 Fraction (sum)                    |              | 50                                | mg/kg | 360             | 340              | 5.71     | No Limit            |
| EP071 SG: Total Re                             | coverable Hydrocarb       | oons - NEPM 2013 Fractions - Silica gel cleanup (QC Lo | ot: 2694920) |                                   |       | ·               |                  |          |                     |
| ES1936922-001                                  | BH05_4.6-4.7              | EP071SG-S: >C16 - C34 Fraction                         |              | 100                               | mg/kg | 320             | 300              | 6.10     | No Limit            |
|                                                |                           | EP071SG-S: >C34 - C40 Fraction                         |              | 100                               | mg/kg | <100            | <100             | 0.00     | No Limit            |
|                                                |                           | EP071SG-S: >C10 - C16 Fraction                         |              | 50                                | mg/kg | <50             | <50              | 0.00     | No Limit            |
| EP074A: Monocyclic                             | c Aromatic Hydrocar       | bons (QC Lot: 2696391)                                 |              |                                   |       |                 |                  |          |                     |
| ES1937243-002                                  | Anonymous                 | EP074: Benzene                                         | 71-43-2      | 0.2                               | mg/kg | <0.2            | <0.2             | 0.00     | No Limit            |
|                                                |                           | EP074: Toluene                                         | 108-88-3     | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: Ethylbenzene                                    | 100-41-4     | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: meta- & para-Xylene                             | 108-38-3     | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           |                                                        | 106-42-3     |                                   |       |                 |                  |          |                     |
|                                                |                           | EP074: Styrene                                         | 100-42-5     | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: ortho-Xylene                                    | 95-47-6      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
| EP074B: Oxygenated Compounds (QC Lot: 2696391) |                           |                                                        |              |                                   |       |                 |                  |          |                     |
| ES1937243-002                                  | Anonymous                 | EP074: 2-Butanone (MEK)                                | 78-93-3      | 5                                 | mg/kg | <5              | <5               | 0.00     | No Limit            |
| EP074E: Halogenate                             | ed Aliphatic Compou       | nds (QC Lot: 2696391)                                  |              |                                   |       |                 |                  |          |                     |
| ES1937243-002 Anonymous                        | Anonymous                 | EP074: 1.1-Dichloroethene                              | 75-35-4      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                | EP074: Methylene chloride | 75-09-2                                                | 0.5          | mg/kg                             | <0.5  | <0.5            | 0.00             | No Limit |                     |
|                                                |                           | EP074: 1.1.1-Trichloroethane                           | 71-55-6      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: Carbon Tetrachloride                            | 56-23-5      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: 1.2-Dichloroethane                              | 107-06-2     | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: Trichloroethene                                 | 79-01-6      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: 1.1.2-Trichloroethane                           | 79-00-5      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: Tetrachloroethene                               | 127-18-4     | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: 1.1.1.2-Tetrachloroethane                       | 630-20-6     | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: 1.1.2.2-Tetrachloroethane                       | 79-34-5      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP074: Vinyl chloride                                  | 75-01-4      | 5                                 | mg/kg | <5              | <5               | 0.00     | No Limit            |
| EP074F: Halogenate                             | ed Aromatic Compou        | nds (QC Lot: 2696391)                                  |              |                                   |       |                 |                  |          |                     |
| ES1937243-002                                  | Anonymous                 | EP074: Chlorobenzene                                   | 108-90-7     | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
| EP074G: Trihalomet                             | hanes (QC Lot: 2696       | 6391)                                                  |              |                                   |       |                 |                  |          |                     |
| ES1937243-002                                  | Anonymous                 | EP074: Chloroform                                      | 67-66-3      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
| EP075(SIM)A: Pheno                             | olic Compounds (QC        | C Lot: 2694918)                                        |              |                                   |       |                 |                  |          |                     |
| ES1936922-001                                  | BH05_4.6-4.7              | EP075(SIM): Phenol                                     | 108-95-2     | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP075(SIM): 2-Methylphenol                             | 95-48-7      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP075(SIM): 4-Chloro-3-methylphenol                    | 59-50-7      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP075(SIM): 2.4.6-Trichlorophenol                      | 88-06-2      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP075(SIM): 2.4.5-Trichlorophenol                      | 95-95-4      | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                                                |                           | EP075(SIM): 3- & 4-Methylphenol                        | 1319-77-3    | 1                                 | mg/kg | <1              | <1               | 0.00     | No Limit            |

| Page       | : 5 of 11     |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                           |                                        |                                                                   |     |       | Laboratory L | Duplicate (DUP) Report |                     |          |
|----------------------|---------------------------|----------------------------------------|-------------------------------------------------------------------|-----|-------|--------------|------------------------|---------------------|----------|
| Laboratory sample ID | Client sample ID          | Method: Compound                       | CAS Number LOR Unit Original Result Duplicate Result RPD (%) Reco |     |       |              |                        | Recovery Limits (%) |          |
| EP075(SIM)A: Pheno   | lic Compounds (QC Lot: 26 | 94918) - continued                     |                                                                   |     |       |              |                        |                     |          |
| ES1936922-001        | BH05_4.6-4.7              | EP075(SIM): Pentachlorophenol          | 87-86-5                                                           | 2   | mg/kg | <2           | <2                     | 0.00                | No Limit |
| EP075(SIM)B: Polynu  | clear Aromatic Hydrocarbo | ns (QC Lot: 2694918)                   |                                                                   |     |       |              |                        |                     |          |
| ES1936922-001        | BH05_4.6-4.7              | EP075(SIM): Naphthalene                | 91-20-3                                                           | 0.5 | mg/kg | <0.5         | <0.5                   | 0.00                | No Limit |
|                      |                           | EP075(SIM): Acenaphthylene             | 208-96-8                                                          | 0.5 | mg/kg | 0.5          | <0.5                   | 0.00                | No Limit |
|                      |                           | EP075(SIM): Acenaphthene               | 83-32-9                                                           | 0.5 | mg/kg | <0.5         | <0.5                   | 0.00                | No Limit |
|                      |                           | EP075(SIM): Fluorene                   | 86-73-7                                                           | 0.5 | mg/kg | <0.5         | <0.5                   | 0.00                | No Limit |
|                      |                           | EP075(SIM): Phenanthrene               | 85-01-8                                                           | 0.5 | mg/kg | 1.4          | 1.4                    | 0.00                | No Limit |
|                      |                           | EP075(SIM): Anthracene                 | 120-12-7                                                          | 0.5 | mg/kg | 0.6          | 0.5                    | 0.00                | No Limit |
|                      |                           | EP075(SIM): Fluoranthene               | 206-44-0                                                          | 0.5 | mg/kg | 4.9          | 4.5                    | 7.90                | No Limit |
|                      |                           | EP075(SIM): Pyrene                     | 129-00-0                                                          | 0.5 | mg/kg | 5.7          | 5.2                    | 9.59                | 0% - 50% |
|                      |                           | EP075(SIM): Benz(a)anthracene          | 56-55-3                                                           | 0.5 | mg/kg | 2.4          | 2.2                    | 4.52                | No Limit |
|                      |                           | EP075(SIM): Chrysene                   | 218-01-9                                                          | 0.5 | mg/kg | 2.2          | 2.1                    | 8.54                | No Limit |
|                      |                           | EP075(SIM): Benzo(b+j)fluoranthene     | 205-99-2                                                          | 0.5 | mg/kg | 4.2          | 3.8                    | 10.6                | No Limit |
|                      |                           |                                        | 205-82-3                                                          |     |       |              |                        |                     |          |
|                      |                           | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9                                                          | 0.5 | mg/kg | 1.7          | 1.8                    | 0.00                | No Limit |
|                      |                           | EP075(SIM): Benzo(a)pyrene             | 50-32-8                                                           | 0.5 | mg/kg | 4.0          | 3.8                    | 5.58                | No Limit |
|                      |                           | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5                                                          | 0.5 | mg/kg | 1.5          | 1.4                    | 0.00                | No Limit |
|                      |                           | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3                                                           | 0.5 | mg/kg | <0.5         | <0.5                   | 0.00                | No Limit |
|                      |                           | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2                                                          | 0.5 | mg/kg | 1.8          | 1.8                    | 0.00                | No Limit |
|                      |                           | EP075(SIM): Sum of polycyclic aromatic |                                                                   | 0.5 | mg/kg | 30.9         | 28.5                   | 8.08                | 0% - 20% |
|                      |                           | hydrocarbons                           |                                                                   |     |       |              |                        |                     |          |
|                      |                           | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |                                                                   | 0.5 | mg/kg | 5.0          | 4.8                    | 5.34                | 0% - 50% |
| EP080/071: Total Pet | roleum Hydrocarbons (QC   | Lot: 2696392)                          |                                                                   |     |       |              |                        |                     |          |
| ES1937243-002        | Anonymous                 | EP080: C6 - C9 Fraction                |                                                                   | 10  | mg/kg | <10          | <10                    | 0.00                | No Limit |
| EP080/071: Total Rec | overable Hydrocarbons - N | EPM 2013 Fractions (QC Lot: 2696392)   |                                                                   |     |       |              |                        |                     |          |
| ES1937243-002        | Anonymous                 | EP080: C6 - C10 Fraction               | C6_C10                                                            | 10  | mg/kg | <10          | <10                    | 0.00                | No Limit |



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                           |                       |             |        | Method Blank (MB) | Laboratory Control Spike (LCS) Report |          |            |      |  |
|------------------------------------------------------------|-----------------------|-------------|--------|-------------------|---------------------------------------|----------|------------|------|--|
|                                                            | Report                |             | Report | Spike             | Spike Recovery (%)                    | Recovery | Limits (%) |      |  |
| Method: Compound                                           | CAS Number            | LOR         | Unit   | Result            | Concentration                         | LCS      | Low        | High |  |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 2           | 2697194)              |             |        |                   |                                       |          |            |      |  |
| EG005T: Arsenic                                            | 7440-38-2             | 5           | mg/kg  | <5                | 21.7 mg/kg                            | 105      | 86.0       | 126  |  |
| EG005T: Beryllium                                          | 7440-41-7             | 1           | mg/kg  | <1                | 5.63 mg/kg                            | 107      | 90.0       | 113  |  |
| EG005T: Cadmium                                            | 7440-43-9             | 1           | mg/kg  | <1                | 4.64 mg/kg                            | 92.3     | 83.0       | 113  |  |
| EG005T: Lead                                               | 7439-92-1             | 5           | mg/kg  | <5                | 40 mg/kg                              | 99.1     | 80.0       | 114  |  |
| EG005T: Molybdenum                                         | 7439-98-7             | 2           | mg/kg  | <2                |                                       |          |            |      |  |
| EG005T: Nickel                                             | 7440-02-0             | 2           | mg/kg  | <2                | 55 mg/kg                              | 111      | 87.0       | 123  |  |
| EG005T: Selenium                                           | 7782-49-2             | 5           | mg/kg  | <5                | 5.37 mg/kg                            | 123      | 75.0       | 131  |  |
| EG005T: Silver                                             | 7440-22-4             | 2           | mg/kg  | <2                | 2.1 mg/kg                             | 105      | 77.0       | 117  |  |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: 2697195) |                       |             |        |                   |                                       |          |            |      |  |
| EG035T: Mercury                                            | 7439-97-6             | 0.1         | mg/kg  | <0.1              | 2.57 mg/kg                            | 78.0     | 70.0       | 105  |  |
| EG048: Hexavalent Chromium (Alkaline Digest) (Q0           | CLot: 2698222)        |             |        |                   |                                       |          |            |      |  |
| EG048G: Hexavalent Chromium                                | 18540-29-9            | 0.5         | mg/kg  | <0.5              | 20 mg/kg                              | 101      | 68.0       | 114  |  |
|                                                            |                       |             |        | <0.5              | 40 mg/kg                              | 70.7     | 68.0       | 114  |  |
| EK026SF: Total CN by Segmented Flow Analyser(              | QCLot: 2695855)       |             |        |                   |                                       |          |            |      |  |
| EK026SF: Total Cyanide                                     | 57-12-5               | 1           | mg/kg  | <1                | 40 mg/kg                              | 106      | 81.0       | 129  |  |
| EK028SF: Weak Acid Dissociable CN by Segmente              | d Flow Analyser (QCLo | t: 2695854) |        |                   |                                       |          |            |      |  |
| EK028SF: Weak Acid Dissociable Cyanide                     |                       | 1           | mg/kg  | <1                | 40 mg/kg                              | 106      | 70.0       | 130  |  |
| EK040T: Fluoride Total (QCLot: 2700730)                    |                       |             |        |                   |                                       |          |            |      |  |
| EK040T: Fluoride                                           | 16984-48-8            | 40          | mg/kg  | <40               | 400 mg/kg                             | 74.0     | 67.2       | 96.3 |  |
| EP066: Polychlorinated Biphenyls (PCB) (QCLot: 2           | 694921)               |             |        |                   |                                       |          |            |      |  |
| EP066: Total Polychlorinated biphenyls                     |                       | 0.1         | mg/kg  | <0.1              | 1 mg/kg                               | 97.0     | 62.0       | 126  |  |
| EP068A: Organochlorine Pesticides (OC) (QCLot: 2           | 2694919)              |             |        |                   |                                       |          |            |      |  |
| EP068: alpha-BHC                                           | 319-84-6              | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 89.5     | 69.0       | 113  |  |
| EP068: Hexachlorobenzene (HCB)                             | 118-74-1              | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 87.9     | 65.0       | 117  |  |
| EP068: beta-BHC                                            | 319-85-7              | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 92.4     | 67.0       | 119  |  |
| EP068: gamma-BHC                                           | 58-89-9               | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 88.6     | 68.0       | 116  |  |
| EP068: delta-BHC                                           | 319-86-8              | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 90.3     | 65.0       | 117  |  |
| EP068: Heptachlor                                          | 76-44-8               | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 88.6     | 67.0       | 115  |  |
| EP068: Aldrin                                              | 309-00-2              | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 86.0     | 69.0       | 115  |  |
| EP068: Heptachlor epoxide                                  | 1024-57-3             | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 92.4     | 62.0       | 118  |  |
| EP068: trans-Chlordane                                     | 5103-74-2             | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 91.5     | 63.0       | 117  |  |
| EP068: alpha-Endosulfan                                    | 959-98-8              | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 90.4     | 66.0       | 116  |  |
| EP068: cis-Chlordane                                       | 5103-71-9             | 0.05        | mg/kg  | <0.05             | 0.5 mg/kg                             | 90.6     | 64.0       | 116  |  |

| Page       | : 7 of 11    |
|------------|--------------|
| Work Order | ES1936922    |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Sub-Matrix: SOIL                                   |                        | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |               |            |      |      |
|----------------------------------------------------|------------------------|-------------------|---------------------------------------|--------------------|---------------|------------|------|------|
|                                                    |                        | Report            | Spike                                 | Spike Recovery (%) | Recovery      | Limits (%) |      |      |
| Method: Compound                                   | CAS Number             | LOR               | Unit                                  | Result             | Concentration | LCS        | Low  | High |
| EP068A: Organochlorine Pesticides (OC) (QCLot: 26  | 94919) - continued     |                   |                                       |                    |               |            |      |      |
| EP068: Dieldrin                                    | 60-57-1                | 0.05              | mg/kg                                 | <0.05              | 0.5 mg/kg     | 84.0       | 66.0 | 116  |
| EP068: 4.4`-DDE                                    | 72-55-9                | 0.05              | mg/kg                                 | <0.05              | 0.5 mg/kg     | 92.5       | 67.0 | 115  |
| EP068: Endrin                                      | 72-20-8                | 0.05              | mg/kg                                 | <0.05              | 0.5 mg/kg     | 87.4       | 67.0 | 123  |
| EP068: beta-Endosulfan                             | 33213-65-9             | 0.05              | mg/kg                                 | <0.05              | 0.5 mg/kg     | 93.7       | 69.0 | 115  |
| EP068: 4.4`-DDD                                    | 72-54-8                | 0.05              | mg/kg                                 | <0.05              | 0.5 mg/kg     | 94.8       | 69.0 | 121  |
| EP068: Endrin aldehyde                             | 7421-93-4              | 0.05              | mg/kg                                 | <0.05              | 0.5 mg/kg     | 86.4       | 56.0 | 120  |
| EP068: Endosulfan sulfate                          | 1031-07-8              | 0.05              | mg/kg                                 | <0.05              | 0.5 mg/kg     | 96.0       | 62.0 | 124  |
| EP068: 4.4`-DDT                                    | 50-29-3                | 0.2               | mg/kg                                 | <0.2               | 0.5 mg/kg     | 97.3       | 66.0 | 120  |
| EP068B: Organophosphorus Pesticides (OP) (QCLo     | t: 2694919)            |                   |                                       |                    |               |            |      |      |
| EP068: Chlorpyrifos                                | 2921-88-2              | 0.05              | mg/kg                                 | <0.05              | 0.5 mg/kg     | 86.5       | 76.0 | 118  |
| EP071 SG: Total Petroleum Hydrocarbons - Silica ge | l cleanup (QCLot: 26   | 94920)            |                                       |                    |               |            |      |      |
| EP071SG-S: C10 - C14 Fraction                      |                        | 50                | mg/kg                                 | <50                | 300 mg/kg     | 97.1       | 80.0 | 116  |
| EP071SG-S: C15 - C28 Fraction                      |                        | 100               | mg/kg                                 | <100               | 450 mg/kg     | 96.4       | 85.0 | 115  |
| EP071SG-S: C29 - C36 Fraction                      |                        | 100               | mg/kg                                 | <100               | 300 mg/kg     | 98.6       | 75.0 | 123  |
| EP071 SG: Total Recoverable Hydrocarbons - NEPM    | 2013 Fractions - Silic | a gel cleanup (Q  | CLot: 2694920)                        |                    |               |            |      |      |
| EP071SG-S: >C10 - C16 Fraction                     |                        | 50                | mg/kg                                 | <50                | 375 mg/kg     | 94.1       | 89.0 | 109  |
| EP071SG-S: >C16 - C34 Fraction                     |                        | 100               | mg/kg                                 | <100               | 525 mg/kg     | 97.7       | 84.0 | 112  |
| EP071SG-S: >C34 - C40 Fraction                     |                        | 100               | mg/kg                                 | <100               | 225 mg/kg     | 95.1       | 71.0 | 119  |
| EP074A: Monocyclic Aromatic Hydrocarbons (QCLo     | t: 2696391)            |                   |                                       |                    |               |            |      |      |
| EP074: Benzene                                     | 71-43-2                | 0.2               | mg/kg                                 | <0.2               | 1 mg/kg       | 95.7       | 71.0 | 121  |
| EP074: Toluene                                     | 108-88-3               | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 96.8       | 65.0 | 131  |
| EP074: Ethylbenzene                                | 100-41-4               | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 95.6       | 72.0 | 114  |
| EP074: meta- & para-Xylene                         | 108-38-3               | 0.5               | mg/kg                                 | <0.5               | 2 mg/kg       | 93.9       | 70.0 | 116  |
|                                                    | 106-42-3               |                   |                                       |                    |               |            |      |      |
| EP074: Styrene                                     | 100-42-5               | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 93.6       | 67.0 | 113  |
| EP074: ortho-Xylene                                | 95-47-6                | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 96.1       | 75.0 | 115  |
| EP074B: Oxygenated Compounds (QCLot: 2696391)      |                        |                   |                                       |                    |               |            |      |      |
| EP074: 2-Butanone (MEK)                            | 78-93-3                | 5                 | mg/kg                                 | <5                 | 10 mg/kg      | 94.3       | 58.0 | 136  |
| EP074E: Halogenated Aliphatic Compounds (QCLot:    | : 2696391)             |                   |                                       |                    |               |            |      |      |
| EP074: Vinyl chloride                              | 75-01-4                | 5                 | mg/kg                                 | <5                 | 10 mg/kg      | 99.3       | 43.0 | 147  |
| EP074: 1.1-Dichloroethene                          | 75-35-4                | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 97.8       | 54.0 | 126  |
| EP074: Methylene chloride                          | 75-09-2                | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 99.2       | 58.0 | 148  |
| EP074: 1.1.1-Trichloroethane                       | 71-55-6                | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 93.9       | 65.0 | 117  |
| EP074: Carbon Tetrachloride                        | 56-23-5                | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 93.6       | 59.0 | 125  |
| EP074: 1.2-Dichloroethane                          | 107-06-2               | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 96.8       | 65.0 | 125  |
| EP074: Trichloroethene                             | 79-01-6                | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 94.0       | 70.0 | 118  |
| EP074: 1.1.2-Trichloroethane                       | 79-00-5                | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 99.2       | 64.0 | 126  |
| EP074: Tetrachloroethene                           | 127-18-4               | 0.5               | mg/kg                                 | <0.5               | 1 mg/kg       | 97.5       | 67.0 | 143  |

| Page       | : 8 of 11     |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                   |                      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                   |                    |                              |            |            |
|----------------------------------------------------|----------------------|-------------------|---------------------------------------|-------------------|--------------------|------------------------------|------------|------------|
|                                                    |                      |                   |                                       | Report            | Spike              | Spike Recovery (%)           | Recovery   | Limits (%) |
| Method: Compound                                   | CAS Number           | LOR               | Unit                                  | Result            | Concentration      | LCS                          | Low        | High       |
| EP074E: Halogenated Aliphatic Compounds (QCLot:    | 2696391) - continued |                   |                                       |                   |                    |                              |            |            |
| EP074: 1.1.1.2-Tetrachloroethane                   | 630-20-6             | 0.5               | mg/kg                                 | <0.5              | 1 mg/kg            | 93.4                         | 62.0       | 122        |
| EP074: 1.1.2.2-Tetrachloroethane                   | 79-34-5              | 0.5               | mg/kg                                 | <0.5              | 1 mg/kg            | 95.2                         | 65.0       | 121        |
| EP074F: Halogenated Aromatic Compounds (QCLot:     | 2696391)             |                   |                                       |                   |                    |                              |            |            |
| EP074: Chlorobenzene                               | 108-90-7             | 0.5               | mg/kg                                 | <0.5              | 1 mg/kg            | 96.0                         | 68.0       | 116        |
| EP074G: Trihalomethanes (QCLot: 2696391)           |                      |                   |                                       |                   |                    |                              |            |            |
| EP074: Chloroform                                  | 67-66-3              | 0.5               | mg/kg                                 | <0.5              | 1 mg/kg            | 94.3                         | 66.0       | 124        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 2694918    | )                    |                   |                                       |                   |                    |                              |            |            |
| EP075(SIM): Phenol                                 | 108-95-2             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 104                          | 71.0       | 125        |
| EP075(SIM): 2-Methylphenol                         | 95-48-7              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 104                          | 71.0       | 123        |
| EP075(SIM): 3- & 4-Methylphenol                    | 1319-77-3            | 1                 | mg/kg                                 | <1                | 12 mg/kg           | 113                          | 67.0       | 127        |
| EP075(SIM): 4-Chloro-3-methylphenol                | 59-50-7              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 112                          | 70.0       | 116        |
| EP075(SIM): 2.4.6-Trichlorophenol                  | 88-06-2              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 101                          | 54.0       | 114        |
| EP075(SIM): 2.4.5-Trichlorophenol                  | 95-95-4              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 102                          | 60.0       | 114        |
| EP075(SIM): Pentachlorophenol                      | 87-86-5              | 2                 | mg/kg                                 | <2                | 12 mg/kg           | 50.2                         | 10.0       | 57.0       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (C  | CLot: 2694918)       |                   |                                       |                   |                    |                              |            |            |
| EP075(SIM): Naphthalene                            | 91-20-3              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 119                          | 77.0       | 125        |
| EP075(SIM): Acenaphthylene                         | 208-96-8             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 120                          | 72.0       | 124        |
| EP075(SIM): Acenaphthene                           | 83-32-9              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 115                          | 73.0       | 127        |
| EP075(SIM): Fluorene                               | 86-73-7              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 122                          | 72.0       | 126        |
| EP075(SIM): Phenanthrene                           | 85-01-8              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 98.6                         | 75.0       | 127        |
| EP075(SIM): Anthracene                             | 120-12-7             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 96.8                         | 77.0       | 127        |
| EP075(SIM): Fluoranthene                           | 206-44-0             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 108                          | 73.0       | 127        |
| EP075(SIM): Pyrene                                 | 129-00-0             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 105                          | 74.0       | 128        |
| EP075(SIM): Benz(a)anthracene                      | 56-55-3              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 107                          | 69.0       | 123        |
| EP075(SIM): Chrysene                               | 218-01-9             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 103                          | 75.0       | 127        |
| EP075(SIM): Benzo(b+j)fluoranthene                 | 205-99-2             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 98.2                         | 68.0       | 116        |
|                                                    | 205-82-3             |                   |                                       |                   |                    |                              |            |            |
| EP075(SIM): Benzo(k)fluoranthene                   | 207-08-9             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 105                          | 74.0       | 126        |
| EP075(SIM): Benzo(a)pyrene                         | 50-32-8              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 115                          | 70.0       | 126        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                 | 193-39-5             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 108                          | 61.0       | 121        |
| EP075(SIM): Dibenz(a.h)anthracene                  | 53-70-3              | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 102                          | 62.0       | 118        |
| EP075(SIM): Benzo(g.h.i)perylene                   | 191-24-2             | 0.5               | mg/kg                                 | <0.5              | 6 mg/kg            | 110                          | 63.0       | 121        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 2  | 596392)              |                   |                                       |                   |                    |                              |            |            |
| EP080: C6 - C9 Fraction                            |                      | 10                | mg/kg                                 | <10               | 26 mg/kg           | 98.1                         | 68.4       | 128        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM : | 2013 Fractions (QCL  | ot: 2696392)      |                                       |                   |                    |                              |            |            |
| EP080: C6 - C10 Fraction                           | C6_C10               | 10                | mg/kg                                 | <10               | 31 mg/kg           | 97.9                         | 68.4       | 128        |
| Sub-Matrix: WATER                                  |                      |                   |                                       | Method Blank (MB) |                    | Laboratory Control Spike (LC | S) Report  |            |
|                                                    |                      |                   | Report                                | Spike             | Spike Recovery (%) | Recovery                     | Limits (%) |            |

| Page       | : 9 of 11    |
|------------|--------------|
| Work Order | ES1936922    |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Sub-Matrix: WATER                              | Method Blank (MB) | Laboratory Control Spike (LCS) Report |      |        |               |                    |          |            |
|------------------------------------------------|-------------------|---------------------------------------|------|--------|---------------|--------------------|----------|------------|
|                                                |                   |                                       |      | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                               | CAS Number        | LOR                                   | Unit | Result | Concentration | LCS                | Low      | High       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons | (QCLot: 2692989)  |                                       |      |        |               |                    |          |            |
| EP075(SIM): Naphthalene                        | 91-20-3           | 1                                     | μg/L | <1.0   | 5 µg/L        | 74.0               | 50.0     | 94.0       |
| EP075(SIM): Acenaphthylene                     | 208-96-8          | 1                                     | μg/L | <1.0   | 5 µg/L        | 74.1               | 63.6     | 114        |
| EP075(SIM): Acenaphthene                       | 83-32-9           | 1                                     | μg/L | <1.0   | 5 µg/L        | 68.6               | 62.2     | 113        |
| EP075(SIM): Fluorene                           | 86-73-7           | 1                                     | μg/L | <1.0   | 5 µg/L        | 73.8               | 63.9     | 115        |
| EP075(SIM): Phenanthrene                       | 85-01-8           | 1                                     | μg/L | <1.0   | 5 µg/L        | 67.3               | 62.6     | 116        |
| EP075(SIM): Anthracene                         | 120-12-7          | 1                                     | μg/L | <1.0   | 5 µg/L        | 66.4               | 64.3     | 116        |
| EP075(SIM): Fluoranthene                       | 206-44-0          | 1                                     | μg/L | <1.0   | 5 µg/L        | 66.8               | 63.6     | 118        |
| EP075(SIM): Pyrene                             | 129-00-0          | 1                                     | μg/L | <1.0   | 5 µg/L        | 74.1               | 63.1     | 118        |
| EP075(SIM): Benz(a)anthracene                  | 56-55-3           | 1                                     | μg/L | <1.0   | 5 µg/L        | 72.8               | 64.1     | 117        |
| EP075(SIM): Chrysene                           | 218-01-9          | 1                                     | μg/L | <1.0   | 5 µg/L        | 79.2               | 62.5     | 116        |
| EP075(SIM): Benzo(b+j)fluoranthene             | 205-99-2          | 1                                     | μg/L | <1.0   | 5 µg/L        | 78.7               | 61.7     | 119        |
|                                                | 205-82-3          |                                       |      |        |               |                    |          |            |
| EP075(SIM): Benzo(k)fluoranthene               | 207-08-9          | 1                                     | μg/L | <1.0   | 5 µg/L        | 76.4               | 63.0     | 115        |
| EP075(SIM): Benzo(a)pyrene                     | 50-32-8           | 0.5                                   | μg/L | <0.5   | 5 µg/L        | 78.9               | 63.3     | 117        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene             | 193-39-5          | 1                                     | µg/L | <1.0   | 5 µg/L        | 73.4               | 59.9     | 118        |
| EP075(SIM): Dibenz(a.h)anthracene              | 53-70-3           | 1                                     | µg/L | <1.0   | 5 µg/L        | 71.8               | 61.2     | 117        |
| EP075(SIM): Benzo(g.h.i)perylene               | 191-24-2          | 1                                     | µg/L | <1.0   | 5 μg/L        | 75.6               | 59.1     | 118        |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL                                                              |                                             |                             |            |               | Matrix Spike (MS) Report |            |          |  |
|-------------------------------------------------------------------------------|---------------------------------------------|-----------------------------|------------|---------------|--------------------------|------------|----------|--|
|                                                                               |                                             |                             |            | Spike         | SpikeRecovery(%)         | Recovery L | mits (%) |  |
| Laboratory sample ID                                                          | Client sample ID                            | Method: Compound            | CAS Number | Concentration | MS                       | Low        | High     |  |
| EG005(ED093)T: To                                                             | tal Metals by ICP-AES (QCLot: 2697194)      |                             |            |               |                          |            |          |  |
| ES1936824-003                                                                 | Anonymous                                   | EG005T: Arsenic             | 7440-38-2  | 50 mg/kg      | 96.8                     | 70.0       | 130      |  |
|                                                                               |                                             | EG005T: Cadmium             | 7440-43-9  | 50 mg/kg      | 95.2                     | 70.0       | 130      |  |
|                                                                               |                                             | EG005T: Lead                | 7439-92-1  | 250 mg/kg     | 95.4                     | 70.0       | 130      |  |
|                                                                               |                                             | EG005T: Nickel              | 7440-02-0  | 50 mg/kg      | 93.8                     | 70.0       | 130      |  |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: 2697195)                    |                                             |                             |            |               |                          |            |          |  |
| ES1936824-003                                                                 | Anonymous                                   | EG035T: Mercury             | 7439-97-6  | 5 mg/kg       | 83.8                     | 70.0       | 130      |  |
| EG048: Hexavalent                                                             | Chromium (Alkaline Digest) (QCLot: 2698222) |                             |            |               |                          |            |          |  |
| ES1936560-001                                                                 | Anonymous                                   | EG048G: Hexavalent Chromium | 18540-29-9 | 40 mg/kg      | # 5.00                   | 70.0       | 130      |  |
| ES1936560-001                                                                 | Anonymous                                   | EG048G: Hexavalent Chromium | 18540-29-9 | 40 mg/kg      | # 2.60                   | 70.0       | 130      |  |
| EK026SF: Total CN by Segmented Flow Analyser (QCLot: 2695855)                 |                                             |                             |            |               |                          |            |          |  |
| ES1936731-001                                                                 | Anonymous                                   | EK026SF: Total Cyanide      | 57-12-5    | 40 mg/kg      | 130                      | 70.0       | 130      |  |
| EK028SF: Weak Acid Dissociable CN by Segmented Flow Analyser (QCLot: 2695854) |                                             |                             |            |               |                          |            |          |  |

| Page       | : 10 of 11    |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                                                        |                                        | Matrix Spike (MS) Report |               |                  |             |          |  |
|----------------------|--------------------------------------------------------|----------------------------------------|--------------------------|---------------|------------------|-------------|----------|--|
|                      |                                                        |                                        |                          | Spike         | SpikeRecovery(%) | Recovery Li | mits (%) |  |
| Laboratory sample ID | Client sample ID                                       | Method: Compound                       | CAS Number               | Concentration | MS               | Low         | High     |  |
| EK028SF: Weak A      | cid Dissociable CN by Segmented Flow Analyser (QCL     | ot: 2695854) - continued               |                          |               |                  |             |          |  |
| ES1936420-001        | Anonymous                                              | EK028SF: Weak Acid Dissociable Cyanide |                          | 40 mg/kg      | 119              | 70.0        | 130      |  |
| EK040T: Fluoride     | Гоtal (QCLot: 2700730)                                 |                                        |                          |               |                  |             |          |  |
| EB1928929-001        | Anonymous                                              | EK040T: Fluoride                       | 16984-48-8               | 400 mg/kg     | 104              | 70.0        | 130      |  |
| EP066: Polychlorin   | nated Biphenyls (PCB) (QCLot: 2694921)                 |                                        |                          |               |                  |             |          |  |
| ES1936922-001        | BH05_4.6-4.7                                           | EP066: Total Polychlorinated biphenyls |                          | 1 mg/kg       | 94.0             | 70.0        | 130      |  |
| EP068A: Organoch     | nlorine Pesticides (OC) (QCLot: 2694919)               |                                        |                          |               |                  |             |          |  |
| ES1936922-001        | BH05_4.6-4.7                                           | EP068: gamma-BHC                       | 58-89-9                  | 0.5 mg/kg     | 78.8             | 70.0        | 130      |  |
|                      |                                                        | EP068: Heptachlor                      | 76-44-8                  | 0.5 mg/kg     | 83.1             | 70.0        | 130      |  |
|                      |                                                        | EP068: Aldrin                          | 309-00-2                 | 0.5 mg/kg     | 76.1             | 70.0        | 130      |  |
|                      |                                                        | EP068: Dieldrin                        | 60-57-1                  | 0.5 mg/kg     | 99.2             | 70.0        | 130      |  |
|                      |                                                        | EP068: Endrin                          | 72-20-8                  | 2 mg/kg       | 89.5             | 70.0        | 130      |  |
|                      |                                                        | EP068: 4.4`-DDT                        | 50-29-3                  | 2 mg/kg       | 81.9             | 70.0        | 130      |  |
| EP071 SG: Total P    | etroleum Hydrocarbons - Silica gel cleanup  (QCLot: 26 | 94920)                                 |                          |               |                  |             |          |  |
| ES1936922-001        | BH05_4.6-4.7                                           | EP071SG-S: C10 - C14 Fraction          |                          | 523 mg/kg     | 106              | 43.0        | 139      |  |
|                      |                                                        | EP071SG-S: C15 - C28 Fraction          |                          | 2319 mg/kg    | 118              | 49.0        | 131      |  |
|                      |                                                        | EP071SG-S: C29 - C36 Fraction          |                          | 1714 mg/kg    | 130              | 64.0        | 158      |  |
| EP071 SG: Total R    | ecoverable Hydrocarbons - NEPM 2013 Fractions - Silic  | a gel cleanup  (QCLot: 2694920)        |                          |               |                  |             |          |  |
| ES1936922-001        | BH05_4.6-4.7                                           | EP071SG-S: >C10 - C16 Fraction         |                          | 860 mg/kg     | 110              | 33.0        | 137      |  |
|                      |                                                        | EP071SG-S: >C16 - C34 Fraction         |                          | 3223 mg/kg    | 122              | 40.0        | 137      |  |
|                      |                                                        | EP071SG-S: >C34 - C40 Fraction         |                          | 1058 mg/kg    | 118              | 30.0        | 190      |  |
| EP074A: Monocyc      | lic Aromatic Hydrocarbons (QCLot: 2696391)             |                                        |                          |               |                  |             |          |  |
| ES1937243-002        | Anonymous                                              | EP074: Benzene                         | 71-43-2                  | 2.5 mg/kg     | 98.4             | 70.0        | 130      |  |
|                      |                                                        | EP074: Toluene                         | 108-88-3                 | 2.5 mg/kg     | 101              | 70.0        | 130      |  |
| EP074E: Halogena     | ted Aliphatic Compounds (QCLot: 2696391)               |                                        |                          |               | · · · ·          |             |          |  |
| ES1937243-002        | Anonymous                                              | EP074: 1.1-Dichloroethene              | 75-35-4                  | 2.5 mg/kg     | 94.0             | 70.0        | 130      |  |
|                      |                                                        | EP074: Trichloroethene                 | 79-01-6                  | 2.5 mg/kg     | 95.2             | 70.0        | 130      |  |
| EP074F: Halogena     | ted Aromatic Compounds (QCLot: 2696391)                |                                        |                          |               |                  |             |          |  |
| ES1937243-002        | Anonymous                                              | EP074: Chlorobenzene                   | 108-90-7                 | 2.5 mg/kg     | 102              | 70.0        | 130      |  |
| EP075(SIM)A: Phe     | nolic Compounds (QCLot: 2694918)                       |                                        |                          |               |                  |             |          |  |
| ES1936922-001        | BH05_4.6-4.7                                           | EP075(SIM): Phenol                     | 108-95-2                 | 10 mg/kg      | 102              | 70.0        | 130      |  |
|                      |                                                        | EP075(SIM): 4-Chloro-3-methylphenol    | 59-50-7                  | 10 mg/kg      | 112              | 70.0        | 130      |  |
|                      |                                                        | EP075(SIM): Pentachlorophenol          | 87-86-5                  | 10 mg/kg      | 84.8             | 20.0        | 130      |  |
| EP075(SIM)B: Poly    | nuclear Aromatic Hydrocarbons (QCLot: 2694918)         |                                        |                          |               |                  |             |          |  |
| ES1936922-001        | BH05_4.6-4.7                                           | EP075(SIM): Acenaphthene               | 83-32-9                  | 10 mg/kg      | 109              | 70.0        | 130      |  |
|                      |                                                        | EP075(SIM): Pyrene                     | 129-00-0                 | 10 mg/kg      | 109              | 70.0        | 130      |  |
| -                    |                                                        |                                        |                          |               |                  |             |          |  |

| Page       | : 11 of 11    |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                                                 | Matrix Spike (MS) Report               |                          |            |               |                  |            |           |
|----------------------------------------------------------------------------------|----------------------------------------|--------------------------|------------|---------------|------------------|------------|-----------|
|                                                                                  |                                        |                          |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID                                                             | Client sample ID                       | Method: Compound         | CAS Number | Concentration | MS               | Low        | High      |
| EP080/071: Total P                                                               | etroleum Hydrocarbons (QCLot: 2696392) |                          |            |               |                  |            |           |
| ES1937243-002                                                                    | Anonymous                              | EP080: C6 - C9 Fraction  |            | 32.5 mg/kg    | 108              | 70.0       | 130       |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 2696392) |                                        |                          |            |               |                  |            |           |
| ES1937243-002                                                                    | Anonymous                              | EP080: C6 - C10 Fraction | C6_C10     | 37.5 mg/kg    | 97.0             | 70.0       | 130       |



| QA/QC Compliance Assessment to assist with Quality Review |                  |                         |                                 |  |  |  |
|-----------------------------------------------------------|------------------|-------------------------|---------------------------------|--|--|--|
| Work Order                                                | ES1936922        | Page                    | : 1 of 8                        |  |  |  |
| Client                                                    | : GHD PTY LTD    | Laboratory              | : Environmental Division Sydney |  |  |  |
| Contact                                                   | : Jessica Watson | Telephone               | : +61-2-8784 8555               |  |  |  |
| Project                                                   | : 12517046       | Date Samples Received   | : 08-Nov-2019                   |  |  |  |
| Site                                                      | :                | Issue Date              | : 15-Nov-2019                   |  |  |  |
| Sampler                                                   | : CARMEN YI      | No. of samples received | : 4                             |  |  |  |
| Order number                                              | : 12517046       | No. of samples analysed | : 2                             |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

| Page       | : 2 of 8      |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: SOIL

| Compound Group Name                          | Laboratory Sample ID | Client Sample ID | Analyte             | CAS Number | Data   | Limits    | Comment                               |
|----------------------------------------------|----------------------|------------------|---------------------|------------|--------|-----------|---------------------------------------|
| Matrix Spike (MS) Recoveries                 |                      |                  |                     |            |        |           |                                       |
| EG048: Hexavalent Chromium (Alkaline Digest) | ES1936560001         | Anonymous        | Hexavalent Chromium | 18540-29-9 | 5.00 % | 70.0-130% | Recovery less than lower data quality |
|                                              |                      |                  |                     |            |        |           | objective                             |
| EG048: Hexavalent Chromium (Alkaline Digest) | ES1936560001         | Anonymous        | Hexavalent Chromium | 18540-29-9 | 2.60 % | 70.0-130% | Recovery less than lower data quality |
|                                              |                      |                  |                     |            |        |           | objective                             |

#### **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type | Count Rate (%) |         | (%)             | Quality Control Specification |                                |
|-----------------------------|----------------|---------|-----------------|-------------------------------|--------------------------------|
| Method                      | QC             | Regular | Actual Expected |                               |                                |
| Laboratory Duplicates (DUP) |                |         |                 |                               |                                |
| PAH/Phenols (GC/MS - SIM)   | 0              | 13      | 0.00            | 10.00                         | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)          |                |         | `               |                               |                                |
| PAH/Phenols (GC/MS - SIM)   | 0              | 13      | 0.00            | 5.00                          | NEPM 2013 B3 & ALS QC Standard |

#### Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern

| $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\underline{\mathbf{v}}$ $\mathbf{$ |             |                |                        |            |                    |                    |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Matrix: SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EA037: Ass Field Screening Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                |                        |            |                    |                    |                |
| Snap Lock Bag - frozen (EA037)<br>BH05_4.6-4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 07-Nov-2019 | 14-Nov-2019    | 05-May-2020            | 1          | 14-Nov-2019        | 05-May-2020        | ✓              |
| EA055: Moisture Content (Dried @ 105-110°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                |                        |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EA055)<br>BH05_4.6-4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07-Nov-2019 |                |                        |            | 12-Nov-2019        | 21-Nov-2019        | ~              |
| EG005(ED093)T: Total Metals by ICP-AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                |                        |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EG005T)<br>BH05_4.6-4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07-Nov-2019 | 12-Nov-2019    | 05-May-2020            | 1          | 13-Nov-2019        | 05-May-2020        | ~              |
| EG035T: Total Recoverable Mercury by FIMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                |                        |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EG035T)<br>BH05_4.6-4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07-Nov-2019 | 12-Nov-2019    | 05-Dec-2019            | 1          | 13-Nov-2019        | 05-Dec-2019        | 1              |

| Page       | : 3 of 8      |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                                                                        |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|-------------------------------------------------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                                                              | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)                                                     |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EG048: Hexavalent Chromium (Alkaline Digest)                                        |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EG048G)<br>BH05_4.6-4.7                               | 07-Nov-2019 | 13-Nov-2019    | 05-Dec-2019            | 1          | 13-Nov-2019        | 20-Nov-2019        | ~               |
| EK026SF: Total CN by Segmented Flow Analyser                                        |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EK026SF)<br>BH05_4.6-4.7                              | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 14-Nov-2019        | 26-Nov-2019        | 1               |
| EK028SF: Weak Acid Dissociable CN by Segmented Flow Analyser                        |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EK028SF)<br>BH05_4.6-4.7                              | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 14-Nov-2019        | 26-Nov-2019        | 1               |
| EK040T: Fluoride Total                                                              |             |                |                        |            |                    |                    |                 |
| Snap Lock Bag (EK040T)<br>BH05_4.6-4.7                                              | 07-Nov-2019 | 11-Nov-2019    | 05-Dec-2019            | 1          | 14-Nov-2019        | 05-Dec-2019        | 1               |
| EP066: Polychlorinated Biphenyls (PCB)                                              |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EP066)<br>BH05_4.6-4.7                                | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 13-Nov-2019        | 22-Dec-2019        | ~               |
| EP068A: Organochlorine Pesticides (OC)                                              |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EP068)<br>BH05_4.6-4.7                                | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 13-Nov-2019        | 22-Dec-2019        | ~               |
| EP068B: Organophosphorus Pesticides (OP)                                            |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EP068)<br>BH05_4.6-4.7                                | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 13-Nov-2019        | 22-Dec-2019        | ~               |
| EP071 SG: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Silica gel cleanup |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EP071SG-S)<br>BH05_4.6-4.7                            | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 14-Nov-2019        | 22-Dec-2019        | ~               |
| EP071 SG-S: Total Petroleum Hydrocarbons in Soil - Silica gel cleanup               |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EP071SG-S)<br>BH05_4.6-4.7                            | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 14-Nov-2019        | 22-Dec-2019        | ~               |
| EP074A: Monocyclic Aromatic Hydrocarbons                                            |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EP074)<br>BH05_4.6-4.7                                | 07-Nov-2019 | 12-Nov-2019    | 14-Nov-2019            | 1          | 12-Nov-2019        | 14-Nov-2019        | ~               |
| EP074B: Oxygenated Compounds                                                        |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EP074)<br>BH05_4.6-4.7                                | 07-Nov-2019 | 12-Nov-2019    | 14-Nov-2019            | ~          | 12-Nov-2019        | 14-Nov-2019        | ~               |
| EP074E: Halogenated Aliphatic Compounds                                             |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EP074)<br>BH05_4.6-4.7                                | 07-Nov-2019 | 12-Nov-2019    | 14-Nov-2019            | ~          | 12-Nov-2019        | 14-Nov-2019        | ~               |
| EP074F: Halogenated Aromatic Compounds                                              |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EP074)<br>BH05_4.6-4.7                                | 07-Nov-2019 | 12-Nov-2019    | 14-Nov-2019            | 1          | 12-Nov-2019        | 14-Nov-2019        | 1               |

| Page       | : 4 of 8      |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                                                    |             |                |                        | Evaluation | i: × = Holding time | breach ; ✓ = Withi | in holding time |
|-----------------------------------------------------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|-----------------|
| Method                                                          | Sample Date | E>             | traction / Preparation |            |                     | Analysis           |                 |
| Container / Client Sample ID(s)                                 |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation      |
| EP074G: Trihalomethanes                                         |             |                |                        |            |                     |                    |                 |
| Soil Glass Jar - Unpreserved (EP074)<br>BH05_4.6-4.7            | 07-Nov-2019 | 12-Nov-2019    | 14-Nov-2019            | 1          | 12-Nov-2019         | 14-Nov-2019        | ✓               |
| EP075(SIM)A: Phenolic Compounds                                 |             |                |                        |            |                     |                    |                 |
| Soil Glass Jar - Unpreserved (EP075(SIM))<br>BH05_4.6-4.7       | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 13-Nov-2019         | 22-Dec-2019        | ✓               |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons                  |             |                |                        |            |                     |                    |                 |
| Soil Glass Jar - Unpreserved (EP075(SIM))<br>BH05_4.6-4.7       | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 13-Nov-2019         | 22-Dec-2019        | ✓               |
| EP080/071: Total Petroleum Hydrocarbons                         |             |                |                        |            |                     |                    |                 |
| Soil Glass Jar - Unpreserved (EP080)<br>BH05_4.6-4.7            | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 12-Nov-2019         | 21-Nov-2019        | ✓               |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions |             |                |                        |            |                     |                    |                 |
| Soil Glass Jar - Unpreserved (EP080)<br>BH05_4.6-4.7            | 07-Nov-2019 | 12-Nov-2019    | 21-Nov-2019            | 1          | 12-Nov-2019         | 21-Nov-2019        | ✓               |
| Matrix: WATER                                                   |             |                |                        | Evaluation | : × = Holding time  | breach ; ✓ = Withi | in holding time |
| Method                                                          | Sample Date | E>             | traction / Preparation |            |                     | Analysis           |                 |
| Container / Client Sample ID(s)                                 |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation      |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons                  |             |                |                        |            |                     |                    |                 |
| Amber Glass Bottle - Unpreserved (EP075(SIM))<br>RIN_03         | 07-Nov-2019 | 11-Nov-2019    | 14-Nov-2019            | 1          | 12-Nov-2019         | 21-Dec-2019        | ✓               |

| Page       | 5 of 8        |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                            |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|---------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type                             |            | С  | ount    |           | Rate (%)          |                 | Quality Control Specification                                                             |
| Analytical Methods                                      | Method     | QC | Reaular | Actual    | Expected          | Evaluation      |                                                                                           |
| Laboratory Duplicates (DUP)                             |            |    |         |           |                   |                 |                                                                                           |
| ASS Field Screening Analysis                            | EA037      | 1  | 5       | 20.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Moisture Content                                        | EA055      | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 1  | 1       | 100.00    | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Pesticides by GCMS                                      | EP068      | 1  | 1       | 100.00    | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1  | 1       | 100.00    | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Fluoride                                          | EK040T     | 2  | 11      | 18.18     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS                                   | EG035T     | 2  | 19      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-AES                                 | EG005T     | 2  | 19      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1  | 1       | 100.00    | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH Volatiles/BTEX                                      | EP080      | 1  | 9       | 11.11     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Volatile Organic Compounds                              | EP074      | 1  | 3       | 33.33     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1  | 2       | 50.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Laboratory Control Samples (LCS)                        |            |    |         |           |                   |                 |                                                                                           |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 1  | 1       | 100.00    | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Pesticides by GCMS                                      | EP068      | 1  | 1       | 100.00    | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1  | 1       | 100.00    | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Fluoride                                          | EK040T     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS                                   | EG035T     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-AES                                 | EG005T     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1  | 1       | 100.00    | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH Volatiles/BTEX                                      | EP080      | 1  | 9       | 11.11     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Volatile Organic Compounds                              | EP074      | 1  | 3       | 33.33     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Method Blanks (MB)                                      |            |    |         |           |                   |                 |                                                                                           |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 1  | 1       | 100.00    | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Pesticides by GCMS                                      | EP068      | 1  | 1       | 100.00    | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1  | 1       | 100.00    | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Fluoride                                          | EK040T     | 1  | 11      | 9.09      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS                                   | EG035T     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-AES                                 | EG005T     | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |

| Page       | : 6 of 8      |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |

PAH/Phenols (GC/MS - SIM)

Method Blanks (MB) PAH/Phenols (GC/MS - SIM)

Matrix Spikes (MS) PAH/Phenols (GC/MS - SIM)



| Matrix: SOIL                                            |            |    |         | Evaluatio | n: × = Quality Co | ontrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|---------------------------------------------------------|------------|----|---------|-----------|-------------------|------------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type                             |            | C  | Count   |           | Rate (%)          |                  | Quality Control Specification                                                             |
| Analytical Methods                                      | Method     | QC | Reaular | Actual    | Expected          | Evaluation       |                                                                                           |
| Method Blanks (MB) - Continued                          |            |    |         |           |                   |                  |                                                                                           |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1  | 1       | 100.00    | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH Volatiles/BTEX                                      | EP080      | 1  | 9       | 11.11     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Volatile Organic Compounds                              | EP074      | 1  | 3       | 33.33     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1  | 2       | 50.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Matrix Spikes (MS)                                      |            |    |         |           |                   |                  |                                                                                           |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 2  | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 1  | 1       | 100.00    | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Pesticides by GCMS                                      | EP068      | 1  | 1       | 100.00    | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1  | 1       | 100.00    | 5.00              | ~                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Fluoride                                          | EK040T     | 1  | 11      | 9.09      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS                                   | EG035T     | 1  | 19      | 5.26      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-AES                                 | EG005T     | 1  | 19      | 5.26      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1  | 1       | 100.00    | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH Volatiles/BTEX                                      | EP080      | 1  | 9       | 11.11     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Volatile Organic Compounds                              | EP074      | 1  | 3       | 33.33     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1  | 2       | 50.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Matrix: WATER                                           |            |    |         | Evaluatio | n: × = Quality Co | ontrol frequency | not within specification ; 🖌 = Quality Control frequency within specification.            |
| Quality Control Sample Type                             |            | C  | Count   |           | Rate (%)          |                  | Quality Control Specification                                                             |
| Analytical Methods                                      | Method     | QC | Reaular | Actual    | Expected          | Evaluation       |                                                                                           |
| Laboratory Duplicates (DUP)                             |            |    |         |           |                   |                  |                                                                                           |
| PAH/Phenols (GC/MS - SIM)                               | EP075(SIM) | 0  | 13      | 0.00      | 10.00             | x                | NEPM 2013 B3 & ALS QC Standard                                                            |
| Laboratory Control Samples (LCS)                        |            |    |         |           |                   |                  |                                                                                           |

13

13

13

7.69

7.69

0.00

5.00

5.00

5.00

1

 $\checkmark$ 

x

NEPM 2013 B3 & ALS QC Standard

NEPM 2013 B3 & ALS QC Standard

NEPM 2013 B3 & ALS QC Standard

EP075(SIM)

EP075(SIM)

EP075(SIM)

1

1

0

| Page       | : 7 of 8      |
|------------|---------------|
| Work Order | : ES1936922   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods              | Method  | Matrix | Method Descriptions                                                                                                                                                                         |
|---------------------------------|---------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASS Field Screening Analysis    | * EA037 | SOIL   | In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines, version 2.1 June 2004. As received samples are tested for pH field and pH fox and assessed for a reaction rating. |
| Moisture Content                | EA055   | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C.                                                                                   |
|                                 |         |        | This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).                                                                                      |
| Total Metals by ICP-AES         | EG005T  | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate                                                                                      |
|                                 |         |        | acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic                                                                                     |
|                                 |         |        | spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix                                                                                  |
|                                 |         |        | matched standards. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                  |
| Total Mercury by FIMS           | EG035T  | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS)                                                                                     |
|                                 |         |        | FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an                                                                                |
|                                 |         |        | appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then                                                                                 |
|                                 |         |        | purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This                                                                               |
|                                 |         |        | method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                          |
| Hexavalent Chromium by Alkaline | EG048G  | SOIL   | In house: Referenced to USEPA SW846, Method 3060A. Hexavalent chromium is extracted by alkaline digestion.                                                                                  |
| Digestion and DA Finish         |         |        | The digest is determined by photometrically by automatic discrete analyser, following pH adjustment. The                                                                                    |
|                                 |         |        | instrument uses colour development using dephenylcarbazide. Each run of samples is measured against a                                                                                       |
|                                 |         |        | five-point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                       |
| Total Cyanide by Segmented Flow | EK026SF | SOIL   | In house: Referenced to APHA 4500-CN C / ASTM D7511. Caustic leachates of soil samples are introduced into                                                                                  |
| Analyser                        |         |        | an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing                                                                                         |
|                                 |         |        | stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate                                                                          |
|                                 |         |        | glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of                                                                               |
|                                 |         |        | thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen                                                                            |
|                                 |         |        | cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form                                                                                      |
|                                 |         |        | cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red                                                                           |
|                                 | FLOODOF | 2011   | colour which is measured at 600 nm. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                 |
| WAD Cyanide by Segmented Flow   | EK028SF | SOIL   | In house: Referenced to APHA 4500-CN-O. Caustic leachates of soil samples are introduced into an automated                                                                                  |
| Analyser                        |         |        | segmented flow analyser. Hydrogen cyanide is liberated from a slightly acidified (pH 4.5) and is dialysed. Fight                                                                            |
|                                 |         |        | cyanide complexes that would not be amenable to oxidation by chlorine are not converted. Iron cyanide                                                                                       |
|                                 |         |        | complexes are precipitated with zinc acetate.                                                                                                                                               |
|                                 |         |        | Liberated HCN diffuses through a membrane into a stream of sodium hydroxide where it is carried as CN-                                                                                      |
|                                 |         |        | The cyanide in causic solution is bulleted to pH 5.2 and further converted to cyanogen chloride by reaction with                                                                            |
|                                 |         |        | chioranine-1. Cyanogen chiorde subsequently feacts with 4 2pynomic carboxylic and 1,3 - dimethyloarbitume                                                                                   |
|                                 |         |        | This method is compliant with NEDM (2013) Schedule B(3)                                                                                                                                     |
| Total Eluoride                  | EK040T  | SOIL   | (In house) Total fluoride is determined by ion specific electrode (ISE) in a solution obtained after a Sodium                                                                               |
|                                 |         | OOIL   | (in-nouse) rotal nuonue is determined by for specific electrode (ISE) in a solution obtained aller a Soulum                                                                                 |
|                                 |         |        |                                                                                                                                                                                             |



| Analytical Methods                                         | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Polychlorinated Biphenyls (PCB)                            | EP066      | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)                                                                                                                                                                        |
| Pesticides by GCMS                                         | EP068      | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)                                                                                                                                                                 |
| TRH - Semivolatile Fraction (Silica Gel<br>Clean Up)       | EP071SG-S  | SOIL   | In house: Referenced to USEPA SW 846 - 8015A. Sample extracts are analysed by Capillary GC/FID and<br>quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.                                                                                                                                                                                                                   |
| Volatile Organic Compounds                                 | EP074      | SOIL   | In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)                                                                                                                                                           |
| PAH/Phenols (SIM)                                          | EP075(SIM) | SOIL   | In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)                                                                                                                                   |
| TRH Volatiles/BTEX                                         | EP080      | SOIL   | In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.                                                                                                                                                                                             |
| PAH/Phenols (GC/MS - SIM)                                  | EP075(SIM) | WATER  | In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                  |
| Preparation Methods                                        | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                     |
| NaOH leach for CN in Soils                                 | CN-PR      | SOIL   | In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.                                                                                                                                                                                                                                                                                                                                       |
| Alkaline digestion for Hexavalent<br>Chromium              | EG048PR    | SOIL   | In house: Referenced to USEPA SW846, Method 3060A.                                                                                                                                                                                                                                                                                                                                                                      |
| Total Fluoride                                             | EK040T-PR  | SOIL   | In house: Samples are fused with Sodium Carbonate / Potassium Carbonate flux.                                                                                                                                                                                                                                                                                                                                           |
| Drying only                                                | EN020D     | SOIL   | In house                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hot Block Digest for metals in soils sediments and sludges | EN69       | SOIL   | In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202) |
| Methanolic Extraction of Soils for Purge and Trap          | ORG16      | SOIL   | In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.                                                                                                                                                                                                                                                                       |
| Tumbler Extraction of Solids                               | ORG17      | SOIL   | In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.                                                                                                                                                                          |
| Separatory Funnel Extraction of Liquids                    | ORG14      | WATER  | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.                                  |

# UPDATED COC

## Loren Schiavon

| From:        | Carmen Yi <carmen.yi@ghd.com></carmen.yi@ghd.com> |
|--------------|---------------------------------------------------|
| Sent:        | Tuesday, 19 November 2019 1:56 PM                 |
| To:          | Loren Schiavon                                    |
| Cc:          | Sarah.Eccleshall@ghd.com; ALSEnviro Sydney        |
| Subject:     | [EXTERNAL] - RE: ALS samples received on hold     |
| Attachments: | 11112019112559-0001.pdf                           |

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi Loren,

Thank you for following up on these.

Please proceed analysis for the following samples listed in the attached COC on standard TAT and have these samples extracted on time to meet the relevant holding time requirements:

BH06\_1.2-1.45 and BH07\_2.5-2.95: P-7/4 short suite, and TCLP for B(a)P

RB: 8 Metals and PAH

Trip blank and Trip spike: BTEX

Any questions please do not hesitate to contact me.

Kind Regards,

## Carmen Yi Senior Environmental Engineer – Contamination and Environment Management

#### GHD

Proudly employee owned T: +61 2 9239 7630 | M: +61 451 962 988 | E: carmen.vi@ghd.com Level 15, 133 Castlereagh Street, Sydney NSW 2000 Australia | <u>www.qhd.com</u>



WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

From: Loren Schiavon <loren.schiavon@alsglobal.com> Sent: Tuesday, 19 November 2019 10:59 AM To: Sarah Eccleshall <Sarah.Eccleshall@ghd.com>; Carmen Yi <Carmen.Yi@ghd.com> Subject: RE: ALS samples received on hold

Hi Sarah and Carmen,

ALS still has the attached samples on hold. Are you able to confirm if analysis will be require don these samples?

Thanks.



Environmental Division

Svdney

Telephone : + 61-2-8764 6555

Kind Regards

Loren Schiavon Sample Administration Coordinator, Environmental



<u>T</u> +61 2 8784 8555 <u>F</u> +61 2 8784 8500 <u>Loren.schiavon@alsglobal.com</u> 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA

## 🚰Subscribe 🖬 🎔 🖪 🕑 🔿

We are keen for your feedback! Please click here for your 3 minute survey

EnviroMail<sup>™</sup> 00 - All EnviroMails<sup>™</sup> in one convenient library. Recent releases (click to access directly): EnviroMail<sup>™</sup> 124 - PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail<sup>™</sup> 127 - Bacterial Diversity Profiling in NGS



We are keen for your feedback! Please click here for your 3 minute survey Right Solutions - Right Partner www.alsglobal.com

From: Loren Schiavon Sent: Monday, 11 November 2019 11:50 AM To: sarah.eccleshall@ghd.com; carmen.yi@ghd.com Subject: ALS samples received on hold

Hi Sarah and Carmen,

Please see attached a COC for samples received this morning on hold.

If you could provide me with an updated COC at your earliest convenience, I will be able to make the necessary arrangements for you.

Cheers.

P.S. Sorry to have called you at a bad time Carmen! I'll try calling again later if I don't hear back from you.

Kind Regards

Loren Schiavon Sample Administration Coordinator, Environmental



<u>T</u> +61 2 8784 8555 <u>F</u> +61 2 8784 8500 <u>Loren.schiavon@alsglobal.com</u> 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA

Subscribe 語学 話 回回
Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how.

We are keen for your feedback! Please click here for your 3 minute survey

EnviroMail<sup>™</sup> 00 - All EnviroMails<sup>™</sup> in one convenient library. Recent releases (click to access directly): EnviroMail<sup>™</sup> 124 – PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail<sup>™</sup> 127 – Bacterial Diversity Profiling in NGS



We are keen for your feedback! Please click here for your 3 minute survey Right Solutions - Right Partner www.aisglobal.com

This e-mail has been scanned for viruses

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

3

| Enu        | CHAIN OF<br>CUSTODY<br>Al Si abordor<br>please tick | E LADELAIDI<br>PH 64 3339<br>PH 64 3339<br>PH 64 3334<br>PH 64 3344<br>UGLADSTC<br>PH 64 7471 | E 21 Burma Maad Po<br>19990 El ladoluide (go<br>El 32 Shand Sheet S<br>1722 El Jamples br<br>DNE 46 Catemand at<br>19600 El 19 addion (g | oraan SA 5095<br>3 sglabal.com<br>Hafford OLD 4053<br>Sisbaneggalagjabal.com<br>1 Diwe Cinton OLD 4050<br>Selsglabal.com | LIMAO<br>PN 674<br>PN 674<br>PN 03<br>DMUDO<br>PN 036 | KAM (6 HBM<br>4344 0177 E<br>8040 9600 (<br>68540 9600)<br>685 97 Syg<br>5372 6735 E | sur Road Mark<br>. mackay@also<br>4 Westail Road<br>5 Samples met<br>6 Samples met<br>6 Mudgee.motig | ey OLD 4740<br>obal com<br>Scringvale VIO<br>ocrine@alsglo<br>ee HSW 3850<br>pvisglespl.com | LINEW<br>Police<br>20171 LIN<br>bailcom Ph | CARTLE GROSS<br>1968 0453 F. Kan<br>XVPC 4713 Geo<br>026423 2063 E. d<br>UPERTH 10 Ho<br>Pri 08 9203 765 | Gum Road Wars<br>aple's news Asting<br>y Place North U<br>Soma@alsgle.ba<br>d Wrey Malaga is<br>o El samples pel | bbiook (NPW 2304<br>Balsgradal çanı<br>avre NOM 254 1<br>Joan<br>MA 6020<br>İn@ersglabel con | 1                                   | 19<br>2-<br>10<br>10<br>10<br>10<br>10              | 10 NEM ()<br>01 80 84 8<br>00 M 9 01,<br>07 87 90 0<br>00 L 07 93<br>92 42 53 () | -7-263 (v)<br>8966 El sa<br>2,814-19<br>3000 Million<br>90NG 201<br>2126 El pr | noonain Roa<br>Iniples Lydoa<br>Desma Coul<br>Neuro Sheal<br>Inik Arbia Sheal | e Shi-thorido<br>y@yangkos<br>n Bonic OL<br>Wedongor<br>Nygiobal no                                                                                                                                                                | ir.Swiet<br>Neom<br>Diant<br>Diant<br>Swie<br>R | 16 <b>4</b><br>'600 |
|------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| CLIENT:    | GHD Pty Ltd                                         |                                                                                               | TURNAROU                                                                                                                                 | ND REQUIREMENTS                                                                                                          | Standar                                               | d TAT (LI                                                                            | st due date)                                                                                         | :                                                                                           |                                            |                                                                                                          |                                                                                                                  | i.                                                                                           | 7973 (L                             | n de la <del>c</del> ela                            |                                                                                  |                                                                                | 2                                                                             | a.<br>Ngan                                                                                                                                                                                                                         | <u></u>                                         |                     |
| OFFICE:    | level 15, 133 Castlereagh St, Sydney                |                                                                                               | tests e.g., Ultra                                                                                                                        | nay be longer for some<br>Trace Organics)                                                                                | Non Sta                                               | ndard or (                                                                           | urgent TAT (                                                                                         | Listolue da                                                                                 | te):                                       | _                                                                                                        |                                                                                                                  | 1 <sub>1</sub>                                                                               |                                     |                                                     | - 190                                                                            | · /                                                                            |                                                                               |                                                                                                                                                                                                                                    |                                                 |                     |
| PROJECT    | 12517046                                            |                                                                                               | ALS QUOTE                                                                                                                                | ND.:                                                                                                                     | SY-522-19                                             |                                                                                      |                                                                                                      |                                                                                             | COC SE                                     | QUENCE NU                                                                                                | MBER (Cird                                                                                                       | •)                                                                                           |                                     | - 5 8 A V                                           |                                                                                  | •                                                                              |                                                                               | in de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de<br>La compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la comp | ģi 🕅                                            | a. a. 654           |
|            |                                                     | · · · · ·                                                                                     | L,                                                                                                                                       |                                                                                                                          |                                                       |                                                                                      |                                                                                                      | '                                                                                           | :00: 1                                     | 2 3                                                                                                      | 45                                                                                                               | 6 7                                                                                          |                                     |                                                     |                                                                                  |                                                                                | 1                                                                             |                                                                                                                                                                                                                                    | 1                                               |                     |
|            |                                                     |                                                                                               | H: 0451 962 98                                                                                                                           | 16<br>                                                                                                                   |                                                       |                                                                                      |                                                                                                      | _                                                                                           | 0F: 1                                      | 2 3                                                                                                      | ¥ 5                                                                                                              | 6 7                                                                                          | 9.1.<br>                            |                                                     | î E                                                                              |                                                                                |                                                                               | N. Street                                                                                                                                                                                                                          |                                                 |                     |
| SAMPLER    |                                                     | SAMPLER N                                                                                     | OBILE: 0459 5                                                                                                                            | 46 332 R                                                                                                                 | ELINQUISH                                             | HED BY:                                                                              |                                                                                                      | R                                                                                           | ECEIVED BY:                                | - A                                                                                                      | 2                                                                                                                | RELINQ                                                                                       | UISHED BY:                          |                                                     |                                                                                  |                                                                                | RECEIVE                                                                       | D BY:                                                                                                                                                                                                                              |                                                 |                     |
| Email Per  |                                                     | EDD FORMA                                                                                     | I (or detault):                                                                                                                          | '                                                                                                                        | Tominsoi                                              | n                                                                                    |                                                                                                      |                                                                                             | 747                                        | 0-                                                                                                       |                                                                                                                  | 1                                                                                            |                                     |                                                     |                                                                                  |                                                                                |                                                                               |                                                                                                                                                                                                                                    |                                                 |                     |
| Email Invi | Dice to fwill default to PM if no other addresse    | s are listed):                                                                                | gna.com                                                                                                                                  |                                                                                                                          |                                                       |                                                                                      |                                                                                                      |                                                                                             | ателтие:<br>                               | սե                                                                                                       |                                                                                                                  | DATE/T                                                                                       | ME:                                 |                                                     |                                                                                  |                                                                                | DATE/TIN                                                                      | ΛE:                                                                                                                                                                                                                                |                                                 |                     |
| COMMEN     |                                                     | BOSAL: Bieses Inform C                                                                        |                                                                                                                                          | f any negative isolation                                                                                                 |                                                       | / 4m                                                                                 |                                                                                                      |                                                                                             |                                            |                                                                                                          |                                                                                                                  |                                                                                              |                                     |                                                     |                                                                                  |                                                                                |                                                                               |                                                                                                                                                                                                                                    |                                                 |                     |
|            |                                                     | - GGAL. Please mitrin G                                                                       | no contacts of                                                                                                                           | rany possible holdin                                                                                                     | g ume issu                                            | ies inat a                                                                           | re pecieved                                                                                          | I WICD THES                                                                                 | e samples<br>A<br>Where M                  | NALYSIS REQ<br>atals are requi                                                                           | UIRED includ<br>red, specity T                                                                                   | ling SUITES (N<br>otal (unfiltered                                                           | IB. Sulle Code:<br>bottle required; | must be listed<br>or Dissolved                      | i to attra<br>(field filt)                                                       | ered bot                                                                       | price)<br>Le required                                                         | 1).                                                                                                                                                                                                                                |                                                 | ÷                   |
| LAB ID     | Sample ID                                           | DATE / TIME                                                                                   | MATRIX                                                                                                                                   | TYPE & PRESER<br>(refer to codes b                                                                                       | /ATIVE<br>elow)                                       | TOTAL<br>CONTAINERS                                                                  | ASS Floid Screen<br>(EA037)                                                                          | Phenols<br>[EP075A]                                                                         | TRHIBTEXN (EP080-                          | ист оцра цасе п<br>sediments (EP071-<br>SD)                                                              | FOC<br>EP003)                                                                                                    | ICN<br>EK0265F)                                                                              | ⊃C/OP/PCB(PAH<br>SD-02)             | CMPS Metals (15<br>netals + Iow level Hg),<br>SD03) | <sup>2</sup> article Size<br>distribution (EA150H)                               | -7/4 Short Suite                                                               |                                                                               | BT (EP090)                                                                                                                                                                                                                         | lloxins/Furnas<br>EP300)                        |                     |
| í í        | BH07_2.5-2.95                                       | 7/11/2019 0:00                                                                                | s                                                                                                                                        | Jar                                                                                                                      |                                                       | 1                                                                                    |                                                                                                      | <u> </u> -                                                                                  |                                            | - 10 47.                                                                                                 |                                                                                                                  |                                                                                              | 05                                  | <u> </u>                                            | 10.5                                                                             |                                                                                |                                                                               | +-                                                                                                                                                                                                                                 |                                                 |                     |
| 2          | BH06_4.0-4.45                                       | 7/11/2019 0:00                                                                                | s                                                                                                                                        | Jar                                                                                                                      |                                                       | 1                                                                                    | <u> </u>                                                                                             |                                                                                             |                                            |                                                                                                          |                                                                                                                  |                                                                                              | <u> </u>                            | <u> </u>                                            |                                                                                  |                                                                                |                                                                               |                                                                                                                                                                                                                                    | +                                               |                     |
| 3          | BH06_1.2-1.45                                       | 7/11/2019 0:00                                                                                | s                                                                                                                                        |                                                                                                                          |                                                       | 1                                                                                    |                                                                                                      | 1                                                                                           |                                            |                                                                                                          |                                                                                                                  |                                                                                              |                                     |                                                     | † '                                                                              |                                                                                |                                                                               | +                                                                                                                                                                                                                                  | +                                               |                     |
| <br>Ч      | BH06_2.7-2.95                                       | 7/11/2019 0:00                                                                                | 5                                                                                                                                        | Jar                                                                                                                      |                                                       | 1                                                                                    |                                                                                                      | <u> </u>                                                                                    | Ι                                          | I                                                                                                        | I                                                                                                                | · ·                                                                                          | ·-                                  | -                                                   |                                                                                  |                                                                                |                                                                               | +                                                                                                                                                                                                                                  | +                                               |                     |
| 5          | Elutriate                                           | 7/11/2019 0:00                                                                                | w                                                                                                                                        | äL Bottie                                                                                                                |                                                       | 1                                                                                    | <u> </u>                                                                                             |                                                                                             |                                            |                                                                                                          |                                                                                                                  |                                                                                              | !                                   |                                                     |                                                                                  |                                                                                | <u> </u>                                                                      | +                                                                                                                                                                                                                                  | $\vdash$                                        |                     |
| 6          | Elutriate Blank                                     | 7/11/2019 0:00                                                                                | w                                                                                                                                        | 5L Bottle                                                                                                                |                                                       | 1                                                                                    |                                                                                                      |                                                                                             |                                            |                                                                                                          |                                                                                                                  |                                                                                              |                                     |                                                     | -                                                                                |                                                                                | - ·                                                                           | +                                                                                                                                                                                                                                  | +                                               |                     |
| 7          | RB                                                  | 7/11/2019 0:00                                                                                | w                                                                                                                                        | 2xV, 1xA, 1xH                                                                                                            | ;                                                     | 4                                                                                    |                                                                                                      | +                                                                                           |                                            |                                                                                                          |                                                                                                                  |                                                                                              |                                     |                                                     |                                                                                  |                                                                                |                                                                               |                                                                                                                                                                                                                                    |                                                 |                     |
| ନ୍ତ        | Trip blank                                          | 7/11/2019 0:00                                                                                | 5                                                                                                                                        | Jear                                                                                                                     |                                                       | 1                                                                                    |                                                                                                      | +                                                                                           |                                            |                                                                                                          |                                                                                                                  |                                                                                              |                                     |                                                     |                                                                                  |                                                                                |                                                                               | +                                                                                                                                                                                                                                  | +                                               | ×                   |
| ٢          | Trip spike                                          | 7/11/2019 0:00                                                                                | S ·                                                                                                                                      | Jar                                                                                                                      |                                                       | 1                                                                                    |                                                                                                      | +                                                                                           |                                            |                                                                                                          |                                                                                                                  |                                                                                              |                                     |                                                     |                                                                                  |                                                                                |                                                                               | -                                                                                                                                                                                                                                  |                                                 | X                   |
| 2          | t\$C                                                |                                                                                               |                                                                                                                                          |                                                                                                                          |                                                       |                                                                                      |                                                                                                      |                                                                                             |                                            |                                                                                                          |                                                                                                                  |                                                                                              | <u> </u>                            |                                                     |                                                                                  |                                                                                |                                                                               | -                                                                                                                                                                                                                                  |                                                 |                     |
|            |                                                     |                                                                                               | · · · ·                                                                                                                                  |                                                                                                                          |                                                       |                                                                                      | <u> </u>                                                                                             | +-                                                                                          |                                            |                                                                                                          |                                                                                                                  |                                                                                              |                                     |                                                     |                                                                                  |                                                                                |                                                                               |                                                                                                                                                                                                                                    | +                                               | $\vdash$            |
|            |                                                     | 1                                                                                             | ļ                                                                                                                                        |                                                                                                                          | -+                                                    |                                                                                      |                                                                                                      | +                                                                                           |                                            |                                                                                                          |                                                                                                                  |                                                                                              |                                     |                                                     |                                                                                  |                                                                                |                                                                               | +                                                                                                                                                                                                                                  | +                                               | +                   |
|            | · · · · · · · · · · · · · · · · · · ·               | [                                                                                             |                                                                                                                                          | 1                                                                                                                        | TOTAL                                                 | 12                                                                                   |                                                                                                      |                                                                                             |                                            | 1                                                                                                        | -                                                                                                                |                                                                                              |                                     |                                                     |                                                                                  |                                                                                |                                                                               | +                                                                                                                                                                                                                                  | <u> </u>                                        |                     |
|            |                                                     |                                                                                               | - D                                                                                                                                      |                                                                                                                          |                                                       |                                                                                      |                                                                                                      |                                                                                             |                                            |                                                                                                          | _                                                                                                                |                                                                                              |                                     |                                                     |                                                                                  |                                                                                |                                                                               |                                                                                                                                                                                                                                    |                                                 | 9                   |

**⊷**1 .

ъ.



## **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1937111                          | Page                    | : 1 of 12                                             |
|-------------------------|------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : GHD PTY LTD                      | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : Jessica Watson                   | Contact                 | Customer Services ES                                  |
| Address                 | : LEVEL 15, 133 CASTLEREAGH STREET | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | :                                  | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                         | Date Samples Received   | : 11-Nov-2019 11:00                                   |
| Order number            | :                                  | Date Analysis Commenced | : 22-Nov-2019                                         |
| C-O-C number            | :                                  | Issue Date              | : 26-Nov-2019 18:46                                   |
| Sampler                 | : JAMES TOMLINSON                  |                         | Hac-MRA NATA                                          |
| Site                    | :                                  |                         |                                                       |
| Quote number            | : SY/522/19                        |                         | Accreditation No. 825                                 |
| No. of samples received | : 10                               |                         | Accredited for compliance with                        |
| No. of samples analysed | : 6                                |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position               | Accreditation Category                     |
|------------------|------------------------|--------------------------------------------|
| Ankit Joshi      | Inorganic Chemist      | Sydney Inorganics, Smithfield, NSW         |
| Celine Conceicao | Senior Spectroscopist  | Sydney Inorganics, Smithfield, NSW         |
| Edwandy Fadjar   | Organic Coordinator    | Sydney Inorganics, Smithfield, NSW         |
| Edwandy Fadjar   | Organic Coordinator    | Sydney Organics, Smithfield, NSW           |
| Ivan Taylor      | Analyst                | Sydney Inorganics, Smithfield, NSW         |
| Merrin Avery     | Supervisor - Inorganic | Newcastle - Inorganics, Mayfield West, NSW |

| Page       | : 2 of 12     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

 Key :
 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EG048G: Poor spike recovery for Alkyl Hexavalent Chromium due to matrix interferences..
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EG005: Poor precision was obtained for Iron on sample ES1937111-1. Results have been confirmed by re-extraction and reanalysis.
- EG035: Positive Hg result ES1937111 #3 has been confirmed by reanalysis.

| Page       | : 3 of 12     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)       | Client sample ID |             |                | BH07_2.5-2.95     | BH06_1.2-1.45     | Trip blank        | Trip spike        | TSC               |  |
|------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                          | Cli              | ent samplii | ng date / time | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 |  |
| Compound                                 | CAS Number       | LOR         | Unit           | ES1937111-001     | ES1937111-003     | ES1937111-008     | ES1937111-009     | ES1937111-010     |  |
|                                          |                  |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 105-110 | °C)              |             |                |                   |                   |                   |                   |                   |  |
| Moisture Content                         |                  | 1.0         | %              | 18.2              | 23.7              |                   |                   |                   |  |
| EG005(ED093)T: Total Metals by ICP-AES   |                  |             |                |                   |                   |                   |                   |                   |  |
| Arsenic                                  | 7440-38-2        | 5           | mg/kg          | <5                | 6                 |                   |                   |                   |  |
| Beryllium                                | 7440-41-7        | 1           | mg/kg          | <1                | <1                |                   |                   |                   |  |
| Cadmium                                  | 7440-43-9        | 1           | mg/kg          | <1                | <1                |                   |                   |                   |  |
| Lead                                     | 7439-92-1        | 5           | mg/kg          | <5                | 68                |                   |                   |                   |  |
| Molybdenum                               | 7439-98-7        | 2           | mg/kg          | <2                | <2                |                   |                   |                   |  |
| Nickel                                   | 7440-02-0        | 2           | mg/kg          | 5                 | 2                 |                   |                   |                   |  |
| Selenium                                 | 7782-49-2        | 5           | mg/kg          | <5                | <5                |                   |                   |                   |  |
| Silver                                   | 7440-22-4        | 2           | mg/kg          | <2                | <2                |                   |                   |                   |  |
| EG035T: Total Recoverable Mercury by FIM | IS               |             |                |                   |                   |                   |                   |                   |  |
| Mercury                                  | 7439-97-6        | 0.1         | mg/kg          | <0.1              | 0.2               |                   |                   |                   |  |
| EG048: Hexavalent Chromium (Alkaline Dig | jest)            |             |                |                   |                   |                   |                   |                   |  |
| Hexavalent Chromium                      | 18540-29-9       | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |  |
| EK026SF: Total CN by Segmented Flow An   | nalyser          |             |                |                   |                   |                   |                   |                   |  |
| Total Cyanide                            | 57-12-5          | 1           | mg/kg          | <1                | <1                |                   |                   |                   |  |
| EK028SF: Weak Acid Dissociable CN by Se  | egmented Flov    | w Analyse   | ər             |                   |                   |                   |                   |                   |  |
| Weak Acid Dissociable Cyanide            |                  | 1           | mg/kg          | <1                | <1                |                   |                   |                   |  |
| EK040T: Fluoride Total                   |                  |             |                |                   |                   |                   |                   |                   |  |
| Fluoride                                 | 16984-48-8       | 40          | mg/kg          | 40                | 170               |                   |                   |                   |  |
| EN33: TCLP Leach                         |                  |             |                |                   |                   |                   |                   |                   |  |
| Initial pH                               |                  | 0.1         | pH Unit        | 5.4               | 9.2               |                   |                   |                   |  |
| After HCI pH                             |                  | 0.1         | pH Unit        | 1.4               | 5.2               |                   |                   |                   |  |
| Extraction Fluid Number                  |                  | 1           | -              | 1                 | 2                 |                   |                   |                   |  |
| Final pH                                 |                  | 0.1         | pH Unit        | 5.1               | 5.8               |                   |                   |                   |  |
| EP066: Polychlorinated Biphenyls (PCB)   |                  |             |                |                   |                   |                   |                   |                   |  |
| Total Polychlorinated biphenyls          |                  | 0.1         | mg/kg          | <0.1              | <0.1              |                   |                   |                   |  |
| EP068A: Organochlorine Pesticides (OC)   |                  |             |                |                   |                   |                   |                   |                   |  |
| alpha-BHC                                | 319-84-6         | 0.05        | mg/kg          | <0.05             | <0.05             |                   |                   |                   |  |
| Hexachlorobenzene (HCB)                  | 118-74-1         | 0.05        | mg/kg          | <0.05             | <0.05             |                   |                   |                   |  |
| beta-BHC                                 | 319-85-7         | 0.05        | mg/kg          | <0.05             | <0.05             |                   |                   |                   |  |
| gamma-BHC                                | 58-89-9          | 0.05        | mg/kg          | <0.05             | <0.05             |                   |                   |                   |  |
| delta-BHC                                | 319-86-8         | 0.05        | mg/kg          | <0.05             | <0.05             |                   |                   |                   |  |
| Heptachlor                               | 76-44-8          | 0.05        | mg/kg          | <0.05             | <0.05             |                   |                   |                   |  |

# Page : 4 of 12 Work Order : ES1937111 Client : GHD PTY LTD Project : 12517046



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  | Client sample ID       |              | BH07_2.5-2.95    | BH06_1.2-1.45     | Trip blank        | Trip spike        | TSC               |                   |
|-------------------------------------|------------------------|--------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                     | Cl                     | ient samplii | ng date / time   | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 |
| Compound                            | CAS Number             | LOR          | Unit             | ES1937111-001     | ES1937111-003     | ES1937111-008     | ES1937111-009     | ES1937111-010     |
|                                     |                        |              |                  | Result            | Result            | Result            | Result            | Result            |
| EP068A: Organochlorine Pesticides ( | OC) - Continued        |              |                  |                   |                   |                   |                   |                   |
| Aldrin                              | 309-00-2               | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| Heptachlor epoxide                  | 1024-57-3              | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| ^ Total Chlordane (sum)             |                        | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| trans-Chlordane                     | 5103-74-2              | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| alpha-Endosulfan                    | 959-98-8               | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| cis-Chlordane                       | 5103-71-9              | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| Dieldrin                            | 60-57-1                | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| 4.4`-DDE                            | 72-55-9                | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| Endrin                              | 72-20-8                | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| beta-Endosulfan                     | 33213-65-9             | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| 4.4`-DDD                            | 72-54-8                | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| Endrin aldehyde                     | 7421-93-4              | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| Endosulfan sulfate                  | 1031-07-8              | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| 4.4`-DDT                            | 50-29-3                | 0.2          | mg/kg            | <0.2              | <0.2              |                   |                   |                   |
| EP068B: Organophosphorus Pesticid   | es (OP)                |              |                  |                   |                   |                   |                   |                   |
| Chlorpyrifos                        | 2921-88-2              | 0.05         | mg/kg            | <0.05             | <0.05             |                   |                   |                   |
| EP071 SG: Total Recoverable Hydroca | arbons - NEPM 201      | 3 Fraction   | s - Silica gel o | cleanup           |                   |                   |                   |                   |
| >C10 - C16 Fraction                 |                        | 50           | mg/kg            | <50               | <50               |                   |                   |                   |
| >C16 - C34 Fraction                 |                        | 100          | mg/kg            | <100              | 850               |                   |                   |                   |
| >C34 - C40 Fraction                 |                        | 100          | mg/kg            | <100              | 170               |                   |                   |                   |
| ^ >C10 - C40 Fraction (sum)         |                        | 50           | mg/kg            | <50               | 1020              |                   |                   |                   |
| EP071 SG-S: Total Petroleum Hydroca | arbons in Soil - Silio | ca gel clea  | anup             |                   |                   |                   |                   |                   |
| C10 - C14 Fraction                  |                        | 50           | mg/kg            | <50               | <50               |                   |                   |                   |
| C15 - C28 Fraction                  |                        | 100          | mg/kg            | <100              | 560               |                   |                   |                   |
| C29 - C36 Fraction                  |                        | 100          | mg/kg            | <100              | 400               |                   |                   |                   |
| ^ C10 - C36 Fraction (sum)          |                        | 50           | mg/kg            | <50               | 960               |                   |                   |                   |
| EP074A: Monocyclic Aromatic Hydrod  | carbons                |              |                  |                   |                   |                   |                   |                   |
| Benzene                             | 71-43-2                | 0.2          | mg/kg            | <0.2              | <0.2              |                   |                   |                   |
| Toluene                             | 108-88-3               | 0.5          | mg/kg            | <0.5              | <0.5              |                   |                   |                   |
| Ethylbenzene                        | 100-41-4               | 0.5          | mg/kg            | <0.5              | <0.5              |                   |                   |                   |
| meta- & para-Xylene                 | 108-38-3 106-42-3      | 0.5          | mg/kg            | <0.5              | <0.5              |                   |                   |                   |
| Styrene                             | 100-42-5               | 0.5          | mg/kg            | <0.5              | <0.5              |                   |                   |                   |
| ortho-Xylene                        | 95-47-6                | 0.5          | mg/kg            | <0.5              | <0.5              |                   |                   |                   |
| EP074B: Oxygenated Compounds        |                        |              |                  |                   |                   |                   |                   |                   |

| Page       | 5 of 12       |
|------------|---------------|
| Work Order | ES1937111     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)    | Client sample ID |            |                | BH07_2.5-2.95     | BH06_1.2-1.45     | Trip blank        | Trip spike        | TSC               |
|---------------------------------------|------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                       | Cli              | ent sampli | ng date / time | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 |
| Compound                              | CAS Number       | LOR        | Unit           | ES1937111-001     | ES1937111-003     | ES1937111-008     | ES1937111-009     | ES1937111-010     |
|                                       |                  |            |                | Result            | Result            | Result            | Result            | Result            |
| EP074B: Oxygenated Compounds - Conti  | nued             |            |                |                   |                   |                   |                   |                   |
| 2-Butanone (MEK)                      | 78-93-3          | 5          | mg/kg          | <5                | <5                |                   |                   |                   |
| EP074E: Halogenated Aliphatic Compour | nds              |            |                |                   |                   |                   |                   |                   |
| Vinyl chloride                        | 75-01-4          | 4          | mg/kg          | <4                | <4                |                   |                   |                   |
| 1.1-Dichloroethene                    | 75-35-4          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Methylene chloride                    | 75-09-2          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1.1-Trichloroethane                 | 71-55-6          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Carbon Tetrachloride                  | 56-23-5          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.2-Dichloroethane                    | 107-06-2         | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Trichloroethene                       | 79-01-6          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1.2-Trichloroethane                 | 79-00-5          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Tetrachloroethene                     | 127-18-4         | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1.1.2-Tetrachloroethane             | 630-20-6         | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 1.1.2.2-Tetrachloroethane             | 79-34-5          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| EP074F: Halogenated Aromatic Compoun  | nds              |            |                |                   |                   |                   |                   |                   |
| Chlorobenzene                         | 108-90-7         | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| EP074G: Trihalomethanes               |                  |            |                |                   |                   |                   |                   |                   |
| Chloroform                            | 67-66-3          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| EP075(SIM)A: Phenolic Compounds       |                  |            |                |                   |                   |                   |                   |                   |
| Phenol                                | 108-95-2         | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 2-Methylphenol                        | 95-48-7          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 3- & 4-Methylphenol                   | 1319-77-3        | 1          | mg/kg          | <1                | <1                |                   |                   |                   |
| 4-Chloro-3-methylphenol               | 59-50-7          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 2.4.6-Trichlorophenol                 | 88-06-2          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| 2.4.5-Trichlorophenol                 | 95-95-4          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Pentachlorophenol                     | 87-86-5          | 2          | mg/kg          | <2                | <2                |                   |                   |                   |
| EP075(SIM)B: Polynuclear Aromatic Hyd | rocarbons        |            |                |                   |                   |                   |                   |                   |
| Naphthalene                           | 91-20-3          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Acenaphthylene                        | 208-96-8         | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Acenaphthene                          | 83-32-9          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Fluorene                              | 86-73-7          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Phenanthrene                          | 85-01-8          | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Anthracene                            | 120-12-7         | 0.5        | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Fluoranthene                          | 206-44-0         | 0.5        | mg/kg          | <0.5              | 1.4               |                   |                   |                   |
| Pyrene                                | 129-00-0         | 0.5        | mg/kg          | <0.5              | 1.6               |                   |                   |                   |

| Page       | : 6 of 12     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        |                     | Clie        | ent sample ID  | BH07_2.5-2.95     | BH06_1.2-1.45     | Trip blank        | Trip spike        | TSC               |
|-------------------------------------------|---------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                           | Cli                 | ient sampli | ng date / time | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 |
| Compound                                  | CAS Number          | LOR         | Unit           | ES1937111-001     | ES1937111-003     | ES1937111-008     | ES1937111-009     | ES1937111-010     |
|                                           |                     |             |                | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)B: Polynuclear Aromatic         | Hydrocarbons - Cont | inued       |                |                   |                   |                   |                   |                   |
| Benz(a)anthracene                         | 56-55-3             | 0.5         | mg/kg          | <0.5              | 0.8               |                   |                   |                   |
| Chrysene                                  | 218-01-9            | 0.5         | mg/kg          | <0.5              | 0.7               |                   |                   |                   |
| Benzo(b+j)fluoranthene                    | 205-99-2 205-82-3   | 0.5         | mg/kg          | <0.5              | 1.4               |                   |                   |                   |
| Benzo(k)fluoranthene                      | 207-08-9            | 0.5         | mg/kg          | <0.5              | 0.7               |                   |                   |                   |
| Benzo(a)pyrene                            | 50-32-8             | 0.5         | mg/kg          | <0.5              | 1.1               |                   |                   |                   |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5            | 0.5         | mg/kg          | <0.5              | 0.6               |                   |                   |                   |
| Dibenz(a.h)anthracene                     | 53-70-3             | 0.5         | mg/kg          | <0.5              | <0.5              |                   |                   |                   |
| Benzo(g.h.i)perylene                      | 191-24-2            | 0.5         | mg/kg          | <0.5              | 0.8               |                   |                   |                   |
| ^ Sum of polycyclic aromatic hydrocarb    | ons                 | 0.5         | mg/kg          | <0.5              | 9.1               |                   |                   |                   |
| ^ Benzo(a)pyrene TEQ (zero)               |                     | 0.5         | mg/kg          | <0.5              | 1.5               |                   |                   |                   |
| ^ Benzo(a)pyrene TEQ (half LOR)           |                     | 0.5         | mg/kg          | 0.6               | 1.7               |                   |                   |                   |
| ^ Benzo(a)pyrene TEQ (LOR)                |                     | 0.5         | mg/kg          | 1.2               | 2.0               |                   |                   |                   |
| EP080/071: Total Petroleum Hydroca        | arbons              |             |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                          |                     | 10          | mg/kg          | <10               | <10               | <10               | 72                | 78                |
| EP080/071: Total Recoverable Hydro        | ocarbons - NEPM 201 | 3 Fractio   | ns             |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                         | C6_C10              | 10          | mg/kg          | <10               | <10               | <10               | 86                | 92                |
| <sup>^</sup> C6 - C10 Fraction minus BTEX | C6_C10-BTEX         | 10          | mg/kg          |                   |                   | <10               | 43                | 48                |
| (F1)                                      |                     |             |                |                   |                   |                   |                   |                   |
| EP080: BTEXN                              |                     |             |                |                   |                   |                   |                   |                   |
| Benzene                                   | 71-43-2             | 0.2         | mg/kg          |                   |                   | <0.2              | 0.3               | 0.4               |
| Toluene                                   | 108-88-3            | 0.5         | mg/kg          |                   |                   | <0.5              | 19.9              | 20.7              |
| Ethylbenzene                              | 100-41-4            | 0.5         | mg/kg          |                   |                   | <0.5              | 2.9               | 2.8               |
| meta- & para-Xylene                       | 108-38-3 106-42-3   | 0.5         | mg/kg          |                   |                   | <0.5              | 14.5              | 14.6              |
| ortho-Xylene                              | 95-47-6             | 0.5         | mg/kg          |                   |                   | <0.5              | 5.8               | 6.0               |
| ^ Sum of BTEX                             |                     | 0.2         | mg/kg          |                   |                   | <0.2              | 43.4              | 44.5              |
| ^ Total Xylenes                           |                     | 0.5         | mg/kg          |                   |                   | <0.5              | 20.3              | 20.6              |
| Naphthalene                               | 91-20-3             | 1           | mg/kg          |                   |                   | <1                | <1                | <1                |
| EP066S: PCB Surrogate                     |                     |             |                |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                        | 2051-24-3           | 0.1         | %              | 86.8              | 84.1              |                   |                   |                   |
| EP068S: Organochlorine Pesticide S        | Surrogate           |             |                |                   |                   |                   |                   |                   |
| Dibromo-DDE                               | 21655-73-2          | 0.05        | %              | 105               | 105               |                   |                   |                   |
| EP068T: Organophosphorus Pestici          | ide Surrogate       |             |                |                   |                   |                   |                   |                   |
| DEF                                       | 78-48-8             | 0.05        | %              | 73.4              | 68.5              |                   |                   |                   |
| EP074S: VOC Surrogates                    |                     |             |                |                   |                   |                   |                   |                   |

| Page       | : 7 of 12     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   | Client sample ID            |     |      | BH07_2.5-2.95     | BH06_1.2-1.45     | Trip blank        | Trip spike        | TSC               |
|--------------------------------------|-----------------------------|-----|------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Client sampling date / time |     |      | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 |
| Compound                             | CAS Number                  | LOR | Unit | ES1937111-001     | ES1937111-003     | ES1937111-008     | ES1937111-009     | ES1937111-010     |
|                                      |                             |     |      | Result            | Result            | Result            | Result            | Result            |
| EP074S: VOC Surrogates - Continued   |                             |     |      |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4                | 17060-07-0                  | 0.5 | %    | 101               | 86.3              |                   |                   |                   |
| Toluene-D8                           | 2037-26-5                   | 0.5 | %    | 90.0              | 94.6              |                   |                   |                   |
| 4-Bromofluorobenzene                 | 460-00-4                    | 0.5 | %    | 98.3              | 99.2              |                   |                   |                   |
| EP075(SIM)S: Phenolic Compound Surro | gates                       |     |      |                   |                   |                   |                   |                   |
| Phenol-d6                            | 13127-88-3                  | 0.5 | %    | 107               | 107               |                   |                   |                   |
| 2-Chlorophenol-D4                    | 93951-73-6                  | 0.5 | %    | 111               | 113               |                   |                   |                   |
| 2.4.6-Tribromophenol                 | 118-79-6                    | 0.5 | %    | 74.5              | 76.4              |                   |                   |                   |
| EP075(SIM)T: PAH Surrogates          |                             |     |      |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                     | 321-60-8                    | 0.5 | %    | 114               | 111               |                   |                   |                   |
| Anthracene-d10                       | 1719-06-8                   | 0.5 | %    | 119               | 120               |                   |                   |                   |
| 4-Terphenyl-d14                      | 1718-51-0                   | 0.5 | %    | 122               | 125               |                   |                   |                   |
| EP080S: TPH(V)/BTEX Surrogates       |                             |     |      |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4                | 17060-07-0                  | 0.2 | %    | 99.5              | 76.1              | 102               | 93.8              | 102               |
| Toluene-D8                           | 2037-26-5                   | 0.2 | %    | 109               | 86.7              | 106               | 119               | 116               |
| 4-Bromofluorobenzene                 | 460-00-4                    | 0.2 | %    | 93.7              | 79.9              | 93.5              | 105               | 101               |

| Page       | : 8 of 12     |
|------------|---------------|
| Work Order | ES1937111     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) |              | Cli         | ent sample ID  | BH07_2.5-2.95     | BH06_1.2-1.45     | <br> |  |
|----------------------------------------------|--------------|-------------|----------------|-------------------|-------------------|------|--|
|                                              | Cli          | ient sampli | ng date / time | 07-Nov-2019 00:00 | 07-Nov-2019 00:00 | <br> |  |
| Compound                                     | CAS Number   | LOR         | Unit           | ES1937111-001     | ES1937111-003     | <br> |  |
|                                              |              |             |                | Result            | Result            | <br> |  |
| EP075(SIM)B: Polynuclear Aromatic            | Hydrocarbons |             |                |                   |                   |      |  |
| Benzo(a)pyrene                               | 50-32-8      | 0.5         | µg/L           | <0.5              | <0.5              | <br> |  |
| EP075(SIM)S: Phenolic Compound S             | Surrogates   |             |                |                   |                   |      |  |
| Phenol-d6                                    | 13127-88-3   | 1.0         | %              | 21.9              | 19.2              | <br> |  |
| 2-Chlorophenol-D4                            | 93951-73-6   | 1.0         | %              | 56.9              | 51.2              | <br> |  |
| 2.4.6-Tribromophenol                         | 118-79-6     | 1.0         | %              | 57.6              | 47.9              | <br> |  |
| EP075(SIM)T: PAH Surrogates                  |              |             |                |                   |                   |      |  |
| 2-Fluorobiphenyl                             | 321-60-8     | 1.0         | %              | 86.4              | 88.0              | <br> |  |
| Anthracene-d10                               | 1719-06-8    | 1.0         | %              | 83.9              | 88.1              | <br> |  |
| 4-Terphenyl-d14                              | 1718-51-0    | 1.0         | %              | 89.7              | 89.3              | <br> |  |

| Page       | : 9 of 12     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: WATER<br>(Matrix: WATER)    |                   | Clie          | ent sample ID  | RB                | <br> | <br> |
|-----------------------------------------|-------------------|---------------|----------------|-------------------|------|------|
|                                         | Cl                | lient samplii | ng date / time | 07-Nov-2019 00:00 | <br> | <br> |
| Compound                                | CAS Number        | LOR           | Unit           | ES1937111-007     | <br> | <br> |
|                                         |                   |               |                | Result            | <br> | <br> |
| EG020T: Total Metals by ICP-MS          |                   |               |                |                   |      |      |
| Arsenic                                 | 7440-38-2         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Cadmium                                 | 7440-43-9         | 0.0001        | mg/L           | <0.0001           | <br> | <br> |
| Chromium                                | 7440-47-3         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Copper                                  | 7440-50-8         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Nickel                                  | 7440-02-0         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Lead                                    | 7439-92-1         | 0.001         | mg/L           | <0.001            | <br> | <br> |
| Zinc                                    | 7440-66-6         | 0.005         | mg/L           | <0.005            | <br> | <br> |
| EG035T: Total Recoverable Mercury       | by FIMS           |               |                |                   |      |      |
| Mercury                                 | 7439-97-6         | 0.0001        | mg/L           | <0.0001           | <br> | <br> |
| EP075(SIM)B: Polynuclear Aromatic       | Hydrocarbons      |               |                |                   |      |      |
| Naphthalene                             | 91-20-3           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Acenaphthylene                          | 208-96-8          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Acenaphthene                            | 83-32-9           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Fluorene                                | 86-73-7           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Phenanthrene                            | 85-01-8           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Anthracene                              | 120-12-7          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Fluoranthene                            | 206-44-0          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Pyrene                                  | 129-00-0          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benz(a)anthracene                       | 56-55-3           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Chrysene                                | 218-01-9          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benzo(b+j)fluoranthene                  | 205-99-2 205-82-3 | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benzo(k)fluoranthene                    | 207-08-9          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benzo(a)pyrene                          | 50-32-8           | 0.5           | µg/L           | <0.5              | <br> | <br> |
| Indeno(1.2.3.cd)pyrene                  | 193-39-5          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Dibenz(a.h)anthracene                   | 53-70-3           | 1.0           | µg/L           | <1.0              | <br> | <br> |
| Benzo(g.h.i)perylene                    | 191-24-2          | 1.0           | µg/L           | <1.0              | <br> | <br> |
| ^ Sum of polycyclic aromatic hydrocarbo | ons               | 0.5           | µg/L           | <0.5              | <br> | <br> |
| ^ Benzo(a)pyrene TEQ (zero)             |                   | 0.5           | µg/L           | <0.5              | <br> | <br> |
| EP075(SIM)S: Phenolic Compound S        | urrogates         |               |                |                   |      |      |
| Phenol-d6                               | 13127-88-3        | 1.0           | %              | 20.4              | <br> | <br> |
| 2-Chlorophenol-D4                       | 93951-73-6        | 1.0           | %              | 45.3              | <br> | <br> |
| 2.4.6-Tribromophenol                    | 118-79-6          | 1.0           | %              | 38.5              | <br> | <br> |
| EP075(SIM)T: PAH Surrogates             |                   |               |                |                   |      |      |
| 2-Fluorobiphenyl                        | 321-60-8          | 1.0           | %              | 91.1              | <br> | <br> |

| Page       | : 10 of 12    |
|------------|---------------|
| Work Order | ES1937111     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: WATER<br>(Matrix: WATER)    |            | Clie        | ent sample ID  | RB                | <br> | <br> |
|-----------------------------------------|------------|-------------|----------------|-------------------|------|------|
|                                         | Cli        | ent samplii | ng date / time | 07-Nov-2019 00:00 | <br> | <br> |
| Compound                                | CAS Number | LOR         | Unit           | ES1937111-007     | <br> | <br> |
|                                         |            |             |                | Result            | <br> | <br> |
| EP075(SIM)T: PAH Surrogates - Continued |            |             |                |                   |      |      |
| Anthracene-d10                          | 1719-06-8  | 1.0         | %              | 69.8              | <br> | <br> |
| 4-Terphenyl-d14                         | 1718-51-0  | 1.0         | %              | 82.4              | <br> | <br> |

| Page       | : 11 of 12    |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



# Surrogate Control Limits

| Sub-Matrix: SOIL                             |                | Recovery | Limits (%)  |
|----------------------------------------------|----------------|----------|-------------|
| Compound                                     | CAS Number     | Low      | High        |
| EP066S: PCB Surrogate                        |                |          |             |
| Decachlorobiphenyl                           | 2051-24-3      | 39       | 149         |
| EP068S: Organochlorine Pesticide Surrogate   |                |          |             |
| Dibromo-DDE                                  | 21655-73-2     | 49       | 147         |
| EP068T: Organophosphorus Pesticide Surrogate |                |          |             |
| DEF                                          | 78-48-8        | 35       | 143         |
| EP074S: VOC Surrogates                       |                |          |             |
| 1.2-Dichloroethane-D4                        | 17060-07-0     | 64       | 130         |
| Toluene-D8                                   | 2037-26-5      | 66       | 136         |
| 4-Bromofluorobenzene                         | 460-00-4       | 60       | 122         |
| EP075(SIM)S: Phenolic Compound Surrogates    |                |          |             |
| Phenol-d6                                    | 13127-88-3     | 63       | 123         |
| 2-Chlorophenol-D4                            | 93951-73-6     | 66       | 122         |
| 2.4.6-Tribromophenol                         | 118-79-6       | 40       | 138         |
| EP075(SIM)T: PAH Surrogates                  |                |          |             |
| 2-Fluorobiphenyl                             | 321-60-8       | 70       | 122         |
| Anthracene-d10                               | 1719-06-8      | 66       | 128         |
| 4-Terphenyl-d14                              | 1718-51-0      | 65       | 129         |
| EP080S: TPH(V)/BTEX Surrogates               |                |          |             |
| 1.2-Dichloroethane-D4                        | 17060-07-0     | 73       | 133         |
| Toluene-D8                                   | 2037-26-5      | 74       | 132         |
| 4-Bromofluorobenzene                         | 460-00-4       | 72       | 130         |
| Sub-Matrix: TCLP   FACHATE                   |                | Recovery | l imits (%) |
| Compound                                     | CAS Number     | Low      | High        |
| EP075(SIM)S: Phenolic Compound Surrogates    | er te r ta not |          |             |
| Phenol-d6                                    | 13127-88-3     | 10       | 44          |
| 2-Chlorophenol-D4                            | 93951-73-6     | 14       | 94          |
| 2.4.6-Tribromophenol                         | 118-79-6       | 17       | 125         |
| EP075(SIM)T: PAH Surrogates                  |                |          |             |
| 2-Fluorobiphenyl                             | 321-60-8       | 20       | 104         |
| Anthracene-d10                               | 1719-06-8      | 27       | 113         |
| 4-Terphenyl-d14                              | 1718-51-0      | 32       | 112         |
| Sub-Matrix: WATER                            |                | Recovery | l imits (%) |
| Compound                                     | CAS Number     | Low      | Hiah        |
| EP075/SIM)S: Phenolic Compound Surrogates    |                |          |             |
| Phenol-d6                                    | 13127-88-3     | 10       | 44          |
| 2-Chlorophenol-D4                            | 93951-73-6     | 14       | 94          |
| = oniorophonor-b+                            | 0000170-0      | тт<br>т  | 57          |

| Page       | : 12 of 12    |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: WATER                                     |            | Recovery | Limits (%) |  |  |  |
|-------------------------------------------------------|------------|----------|------------|--|--|--|
| Compound                                              | CAS Number | Low      | High       |  |  |  |
| EP075(SIM)S: Phenolic Compound Surrogates - Continued |            |          |            |  |  |  |
| 2.4.6-Tribromophenol                                  | 118-79-6   | 17       | 125        |  |  |  |
| EP075(SIM)T: PAH Surrogates                           |            |          |            |  |  |  |
| 2-Fluorobiphenyl                                      | 321-60-8   | 20       | 104        |  |  |  |
| Anthracene-d10                                        | 1719-06-8  | 27       | 113        |  |  |  |
| 4-Terphenyl-d14                                       | 1718-51-0  | 32       | 112        |  |  |  |



| QA/QC Compliance Assessment to assist with Quality Review |                   |                         |                                 |  |
|-----------------------------------------------------------|-------------------|-------------------------|---------------------------------|--|
| Work Order                                                | ES1937111         | Page                    | : 1 of 11                       |  |
| Client                                                    | : GHD PTY LTD     | Laboratory              | : Environmental Division Sydney |  |
| Contact                                                   | : Jessica Watson  | Telephone               | : +61-2-8784 8555               |  |
| Project                                                   | : 12517046        | Date Samples Received   | : 11-Nov-2019                   |  |
| Site                                                      | :                 | Issue Date              | : 26-Nov-2019                   |  |
| Sampler                                                   | : JAMES TOMLINSON | No. of samples received | : 10                            |  |
| Order number                                              | :                 | No. of samples analysed | : 6                             |  |
|                                                           |                   |                         |                                 |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

| Page       | : 2 of 11     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



## **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: SOIL

| Compound Group Name                          | Laboratory Sample ID | Client Sample ID | Analyte             | CAS Number | Data     | Limits    | Comment                               |
|----------------------------------------------|----------------------|------------------|---------------------|------------|----------|-----------|---------------------------------------|
| Matrix Spike (MS) Recoveries                 |                      |                  |                     |            |          |           |                                       |
| EG048: Hexavalent Chromium (Alkaline Digest) | ES1937111003         | BH06_1.2-1.45    | Hexavalent Chromium | 18540-29-9 | 0.0206 % | 70.0-130% | Recovery less than lower data quality |
|                                              |                      |                  |                     |            |          |           | objective                             |
| EG048: Hexavalent Chromium (Alkaline Digest) | ES1937111003         | BH06_1.2-1.45    | Hexavalent Chromium | 18540-29-9 | 0.0426 % | 70.0-130% | Recovery less than lower data quality |
|                                              |                      |                  |                     |            |          |           | objective                             |

## **Outliers : Analysis Holding Time Compliance**

| Matrix: SOIL                                                  |                                            |                |                    |                          | -             |                  |                 |  |  |
|---------------------------------------------------------------|--------------------------------------------|----------------|--------------------|--------------------------|---------------|------------------|-----------------|--|--|
| Method                                                        | od                                         |                |                    | Extraction / Preparation |               |                  | Analysis        |  |  |
| Container / Client Sample ID(s)                               |                                            | Date extracted | Due for extraction | Days<br>overdue          | Date analysed | Due for analysis | Days<br>overdue |  |  |
| EA055: Moisture Content (Dried @ 105-110°C                    | ;)                                         |                |                    |                          |               |                  |                 |  |  |
| Soil Glass Jar - Unpreserved<br>BH07_2.5-2.95,                | BH06_1.2-1.45                              |                |                    |                          | 22-Nov-2019   | 21-Nov-2019      | 1               |  |  |
| EK026SF: Total CN by Segmented Flow Ana                       | lyser                                      |                |                    |                          |               |                  |                 |  |  |
| Soil Glass Jar - Unpreserved<br>BH07_2.5-2.95,                | BH06_1.2-1.45                              | 22-Nov-2019    | 21-Nov-2019        | 1                        |               |                  |                 |  |  |
| EK028SF: Weak Acid Dissociable CN by Sec                      | mented Flow Analyser                       |                |                    |                          |               |                  |                 |  |  |
| Soil Glass Jar - Unpreserved<br>BH07_2.5-2.95,                | BH06_1.2-1.45                              | 22-Nov-2019    | 21-Nov-2019        | 1                        |               |                  |                 |  |  |
| EN33: TCLP Leach                                              |                                            |                |                    |                          |               |                  |                 |  |  |
| Non-Volatile Leach: 14 day HT(e.g. SV organ<br>BH07_2.5-2.95, | nics)<br>BH06_1.2-1.45                     | 22-Nov-2019    | 21-Nov-2019        | 1                        |               |                  |                 |  |  |
| EP066: Polychlorinated Biphenyls (PCB)                        |                                            |                |                    |                          |               |                  |                 |  |  |
| Soil Glass Jar - Unpreserved<br>BH07_2.5-2.95,                | BH06_1.2-1.45                              | 22-Nov-2019    | 21-Nov-2019        | 1                        |               |                  |                 |  |  |
| EP068A: Organochlorine Pesticides (OC)                        |                                            |                |                    |                          |               |                  |                 |  |  |
| Soil Glass Jar - Unpreserved<br>BH07_2.5-2.95,                | BH06_1.2-1.45                              | 22-Nov-2019    | 21-Nov-2019        | 1                        |               |                  |                 |  |  |
| EP068B: Organophosphorus Pesticides (OP)                      |                                            |                |                    |                          |               |                  |                 |  |  |
| Soil Glass Jar - Unpreserved<br>BH07_2.5-2.95,                | BH06_1.2-1.45                              | 22-Nov-2019    | 21-Nov-2019        | 1                        |               |                  |                 |  |  |
| EP071 SG: Total Recoverable Hydrocarbons                      | - NEPM 2013 Fractions - Silica gel cleanup |                |                    |                          |               |                  |                 |  |  |
| Soil Glass Jar - Unpreserved<br>BH07_2.5-2.95,                | BH06_1.2-1.45                              | 22-Nov-2019    | 21-Nov-2019        | 1                        |               |                  |                 |  |  |
| EP071 SG-S: Total Petroleum Hydrocarbons                      | in Soil - Silica gel cleanup               |                |                    |                          |               |                  |                 |  |  |
| Soil Glass Jar - Unpreserved<br>BH07_2.5-2.95,                | BH06_1.2-1.45                              | 22-Nov-2019    | 21-Nov-2019        | 1                        |               |                  |                 |  |  |
| EP074A: Monocyclic Aromatic Hydrocarbons                      | ;                                          |                |                    |                          |               |                  |                 |  |  |

| Page       | : 3 of 11     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                              |                                      |                |                          |                 |               |                  |                 |  |
|-------------------------------------------|--------------------------------------|----------------|--------------------------|-----------------|---------------|------------------|-----------------|--|
| Method                                    |                                      | Ex             | Extraction / Preparation |                 |               | Analysis         |                 |  |
| Container / Client Sample ID(s)           |                                      | Date extracted | Due for extraction       | Days<br>overdue | Date analysed | Due for analysis | Days<br>overdue |  |
| EP074A: Monocyclic Aromatic Hydrocarbon   | s - Analysis Holding Time Compliance |                |                          |                 |               |                  |                 |  |
| Soil Glass Jar - Unpreserved              |                                      |                |                          |                 |               |                  |                 |  |
| BH07_2.5-2.95,                            | BH06_1.2-1.45                        | 22-Nov-2019    | 14-Nov-2019              | 8               | 22-Nov-2019   | 14-Nov-2019      | 8               |  |
| EP074B: Oxygenated Compounds              |                                      |                |                          |                 |               |                  |                 |  |
| Soil Glass Jar - Unpreserved              |                                      |                |                          |                 |               |                  |                 |  |
| BH07_2.5-2.95,                            | BH06_1.2-1.45                        | 22-Nov-2019    | 14-Nov-2019              | 8               | 22-Nov-2019   | 14-Nov-2019      | 8               |  |
| EP074E: Halogenated Aliphatic Compounds   |                                      |                |                          |                 |               |                  |                 |  |
| Soil Glass Jar - Unpreserved              |                                      |                |                          |                 |               |                  |                 |  |
| BH07_2.5-2.95,                            | BH06_1.2-1.45                        | 22-Nov-2019    | 14-Nov-2019              | 8               | 22-Nov-2019   | 14-Nov-2019      | 8               |  |
| EP074F: Halogenated Aromatic Compounds    |                                      |                |                          |                 |               |                  |                 |  |
| Soil Glass Jar - Unpreserved              |                                      |                |                          |                 |               |                  |                 |  |
| BH07_2.5-2.95,                            | BH06_1.2-1.45                        | 22-Nov-2019    | 14-Nov-2019              | 8               | 22-Nov-2019   | 14-Nov-2019      | 8               |  |
| EP074G: Trihalomethanes                   |                                      |                |                          |                 |               |                  |                 |  |
| Soil Glass Jar - Unpreserved              |                                      |                |                          |                 |               |                  |                 |  |
| BH07_2.5-2.95,                            | BH06_1.2-1.45                        | 22-Nov-2019    | 14-Nov-2019              | 8               | 22-Nov-2019   | 14-Nov-2019      | 8               |  |
| EP075(SIM)A: Phenolic Compounds           |                                      |                |                          |                 |               |                  |                 |  |
| Soil Glass Jar - Unpreserved              |                                      |                |                          |                 |               |                  |                 |  |
| BH07_2.5-2.95,                            | BH06_1.2-1.45                        | 22-Nov-2019    | 21-Nov-2019              | 1               |               |                  |                 |  |
| EP075(SIM)B: Polynuclear Aromatic Hydroca | arbons                               |                |                          |                 |               |                  |                 |  |
| Soil Glass Jar - Unpreserved              |                                      |                |                          |                 |               |                  |                 |  |
| BH07_2.5-2.95,                            | BH06_1.2-1.45                        | 22-Nov-2019    | 21-Nov-2019              | 1               |               |                  |                 |  |
| EP080/071: Total Petroleum Hydrocarbons   |                                      |                |                          |                 |               |                  |                 |  |
| Soil Glass Jar - Unpreserved              |                                      |                |                          |                 |               |                  |                 |  |
| BH07_2.5-2.95,                            | BH06_1.2-1.45,                       | 22-Nov-2019    | 21-Nov-2019              | 1               | 22-Nov-2019   | 21-Nov-2019      | 1               |  |
| Trip blank,                               | Trip spike,                          |                |                          |                 |               |                  |                 |  |
| TSC                                       |                                      |                |                          |                 |               |                  |                 |  |
| EP080/071: Total Recoverable Hydrocarbons | s - NEPM 2013 Fractions              |                |                          |                 |               |                  |                 |  |
| Soil Glass Jar - Unpreserved              |                                      |                |                          |                 |               |                  |                 |  |
| BH07_2.5-2.95,                            | BH06_1.2-1.45,                       | 22-Nov-2019    | 21-Nov-2019              | 1               | 22-Nov-2019   | 21-Nov-2019      | 1               |  |
| Trip blank,                               | Trip spike,                          |                |                          |                 |               |                  |                 |  |
| ISC                                       |                                      |                |                          |                 |               |                  |                 |  |
| EP080: BTEXN                              |                                      |                |                          |                 | 1             |                  |                 |  |
| Soil Glass Jar - Unpreserved              | <b>-</b> · · ·                       |                | 04 No. 0040              |                 | 00 No. 00 10  | 04 No. 0040      |                 |  |
| i rip blank,                              | I rip spike,                         | 22-Nov-2019    | 21-NOV-2019              | 1               | 22-NOV-2019   | 21-NOV-2019      | 1               |  |
| 150                                       |                                      |                |                          |                 | 1             |                  |                 |  |

Matrix: WATER

| Method                                         | Extraction / Preparation |                    | Analysis |               |                  |         |
|------------------------------------------------|--------------------------|--------------------|----------|---------------|------------------|---------|
| Container / Client Sample ID(s)                | Date extracted           | Due for extraction | Days     | Date analysed | Due for analysis | Days    |
|                                                |                          |                    | overdue  |               |                  | overdue |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons |                          |                    |          |               |                  |         |
| Page       | : 4 of 11     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



#### Matrix: WATER

| Method                                                                            | Ex             | traction / Preparation |         | Analysis      |                  |         |  |  |
|-----------------------------------------------------------------------------------|----------------|------------------------|---------|---------------|------------------|---------|--|--|
| Container / Client Sample ID(s)                                                   | Date extracted | Due for extraction     | Days    | Date analysed | Due for analysis | Days    |  |  |
|                                                                                   |                |                        | overdue |               |                  | overdue |  |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons - Analysis Holding Time Compliance |                |                        |         |               |                  |         |  |  |
| Amber Glass Bottle - Unpreserved                                                  |                |                        |         |               |                  |         |  |  |
| RB                                                                                | 22-Nov-2019    | 14-Nov-2019            | 8       |               |                  |         |  |  |

#### **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type | C  | Count   | Rate (%) |          | Rate (%)                       |  | Quality Control Specification |
|-----------------------------|----|---------|----------|----------|--------------------------------|--|-------------------------------|
| Method                      | QC | Regular | Actual   | Expected |                                |  |                               |
| Laboratory Duplicates (DUP) |    |         |          |          |                                |  |                               |
| PAH/Phenols (GC/MS - SIM)   | 0  | 35      | 0.00     | 10.00    | NEPM 2013 B3 & ALS QC Standard |  |                               |
| Matrix Spikes (MS)          |    |         |          |          |                                |  |                               |
| PAH/Phenols (GC/MS - SIM)   | 0  | 35      | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |  |                               |

### Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                                             |               |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|----------------------------------------------------------|---------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                                   |               | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)                          |               |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EA055: Moisture Content (Dried @ 105-110°C)              |               |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EA055)<br>BH07_2.5-2.95,   | BH06_1.2-1.45 | 07-Nov-2019 |                |                        |            | 22-Nov-2019        | 21-Nov-2019        | z               |
| EG005(ED093)T: Total Metals by ICP-AES                   |               |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EG005T)<br>BH07_2.5-2.95,  | BH06_1.2-1.45 | 07-Nov-2019 | 22-Nov-2019    | 05-May-2020            | 1          | 25-Nov-2019        | 05-May-2020        | ✓               |
| EG035T: Total Recoverable Mercury by FIMS                |               |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EG035T)<br>BH07_2.5-2.95,  | BH06_1.2-1.45 | 07-Nov-2019 | 22-Nov-2019    | 05-Dec-2019            | 1          | 25-Nov-2019        | 05-Dec-2019        | ✓               |
| EG048: Hexavalent Chromium (Alkaline Digest)             |               |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EG048G)<br>BH07_2.5-2.95,  | BH06_1.2-1.45 | 07-Nov-2019 | 22-Nov-2019    | 05-Dec-2019            | 1          | 22-Nov-2019        | 29-Nov-2019        | ~               |
| EK026SF: Total CN by Segmented Flow Analyser             |               |             |                |                        |            |                    |                    |                 |
| Soil Glass Jar - Unpreserved (EK026SF)<br>BH07_2.5-2.95, | BH06_1.2-1.45 | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ×          | 25-Nov-2019        | 06-Dec-2019        | ~               |

| Page       | : 5 of 11     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Matrix: SOIL                                                         |                                        |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | in holding time |  |
|----------------------------------------------------------------------|----------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|--|
| Method                                                               |                                        |             | Ex             | traction / Preparation |            | Analysis           |                    |                 |  |
| Container / Client Sample ID(s)                                      |                                        |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |  |
| EK028SF: Weak Acid Dissociable CN by Segmer                          | nted Flow Analyser                     |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EK028SF)<br>BH07_2.5-2.95,             | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ٤          | 25-Nov-2019        | 06-Dec-2019        | ~               |  |
| EK040T: Fluoride Total                                               |                                        |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EK040T)<br>BH07_2.5-2.95,              | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 05-Dec-2019            | 1          | 26-Nov-2019        | 05-Dec-2019        | ✓               |  |
| EN33: TCLP Leach                                                     |                                        |             |                |                        |            |                    |                    |                 |  |
| Non-Volatile Leach: 14 day HT(e.g. SV organics) (I<br>BH07_2.5-2.95, | EN33a)<br>BH06_1.2-1.45                | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ¥          |                    |                    |                 |  |
| EP066: Polychlorinated Biphenyls (PCB)                               |                                        |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP066)<br>BH07_2.5-2.95,               | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | <u>k</u>   | 23-Nov-2019        | 01-Jan-2020        | ✓               |  |
| EP068A: Organochlorine Pesticides (OC)                               |                                        |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP068)<br>BH07_2.5-2.95,               | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ×          | 23-Nov-2019        | 01-Jan-2020        | 1               |  |
| EP068B: Organophosphorus Pesticides (OP)                             |                                        |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP068)<br>BH07_2.5-2.95,               | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ¥          | 23-Nov-2019        | 01-Jan-2020        | ~               |  |
| EP071 SG: Total Recoverable Hydrocarbons - NE                        | PM 2013 Fractions - Silica gel cleanup |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP071SG-S)<br>BH07_2.5-2.95,           | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ¥          | 23-Nov-2019        | 01-Jan-2020        | ~               |  |
| EP071 SG-S: Total Petroleum Hydrocarbons in S                        | oil - Silica gel cleanup               |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP071SG-S)<br>BH07_2.5-2.95,           | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ×          | 23-Nov-2019        | 01-Jan-2020        | ~               |  |
| EP074A: Monocyclic Aromatic Hydrocarbons                             |                                        |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP074)<br>BH07_2.5-2.95,               | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 14-Nov-2019            | ¥          | 22-Nov-2019        | 14-Nov-2019        | ×               |  |
| EP074B: Oxygenated Compounds                                         |                                        |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP074)<br>BH07_2.5-2.95,               | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 14-Nov-2019            | ×          | 22-Nov-2019        | 14-Nov-2019        | ×               |  |
| EP074E: Halogenated Aliphatic Compounds                              |                                        |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP074)<br>BH07_2.5-2.95,               | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 14-Nov-2019            | ×          | 22-Nov-2019        | 14-Nov-2019        | ×               |  |
| EP074F: Halogenated Aromatic Compounds                               |                                        |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP074)<br>BH07_2.5-2.95,               | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 14-Nov-2019            | *          | 22-Nov-2019        | 14-Nov-2019        | *               |  |
| EP074G: Trihalomethanes                                              |                                        |             |                |                        |            |                    |                    |                 |  |
| Soil Glass Jar - Unpreserved (EP074)<br>BH07_2.5-2.95,               | BH06_1.2-1.45                          | 07-Nov-2019 | 22-Nov-2019    | 14-Nov-2019            | ×          | 22-Nov-2019        | 14-Nov-2019        | ×               |  |

| Page       | : 6 of 11     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                                                                 |                               |             |                |                        | Evaluation | : × = Holding time | breach ; 🗸 = Withi | in holding time. |
|------------------------------------------------------------------------------|-------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|------------------|
| Method                                                                       |                               | Sample Date | Ex             | traction / Preparation |            | Analysis           |                    |                  |
| Container / Client Sample ID(s)                                              |                               |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation       |
| EP075(SIM)A: Phenolic Compounds                                              |                               |             |                |                        |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP075(SIM))<br>BH07_2.5-2.95,                  | BH06_1.2-1.45                 | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ×          | 22-Nov-2019        | 01-Jan-2020        | ✓                |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons                               |                               |             |                |                        |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP075(SIM))<br>BH07_2.5-2.95,                  | BH06_1.2-1.45                 | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ×          | 22-Nov-2019        | 01-Jan-2020        | ✓                |
| EP080/071: Total Petroleum Hydrocarbons                                      |                               |             |                |                        |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP080)<br>BH07_2.5-2.95,<br>Trip blank,<br>TSC | BH06_1.2-1.45,<br>Trip spike, | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ¥          | 22-Nov-2019        | 21-Nov-2019        | ×                |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 20                          | 13 Fractions                  |             |                |                        |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP080)<br>BH07_2.5-2.95,<br>Trip blank,<br>TSC | BH06_1.2-1.45,<br>Trip spike, | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ×          | 22-Nov-2019        | 21-Nov-2019        | ×                |
| EP080: BTEXN                                                                 |                               |             |                |                        |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP080)<br>Trip blank,<br>TSC                   | Trip spike,                   | 07-Nov-2019 | 22-Nov-2019    | 21-Nov-2019            | ×          | 22-Nov-2019        | 21-Nov-2019        | ×                |
| Matrix: WATER                                                                |                               |             |                |                        | Evaluation | · × = Holding time | breach : ✓ = Withi | in holding time  |
| Method                                                                       |                               | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           | <u> </u>         |
| Container / Client Sample ID(s)                                              |                               |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation       |
| EG020T: Total Metals by ICP-MS                                               |                               |             |                |                        |            |                    |                    |                  |
| Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T)<br>RB              |                               | 07-Nov-2019 | 22-Nov-2019    | 05-May-2020            | ~          | 22-Nov-2019        | 05-May-2020        | ✓                |
| EG035T: Total Recoverable Mercury by FIMS                                    |                               |             |                |                        |            |                    |                    |                  |
| Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T)<br>RB                |                               | 07-Nov-2019 |                |                        |            | 22-Nov-2019        | 05-Dec-2019        | ✓                |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons                               |                               |             |                |                        |            |                    |                    |                  |
| Amber Glass Bottle - Unpreserved (EP075(SIM))<br>RB                          |                               | 07-Nov-2019 | 22-Nov-2019    | 14-Nov-2019            | ¥          | 22-Nov-2019        | 01-Jan-2020        | ✓                |
| Amber Glass Bottle - Unpreserved (EP075(SIM))<br>BH07_2.5-2.95,              | BH06_1.2-1.45                 | 22-Nov-2019 | 25-Nov-2019    | 29-Nov-2019            | 1          | 25-Nov-2019        | 04-Jan-2020        | ~                |

| Page       | : 7 of 11     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                            |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|---------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type                             |            | С  | ount    |           | Rate (%)          |                 | Quality Control Specification                                                             |
| Analytical Methods                                      | Method     | 30 | Reaular | Actual    | Expected          | Evaluation      |                                                                                           |
| Laboratory Duplicates (DUP)                             |            |    |         |           |                   |                 |                                                                                           |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Moisture Content                                        | EA055      | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 1  | 2       | 50.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Pesticides by GCMS                                      | EP068      | 1  | 2       | 50.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1  | 2       | 50.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 2  | 19      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Fluoride                                          | EK040T     | 1  | 5       | 20.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS                                   | EG035T     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-AES                                 | EG005T     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1  | 2       | 50.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH Volatiles/BTEX                                      | EP080      | 1  | 5       | 20.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Volatile Organic Compounds                              | EP074      | 1  | 2       | 50.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1  | 7       | 14.29     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Laboratory Control Samples (LCS)                        |            |    |         |           |                   |                 |                                                                                           |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Pesticides by GCMS                                      | EP068      | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 2  | 19      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Fluoride                                          | EK040T     | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS                                   | EG035T     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-AES                                 | EG005T     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH Volatiles/BTEX                                      | EP080      | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Volatile Organic Compounds                              | EP074      | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1  | 7       | 14.29     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Method Blanks (MB)                                      |            |    |         |           |                   |                 |                                                                                           |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Pesticides by GCMS                                      | EP068      | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1  | 2       | 50.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TCLP for Non & Semivolatile Analytes                    | EN33a      | 1  | 3       | 33.33     | 9.09              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Fluoride                                          | EK040T     | 1  | 5       | 20.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS                                   | EG035T     | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-AES                                 | EG005T     | 1  | 20      | 5.00      | 5.00              | √               | NEPM 2013 B3 & ALS QC Standard                                                            |

| Page       | : 8 of 11     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                                            |            |    |         | Evaluation | n: × = Quality Co | ntrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|---------------------------------------------------------|------------|----|---------|------------|-------------------|-----------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type                             |            | Co | ount    | Rate (%)   |                   |                 | Quality Control Specification                                                             |
| Analytical Methods                                      | Method     | 00 | Reaular | Actual     | Expected          | Evaluation      |                                                                                           |
| Method Blanks (MB) - Continued                          |            |    |         |            |                   |                 |                                                                                           |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1  | 2       | 50.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH Volatiles/BTEX                                      | EP080      | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Volatile Organic Compounds                              | EP074      | 1  | 2       | 50.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1  | 7       | 14.29      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Matrix Spikes (MS)                                      |            |    |         |            |                   |                 |                                                                                           |
| Hexavalent Chromium by Alkaline Digestion and DA Finish | EG048G     | 2  | 20      | 10.00      | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (SIM)                                       | EP075(SIM) | 1  | 2       | 50.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Pesticides by GCMS                                      | EP068      | 1  | 2       | 50.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Polychlorinated Biphenyls (PCB)                         | EP066      | 1  | 2       | 50.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Cyanide by Segmented Flow Analyser                | EK026SF    | 1  | 19      | 5.26       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Fluoride                                          | EK040T     | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS                                   | EG035T     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-AES                                 | EG005T     | 1  | 20      | 5.00       | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH - Semivolatile Fraction (Silica Gel Clean Up)       | EP071SG-S  | 1  | 2       | 50.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| TRH Volatiles/BTEX                                      | EP080      | 1  | 5       | 20.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Volatile Organic Compounds                              | EP074      | 1  | 2       | 50.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| WAD Cyanide by Segmented Flow Analyser                  | EK028SF    | 1  | 7       | 14.29      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |

| Matrix: WATER                    |            | Evaluation: * = Quality Control frequency n |         |          |          |            | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|----------------------------------|------------|---------------------------------------------|---------|----------|----------|------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type      |            | Count                                       |         | Rate (%) |          |            | Quality Control Specification                                                             |
| Analytical Methods               | Method     | QC                                          | Reaular | Actual   | Expected | Evaluation |                                                                                           |
| Laboratory Duplicates (DUP)      |            |                                             |         |          |          |            |                                                                                           |
| PAH/Phenols (GC/MS - SIM)        | EP075(SIM) | 0                                           | 35      | 0.00     | 10.00    | <b>5</b>   | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS            | EG035T     | 2                                           | 14      | 14.29    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-MS - Suite A | EG020A-T   | 2                                           | 19      | 10.53    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Laboratory Control Samples (LCS) |            |                                             |         |          |          |            |                                                                                           |
| PAH/Phenols (GC/MS - SIM)        | EP075(SIM) | 2                                           | 35      | 5.71     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS            | EG035T     | 1                                           | 14      | 7.14     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-MS - Suite A | EG020A-T   | 1                                           | 19      | 5.26     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Method Blanks (MB)               |            |                                             |         |          |          |            |                                                                                           |
| PAH/Phenols (GC/MS - SIM)        | EP075(SIM) | 2                                           | 35      | 5.71     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS            | EG035T     | 1                                           | 14      | 7.14     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-MS - Suite A | EG020A-T   | 1                                           | 19      | 5.26     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Matrix Spikes (MS)               |            |                                             |         |          |          |            |                                                                                           |
| PAH/Phenols (GC/MS - SIM)        | EP075(SIM) | 0                                           | 35      | 0.00     | 5.00     | ×          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS            | EG035T     | 1                                           | 14      | 7.14     | 5.00     | ~          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals by ICP-MS - Suite A | EG020A-T   | 1                                           | 19      | 5.26     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                                            |

| Page       | : 9 of 11     |
|------------|---------------|
| Work Order | : ES1937111   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                         | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------|---------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                           | EA055   | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total Metals by ICP-AES                                    | EG005T  | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Mercury by FIMS                                      | EG035T  | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                     |
| Hexavalent Chromium by Alkaline<br>Digestion and DA Finish | EG048G  | SOIL   | In house: Referenced to USEPA SW846, Method 3060A. Hexavalent chromium is extracted by alkaline digestion.<br>The digest is determined by photometrically by automatic discrete analyser, following pH adjustment. The instrument uses colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total Cyanide by Segmented Flow<br>Analyser                | EK026SF | SOIL   | In house: Referenced to APHA 4500-CN C / ASTM D7511. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM (2013) Schedule B(3) |
| WAD Cyanide by Segmented Flow<br>Analyser                  | EK028SF | SOIL   | In house: Referenced to APHA 4500-CN-O. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Hydrogen cyanide is liberated from a slightly acidified (pH 4.5) and is dialysed. Tight cyanide complexes that would not be amenable to oxidation by chlorine are not converted. Iron cyanide complexes are precipitated with zinc acetate.<br>Liberated HCN diffuses through a membrane into a stream of sodium hydroxide where it is carried as CN-The cyanide in caustic solution is buffered to pH 5.2 and further converted to cyanogen chloride by reaction with chloramine-T. Cyanogen chloride subsequently reacts with 4 ¿pyridine carboxylic and 1,3 - dimethylbarbituric acids to give a red colour complex. This colour is measured at 600 nm.<br>This method is compliant with NEPM (2013) Schedule B(3)                             |
| Total Fluoride                                             | EK040T  | SOIL   | (In-house) Total fluoride is determined by ion specific electrode (ISE) in a solution obtained after a Sodium Carbonate / Potassium Carbonate fusion dissolution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Polychlorinated Biphenyls (PCB)                            | EP066   | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Page       | : 10 of 11   |
|------------|--------------|
| Work Order | : ES1937111  |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Analytical Methods                                         | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------|------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pesticides by GCMS                                         | EP068      | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)                                                                                                                                                                                                                                                                                     |
| TRH - Semivolatile Fraction (Silica Gel                    | EP071SG-S  | SOIL   | In house: Referenced to USEPA SW 846 - 8015A. Sample extracts are analysed by Capillary GC/FID and                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Volatile Organic Compounds                                 | EP074      | SOIL   | In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS.<br>Quantification is by comparison against an established 5 point calibration curve. This method is compliant with<br>NEPM (2013) Schedule B(3) (Method 501)                                                                                                                                                                                                                                                                         |
| PAH/Phenols (SIM)                                          | EP075(SIM) | SOIL   | In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)                                                                                                                                                                                                                                                       |
| TRH Volatiles/BTEX                                         | EP080      | SOIL   | In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.                                                                                                                                                                                                                                                                                                                 |
| Total Metals by ICP-MS - Suite A                           | EG020A-T   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                                      |
| Total Mercury by FIMS                                      | EG035T     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)<br>FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise<br>any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic<br>mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing<br>absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| PAH/Phenols (GC/MS - SIM)                                  | EP075(SIM) | WATER  | In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                      |
| Preparation Methods                                        | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NaOH leach for CN in Soils                                 | CN-PR      | SOIL   | In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Alkaline digestion for Hexavalent<br>Chromium              | EG048PR    | SOIL   | In house: Referenced to USEPA SW846, Method 3060A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Fluoride                                             | EK040T-PR  | SOIL   | In house: Samples are fused with Sodium Carbonate / Potassium Carbonate flux.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TCLP for Non & Semivolatile Analytes                       | EN33a      | SOIL   | In house QWI-EN/33 referenced to USEPA SW846-1311: The TCLP procedure is designed to determine the mobility of both organic and inorganic analytes present in wastes. The standard TCLP leach is for non-volatile and Semivolatile test parameters.                                                                                                                                                                                                                                                                                         |
| Hot Block Digest for metals in soils sediments and sludges | EN69       | SOIL   | In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)                                                                                                                     |

| Page       | : 11 of 11    |
|------------|---------------|
| Work Order | ES1937111     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Preparation Methods                                  | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Separatory Funnel Extraction of Liquids              | ORG14  | SOIL   | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container. |
| Methanolic Extraction of Soils for Purge<br>and Trap | ORG16  | SOIL   | In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.                                                                                                                                                                                                                                      |
| Tumbler Extraction of Solids                         | ORG17  | SOIL   | In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.                                                                                                                                         |
| Digestion for Total Recoverable Metals               | EN25   | WATER  | In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                      |
| Separatory Funnel Extraction of Liquids              | ORG14  | WATER  | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container. |

|         |                                       |                              |                                                                                                                                                                                                                                     |                          |                                       | ×         |              |           |            |
|---------|---------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|-----------|--------------|-----------|------------|
|         |                                       | L                            |                                                                                                                                                                                                                                     |                          |                                       | ×         |              |           |            |
|         |                                       | 9998 1787-19 + : 6000 0899 1 |                                                                                                                                                                                                                                     |                          | · · · · ·                             |           | <u> </u>     |           |            |
|         |                                       |                              |                                                                                                                                                                                                                                     |                          |                                       | X         |              | X         |            |
|         |                                       |                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                               |                          | · · · · · · · · · · · · · · · · · · · | ^         |              |           |            |
|         |                                       |                              | やオスのかなかか。                                                                                                                                                                                                                           | i Tha ta bu a            |                                       |           |              |           |            |
|         |                                       | 00-100107                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                               | jaoqt                    | famored / Od 48 badosttA              | X         |              |           |            |
|         |                                       | Work Order Reference         | مى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرىنى بىرى<br>بىرىنى بىرىنى | $\partial h L$           | bi Sa Ion on x                        | x         | · ····       | x         |            |
|         | 10 51:5                               | Sydney                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                               | X                        | Marine / etonaco                      | x         |              |           |            |
| ها<br>- |                                       | noisiviū letnemnosivo∃       |                                                                                                                                                                                                                                     |                          | Rolinquiched By / Data                |           |              |           |            |
|         | Lalula                                |                              |                                                                                                                                                                                                                                     | 1-443 <b>-</b> ####*==== | Organised By / Date:                  | · .       |              |           |            |
|         | 01111/0                               | (aduups suu                  | ·                                                                                                                                                                                                                                   | <b>C</b> 1 111           | Isisyland \ dal                       |           |              |           |            |
|         | x what x                              | replicate analysis on        | OSCORDEN SA                                                                                                                                                                                                                         | QVAL +I                  | Subcon / Forward Lab                  |           |              | x         |            |
|         | N200WV                                | apnjouj aseajd) x            | In SSEED 87 Way                                                                                                                                                                                                                     | 11ds on                  | NOMICOL                               |           |              | ~         |            |
|         |                                       | (1c)                         | 55/10/10 # 2                                                                                                                                                                                                                        | 1000.0                   |                                       |           |              |           |            |
| (75)    | 1                                     | (45) £!                      | ~ 13 6( 24 0                                                                                                                                                                                                                        | Property                 | 281 181                               |           |              |           |            |
| -       |                                       |                              |                                                                                                                                                                                                                                     |                          |                                       | ×         | ,            |           |            |
| 1       |                                       |                              |                                                                                                                                                                                                                                     |                          |                                       | ×         | · ·          |           |            |
|         |                                       |                              |                                                                                                                                                                                                                                     |                          | X                                     | X         |              | · · ·     |            |
|         |                                       |                              |                                                                                                                                                                                                                                     | 9                        | ·                                     |           |              |           |            |
|         |                                       | · · · · ·                    |                                                                                                                                                                                                                                     |                          |                                       | x         |              |           |            |
|         | · · · · · · · · · · · · · · · · · · · |                              |                                                                                                                                                                                                                                     |                          |                                       | X         |              |           |            |
|         |                                       |                              |                                                                                                                                                                                                                                     |                          |                                       | X         |              |           |            |
|         |                                       |                              |                                                                                                                                                                                                                                     |                          |                                       | X         |              | X         |            |
|         |                                       |                              |                                                                                                                                                                                                                                     | ×                        | · · · · · · · · · · · · · · · · · · · | ×         |              |           |            |
|         |                                       |                              |                                                                                                                                                                                                                                     |                          |                                       |           |              |           |            |
|         |                                       |                              |                                                                                                                                                                                                                                     |                          | X                                     | X         |              |           |            |
| :       |                                       |                              |                                                                                                                                                                                                                                     |                          | ·                                     | X         |              |           |            |
|         | · · · · · · · · · · · · · · · · · · · |                              |                                                                                                                                                                                                                                     |                          |                                       | X         |              |           | <b>Č</b> . |
|         |                                       |                              |                                                                                                                                                                                                                                     |                          |                                       | X         |              |           |            |
|         | · · · · · · · · · · · · · · · · · · · |                              |                                                                                                                                                                                                                                     |                          |                                       | x         |              | x         |            |
|         | Porewater PAH and PCB                 | Elutriate for PAH, PCB       | TBT + Dioxin (extraction only)                                                                                                                                                                                                      | ьсв                      | Mercury, Mercury TCLP                 | Lead, PAH | TCLP Mercury | TCLP Lead | rb B(9)b   |
|         |                                       |                              |                                                                                                                                                                                                                                     |                          |                                       |           |              |           |            |

₹.,

78 NA

|   |                                                                            |                  | 12 per Email        | $\rightarrow$         | · · · · · · · · · · · · · · · · · · · | ×                            |                  |                     |              |
|---|----------------------------------------------------------------------------|------------------|---------------------|-----------------------|---------------------------------------|------------------------------|------------------|---------------------|--------------|
|   |                                                                            |                  |                     |                       |                                       | x                            |                  | ×                   |              |
|   |                                                                            |                  |                     |                       |                                       | ×                            |                  |                     |              |
|   |                                                                            |                  |                     | X                     | -                                     | ×                            |                  |                     |              |
|   |                                                                            |                  |                     |                       |                                       |                              |                  |                     |              |
|   |                                                                            |                  |                     |                       |                                       | X                            |                  |                     |              |
|   |                                                                            | · · · ·          |                     |                       | ۰ ،                                   | ×                            |                  |                     |              |
|   |                                                                            |                  |                     |                       |                                       | x                            |                  |                     |              |
|   |                                                                            |                  |                     |                       |                                       | x                            |                  |                     |              |
|   | - · · · ·                                                                  |                  |                     |                       |                                       | ×                            |                  |                     |              |
|   |                                                                            |                  |                     |                       | × X                                   | X                            |                  |                     |              |
|   |                                                                            |                  |                     |                       |                                       |                              |                  | Х                   |              |
|   |                                                                            |                  |                     |                       |                                       | x                            |                  |                     |              |
|   |                                                                            |                  |                     |                       |                                       |                              |                  |                     |              |
| 5 | steplicate (please include replicate)<br>x (please include replicate)<br>S | ×<br>۶۶          | ξς×                 |                       |                                       |                              | ×                | x                   |              |
|   |                                                                            |                  |                     |                       |                                       |                              |                  |                     |              |
|   |                                                                            |                  | <u>(S ×</u>         |                       |                                       |                              |                  |                     |              |
|   |                                                                            | · •              |                     |                       | <u>_</u>                              |                              |                  |                     |              |
|   |                                                                            |                  |                     |                       |                                       | ×                            |                  |                     |              |
|   |                                                                            |                  |                     |                       | X                                     | ×                            |                  | X                   |              |
|   |                                                                            |                  |                     |                       |                                       |                              |                  |                     |              |
|   |                                                                            |                  |                     |                       | · · ·                                 |                              |                  | $ \longrightarrow $ |              |
|   |                                                                            | <u> </u>         |                     |                       |                                       |                              |                  |                     |              |
|   |                                                                            |                  |                     |                       |                                       | X                            |                  |                     | •            |
|   | 1                                                                          |                  |                     |                       | X                                     | ×                            |                  | X                   |              |
|   |                                                                            |                  |                     |                       |                                       | ×                            |                  |                     |              |
|   |                                                                            | ·                |                     |                       |                                       | ,                            | <b> </b>         |                     |              |
| Ċ | Permater PAH BCPCI                                                         | Arthare bur 1928 | 191 DIOXIN GALLON ( | 8751<br>8751<br>80201 | * WERNER / WERNA<br>00 801 / 1996     | ₩₩₩₩₩₩₩<br>₩₩₩₩₩₩₩<br>1'0500 | להברכותי<br>נכרך | × 1699<br>1995      | 977<br>970 S |

.9

| ····· |                                       |                                       | · · · ·    |                                       |          |                                       | Y    |     |
|-------|---------------------------------------|---------------------------------------|------------|---------------------------------------|----------|---------------------------------------|------|-----|
|       |                                       |                                       |            |                                       | ×        |                                       |      |     |
|       |                                       |                                       |            |                                       | x        |                                       |      |     |
|       |                                       |                                       |            |                                       | X        |                                       |      |     |
|       |                                       | · · · · · · · · · · · · · · · · · · · | +          |                                       |          |                                       |      |     |
|       |                                       |                                       |            | · · · · · · · · · · · · · · · · · · · |          |                                       |      |     |
|       |                                       |                                       |            |                                       | ^        |                                       | ^    |     |
|       |                                       |                                       |            |                                       | ×        |                                       |      |     |
|       |                                       |                                       |            |                                       | x        |                                       |      |     |
|       |                                       |                                       |            | X                                     | ×        |                                       | ×    |     |
|       | · · · · · · · · · · · · · · · · · · · |                                       | +          |                                       | ×        |                                       |      |     |
|       |                                       |                                       |            |                                       | - v      |                                       |      |     |
|       |                                       |                                       | _ <u>_</u> |                                       | <u>^</u> | · · · · · · · · · · · · · · · · · · · |      |     |
|       |                                       |                                       |            |                                       | ×        |                                       |      |     |
|       |                                       |                                       |            | · ·                                   | ×        |                                       |      |     |
|       |                                       |                                       |            | !                                     | ×        |                                       |      |     |
|       |                                       |                                       |            | x                                     | x        |                                       | 3 N. | 4   |
|       |                                       |                                       |            |                                       |          |                                       | ×    |     |
|       |                                       |                                       | +          | ·                                     | ·        |                                       | ^    | •   |
|       |                                       |                                       |            |                                       |          |                                       |      |     |
|       |                                       | · · · · · · · · · · · · · · · · · · · |            |                                       |          |                                       |      |     |
|       |                                       |                                       |            |                                       | HHA XUNX | HH 191                                | rena | 948 |
| · · · |                                       |                                       | binor      | N, disto                              | Jan Nug  | s may wa                              | ant  | d72 |
|       |                                       |                                       | 45         |                                       | 172      | 1105 Wa                               | V    | •   |
|       |                                       |                                       | 0 12       | -1 10500 h                            | 20 40    | Interne                               |      |     |
|       |                                       | _                                     |            | l [!                                  |          | march 11-                             |      |     |

### cal Patel

From:Angus HardingSent:Wednesday, 13 November 2019 8:34 AMTo:Vishal PatelCc:Loren SchiavonSubject:FW: [EXTERNAL] - Additional analyses for project 12517046

Hey Vishal,

Some slight changes to that re-batch:

- We will need VC12\_0.0-0.5 instead of VC03\_0.0-0.5
- **★** PCBs on VC12\_1.0-1.1

Let me know when you are getting to it and I shall help.

Cheers.

Kind Regards,

### **Angus Harding**

Client Services Officer, Environmental Sydney



 $\frac{T}{D} + 61 2 8784 8555$ F + 61 2 8784 8500 D + 61 2 8784 8503 angus.harding@alsglobal.com

277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA

Subscribe 🖬 🖌 🖬 🗐

Win

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how.

Vishal 13/11/29 5 0835

. . .



We are keen for your feedback! Please click here for your 3 minute survey

EnviroMail<sup>™</sup> 00 – All EnviroMails<sup>™</sup> in one convenient library. Recent releases (click to access directly): EnviroMail<sup>™</sup> 124 – PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail<sup>™</sup> 127 – Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here.

Right Solutions - Right Partner www.alsglobal.com

From: Sarah.Eccleshall@ghd.com [mailto:Sarah.Eccleshall@ghd.com] Sent: Tuesday, 12 November 2019 5:25 PM To: Angus Harding <angus.harding@ALSGlobal.com>; Brenda Hong <Brenda.Hong@alsglobal.com> Cc: Carmen Yi <Carmen.Yi@ghd.com> Subject: RE: [EXTERNAL] - Additional analyses for project 12517046

Hi Angus,

A couple of modifications to the additional analyses based on the results we just received, sorry about that.

Can we also get PCB analyses on sample VC12\_1.0-1.1

Can sample VC03\_0.0-0.5 be removed from the PVS and elutriate analyses and VC12\_0.0-0.5 be analysed in its place.\_\_\_\_\_

Thanks

Sarah Eccleshall PhD MSc BSc Hons Graduate Environmental Scientist Contamination & Environmental Management

## GHD

Proudly employee owned

T: +61 2 9239 7715 | M: +61 459 546 332 | F: sarah.eccleshail@ghd.com Level 15 133 Castlereagh Street Sydney NSW 2000 Australia | <u>www.ghd.com</u>



WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

From: Angus Harding <<u>angus.harding@ALSGlobal.com</u>> Sent: Tuesday, 12 November 2019 3:55 PM To: Sarah Eccleshall <<u>Sarah.Eccleshall@ghd.com</u>>; Brenda Hong (InTouch) <<u>brenda.hong@alsglobal.com</u>> Cc: Carmen Yi <<u>Carmen.Yi@ghd.com</u>> Subject: RE: [EXTERNAL] - Additional analyses for project 12517046

No worries Sarah 🕲

Kind Regards,

### Angus Harding

Client Services Officer, Environmental Sydney



<u>T</u> +61 2 8784 8555 <u>F</u> +61 2 8784 8500 <u>D</u> +61 2 8784 8503 <u>angus harding@alsglobal.com</u> 277-289 Woodpark Road <u>Smithfield NSW 2T64 AUSTRALIA</u>

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how.



We are keen for your feedback! Please click here for your 3 minute survey

EnviroMail™ 00 - All EnviroMails™ in one convenient library. Recent releases (click to access directly): EnviroMail™ 124 - PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail™ 127 - Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here.

Right Solutions + Right Partner www.alsglobal.com

From: <u>Sarah.Eccleshall@ghd.com {mailto:Sarah.Eccleshall@ghd.com</u>] Sent: Tuesday, 12 November 2019 3:46 PM To: Angus Harding <<u>angus.harding@ALSGlobal.com</u>>; Brenda Hong <<u>Brenda.Hong@alsglobal.com</u>> Cc: Carmen Yi <<u>Carmen.Yi@ghd.com</u>> Subject: RE: [EXTERNAL] - Additional analyses for project 12517046

Hi Angus,

One work order will be fine.

Thanks,

Sarah Eccleshall \_\_\_\_\_ \_\_\_ \_\_\_ PhD MSc BSc Hons Graduate Environmental Scientist Contamination & Environmental Management T: +61 2 9739 7715 | M: +61 459 546 332 | E: <u>sarah.eccleshall@ghd.com</u> Level 15 133 Castlereagh Street Sydney NSW 2000 Australia | <u>www.ghd.com</u>



WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

From: Angus Harding <<u>angus.harding@ALSGlobal.com</u>> Sent: Tuesday, 12 November 2019 3:41 PM To: Sarah Eccleshall <<u>Sarah.Eccleshall@ghd.com</u>>; Brenda Hong (InTouch) <<u>brenda.hong@alsglobal.com</u>> Cc: Carmen Yi <<u>Carmen.Yi@ghd.com</u>> Subject: RE: [EXTERNAL] - Additional analyses for project 12517046

Hey Sarah,

Thanks for sending this one through, we shall get it organised for you. Will it be okay for us to re-batch all of these samples into one workorder? Or did you need it separated into two?

Thank you.

Kind Regards,

Angus Harding

Client Services Officer, Environmental Sydney



<u>T</u> +61 2 8784 8555 <u>F</u> +61 2 8784 8500 <u>D</u> +61 2 8784 8503 <u>angus.harding@alsglobal.com</u> 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA

¥≦Subscribe 🖬♥ 🖬 💌 🔍 Win

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how.



We are keen for your feedback! Please click here for your 3 minute survey

EnviroMail<sup>™</sup> 00 - All EnviroMails<sup>™</sup> in one convenient library. Recent releases (click to access directly): EnviroMail<sup>™</sup> 124 - PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail<sup>™</sup> 127 - Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here.

Right Solutions • Right Partner www.alsglobal.com

From: <u>Sarah.Eccleshall@ghd.com</u> [mailto:Sarah.Eccleshall@ghd.com] Sent: Tuesday, 12 November 2019 3:17 PM To: Brenda Hong <<u>Brenda.Hong@alsglobal.com</u>> Cc: Angus Harding <<u>angus.harding@ALSGlobal.com</u>>; Carmen Yi <<u>Carmen.Yi@ghd.com</u>> Subject: [EXTERNAL] - Additional analyses for project 12517046

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

### Hi Brenda,

We'd like to schedule the additional analyses in the tables below. Any queries please give myself or Carmen a call, thanks.

|           |                  |            |  | TCLP B(a)P | TCLP Lead | TCLP<br>Mercury | Lead, PAH | Mercury, Mercury<br>TCLP | F |
|-----------|------------------|------------|--|------------|-----------|-----------------|-----------|--------------------------|---|
| ES1936029 | VC11_0.0-<br>0.2 | 30/10/2019 |  | x          | ×         |                 | x         | x                        | [ |
| ES1936029 | VC11_0.5-<br>0.7 | 30/10/2019 |  |            |           |                 |           |                          |   |

| ES1936029  | VC11_1.0-        | 30/10/2019 |                                                                  |          | l | 1        |                                       | × |             |            |
|------------|------------------|------------|------------------------------------------------------------------|----------|---|----------|---------------------------------------|---|-------------|------------|
| F\$1936029 | 1.2              | 30/10/2019 |                                                                  | <u>.</u> |   |          |                                       |   |             | ╞          |
| 131330025  | 0.5              | 30/10/2013 |                                                                  |          |   |          |                                       | X |             |            |
| ES1936029  | VC11_0.5-<br>1.0 | 30/10/2019 |                                                                  |          |   |          |                                       | × |             | T          |
| ES1936029  | VC07_0.2-<br>0.4 | 30/10/2019 |                                                                  |          |   |          |                                       | x | x           |            |
| ES1936029  | VC09_0.0-<br>0.2 | 30/10/2019 |                                                                  |          |   |          |                                       |   |             | ſ          |
| ES1936029  | VC09_0.4-<br>0.6 | 30/10/2019 |                                                                  |          |   |          |                                       | x |             | 5          |
| ES1936029  | VC09_0.7-<br>0.8 | 30/10/2019 |                                                                  |          | x | x        |                                       | x |             | T          |
| ES1936029  | VC09_0.8-<br>1.0 | 30/10/2019 |                                                                  |          |   |          |                                       | x |             | ſ          |
| E\$1936029 | VC09_0.0-<br>0.5 | 30/10/2019 |                                                                  |          |   |          |                                       | x |             | T          |
| ES1936029  | VC09_0.5-<br>1.0 | 30/10/2019 |                                                                  |          |   |          |                                       | x |             | f          |
| ES1936029  | VC07_0.0-<br>0.2 | 30/10/2019 |                                                                  |          |   |          | ·                                     |   |             | ţ.         |
| E\$1936029 | VC07_0.5-<br>0.6 | 30/10/2019 |                                                                  |          |   |          |                                       | x | ×           | t          |
| ES1936029  | VC07_0.7-<br>0.8 | 30/10/2019 |                                                                  |          |   | <u>_</u> | · · · · · · · · · · · · · · · · · · · | × |             | Ī          |
| ES1936029  | VC07_1.0-<br>1.2 | 30/10/2019 |                                                                  |          |   |          |                                       | x | x           | ſ          |
| ES1936029  | VC07_0.0-<br>0.5 | 30/10/2019 | Note: could we please<br>confirm PCB results for<br>this sample? |          | X | X        |                                       |   | · · · · ··· |            |
| ES1936029  | VC07_0.5-<br>1.0 | 30/10/2019 |                                                                  | ·+       |   |          | <b>†</b>                              | × |             | <b>†</b> , |
| ES1936029  | VC05_0.0-<br>0.1 | 30/10/2019 |                                                                  |          | x | x        |                                       | × | x           | <b> </b> , |

| *          |                  |            |                                               |   |   |   |       |   |   |
|------------|------------------|------------|-----------------------------------------------|---|---|---|-------|---|---|
| ES1936029  | VC05_0.5-<br>0.7 | 30/10/2019 |                                               | l |   |   | x     |   |   |
| E\$1936029 | VC05_0.8-<br>0.9 | 30/10/2019 |                                               |   |   |   |       |   | T |
| E\$1936029 | VC05_0.0-<br>0.5 | 30/10/2019 |                                               |   |   |   |       |   | T |
| ES1936029  | VC05_0.5-<br>0.9 | 30/10/2019 |                                               |   |   |   | x     |   |   |
| ES1936029  | VC03_0.0-<br>0.2 | 30/10/2019 |                                               |   | x | x | x     |   |   |
| ES1936029  | VC03_0.3-<br>0.4 | 30/10/2019 |                                               |   |   |   |       |   | Τ |
| ES1936029  | VC03_0.4-<br>0.6 | 30/10/2019 |                                               |   |   |   | x     | 9 | T |
| ES1936029  | VC03_0.6-<br>0.7 | 30/10/2019 |                                               |   |   |   | x     |   | T |
| ES1936029  | VC03_1.0-<br>1.2 | 30/10/2019 |                                               |   |   |   | x     |   | T |
| E\$1936029 | VC03_0.0-<br>0.5 | 30/10/2019 | ·····                                         |   |   |   |       |   | T |
| ES1936029  | VC03_0.5-<br>1.0 | 30/10/2019 |                                               |   |   |   | x     |   | Γ |
| ES1936029  | VC04_0.0-<br>0.1 | 31/10/2019 |                                               |   | x | x | x     | x | T |
| ES1936029  | VC04_0.4-<br>0.5 | 31/10/2019 | ················                              |   |   |   |       |   | T |
| ES1936029  | VC04_0.5-<br>0.6 | 31/10/2019 |                                               |   |   |   | x     |   | T |
| ES1936029  | VC04_0.7-<br>0.8 | 31/10/2019 |                                               |   | x | x | X     |   |   |
| E51936029  | VC04_0.9-<br>1.0 | 31/10/2019 |                                               |   |   |   | <br>x |   | T |
| ES1936029  | VC04_0.0-<br>0.5 | 31/10/2019 |                                               |   |   |   |       |   | 1 |
| ES1936029  | VC04_0.5-<br>1.0 | 31/10/2019 | <u>, , , , , , , , , , , , , , , , , , , </u> |   |   |   |       |   | Ť |

| ES1936029  | VC02_0.0-<br>0.2 | 30/10/2019 |   |   | x           | × |   | × |   |          |
|------------|------------------|------------|---|---|-------------|---|---|---|---|----------|
| E\$1936029 | VC02_0.5-<br>0.6 | 30/10/2019 |   |   |             |   |   | x | x |          |
| ES1936029  | VC02_1.0-<br>1.2 | 30/10/2019 |   |   | x           | x |   | x | x | T        |
| ES1936029  | VC02_1.5-<br>1.6 | 30/10/2019 |   |   |             |   |   |   |   | <u> </u> |
| ES1936029  | VC02_1.0-<br>1.5 | 30/10/2019 |   |   |             |   |   | x |   | -        |
| ES1936029  | VC01_0.0-<br>0.2 | 30/10/2019 |   | i | x           | x |   | x | x | -        |
| ES1936029  | vc01_0.4-<br>0.6 | 30/10/2019 |   |   |             |   |   | x |   | <b> </b> |
| ES1936029  | VC01_1.0-<br>1.1 | 30/10/2019 |   |   |             |   |   |   |   |          |
| ES1936029  | VC01_0.0-<br>0.5 | 30/10/2019 |   |   |             |   |   |   |   |          |
| ES1936029  | VC01_0.5-<br>1.0 | 30/10/2019 |   |   |             |   |   |   |   |          |
| ES1936029  | VC10_0.0-<br>0.2 | 31/10/2019 |   |   | x           | x |   | x | x |          |
| ES1936029  | VC10_0.5-<br>0.6 | 31/10/2019 |   |   |             |   |   | x |   |          |
| ES1936029  | VC10_0.7-<br>0.8 | 31/10/2019 |   |   |             |   |   |   |   |          |
| E\$1936029 | VC10_0.0-<br>0.5 | 31/10/2019 | _ | : |             |   |   |   |   |          |
| ES1936029  | VC10_0.5-        | 31/10/2019 |   |   |             |   |   |   |   | <br> -   |
| ES1936029  | VC02_0.0-<br>0.5 | 30/10/2019 |   |   | x           | x | x |   |   |          |
| ES1936029  | VC02_0.5-<br>1.0 | 30/10/2019 |   |   | <b>├</b> ── |   |   | x |   |          |
| ES1936183  | VC06_0.0-<br>0.1 | 31/10/2019 |   |   | x           | x |   |   |   | F        |

. -

| ES1936183  | VC06_0.3-        | 31/10/2019 |                                                                          | [ |   |   | x     | x |            |
|------------|------------------|------------|--------------------------------------------------------------------------|---|---|---|-------|---|------------|
| ES1936183  | VC06_0.5-<br>0.6 | 31/10/2019 | 1                                                                        |   |   |   | x     | _ | +          |
| ES1936183  | VC06_0.7-<br>0.8 | 31/10/2019 |                                                                          |   |   |   | ×     |   |            |
| E\$1936183 | VC06_0.8-<br>0.9 | 31/10/2019 |                                                                          |   |   |   | x     |   |            |
| ES1936183  | VC06_0.0-<br>0.5 | 31/10/2019 |                                                                          |   |   |   | ×     |   |            |
| ES1936183  | VC06_0.5-<br>1.0 | 31/10/2019 |                                                                          | ĺ |   |   | <br>x |   | T          |
| ES1936183  | VC12_0.0-<br>0.1 | 31/10/2019 |                                                                          |   |   |   | :     |   | 1          |
| ES1936183  | VC12_0.3-<br>0.4 | 31/10/2019 |                                                                          |   |   |   | X     |   | ×          |
| ES1936183  | VC12_0.5-        | 31/10/2019 |                                                                          |   |   |   | ×     |   | <u> </u>   |
| ES1936183  | VC12_0.8-<br>0.9 | 31/10/2019 |                                                                          |   | x | x | x     |   | 1          |
| E\$1936183 | VC12_1.0-<br>1.1 | 31/10/2019 |                                                                          |   | 1 |   | ×     |   | T          |
| ES1936183  | VC12_0.0-<br>0.5 | 31/10/2019 |                                                                          |   |   |   |       |   | T          |
| ES1936183  | VC12_0.5-<br>1.0 | 31/10/2019 |                                                                          |   |   |   |       |   | -          |
| ES1936183  | VC08_0.0-<br>0.1 | 31/10/2019 | Note: this is<br>ES1936183-031. Logged<br>erroneously as<br>VCOS_0.0-0.1 |   | x | X |       |   |            |
| ES1936183  | VC08_0.3-<br>0.4 | 31/10/2019 |                                                                          | 1 |   |   | <br>x | x | ×          |
| E\$1936183 | VC08_0.5-<br>0.6 | 31/10/2019 |                                                                          |   | 1 |   | ×     |   | $\uparrow$ |
| E\$1936183 | VC08_0.7-<br>0.8 | 31/10/2019 |                                                                          |   |   |   | <br>x |   |            |

| ES1936183 | VC08_1.0-<br>1.1  | 31/10/2019 |                                       |      |   |   | × |   |          |
|-----------|-------------------|------------|---------------------------------------|------|---|---|---|---|----------|
| ES1936183 | VC08_1.3-<br>_1.4 | 31/10/2019 |                                       | <br> |   |   | x |   | <u> </u> |
| ES1936183 | VC08_1.5-<br>1.6  | 31/10/2019 |                                       |      |   | • | x |   | T        |
| ES1936183 | VC08_0.0-<br>0.5  | 31/10/2019 |                                       |      |   |   | x |   |          |
| ES1936183 | VC08_0.5-<br>1.0  | 31/10/2019 |                                       |      |   |   | × |   |          |
| ES1936183 | VC08_1.0-<br>1.5  | 31/10/2019 |                                       |      |   |   |   |   | T        |
| ES1936183 | VC13_0.0-<br>0.1  | 31/10/2019 |                                       | X    | × |   |   |   |          |
| ES1936183 | VC13_0.3-<br>0.4  | 31/10/2019 |                                       |      |   |   | x | x |          |
| ES1936183 | VC13_0.5-<br>0.6  | 31/10/2019 |                                       |      |   |   | x |   |          |
| ES1936183 | VC13_0.7-<br>0.8  | 31/10/2019 |                                       |      |   |   | x |   | Γ        |
| ES1936183 | VC13_1.0-<br>1.1  | 31/10/2019 |                                       |      |   |   | x |   |          |
| ES1936183 | VC13_0.0-<br>0.5  | 31/10/2019 | ···· <del>··</del> · ·· · ··          |      |   |   | × |   | ſ        |
| ES1936183 | VC13_0.5-<br>1.0  | 31/10/2019 |                                       |      |   |   | x |   | T        |
| E51936183 | VC14_0.0-<br>0.1  | 31/10/2019 |                                       | x    | x |   | x | x | Ţ        |
| ES1936183 | VC14_0.3-<br>0.4  | 31/10/2019 |                                       |      |   |   | x |   | Ī        |
| ES1936183 | VC14-0.5-<br>0.6  | 31/10/2019 |                                       |      |   | : | x |   |          |
| ES1936183 | VC14_0.7-<br>0.8  | 31/10/2019 |                                       | x    | × |   | x |   |          |
| ES1936183 | VC14_1.0-<br>1.1  | 31/10/2019 | · · · · · · · · · · · · · · · · · · · |      |   |   |   |   |          |

| ES1936183  | VC14_1.3-<br>1.4 | 31/10/2019 |  |  | x |  |
|------------|------------------|------------|--|--|---|--|
| ES1936183  | VC14_0.0-<br>0.5 | 31/10/2019 |  |  | x |  |
| E\$1936183 | VC14_0.5-<br>1.0 | 31/10/2019 |  |  | x |  |

| Lab report | Sample ID | Date       | Chromium Reducible Sulphur            |
|------------|-----------|------------|---------------------------------------|
| E\$1936029 | VC11_0.0- | 30/10/2019 | x                                     |
|            | 0.1       |            |                                       |
| ES1936029  | VC11_0.5- | 30/10/2019 |                                       |
|            | 0.6       |            |                                       |
| ES1936029  | VC11_1.0- | 30/10/2019 | x                                     |
|            | 1.1       |            | ·                                     |
| ES1936029  | VC09_0.0- | 30/10/2019 |                                       |
|            | 0.1       |            |                                       |
| ES1936029  | VC09_0.5- | 30/10/2019 |                                       |
|            | 0.6       |            | · · · · · · · · · · · · · · · · · · · |
| ES1936029  | VC09_0.9- | 30/10/2019 | x                                     |
|            | 1.0       |            |                                       |
| ES1936029  | VC07_0.0- | 30/10/2019 | x                                     |
|            | 0.1       |            | <br>                                  |
| ES1936029  | VC07_0.5- | 30/10/2019 |                                       |
|            | 0.6       |            | <br>                                  |
| E\$1936029 | VC07_1.0- | 30/10/2019 | x                                     |
|            | 1.1       |            |                                       |
| ES1936029  | VC05_0.0- | 30/10/2019 | x                                     |
|            | 0.1       |            | <br>                                  |
| ES1936029  | VC05_0.5- | 30/10/2019 |                                       |
|            | 0.6       |            | <br>                                  |
| ES1936029  | VC05_0.8- | 30/10/2019 | x                                     |
|            | 1.0       |            |                                       |
| E\$1936029 | VC03_0.0- | 30/10/2019 |                                       |
|            | 0.1       |            |                                       |
| ES1936029  | VC03_0.5- | 30/10/2019 |                                       |
|            | 0.6       |            |                                       |

| ES1936029 | VC03_10-<br>1.1  | 30/10/2019 | × |
|-----------|------------------|------------|---|
| ES1936029 | VC01_0.0-<br>0.1 | 30/10/2019 | x |
| ES1936029 | vc01_0.5-<br>0.6 | 30/10/2019 |   |
| ES1936029 | VC01_1.0-<br>1.1 | 30/10/2019 | x |
| ES1936029 | VC02_0.0-<br>0.1 | 30/10/2019 | × |
| ES1936029 | VCO2_0.5-<br>0.6 | 30/10/2019 |   |
| ES1936029 | VC02_0.9-<br>1.0 | 30/10/2019 |   |
| ES1936029 | VC02_1.5-<br>1.6 | 30/10/2019 | x |
| ES1936029 | VC10_0.0-<br>0.1 | 30/10/2019 |   |
| ES1936029 | VC10_0.5-<br>0.6 | 30/10/2019 | x |
| ES1936029 | VC04_0.0-<br>0.1 | 30/10/2019 |   |
| ES1936029 | VC04_0.9-<br>1.0 | 30/10/2019 | x |
| ES1936183 | VC06_0.0-<br>0.1 | 31/10/2019 | x |
| ES1936183 | VC06_0.5-<br>0.6 | 31/10/2019 |   |
| ES1936183 | VC12_0.0-<br>0.1 | 31/10/2019 | x |
| ES1936183 | VC12_0.5-<br>0.6 | 31/10/2019 |   |
| ES1936183 | VC12_1.0-<br>1.1 | 31/10/2019 |   |
| ES1936183 | VC08_0.0-<br>0.1 | 31/10/2019 |   |

•

.

| ES1936183 | VC08_0.5-<br>0.6 | 31/10/2019 |         | x |
|-----------|------------------|------------|---------|---|
| ES1936183 | VC08_1.0-<br>1.1 | 31/10/2019 |         |   |
| ES1936183 | VC08_1.5-<br>1.6 | 31/10/2019 | · · · · | x |
| ES1936183 | VC13_0.0-<br>0.1 | 31/10/2019 |         |   |
| ES1936183 | VC13_0.5-<br>0.6 | 31/10/2019 |         | x |
| ES1936183 | VC13_1.0-<br>1.1 | 31/10/2019 |         |   |
| ES1936183 | VC14_0.0-<br>0.1 | 31/10/2019 |         | x |
| ES1936183 | VC14_0.5-<br>0.6 | 31/10/2019 |         |   |
| ES1936183 | VC14_1.0-<br>1.1 | 31/10/2019 |         |   |
| ES1936183 | VC14_1.3-<br>1.4 | 31/10/2019 |         | x |

Many Thanks,

Sarah Eccleshall PhD MSc BSc Hons Graduate Environmental Scientist Contamination & Environmental Management

GHD Proudly employee owned I: +61 2 9239 7715 | M: +61 459 546 332 | E: sarah.eccleshalli@ghd.com Level 15 133 Castlereagh Street Sydney NSW 2000 Australia | www.ghd.com



#### WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

This e-mail has been scanned for viruses

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

This e-mail has been scanned for viruses

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.



# SAMPLE RECEIPT NOTIFICATION (SRN)

| Work Order                                                                                                                                                             | : ES1937483                                                                   |                                   |                                                                               |                                                                                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Client : GHD PTY LTD<br>Contact : SARAH ECCLESHALL<br>Address : LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000<br>E-mail : sarah.eccleshall@ghd.com |                                                                               | Laboratory<br>Contact<br>Address  | : Enviro<br>: Custo<br>: 277-2<br>NSW                                         | onmental Division Sydney<br>mer Services ES<br>89 Woodpark Road Smithfield<br>Australia 2164 |  |  |  |
| E-mail<br>Telephone<br>Facsimile                                                                                                                                       | : sarah.eccleshall@ghd.com<br>:<br>:                                          | E-mail<br>Telephone<br>Facsimile  | : ALSE<br>: +61-2<br>: +61-2                                                  | nviro.Sydney@ALSGlobal.com<br>-8784 8555<br>-8784 8500                                       |  |  |  |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler                                                                                                             | Project : 12517046<br>Order number :<br>C-O-C number :<br>Site :<br>Sampler : |                                   | : 1 of 5<br>: ES2019GHDSER0030 (SY/522/19)<br>: NEPM 2013 B3 & ALS QC Standar |                                                                                              |  |  |  |
| Dates<br>Date Samples Receiv<br>Client Requested Due<br>Date                                                                                                           | red : 13-Nov-2019 14:57<br>: 20-Nov-2019                                      | Issue Date<br>Scheduled Reporting | g Date                                                                        | : 13-Nov-2019<br>: <b>20-Nov-2019</b>                                                        |  |  |  |
| Delivery Detail                                                                                                                                                        | /s<br>: Undefined                                                             | Security Seal                     |                                                                               | : Not Available                                                                              |  |  |  |

Mode of Delivery No. of coolers/boxes Receipt Detail Security Seal Temperature No. of samples received / analysed

: 4.1'C

: 100 / 80

- General Comments
- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances

· ----

- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- This work order is a rebatch of ES1936029/ES1936183 and a split from ES1937554/ES1990050.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- TBT suite Analysis to be conducted by ALS Brisbane
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exists.

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

| is provided, the laboratory and | sampling date wi<br>displayed in bra | ill be assumed by the ckets without a time |                        | by ICPAES               | olids)<br>P-AES             |                        | olids)<br>IMS              | PAH only             |               |
|---------------------------------|--------------------------------------|--------------------------------------------|------------------------|-------------------------|-----------------------------|------------------------|----------------------------|----------------------|---------------|
| Matrix: SOIL                    |                                      |                                            | EA055-103<br>e Content | EG005C<br>tble Metals I | EG005T (sc<br>letals by ICI | EG035C<br>tble Mercury | EG035T (so<br>lercury by F | EP075 SIM<br>AH only | TCLP<br>-each |
| Laboratory sample               | Client sampling<br>date / time       | Client sample ID                           | SOIL -<br>Moistur      | SOIL -<br>eacha         | SOIL -<br>Fotal M           | SOIL -<br>-eacha       | SOIL -<br>Fotal M          | SOIL -               | SOIL -        |
| ES1937483-001                   | 30-Oct-2019 00:00                    | VC11_0.0-0.2                               | √                      | √                       | ✓                           | ✓                      | ✓                          | ✓                    | ✓             |
| ES1937483-003                   | 30-Oct-2019 00:00                    | VC11_1.0-1.2                               | ✓                      |                         | ✓                           |                        |                            | 1                    |               |
| ES1937483-004                   | 30-Oct-2019 00:00                    | VC11_0.0-0.5                               | ✓                      |                         | 1                           |                        |                            | 1                    |               |
| ES1937483-005                   | 30-Oct-2019 00:00                    | VC11_0.5-1.0                               | 1                      |                         | 1                           |                        |                            | 1                    |               |
| ES1937483-006                   | 30-Oct-2019 00:00                    | VC07_0.2-0.4                               | ✓                      |                         | ✓                           | ✓                      | ✓                          | 1                    | ✓             |
| ES1937483-008                   | 30-Oct-2019 00:00                    | VC09_0.4-0.6                               | ✓                      |                         | ✓                           |                        |                            | ✓                    |               |
| ES1937483-009                   | 30-Oct-2019 00:00                    | VC09_0.7-0.8                               | ✓                      | ✓                       | ✓                           |                        |                            | ✓                    | ✓             |
| ES1937483-010                   | 30-Oct-2019 00:00                    | VC09_0.8-1.0                               | ✓                      |                         | ✓                           |                        |                            | 1                    |               |
| ES1937483-011                   | 30-Oct-2019 00:00                    | VC09_0.0-0.5                               | ✓                      |                         | ✓                           |                        |                            | ✓                    |               |
| ES1937483-012                   | 30-Oct-2019 00:00                    | VC09_0.5-1.0                               | ✓                      |                         | ✓                           |                        |                            | 1                    |               |
| ES1937483-014                   | 30-Oct-2019 00:00                    | VC07_0.5-0.6                               | ✓                      |                         | ✓                           | ✓                      | ✓                          | ✓                    | ✓             |
| ES1937483-015                   | 30-Oct-2019 00:00                    | VC07_0.7-0.8                               | 1                      |                         | 1                           |                        |                            | 1                    |               |
| ES1937483-016                   | 30-Oct-2019 00:00                    | VC07_1.0-1.2                               | ✓                      |                         | ✓                           | ✓                      | ✓                          | ✓                    | ✓             |
| ES1937483-017                   | 30-Oct-2019 00:00                    | VC07_0.0-0.5                               |                        | ✓                       |                             |                        |                            | ✓                    | ✓             |
| ES1937483-018                   | 30-Oct-2019 00:00                    | VC07_0.5-1.0                               | ✓                      |                         | ✓                           |                        |                            | ✓                    |               |
| ES1937483-019                   | 30-Oct-2019 00:00                    | VC05_0.0-0.1                               | 1                      | 1                       | ✓                           | ✓                      | ✓                          | 1                    | 1             |
| ES1937483-020                   | 30-Oct-2019 00:00                    | VC05_0.5-0.7                               | ✓                      |                         | ✓                           |                        |                            | ✓                    |               |
| ES1937483-023                   | 30-Oct-2019 00:00                    | VC05_0.5-0.9                               | ✓                      |                         | ✓                           |                        |                            | ✓                    |               |
| ES1937483-024                   | 30-Oct-2019 00:00                    | VC03_0.0-0.2                               | ✓                      | ✓                       | ✓                           |                        |                            | ✓                    | ✓             |
| ES1937483-026                   | 30-Oct-2019 00:00                    | VC03_0.4-0.6                               | ✓                      |                         | ✓                           |                        |                            | ✓                    |               |
| ES1937483-027                   | 30-Oct-2019 00:00                    | VC03_0.6-0.7                               | ✓                      |                         | ✓                           |                        |                            | ✓                    |               |
| ES1937483-028                   | 30-Oct-2019 00:00                    | VC03_1.0-1.2                               | ✓                      |                         | ✓                           |                        |                            | ✓                    |               |
| ES1937483-029                   | 30-Oct-2019 00:00                    | VC12_0.0-0.5                               | ✓                      |                         |                             |                        |                            |                      |               |
| ES1937483-030                   | 30-Oct-2019 00:00                    | VC03_0.5-1.0                               | ✓                      |                         | ✓                           |                        |                            | 1                    |               |
| ES1937483-031                   | 30-Oct-2019 00:00                    | VC04_0.0-0.1                               | 1                      | ✓                       | ✓                           | ✓                      | ✓                          | ✓                    | 1             |
| ES1937483-033                   | 31-Oct-2019 00:00                    | VC04_0.5-0.6                               | ✓                      |                         | ✓                           |                        |                            | 1                    |               |
| ES1937483-034                   | 31-Oct-2019 00:00                    | VC04_0.7-0.8                               | 1                      | ✓                       | ✓                           |                        |                            | ✓                    | 1             |
| ES1937483-035                   | 31-Oct-2019 00:00                    | VC04_0.9-1.0                               | ✓                      |                         | ✓                           |                        |                            | 1                    |               |
| ES1937483-038                   | 30-Oct-2019 00:00                    | VC02_0.0-0.2                               | ✓                      | ✓                       | ✓                           |                        |                            | 1                    | ✓             |
| ES1937483-039                   | 30-Oct-2019 00:00                    | VC02_0.5-0.6                               | ✓                      |                         | ✓                           | ✓                      | ✓                          | 1                    | ✓             |
| ES1937483-040                   | 30-Oct-2019 00:00                    | VC02_1.0-1.2                               | 1                      | ✓                       | ✓                           | ✓                      | ✓                          | ✓                    | 1             |
| ES1937483-042                   | 30-Oct-2019 00:00                    | VC02_1.0-1.5                               | ✓                      |                         | ✓                           |                        |                            | 1                    |               |
| ES1937483-043                   | 30-Oct-2019 00:00                    | VC01_0.0-0.2                               | 1                      | ✓                       | ✓                           | ✓                      | ✓                          | ✓                    | 1             |
| ES1937483-044                   | 30-Oct-2019 00:00                    | vc01_0.4-0.6                               | ✓                      |                         | ✓                           |                        |                            | ✓                    |               |
| ES1937483-048                   | 31-Oct-2019 00:00                    | VC10_0.0-0.2                               | ✓                      | 1                       | ✓                           | ✓                      | ✓                          | ✓                    | 1             |

| Issue Date | : 13-Nov-2019         |
|------------|-----------------------|
| Page       | : 3 of 5              |
| Work Order | ES1937483 Amendment 0 |
| Client     | : GHD PTY LTD         |



|               |                   |                   |                                  | L SI          |                                  |               |                 | <u>y</u>                         |                                  |  |
|---------------|-------------------|-------------------|----------------------------------|---------------|----------------------------------|---------------|-----------------|----------------------------------|----------------------------------|--|
|               |                   |                   |                                  | ICPA          | ls)<br>AES                       |               | (si s           | AH or                            |                                  |  |
|               |                   |                   | ы 03                             | als by        | (solid<br>ICP-/                  | Śini          | (solid<br>y FIM | MB                               |                                  |  |
|               |                   |                   | 055-1<br>Contel                  | 005C<br>Meta  | 005T<br>IIs by                   | 035C<br>Merc  | 035T<br>sury b  | 075 S<br>  only                  | <u>в</u> –                       |  |
|               |                   |                   | - EA                             | - EG<br>hable | - EG<br>Meta                     | - EG<br>hable | - EG<br>Merc    | - EP                             | - TCI                            |  |
|               |                   |                   | SOIL<br>Moist                    | SOIL          | SOIL                             | SOIL          | SOIL            | SOIL-                            | SOIL                             |  |
| ES1937483-049 | 31-Oct-2019 00:00 | VC10_0.5-0.6      | ✓                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-051 | 31-Oct-2019 00:00 | VC10_0.0-0.5      | ✓                                |               |                                  |               |                 |                                  |                                  |  |
| ES1937483-053 | 30-Oct-2019 00:00 | VC02_0.0-0.5      | ✓                                | ✓             |                                  | ✓             |                 | ✓                                | ✓                                |  |
| ES1937483-054 | 30-Oct-2019 00:00 | VC02_0.5-1.0      | 1                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-055 | 31-Oct-2019 00:00 | VC06_0.0-0.1      |                                  | ✓             |                                  |               |                 | ✓                                | ✓                                |  |
| ES1937483-056 | 31-Oct-2019 00:00 | VC06_0.3-0.4      | ✓                                |               | ✓                                | ✓             | ✓               | ✓                                | ✓                                |  |
| ES1937483-057 | 31-Oct-2019 00:00 | VC06_0.5-0.6      | ✓                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-058 | 31-Oct-2019 00:00 | VC06_0.7-0.8      | ✓                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-059 | 31-Oct-2019 00:00 | VC06_0.8-0.9      | 1                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-060 | 31-Oct-2019 00:00 | VC06_0.0-0.5      | ✓                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-061 | 31-Oct-2019 00:00 | VC06_0.5-1.0      | ✓                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-063 | 31-Oct-2019 00:00 | VC12_0.3-0.4      | ✓                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-064 | 31-Oct-2019 00:00 | VC12_0.5-0.6      | 1                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-065 | 31-Oct-2019 00:00 | VC12_0.8-0.9      | <ul> <li>✓</li> </ul>            | ✓             | <ul> <li>✓</li> </ul>            |               |                 | ✓                                | ✓                                |  |
| ES1937483-066 | 31-Oct-2019 00:00 | VC12_1.0-1.1      | ✓                                |               | ✓                                |               |                 | ✓                                |                                  |  |
| ES1937483-069 | 31-Oct-2019 00:00 | VC08_0.0-0.1      |                                  | ✓             |                                  |               |                 | <ul> <li>✓</li> </ul>            | <ul> <li>✓</li> <li>✓</li> </ul> |  |
| ES1937483-070 | 31-Oct-2019 00:00 | VC08_0.3-0.4      | ✓<br>✓                           |               | ✓<br>✓                           | ✓             | ✓               | ✓<br>✓                           | ✓                                |  |
| ES1937483-071 | 31-Oct-2019 00:00 | VC08_0.5-0.6      | <ul> <li>✓</li> <li>✓</li> </ul> |               | ✓<br>✓                           |               |                 | <ul> <li>✓</li> </ul>            |                                  |  |
| ES1937483-072 | 31-Oct-2019 00:00 | VC08_0.7-0.8      | ✓<br>✓                           |               | ✓<br>✓                           |               |                 | <ul> <li>✓</li> </ul>            |                                  |  |
| ES1937483-073 | 31-Oct-2019 00:00 | VC08_1.0-1.1      | <ul> <li>✓</li> <li>✓</li> </ul> |               | <ul> <li>✓</li> <li>✓</li> </ul> |               |                 | <ul> <li>✓</li> <li>✓</li> </ul> |                                  |  |
| ES1937483-074 | 31-Oct-2019 00:00 | VC08_1.3-1.4      | <ul> <li>✓</li> </ul>            |               | <ul> <li>✓</li> </ul>            |               |                 | <b>√</b>                         |                                  |  |
| ES1937483-075 | 31-Oct-2019 00:00 | VC08_1.5-1.6      | •                                |               | ✓<br>✓                           |               |                 | •                                |                                  |  |
| ES1937483-076 | 31-Oct-2019 00:00 | VC08_0.0-0.5      | •                                |               | *                                |               |                 | •                                |                                  |  |
| ES1937403-077 | 31-Oct-2019 00:00 | VC00_0.5-1.0      | v                                |               | v                                |               |                 | •                                |                                  |  |
| ES1937483-080 | 31-Oct-2019 00:00 | VC13_0.3-0.4      | 4                                | v             | 1                                | 1             | 1               | •                                | *<br>-                           |  |
| ES1937483-081 | 31-Oct-2019 00:00 | VC13_0.5-0.6      | •                                |               | •                                | •             | •               | •                                | -                                |  |
| ES1937483-082 | 31-Oct-2019 00:00 | VC13_0.7-0.8      | ·<br>·                           |               | •<br>•                           |               |                 | •                                |                                  |  |
| ES1937483-083 | 31-Oct-2019 00:00 | VC13_1.0-1.1      | ·<br>•                           |               | •                                |               |                 | •                                |                                  |  |
| ES1937483-084 | 31-Oct-2019 00:00 | VC13_0.0-0.5      | ·<br>•                           |               | ·<br>•                           |               |                 | ·<br>•                           |                                  |  |
| ES1937483-085 | 31-Oct-2019 00:00 | VC13 0.5-1.0      | ✓                                |               | ·<br>•                           |               |                 | ·<br>•                           |                                  |  |
| ES1937483-086 | 31-Oct-2019 00:00 | VC14 0.0-0.1      | 1                                | 1             | 1                                | 1             | 1               | 1                                | 1                                |  |
| ES1937483-087 | 31-Oct-2019 00:00 | VC14 0.3-0.4      | 1                                |               | 1                                |               |                 | ✓                                |                                  |  |
| ES1937483-088 | 31-Oct-2019 00:00 | VC14-0.5-0.6      | 1                                |               | 1                                |               |                 | ✓                                |                                  |  |
| ES1937483-089 | 31-Oct-2019 00:00 | VC14_0.7-0.8      | ✓                                | ✓             | 1                                | ✓             | ✓               | ✓                                | ✓                                |  |
| ES1937483-091 | 31-Oct-2019 00:00 | _<br>VC14_1.3-1.4 | 1                                |               | 1                                |               |                 | ✓                                |                                  |  |
| ES1937483-092 | 31-Oct-2019 00:00 | <br>VC14_0.0-0.5  | ✓                                |               | 1                                |               |                 | ✓                                |                                  |  |
| ES1937483-093 | 31-Oct-2019 00:00 | VC14_0.5-1.0      | 1                                |               | 1                                |               |                 | ✓                                |                                  |  |
| ES1937483-094 | 30-Oct-2019 00:00 | VC07_0.0-0.5      |                                  |               |                                  |               |                 | ✓                                |                                  |  |
| ES1937483-095 | 30-Oct-2019 00:00 | VC12_0.0-0.5      |                                  |               |                                  |               |                 | 1                                |                                  |  |
| ES1937483-096 | 30-Oct-2019 00:00 | VC02_0.0-0.5      |                                  |               |                                  |               |                 | 1                                |                                  |  |

| Issue Date<br>Page<br>Work Order | : 13-Nov-2019<br>: 4 of 5<br>: ES1937483 Ameno | lment 0          |                                  |                   |                 |                |         |                       |          |     |
|----------------------------------|------------------------------------------------|------------------|----------------------------------|-------------------|-----------------|----------------|---------|-----------------------|----------|-----|
| Client                           | : GHD PTY LTD                                  |                  |                                  |                   |                 |                |         |                       |          | (A) |
|                                  |                                                |                  |                                  |                   |                 |                |         |                       |          |     |
|                                  |                                                |                  |                                  |                   |                 |                |         |                       |          |     |
|                                  |                                                |                  |                                  |                   |                 |                |         |                       |          |     |
|                                  |                                                |                  |                                  | ES 1              |                 |                |         | È                     |          |     |
|                                  |                                                |                  |                                  | ICPA              | ds)<br>AES      |                | ds)     | AHor                  |          |     |
|                                  |                                                |                  | -103<br>ent                      | C<br>tals by      | T (soli         |                | T (soli | SIMF                  |          |     |
|                                  |                                                |                  | A055-<br>Cont                    | G005<br>le Mei    | G005<br>tals b  | G035<br>le Me  | G035    | P075                  | CLP      |     |
|                                  |                                                |                  | IL - E<br>isture                 | IL - E<br>achab   | IL - E          | IL - E         | IL - E  |                       | LP Le    |     |
| E01027492-007                    | 20 Oct 2010 00:00                              | VC07 0 0 0 5     | No So                            | le S              | 1 SO            | N N N          |         |                       | S C C    |     |
| ES1937483-098                    | 30-Oct-2019 00:00                              | VC07_0.0-0.5     | _                                |                   |                 | -              | -       | ▼<br>✓                |          |     |
| ES1937483-099                    | 30-Oct-2019 00:00                              | VC12 0.0-0.5     | _                                |                   |                 | -              |         | ·<br>•                |          |     |
| ES1937483-100                    | 31-Oct-2019 00:00                              | SEAWATER         | _                                |                   |                 | -              | -       | <ul> <li>✓</li> </ul> |          |     |
|                                  |                                                | 1                |                                  |                   |                 | 1              |         | 1                     |          | I   |
|                                  |                                                |                  |                                  |                   |                 |                |         |                       |          |     |
|                                  |                                                |                  |                                  |                   |                 |                |         |                       |          |     |
|                                  |                                                |                  |                                  | lysis             |                 |                |         |                       |          |     |
|                                  |                                                |                  |                                  | anal              |                 | CMS            | á       | 5                     |          |     |
|                                  |                                                |                  |                                  | or 2-3            |                 |                |         | 5                     |          |     |
|                                  |                                                |                  | g                                | ates fe           |                 | s)<br>envls    | WA      | ()<br>()              |          |     |
|                                  |                                                |                  | queste                           | /3<br>Elutria     | action          | solids<br>Biph | PCB-    | solid                 |          |     |
| Matrix: SOIL                     |                                                |                  | SOIL<br>sis red                  | 168-2<br>on of    | 182<br>LEXtr    | 2066 (         | 066-I   | 060                   |          |     |
| Laboratory sample                | Client sampling                                | Client sample ID | Hold)<br>analys                  | L - EN<br>paratio | L - EN<br>ewate | L - EF         | L - EF  | L - EF                |          |     |
| ID                               | date / time                                    | 1                | <u>ų s</u>                       | SOI<br>Prej       | SOI<br>Por      | SOI            | S IOS   |                       | <u>n</u> |     |
| ES1937483-002                    | 30-Oct-2019 00:00                              | VC11_0.5-0.7     | <ul> <li>✓</li> <li>✓</li> </ul> |                   |                 |                |         | _                     | _        |     |
| ES1937483-007                    | 30-Oct-2019 00:00                              | VC09_0.0-0.2     | ✓                                |                   |                 |                | -       | _                     | -        |     |
| ES1937483-008                    | 30-Oct-2019 00:00                              | VC09_0.4-0.6     |                                  |                   | -               | •              | -       | _                     | -        |     |
| ES1937483-013                    | 30-Oct-2019 00:00                              | VC07_0.0-0.2     | •                                |                   | -               |                |         | _                     | -        |     |
| ES1937483-010                    | 30-Oct-2019 00:00                              | VC07_0.5-1.0     | _                                |                   |                 | ▼<br>✓         | -       | _                     | -        |     |
| ES1937483-021                    | 30-Oct-2019 00:00                              | VC05_0.8-0.9     | -                                |                   | -               | •              | +       |                       | -        |     |
| ES1937483-022                    | 30-Oct-2019 00:00                              | VC05 0.0-0.5     | ·<br>•                           |                   |                 | -              | -       | -                     | -        |     |
| ES1937483-025                    | 30-Oct-2019 00:00                              | VC03 0.3-0.4     |                                  |                   | -               | -              | -       |                       | -        |     |
| ES1937483-029                    | 30-Oct-2019 00:00                              | <br>VC12_0.0-0.5 |                                  |                   |                 | -              |         | 1                     | 1        |     |
| ES1937483-032                    | 31-Oct-2019 00:00                              | <br>VC04_0.4-0.5 | 1                                |                   |                 | 1              | 1       | -                     | 1        |     |
| ES1937483-036                    | 31-Oct-2019 00:00                              | VC04_0.0-0.5     | ✓                                |                   |                 |                |         |                       | 1        |     |
| ES1937483-037                    | 31-Oct-2019 00:00                              | VC04_0.5-1.0     | 1                                |                   |                 |                |         |                       |          |     |
| ES1937483-041                    | 30-Oct-2019 00:00                              | VC02_1.5-1.6     | ✓                                |                   |                 |                |         |                       |          |     |
| ES1937483-045                    | 31-Oct-2019 00:00                              | VC01_1.0-1.1     | ✓                                |                   |                 |                |         |                       |          |     |
| ES1937483-046                    | 30-Oct-2019 00:00                              | VC01_0.0-0.5     | 1                                |                   |                 |                |         |                       |          |     |
| ES1937483-047                    | 30-Oct-2019 00:00                              | VC01_0.5-1.0     | ✓                                |                   |                 |                |         |                       |          |     |
| ES1937483-050                    | 31-Oct-2019 00:00                              | VC10_0.7-0.8     | ✓                                |                   |                 |                |         |                       |          |     |
| ES1937483-051                    | 31-Oct-2019 00:00                              | VC10_0.0-0.5     | _                                |                   |                 |                |         | ✓                     | _        |     |
| ES1937483-052                    | 31-Oct-2019 00:00                              | VC10_0.5-1.0     | ✓                                |                   |                 |                |         |                       | _        |     |
| ES1937483-053                    | 30-Oct-2019 00:00                              | VC02_0.0-0.5     |                                  |                   |                 |                |         | ✓                     | _        |     |
| ES1937483-062                    | 31-Oct-2019 00:00                              | VC12_0.0-0.1     | ✓                                |                   |                 | <u> </u>       |         | _                     | _        |     |
| ES1937483-063                    | 31-Oct-2019 00:00                              | VC12_0.3-0.4     | _                                |                   |                 | <b>√</b>       | -       |                       | -        |     |
| ES1937483-066                    | 31-Oct-2019 00:00                              | VC12_1.0-1.1     | _                                |                   | -               | <b>√</b>       | _       | _                     | -        |     |
| ES1937483-067                    | 31-Oct-2019 00:00                              | VC12_0.0-0.5     | <b>√</b>                         |                   | -               |                |         |                       | -        |     |
| ES1937483-068                    | 31-Oct-2019 00:00                              | VC12_0.5-1.0     | <ul> <li>✓</li> </ul>            |                   |                 |                |         |                       |          |     |



|               |                   |              | (On Hold) SOIL<br>No analysis requested | SOIL - EN68-2/3<br>Preparation of Elutriates for 2-3 analysis | SOIL - EN82<br>Porewater Extraction | SOIL - EP066 (solids)<br>Polychlorinated Biphenyls by GCMS | SOIL - EP066-PCB-WA<br>Polychlorinated Biphenyls (PCB) | SOIL - EP090 (solids)<br>Organotins |  |
|---------------|-------------------|--------------|-----------------------------------------|---------------------------------------------------------------|-------------------------------------|------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|--|
| ES1937483-070 | 31-Oct-2019 00:00 | VC08_0.3-0.4 |                                         |                                                               |                                     | ✓                                                          |                                                        |                                     |  |
| ES1937483-078 | 31-Oct-2019 00:00 | VC08_1.0-1.5 | ✓                                       |                                                               |                                     |                                                            |                                                        |                                     |  |
| ES1937483-090 | 31-Oct-2019 00:00 | VC14_1.0-1.1 | ✓                                       |                                                               |                                     |                                                            |                                                        |                                     |  |
| ES1937483-094 | 30-Oct-2019 00:00 | VC07_0.0-0.5 |                                         |                                                               | ✓                                   |                                                            | 1                                                      |                                     |  |
| ES1937483-095 | 30-Oct-2019 00:00 | VC12_0.0-0.5 |                                         |                                                               | ✓                                   |                                                            | ✓                                                      |                                     |  |
| ES1937483-096 | 30-Oct-2019 00:00 | VC02_0.0-0.5 |                                         |                                                               | ✓                                   |                                                            | 1                                                      |                                     |  |
| ES1937483-097 | 30-Oct-2019 00:00 | VC07_0.0-0.5 |                                         | ✓                                                             |                                     |                                                            | 1                                                      |                                     |  |
| ES1937483-098 | 30-Oct-2019 00:00 | VC02_0.0-0.5 |                                         | ✓                                                             |                                     |                                                            | 1                                                      |                                     |  |
| ES1937483-099 | 30-Oct-2019 00:00 | VC12_0.0-0.5 |                                         | ✓                                                             |                                     |                                                            | ✓                                                      |                                     |  |
| ES1937483-100 | 31-Oct-2019 00:00 | SEAWATER     |                                         | ✓                                                             |                                     |                                                            | 1                                                      |                                     |  |

## Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

## Requested Deliverables

| ACCOUNTS PAYABLE (Hobart)                                                     |       |                           |
|-------------------------------------------------------------------------------|-------|---------------------------|
| - A4 - AU Tax Invoice (INV)                                                   | Email | accountspayableAU@ghd.com |
| Accounts Payable Australia                                                    |       |                           |
| - A4 - AU Tax Invoice (INV)                                                   | Email | accountspayableAU@ghd.com |
| GHD LAB REPORTS                                                               |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | ghdlabreports@ghd.com     |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | ghdlabreports@ghd.com     |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)                           | Email | ghdlabreports@ghd.com     |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | ghdlabreports@ghd.com     |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | ghdlabreports@ghd.com     |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>                     | Email | ghdlabreports@ghd.com     |
| SARAH ECCLESHALL                                                              |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>         | Email | sarah.eccleshall@ghd.com  |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | sarah.eccleshall@ghd.com  |
| - Chain of Custody (CoC) (COC)                                                | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ENMRG (ENMRG)                                                  | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ESDAT (ESDAT)                                                  | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - XTab (XTAB)                                                    | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>                     | Email | sarah.eccleshall@ghd.com  |



## **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1937483                                                        | Page                    | : 1 of 37                                             |
|-------------------------|------------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : GHD PTY LTD                                                    | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : SARAH ECCLESHALL                                               | Contact                 | : Customer Services ES                                |
| Address                 | : LEVEL 15, 133 CASTLEREAGH STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | :                                                                | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                                                       | Date Samples Received   | : 13-Nov-2019 14:57                                   |
| Order number            | :                                                                | Date Analysis Commenced | : 14-Nov-2019                                         |
| C-O-C number            | :                                                                | Issue Date              | 25-Nov-2019 17:44                                     |
| Sampler                 | :                                                                |                         | Hac-MRA NATA                                          |
| Site                    | :                                                                |                         |                                                       |
| Quote number            | : SY/522/19                                                      |                         | Accreditation No. 925                                 |
| No. of samples received | : 100                                                            |                         | Accredited for compliance with                        |
| No. of samples analysed | : 73                                                             |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position                      | Accreditation Category             |
|------------------|-------------------------------|------------------------------------|
| Ankit Joshi      | Inorganic Chemist             | Sydney Inorganics, Smithfield, NSW |
| Celine Conceicao | Senior Spectroscopist         | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar   | Organic Coordinator           | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar   | Organic Coordinator           | Sydney Organics, Smithfield, NSW   |
| Evie Sidarta     | Inorganic Chemist             | Sydney Inorganics, Smithfield, NSW |
| Ivan Taylor      | Analyst                       | Sydney Inorganics, Smithfield, NSW |
| Kim McCabe       | Senior Inorganic Chemist      | Brisbane Inorganics, Stafford, QLD |
| Sarah Ashworth   | Laboratory Manager - Brisbane | Brisbane Organics, Stafford, QLD   |

| Page       | : 2 of 37     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

 Key :
 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EG035: Positive Hg result for ES1937483 #1 has been confirmed by reanalysis.
- EG035: Positive Hg result for ES1937483 #43, 70 have been confirmed by reanalysis.

| Page       | : 3 of 37     |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



# Analytical Results

| Sub-Matrix: SOIL<br>(Matrix: SOIL)        |                  | Clie         | ent sample ID  | VC11_0.0-0.2      | VC11_1.0-1.2      | VC11_0.0-0.5      | VC11_0.5-1.0      | VC07_0.2-0.4      |  |
|-------------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                           | Cli              | ient samplii | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                                  | CAS Number       | LOR          | Unit           | ES1937483-001     | ES1937483-003     | ES1937483-004     | ES1937483-005     | ES1937483-006     |  |
|                                           |                  |              |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 105-11   | 10°C)            |              |                |                   |                   |                   |                   |                   |  |
| Moisture Content                          |                  | 0.1          | %              | 28.6              | 27.7              | 28.4              | 29.0              | 32.7              |  |
| EG005(ED093)T: Total Metals by ICP-AES    |                  |              |                |                   |                   |                   |                   |                   |  |
| Lead                                      | 7439-92-1        | 5            | mg/kg          | 55                | 6                 | 5                 | 9                 | 89                |  |
| EG035T: Total Recoverable Mercury by F    | IMS              |              |                |                   |                   |                   |                   |                   |  |
| Mercury                                   | 7439-97-6        | 0.1          | mg/kg          | 0.8               |                   |                   |                   | 1.0               |  |
| EN33: TCLP Leach                          |                  |              |                |                   |                   |                   |                   |                   |  |
| Initial pH                                |                  | 0.1          | pH Unit        | 9.2               |                   |                   |                   | 9.2               |  |
| After HCl pH                              |                  | 0.1          | pH Unit        | 5.3               |                   |                   |                   | 5.2               |  |
| Extraction Fluid Number                   |                  | 1            | -              | 2                 |                   |                   |                   | 2                 |  |
| Final pH                                  |                  | 0.1          | pH Unit        | 6.1               |                   |                   |                   | 6.1               |  |
| EP075(SIM)B: Polynuclear Aromatic Hydi    | rocarbons        |              |                |                   |                   |                   |                   |                   |  |
| Naphthalene                               | 91-20-3          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthylene                            | 208-96-8         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthene                              | 83-32-9          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluorene                                  | 86-73-7          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Phenanthrene                              | 85-01-8          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Anthracene                                | 120-12-7         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluoranthene                              | 206-44-0         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 1.0               |  |
| Pyrene                                    | 129-00-0         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 1.2               |  |
| Benz(a)anthracene                         | 56-55-3          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Chrysene                                  | 218-01-9         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(b+j)fluoranthene 20                 | 05-99-2 205-82-3 | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 0.7               |  |
| Benzo(k)fluoranthene                      | 207-08-9         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(a)pyrene                            | 50-32-8          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 0.7               |  |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Dibenz(a.h)anthracene                     | 53-70-3          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(g.h.i)perylene                      | 191-24-2         | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Sum of polycyclic aromatic hydrocarbons |                  | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 3.6               |  |
| ^ Benzo(a)pyrene TEQ (zero)               |                  | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 0.8               |  |
| A Benzo(a)pyrene TEQ (half LOR)           |                  | 0.5          | mg/kg          | 0.6               | 0.6               | 0.6               | 0.6               | 1.1               |  |
| ^ Benzo(a)pyrene TEQ (LOR)                |                  | 0.5          | mg/kg          | 1.2               | 1.2               | 1.2               | 1.2               | 1.4               |  |
| EP075(SIM)S: Phenolic Compound Surro      | gates            |              |                |                   |                   |                   |                   |                   |  |
| Phenol-d6                                 | 13127-88-3       | 0.5          | %              | 89.2              | 91.8              | 85.8              | 84.1              | 85.8              |  |
| 2-Chlorophenol-D4                         | 93951-73-6       | 0.5          | %              | 108               | 110               | 103               | 99.9              | 101               |  |

| Page       | : 4 of 37     |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



# Analytical Results

| Sub-Matrix: SOIL<br>(Matrix: SOIL) |                                                       | Cli        | ent sample ID   | VC11_0.0-0.2      | VC11_1.0-1.2      | VC11_0.0-0.5      | VC11_0.5-1.0      | VC07_0.2-0.4      |  |
|------------------------------------|-------------------------------------------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                    | Cli                                                   | ent sampli | ing date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                           | CAS Number                                            | LOR        | Unit            | ES1937483-001     | ES1937483-003     | ES1937483-004     | ES1937483-005     | ES1937483-006     |  |
|                                    |                                                       |            |                 | Result            | Result            | Result            | Result            | Result            |  |
| EP075(SIM)S: Phenolic Compound S   | EP075(SIM)S: Phenolic Compound Surrogates - Continued |            |                 |                   |                   |                   |                   |                   |  |
| 2.4.6-Tribromophenol               | 118-79-6                                              | 0.5        | %               | 92.4              | 89.5              | 82.4              | 79.8              | 92.4              |  |
| EP075(SIM)T: PAH Surrogates        |                                                       |            |                 |                   |                   |                   |                   |                   |  |
| 2-Fluorobiphenyl                   | 321-60-8                                              | 0.5        | %               | 129               | 126               | 123               | 126               | 127               |  |
| Anthracene-d10                     | 1719-06-8                                             | 0.5        | %               | 126               | 120               | 121               | 117               | 118               |  |
| 4-Terphenyl-d14                    | 1718-51-0                                             | 0.5        | %               | 120               | 123               | 115               | 112               | 113               |  |

| Page       | 5 of 37       |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



# Analytical Results

| Sub-Matrix: SOIL<br>(Matrix: SOIL)        |                   | Clie        | ent sample ID  | VC09_0.4-0.6      | VC09_0.7-0.8      | VC09_0.8-1.0      | VC09_0.0-0.5      | VC09_0.5-1.0      |
|-------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                           | Cli               | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                                  | CAS Number        | LOR         | Unit           | ES1937483-008     | ES1937483-009     | ES1937483-010     | ES1937483-011     | ES1937483-012     |
|                                           |                   |             |                | Result            | Result            | Result            | Result            | Result            |
| EA055: Moisture Content (Dried @ 105      | -110°C)           |             |                |                   |                   |                   |                   |                   |
| Moisture Content                          |                   | 0.1         | %              | 16.3              | 17.2              | 15.6              | 14.5              | 17.8              |
| EG005(ED093)T: Total Metals by ICP-A      | ES                |             |                |                   |                   |                   |                   |                   |
| Lead                                      | 7439-92-1         | 5           | mg/kg          | 17                | 10                | 5                 | <5                | 22                |
| EN33: TCLP Leach                          |                   |             |                |                   |                   |                   |                   |                   |
| Initial pH                                |                   | 0.1         | pH Unit        |                   | 8.2               |                   |                   |                   |
| After HCI pH                              |                   | 0.1         | pH Unit        |                   | 1.7               |                   |                   |                   |
| Extraction Fluid Number                   |                   | 1           | -              |                   | 1                 |                   |                   |                   |
| Final pH                                  |                   | 0.1         | pH Unit        |                   | 5.0               |                   |                   |                   |
| EP066: Polychlorinated Biphenyls (PC      | B)                |             |                |                   |                   |                   |                   |                   |
| Total Polychlorinated biphenyls           |                   | 0.1         | mg/kg          | <0.1              |                   |                   |                   |                   |
| EP075(SIM)B: Polynuclear Aromatic Hy      | /drocarbons       |             |                |                   |                   |                   |                   |                   |
| Naphthalene                               | 91-20-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Acenaphthylene                            | 208-96-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Acenaphthene                              | 83-32-9           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Fluorene                                  | 86-73-7           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Phenanthrene                              | 85-01-8           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Anthracene                                | 120-12-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Fluoranthene                              | 206-44-0          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Pyrene                                    | 129-00-0          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Benz(a)anthracene                         | 56-55-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Chrysene                                  | 218-01-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Benzo(b+j)fluoranthene                    | 205-99-2 205-82-3 | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Benzo(k)fluoranthene                      | 207-08-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Benzo(a)pyrene                            | 50-32-8           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Dibenz(a.h)anthracene                     | 53-70-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Benzo(g.h.i)perylene                      | 191-24-2          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| ^ Sum of polycyclic aromatic hydrocarbons | i                 | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| ^ Benzo(a)pyrene TEQ (zero)               |                   | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| ^ Benzo(a)pyrene TEQ (half LOR)           |                   | 0.5         | mg/kg          | 0.6               | 0.6               | 0.6               | 0.6               | 0.6               |
| ^ Benzo(a)pyrene TEQ (LOR)                |                   | 0.5         | mg/kg          | 1.2               | 1.2               | 1.2               | 1.2               | 1.2               |
| EP066S: PCB Surrogate                     |                   |             |                |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                        | 2051-24-3         | 0.1         | %              | 110               |                   |                   |                   |                   |
| EP075(SIM)S: Phenolic Compound Sur        | rogates           |             |                |                   |                   |                   |                   |                   |
| Page       | : 6 of 37     |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID       |            |                 | VC09_0.4-0.6      | VC09_0.7-0.8      | VC09_0.8-1.0      | VC09_0.0-0.5      | VC09_0.5-1.0      |
|------------------------------------|------------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli                    | ent sampli | ing date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                           | CAS Number             | LOR        | Unit            | ES1937483-008     | ES1937483-009     | ES1937483-010     | ES1937483-011     | ES1937483-012     |
|                                    |                        |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound S   | Surrogates - Continued | 1          |                 |                   |                   |                   |                   |                   |
| Phenol-d6                          | 13127-88-3             | 0.5        | %               | 89.3              | 82.7              | 86.0              | 92.8              | 94.2              |
| 2-Chlorophenol-D4                  | 93951-73-6             | 0.5        | %               | 106               | 99.3              | 102               | 109               | 110               |
| 2.4.6-Tribromophenol               | 118-79-6               | 0.5        | %               | 84.8              | 77.2              | 75.6              | 79.9              | 80.3              |
| EP075(SIM)T: PAH Surrogates        |                        |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                   | 321-60-8               | 0.5        | %               | 127               | 120               | 122               | 128               | 125               |
| Anthracene-d10                     | 1719-06-8              | 0.5        | %               | 122               | 116               | 118               | 121               | 119               |
| 4-Terphenyl-d14                    | 1718-51-0              | 0.5        | %               | 118               | 115               | 117               | 125               | 126               |

| Page       | : 7 of 37     |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID  |             |                | VC07_0.5-0.6      | VC07_0.7-0.8      | VC07_1.0-1.2      | VC07_0.0-0.5      | VC07_0.5-1.0      |  |
|-----------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                         | Cl                | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                                | CAS Number        | LOR         | Unit           | ES1937483-014     | ES1937483-015     | ES1937483-016     | ES1937483-017     | ES1937483-018     |  |
|                                         |                   |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 1      | 05-110°C)         |             |                |                   |                   |                   |                   |                   |  |
| Moisture Content                        |                   | 0.1         | %              | 19.0              | 20.6              | 17.4              |                   | 22.3              |  |
| EG005(ED093)T: Total Metals by ICP-AES  |                   |             |                |                   |                   |                   |                   |                   |  |
| Lead                                    | 7439-92-1         | 5           | mg/kg          | 10                | 6                 | 198               |                   | 7                 |  |
| EG035T: Total Recoverable Mercury       | / by FIMS         |             |                |                   |                   |                   |                   |                   |  |
| Mercury                                 | 7439-97-6         | 0.1         | mg/kg          | <0.1              |                   | <0.1              |                   |                   |  |
| EN33: TCLP Leach                        |                   |             |                |                   |                   |                   |                   |                   |  |
| Initial pH                              |                   | 0.1         | pH Unit        | 8.7               |                   | 8.5               | 8.9               |                   |  |
| After HCI pH                            |                   | 0.1         | pH Unit        | 1.4               |                   | 1.4               | 5.2               |                   |  |
| Extraction Fluid Number                 |                   | 1           | -              | 1                 |                   | 1                 | 2                 |                   |  |
| Final pH                                |                   | 0.1         | pH Unit        | 5.1               |                   | 5.1               | 6.0               |                   |  |
| EP066: Polychlorinated Biphenyls (F     | PCB)              |             |                |                   |                   |                   |                   |                   |  |
| Total Polychlorinated biphenyls         |                   | 0.1         | mg/kg          |                   |                   |                   |                   | <0.1              |  |
| EP075(SIM)B: Polynuclear Aromatic       | Hydrocarbons      |             |                |                   |                   |                   |                   |                   |  |
| Naphthalene                             | 91-20-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Acenaphthylene                          | 208-96-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Acenaphthene                            | 83-32-9           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Fluorene                                | 86-73-7           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Phenanthrene                            | 85-01-8           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Anthracene                              | 120-12-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Fluoranthene                            | 206-44-0          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Pyrene                                  | 129-00-0          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Benz(a)anthracene                       | 56-55-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Chrysene                                | 218-01-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Benzo(b+j)fluoranthene                  | 205-99-2 205-82-3 | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Benzo(k)fluoranthene                    | 207-08-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Benzo(a)pyrene                          | 50-32-8           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Indeno(1.2.3.cd)pyrene                  | 193-39-5          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Dibenz(a.h)anthracene                   | 53-70-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| Benzo(g.h.i)perylene                    | 191-24-2          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| ^ Sum of polycyclic aromatic hydrocarbo | ons               | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (zero)             |                   | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |                   | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (half LOR)         |                   | 0.5         | mg/kg          | 0.6               | 0.6               | 0.6               |                   | 0.6               |  |
| ^ Benzo(a)pyrene TEQ (LOR)              |                   | 0.5         | mg/kg          | 1.2               | 1.2               | 1.2               |                   | 1.2               |  |
| EP066S: PCB Surrogate                   |                   |             |                |                   |                   |                   |                   |                   |  |

| Page       | : 8 of 37     |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   | Client sample ID |            |                 | VC07_0.5-0.6      | VC07_0.7-0.8      | VC07_1.0-1.2      | VC07_0.0-0.5      | VC07_0.5-1.0      |
|--------------------------------------|------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Cli              | ent sampli | ing date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                             | CAS Number       | LOR        | Unit            | ES1937483-014     | ES1937483-015     | ES1937483-016     | ES1937483-017     | ES1937483-018     |
|                                      |                  |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP066S: PCB Surrogate - Continued    |                  |            |                 |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                   | 2051-24-3        | 0.1        | %               |                   |                   |                   |                   | 93.7              |
| EP075(SIM)S: Phenolic Compound Surro | ogates           |            |                 |                   |                   |                   |                   |                   |
| Phenol-d6                            | 13127-88-3       | 0.5        | %               | 97.0              | 90.1              | 94.5              |                   | 97.1              |
| 2-Chlorophenol-D4                    | 93951-73-6       | 0.5        | %               | 113               | 107               | 110               |                   | 114               |
| 2.4.6-Tribromophenol                 | 118-79-6         | 0.5        | %               | 84.4              | 72.2              | 75.8              |                   | 79.5              |
| EP075(SIM)T: PAH Surrogates          |                  |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                     | 321-60-8         | 0.5        | %               | 121               | 125               | 126               |                   | 133               |
| Anthracene-d10                       | 1719-06-8        | 0.5        | %               | 120               | 126               | 119               |                   | 122               |
| 4-Terphenyl-d14                      | 1718-51-0        | 0.5        | %               | 121               | 124               | 126               |                   | 124               |

| Page       | : 9 of 37     |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID  |             |                | VC05_0.0-0.1      | VC05_0.5-0.7      | VC05_0.5-0.9      | VC03_0.0-0.2      | VC03_0.4-0.6      |  |
|-------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                           | Cl                | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                                  | CAS Number        | LOR         | Unit           | ES1937483-019     | ES1937483-020     | ES1937483-023     | ES1937483-024     | ES1937483-026     |  |
|                                           |                   |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @          | 105-110°C)        |             |                |                   |                   |                   |                   |                   |  |
| Moisture Content                          |                   | 0.1         | %              | 23.5              | 17.8              | 14.7              | 20.4              | 20.2              |  |
| EG005(ED093)T: Total Metals by ICP-AES    |                   |             |                |                   |                   |                   |                   |                   |  |
| Lead                                      | 7439-92-1         | 5           | mg/kg          | 56                | <5                | 5                 | 14                | 29                |  |
| EG035T: Total Recoverable Mercury by FIMS |                   |             |                |                   |                   |                   |                   |                   |  |
| Mercury                                   | 7439-97-6         | 0.1         | mg/kg          | 0.6               |                   |                   |                   |                   |  |
| EN33: TCLP Leach                          |                   |             |                |                   |                   |                   |                   |                   |  |
| Initial pH                                |                   | 0.1         | pH Unit        | 9.2               |                   |                   | 8.8               |                   |  |
| After HCI pH                              |                   | 0.1         | pH Unit        | 2.0               |                   |                   | 1.6               |                   |  |
| Extraction Fluid Number                   |                   | 1           | -              | 1                 |                   |                   | 1                 |                   |  |
| Final pH                                  |                   | 0.1         | pH Unit        | 6.5               |                   |                   | 5.0               |                   |  |
| EP066: Polychlorinated Biphenyls (        | PCB)              |             |                |                   |                   |                   |                   |                   |  |
| Total Polychlorinated biphenyls           |                   | 0.1         | mg/kg          | <0.1              |                   |                   |                   |                   |  |
| EP075(SIM)B: Polynuclear Aromatic         | c Hydrocarbons    |             |                |                   |                   |                   |                   |                   |  |
| Naphthalene                               | 91-20-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthylene                            | 208-96-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthene                              | 83-32-9           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluorene                                  | 86-73-7           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Phenanthrene                              | 85-01-8           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Anthracene                                | 120-12-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluoranthene                              | 206-44-0          | 0.5         | mg/kg          | 0.7               | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Pyrene                                    | 129-00-0          | 0.5         | mg/kg          | 0.8               | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benz(a)anthracene                         | 56-55-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Chrysene                                  | 218-01-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(b+j)fluoranthene                    | 205-99-2 205-82-3 | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(k)fluoranthene                      | 207-08-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(a)pyrene                            | 50-32-8           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Dibenz(a.h)anthracene                     | 53-70-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(g.h.i)perylene                      | 191-24-2          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Sum of polycyclic aromatic hydrocart    | oons              | 0.5         | mg/kg          | 1.5               | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (zero)               |                   | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (half LOR)           |                   | 0.5         | mg/kg          | 0.6               | 0.6               | 0.6               | 0.6               | 0.6               |  |
| ^ Benzo(a)pyrene TEQ (LOR)                |                   | 0.5         | mg/kg          | 1.2               | 1.2               | 1.2               | 1.2               | 1.2               |  |
| EP066S: PCB Surrogate                     |                   |             |                |                   |                   |                   |                   |                   |  |

| Page       | : 10 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   | Client sample ID |            | VC05_0.0-0.1    | VC05_0.5-0.7      | VC05_0.5-0.9      | VC03_0.0-0.2      | VC03_0.4-0.6      |                   |
|--------------------------------------|------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Cli              | ent sampli | ing date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                             | CAS Number       | LOR        | Unit            | ES1937483-019     | ES1937483-020     | ES1937483-023     | ES1937483-024     | ES1937483-026     |
|                                      |                  |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP066S: PCB Surrogate - Continued    |                  |            |                 |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                   | 2051-24-3        | 0.1        | %               | 81.8              |                   |                   |                   |                   |
| EP075(SIM)S: Phenolic Compound Surro | ogates           |            |                 |                   |                   |                   |                   |                   |
| Phenol-d6                            | 13127-88-3       | 0.5        | %               | 93.3              | 93.1              | 96.0              | 102               | 104               |
| 2-Chlorophenol-D4                    | 93951-73-6       | 0.5        | %               | 110               | 110               | 113               | 108               | 110               |
| 2.4.6-Tribromophenol                 | 118-79-6         | 0.5        | %               | 96.6              | 83.8              | 87.2              | 80.5              | 81.7              |
| EP075(SIM)T: PAH Surrogates          |                  |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                     | 321-60-8         | 0.5        | %               | 128               | 128               | 126               | 113               | 117               |
| Anthracene-d10                       | 1719-06-8        | 0.5        | %               | 124               | 121               | 124               | 119               | 122               |
| 4-Terphenyl-d14                      | 1718-51-0        | 0.5        | %               | 123               | 122               | 125               | 123               | 127               |

| Page       | : 11 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)       | Client sample ID  |             |                | VC03_0.6-0.7      | VC03_1.0-1.2      | VC12_0.0-0.5      | VC03_0.5-1.0      | VC04_0.0-0.1      |  |
|------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                          | Cl                | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                                 | CAS Number        | LOR         | Unit           | ES1937483-027     | ES1937483-028     | ES1937483-029     | ES1937483-030     | ES1937483-031     |  |
|                                          |                   |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 10      | 5-110°C)          |             |                |                   |                   |                   |                   |                   |  |
| Moisture Content                         |                   | 0.1         | %              | 19.3              | 17.3              | 18.4              | 18.5              | 24.0              |  |
| EG005(ED093)T: Total Metals by ICP-AES   |                   |             |                |                   |                   |                   |                   |                   |  |
| Lead                                     | 7439-92-1         | 5           | mg/kg          | 5                 | <5                |                   | <5                | 16                |  |
| EG035T: Total Recoverable Mercury I      | ov FIMS           |             |                |                   |                   |                   |                   |                   |  |
| Mercury                                  | 7439-97-6         | 0.1         | mg/kg          |                   |                   |                   |                   | <0.1              |  |
| EN33: TCLP Leach                         |                   |             |                |                   |                   |                   |                   |                   |  |
| Initial pH                               |                   | 0.1         | pH Unit        |                   |                   |                   |                   | 6.7               |  |
| After HCI pH                             |                   | 0.1         | pH Unit        |                   |                   |                   |                   | 1.4               |  |
| Extraction Fluid Number                  |                   | 1           | -              |                   |                   |                   |                   | 1                 |  |
| Final pH                                 |                   | 0.1         | pH Unit        |                   |                   |                   |                   | 5.0               |  |
| EP075(SIM)B: Polynuclear Aromatic H      | lydrocarbons      |             |                |                   |                   |                   |                   |                   |  |
| Naphthalene                              | 91-20-3           | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Acenaphthylene                           | 208-96-8          | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Acenaphthene                             | 83-32-9           | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Fluorene                                 | 86-73-7           | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Phenanthrene                             | 85-01-8           | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Anthracene                               | 120-12-7          | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Fluoranthene                             | 206-44-0          | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Pyrene                                   | 129-00-0          | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Benz(a)anthracene                        | 56-55-3           | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Chrysene                                 | 218-01-9          | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Benzo(b+j)fluoranthene                   | 205-99-2 205-82-3 | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Benzo(k)fluoranthene                     | 207-08-9          | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Benzo(a)pyrene                           | 50-32-8           | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Indeno(1.2.3.cd)pyrene                   | 193-39-5          | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Dibenz(a.h)anthracene                    | 53-70-3           | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| Benzo(g.h.i)perylene                     | 191-24-2          | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| ^ Sum of polycyclic aromatic hydrocarbon | IS                | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (zero)              |                   | 0.5         | mg/kg          | <0.5              | <0.5              |                   | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (half LOR)          |                   | 0.5         | mg/kg          | 0.6               | 0.6               |                   | 0.6               | 0.6               |  |
| ^ Benzo(a)pyrene TEQ (LOR)               |                   | 0.5         | mg/kg          | 1.2               | 1.2               |                   | 1.2               | 1.2               |  |
| EP090: Organotin Compounds               |                   |             |                |                   |                   |                   |                   |                   |  |
| Tributyltin                              | 56573-85-4        | 0.5         | µgSn/kg        |                   |                   | 4.0               |                   |                   |  |
| EP075(SIM)S: Phenolic Compound Su        | rrogates          |             |                |                   |                   |                   |                   |                   |  |

| Page       | : 12 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   | Client sample ID  |            |                 | VC03_0.6-0.7      | VC03_1.0-1.2      | VC12_0.0-0.5      | VC03_0.5-1.0      | VC04_0.0-0.1      |
|--------------------------------------|-------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Cli               | ent sampli | ing date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                             | CAS Number        | LOR        | Unit            | ES1937483-027     | ES1937483-028     | ES1937483-029     | ES1937483-030     | ES1937483-031     |
|                                      |                   |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound Surro | gates - Continued |            |                 |                   |                   |                   |                   |                   |
| Phenol-d6                            | 13127-88-3        | 0.5        | %               | 102               | 111               |                   | 95.5              | 115               |
| 2-Chlorophenol-D4                    | 93951-73-6        | 0.5        | %               | 108               | 118               |                   | 102               | 123               |
| 2.4.6-Tribromophenol                 | 118-79-6          | 0.5        | %               | 76.0              | 84.4              |                   | 70.2              | 85.7              |
| EP075(SIM)T: PAH Surrogates          |                   |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                     | 321-60-8          | 0.5        | %               | 115               | 114               |                   | 108               | 112               |
| Anthracene-d10                       | 1719-06-8         | 0.5        | %               | 119               | 115               |                   | 110               | 119               |
| 4-Terphenyl-d14                      | 1718-51-0         | 0.5        | %               | 124               | 125               |                   | 116               | 120               |
| EP090S: Organotin Surrogate          |                   |            |                 |                   |                   |                   |                   |                   |
| Tripropyltin                         |                   | 0.5        | %               |                   |                   | 39.5              |                   |                   |

| Page       | : 13 of 37    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID |             |                | VC04_0.5-0.6      | VC04_0.7-0.8      | VC04_0.9-1.0      | VC02_0.0-0.2      | VC02_0.5-0.6      |  |
|-------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                           | Cli              | ient sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |  |
| Compound                                  | CAS Number       | LOR         | Unit           | ES1937483-033     | ES1937483-034     | ES1937483-035     | ES1937483-038     | ES1937483-039     |  |
|                                           |                  |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 105-11   | 0°C)             |             |                |                   |                   |                   |                   |                   |  |
| Moisture Content                          |                  | 0.1         | %              | 15.9              | 19.2              | 20.1              | 43.8              | 22.4              |  |
| EG005(ED093)T: Total Metals by ICP-AES    |                  |             |                |                   |                   |                   |                   |                   |  |
| Lead                                      | 7439-92-1        | 5           | mg/kg          | 7                 | <5                | <5                | 223               | 66                |  |
| EG035T: Total Recoverable Mercury by F    | IMS              |             |                |                   |                   |                   |                   |                   |  |
| Mercury                                   | 7439-97-6        | 0.1         | mg/kg          |                   |                   |                   |                   | 0.9               |  |
| EN33: TCLP Leach                          |                  |             |                |                   |                   |                   |                   |                   |  |
| Initial pH                                |                  | 0.1         | pH Unit        |                   | 6.7               |                   | 8.8               | 8.1               |  |
| After HCI pH                              |                  | 0.1         | pH Unit        |                   | 1.3               |                   | 5.5               | 1.4               |  |
| Extraction Fluid Number                   |                  | 1           | -              |                   | 1                 |                   | 2                 | 1                 |  |
| Final pH                                  |                  | 0.1         | pH Unit        |                   | 4.9               |                   | 5.7               | 5.1               |  |
| EP075(SIM)B: Polynuclear Aromatic Hydr    | ocarbons         |             |                |                   |                   |                   |                   |                   |  |
| Naphthalene                               | 91-20-3          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthylene                            | 208-96-8         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthene                              | 83-32-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluorene                                  | 86-73-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Phenanthrene                              | 85-01-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 0.9               | <0.5              |  |
| Anthracene                                | 120-12-7         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluoranthene                              | 206-44-0         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 2.6               | <0.5              |  |
| Pyrene                                    | 129-00-0         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 2.9               | 0.5               |  |
| Benz(a)anthracene                         | 56-55-3          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 1.5               | <0.5              |  |
| Chrysene                                  | 218-01-9         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 1.5               | <0.5              |  |
| Benzo(b+j)fluoranthene 20                 | 05-99-2 205-82-3 | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 2.7               | 0.5               |  |
| Benzo(k)fluoranthene                      | 207-08-9         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 0.9               | <0.5              |  |
| Benzo(a)pyrene                            | 50-32-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 1.9               | <0.5              |  |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 1.2               | <0.5              |  |
| Dibenz(a.h)anthracene                     | 53-70-3          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(g.h.i)perylene                      | 191-24-2         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 1.6               | <0.5              |  |
| ^ Sum of polycyclic aromatic hydrocarbons |                  | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 17.7              | 1.0               |  |
| ^ Benzo(a)pyrene TEQ (zero)               |                  | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | 2.6               | <0.5              |  |
| A Benzo(a)pyrene TEQ (half LOR)           |                  | 0.5         | mg/kg          | 0.6               | 0.6               | 0.6               | 2.8               | 0.6               |  |
| Benzo(a)pyrene TEQ (LOR)                  |                  | 0.5         | mg/kg          | 1.2               | 1.2               | 1.2               | 3.1               | 1.2               |  |
| EP075(SIM)S: Phenolic Compound Surro      | gates            |             |                |                   |                   |                   |                   |                   |  |
| Phenol-d6                                 | 13127-88-3       | 0.5         | %              | 97.8              | 110               | 100.0             | 91.6              | 92.8              |  |
| 2-Chlorophenol-D4                         | 93951-73-6       | 0.5         | %              | 105               | 116               | 105               | 94.8              | 97.7              |  |

| Page       | : 14 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                 | Client sample ID       |            |                 | VC04_0.5-0.6      | VC04_0.7-0.8      | VC04_0.9-1.0      | VC02_0.0-0.2      | VC02_0.5-0.6      |
|----------------------------------|------------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| (Matrix: SOIL)                   |                        |            |                 |                   |                   |                   |                   |                   |
|                                  | Cli                    | ent sampli | ing date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                         | CAS Number             | LOR        | Unit            | ES1937483-033     | ES1937483-034     | ES1937483-035     | ES1937483-038     | ES1937483-039     |
|                                  |                        |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound S | Surrogates - Continued |            |                 |                   |                   |                   |                   |                   |
| 2.4.6-Tribromophenol             | 118-79-6               | 0.5        | %               | 72.7              | 96.3              | 81.7              | 79.7              | 78.2              |
| EP075(SIM)T: PAH Surrogates      |                        |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                 | 321-60-8               | 0.5        | %               | 112               | 124               | 122               | 110               | 111               |
| Anthracene-d10                   | 1719-06-8              | 0.5        | %               | 115               | 118               | 118               | 109               | 108               |
| 4-Terphenyl-d14                  | 1718-51-0              | 0.5        | %               | 121               | 124               | 114               | 115               | 117               |

| Page       | : 15 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID |             |                | VC02_1.0-1.2      | VC02_1.0-1.5      | VC01_0.0-0.2      | vc01_0.4-0.6      | VC10_0.0-0.2      |  |
|-------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                           | Cli              | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |
| Compound                                  | CAS Number       | LOR         | Unit           | ES1937483-040     | ES1937483-042     | ES1937483-043     | ES1937483-044     | ES1937483-048     |  |
|                                           |                  |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 105-1    | 10°C)            |             |                |                   |                   |                   |                   |                   |  |
| Moisture Content                          |                  | 0.1         | %              | 20.7              | 17.6              | 29.0              | 13.8              | 19.4              |  |
| EG005(ED093)T: Total Metals by ICP-AES    |                  |             |                |                   |                   |                   |                   |                   |  |
| Lead                                      | 7439-92-1        | 5           | mg/kg          | 13                | 8                 | 156               | <5                | 29                |  |
| EG035T: Total Recoverable Mercury by I    | FIMS             |             |                |                   |                   |                   |                   |                   |  |
| Mercury                                   | 7439-97-6        | 0.1         | mg/kg          | <0.1              |                   | 1.9               |                   | 0.1               |  |
| EN33: TCLP Leach                          |                  |             |                |                   |                   |                   |                   |                   |  |
| Initial pH                                |                  | 0.1         | pH Unit        | 8.6               |                   | 9.0               |                   | 9.0               |  |
| After HCI pH                              |                  | 0.1         | pH Unit        | 1.4               |                   | 4.1               |                   | 1.7               |  |
| Extraction Fluid Number                   |                  | 1           | -              | 1                 |                   | 1                 |                   | 1                 |  |
| Final pH                                  |                  | 0.1         | pH Unit        | 4.9               |                   | 6.4               |                   | 5.1               |  |
| EP075(SIM)B: Polynuclear Aromatic Hyd     | rocarbons        |             |                |                   |                   |                   |                   |                   |  |
| Naphthalene                               | 91-20-3          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthylene                            | 208-96-8         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthene                              | 83-32-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluorene                                  | 86-73-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Phenanthrene                              | 85-01-8          | 0.5         | mg/kg          | <0.5              | <0.5              | 0.7               | <0.5              | <0.5              |  |
| Anthracene                                | 120-12-7         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluoranthene                              | 206-44-0         | 0.5         | mg/kg          | <0.5              | <0.5              | 1.9               | <0.5              | <0.5              |  |
| Pyrene                                    | 129-00-0         | 0.5         | mg/kg          | <0.5              | <0.5              | 2.1               | <0.5              | <0.5              |  |
| Benz(a)anthracene                         | 56-55-3          | 0.5         | mg/kg          | <0.5              | <0.5              | 1.2               | <0.5              | <0.5              |  |
| Chrysene                                  | 218-01-9         | 0.5         | mg/kg          | <0.5              | <0.5              | 1.1               | <0.5              | <0.5              |  |
| Benzo(b+j)fluoranthene 2                  | 05-99-2 205-82-3 | 0.5         | mg/kg          | <0.5              | <0.5              | 1.9               | <0.5              | <0.5              |  |
| Benzo(k)fluoranthene                      | 207-08-9         | 0.5         | mg/kg          | <0.5              | <0.5              | 0.8               | <0.5              | <0.5              |  |
| Benzo(a)pyrene                            | 50-32-8          | 0.5         | mg/kg          | <0.5              | <0.5              | 1.4               | <0.5              | <0.5              |  |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5         | 0.5         | mg/kg          | <0.5              | <0.5              | 0.8               | <0.5              | <0.5              |  |
| Dibenz(a.h)anthracene                     | 53-70-3          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(g.h.i)perylene                      | 191-24-2         | 0.5         | mg/kg          | <0.5              | <0.5              | 1.1               | <0.5              | <0.5              |  |
| ^ Sum of polycyclic aromatic hydrocarbons |                  | 0.5         | mg/kg          | <0.5              | <0.5              | 13.0              | <0.5              | <0.5              |  |
| A Benzo(a)pyrene TEQ (zero)               |                  | 0.5         | mg/kg<br>      | <0.5              | <0.5              | 1.9               | <0.5              | <0.5              |  |
| A Benzo(a)pyrene TEQ (half LOR)           |                  | 0.5         | mg/kg          | 0.6               | 0.6               | 2.1               | 0.6               | 0.6               |  |
| ^ Benzo(a)pyrene TEQ (LOR)                |                  | 0.5         | mg/kg          | 1.2               | 1.2               | 2.4               | 1.2               | 1.2               |  |
| EP075(SIM)S: Phenolic Compound Surro      | gates            |             |                |                   |                   |                   |                   |                   |  |
| Phenol-d6                                 | 13127-88-3       | 0.5         | %              | 93.8              | 91.0              | 101               | 93.7              | 105               |  |
| 2-Chlorophenol-D4                         | 93951-73-6       | 0.5         | %              | 98.5              | 96.6              | 103               | 99.8              | 110               |  |

| Page       | : 16 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                    | Client sample ID |            |                 | VC02_1.0-1.2      | VC02_1.0-1.5      | VC01_0.0-0.2      | vc01_0.4-0.6      | VC10_0.0-0.2      |
|-------------------------------------------------------|------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                       | Cli              | ent sampli | ing date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                              | CAS Number       | LOR        | Unit            | ES1937483-040     | ES1937483-042     | ES1937483-043     | ES1937483-044     | ES1937483-048     |
|                                                       |                  |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound Surrogates - Continued |                  |            |                 |                   |                   |                   |                   |                   |
| 2.4.6-Tribromophenol                                  | 118-79-6         | 0.5        | %               | 77.6              | 73.8              | 82.9              | 72.8              | 86.8              |
| EP075(SIM)T: PAH Surrogates                           |                  |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                                      | 321-60-8         | 0.5        | %               | 113               | 111               | 120               | 115               | 120               |
| Anthracene-d10                                        | 1719-06-8        | 0.5        | %               | 111               | 109               | 116               | 112               | 113               |
| 4-Terphenyl-d14                                       | 1718-51-0        | 0.5        | %               | 123               | 118               | 124               | 123               | 124               |

| Page       | : 17 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID |             |                | VC10_0.5-0.6      | VC10_0.0-0.5      | VC02_0.0-0.5      | VC02_0.5-1.0      | VC06_0.0-0.1      |  |
|-------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                           | Cli              | ient sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |
| Compound                                  | CAS Number       | LOR         | Unit           | ES1937483-049     | ES1937483-051     | ES1937483-053     | ES1937483-054     | ES1937483-055     |  |
|                                           |                  |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 105-11   | 0°C)             |             |                |                   |                   |                   |                   |                   |  |
| Moisture Content                          |                  | 0.1         | %              | 20.4              | 16.1              | 49.8              | 21.4              |                   |  |
| EG005(ED093)T: Total Metals by ICP-AES    |                  |             |                |                   |                   |                   |                   |                   |  |
| Lead                                      | 7439-92-1        | 5           | mg/kg          | 9                 |                   |                   | 6                 |                   |  |
| EN33: TCLP Leach                          |                  |             |                |                   |                   |                   |                   |                   |  |
| Initial pH                                |                  | 0.1         | pH Unit        |                   |                   | 9.1               |                   | 9.1               |  |
| After HCI pH                              |                  | 0.1         | pH Unit        |                   |                   | 5.2               |                   | 5.4               |  |
| Extraction Fluid Number                   |                  | 1           | -              |                   |                   | 2                 |                   | 2                 |  |
| Final pH                                  |                  | 0.1         | pH Unit        |                   |                   | 4.8               |                   | 5.2               |  |
| EP075(SIM)B: Polynuclear Aromatic Hydr    | ocarbons         |             |                |                   |                   |                   |                   |                   |  |
| Naphthalene                               | 91-20-3          | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Acenaphthylene                            | 208-96-8         | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Acenaphthene                              | 83-32-9          | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Fluorene                                  | 86-73-7          | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Phenanthrene                              | 85-01-8          | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Anthracene                                | 120-12-7         | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Fluoranthene                              | 206-44-0         | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Pyrene                                    | 129-00-0         | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Benz(a)anthracene                         | 56-55-3          | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Chrysene                                  | 218-01-9         | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Benzo(b+j)fluoranthene 20                 | 5-99-2 205-82-3  | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Benzo(k)fluoranthene                      | 207-08-9         | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Benzo(a)pyrene                            | 50-32-8          | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5         | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Dibenz(a.h)anthracene                     | 53-70-3          | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| Benzo(g.h.i)perylene                      | 191-24-2         | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| ^ Sum of polycyclic aromatic hydrocarbons |                  | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| ^ Benzo(a)pyrene TEQ (zero)               |                  | 0.5         | mg/kg          | <0.5              |                   |                   | <0.5              |                   |  |
| ^ Benzo(a)pyrene TEQ (half LOR)           |                  | 0.5         | mg/kg          | 0.6               |                   |                   | 0.6               |                   |  |
| ^ Benzo(a)pyrene TEQ (LOR)                |                  | 0.5         | mg/kg          | 1.2               |                   |                   | 1.2               |                   |  |
| EP090: Organotin Compounds                |                  |             |                |                   |                   |                   |                   |                   |  |
| Tributyltin                               | 56573-85-4       | 0.5         | µgSn/kg        |                   | <0.5              | 2.8               |                   |                   |  |
| EP075(SIM)S: Phenolic Compound Surrog     | gates            |             |                |                   |                   |                   |                   |                   |  |
| Phenol-d6                                 | 13127-88-3       | 0.5         | %              | 110               |                   |                   | 106               |                   |  |
| 2-Chlorophenol-D4                         | 93951-73-6       | 0.5         | %              | 116               |                   |                   | 113               |                   |  |

| Page       | : 18 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID      |            |                 | VC10_0.5-0.6      | VC10_0.0-0.5      | VC02_0.0-0.5      | VC02_0.5-1.0      | VC06_0.0-0.1      |
|------------------------------------|-----------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli                   | ent sampli | ing date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                           | CAS Number            | LOR        | Unit            | ES1937483-049     | ES1937483-051     | ES1937483-053     | ES1937483-054     | ES1937483-055     |
|                                    |                       |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound Su  | urrogates - Continued | 1          |                 |                   |                   |                   |                   |                   |
| 2.4.6-Tribromophenol               | 118-79-6              | 0.5        | %               | 88.6              |                   |                   | 83.1              |                   |
| EP075(SIM)T: PAH Surrogates        |                       |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                   | 321-60-8              | 0.5        | %               | 135               |                   |                   | 120               |                   |
| Anthracene-d10                     | 1719-06-8             | 0.5        | %               | 117               |                   |                   | 113               |                   |
| 4-Terphenyl-d14                    | 1718-51-0             | 0.5        | %               | 118               |                   |                   | 127               |                   |
| EP090S: Organotin Surrogate        |                       |            |                 |                   |                   |                   |                   |                   |
| Tripropyltin                       |                       | 0.5        | %               |                   | 102               | 60.8              |                   |                   |

| Page       | : 19 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID  |              |                | VC06_0.3-0.4      | VC06_0.5-0.6      | VC06_0.7-0.8      | VC06_0.8-0.9      | VC06_0.0-0.5      |  |
|-------------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                           | Cli               | ient samplii | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |
| Compound                                  | CAS Number        | LOR          | Unit           | ES1937483-056     | ES1937483-057     | ES1937483-058     | ES1937483-059     | ES1937483-060     |  |
|                                           |                   |              |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 105-     | 110°C)            |              |                |                   |                   |                   |                   |                   |  |
| Moisture Content                          |                   | 0.1          | %              | 18.1              | 18.9              | 22.1              | 21.6              | 20.0              |  |
| EG005(ED093)T: Total Metals by ICP-AES    |                   |              |                |                   |                   |                   |                   |                   |  |
| Lead                                      | 7439-92-1         | 5            | mg/kg          | 8                 | 11                | 36                | 18                | 11                |  |
| EG035T: Total Recoverable Mercury by FIMS |                   |              |                |                   |                   |                   |                   |                   |  |
| Mercury                                   | 7439-97-6         | 0.1          | mg/kg          | <0.1              |                   |                   |                   |                   |  |
| EN33: TCLP Leach                          |                   |              |                |                   |                   |                   |                   |                   |  |
| Initial pH                                |                   | 0.1          | pH Unit        | 8.0               |                   |                   |                   |                   |  |
| After HCl pH                              |                   | 0.1          | pH Unit        | 1.4               |                   |                   |                   |                   |  |
| Extraction Fluid Number                   |                   | 1            | -              | 1                 |                   |                   |                   |                   |  |
| Final pH                                  |                   | 0.1          | pH Unit        | 5.1               |                   |                   |                   |                   |  |
| EP075(SIM)B: Polynuclear Aromatic Hy      | drocarbons        |              |                |                   |                   |                   |                   |                   |  |
| Naphthalene                               | 91-20-3           | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthylene                            | 208-96-8          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthene                              | 83-32-9           | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluorene                                  | 86-73-7           | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Phenanthrene                              | 85-01-8           | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Anthracene                                | 120-12-7          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluoranthene                              | 206-44-0          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Pyrene                                    | 129-00-0          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benz(a)anthracene                         | 56-55-3           | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Chrysene                                  | 218-01-9          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(b+j)fluoranthene                    | 205-99-2 205-82-3 | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(k)fluoranthene                      | 207-08-9          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(a)pyrene                            | 50-32-8           | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Dibenz(a.h)anthracene                     | 53-70-3           | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(g.h.i)perylene                      | 191-24-2          | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Sum of polycyclic aromatic hydrocarbons |                   | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (zero)               |                   | 0.5          | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| A Benzo(a)pyrene TEQ (half LOR)           |                   | 0.5          | mg/kg          | 0.6               | 0.6               | 0.6               | 0.6               | 0.6               |  |
| ^ Benzo(a)pyrene TEQ (LOR)                |                   | 0.5          | mg/kg          | 1.2               | 1.2               | 1.2               | 1.2               | 1.2               |  |
| EP075(SIM)S: Phenolic Compound Surr       | ogates            |              |                |                   |                   |                   |                   |                   |  |
| Phenol-d6                                 | 13127-88-3        | 0.5          | %              | 106               | 99.7              | 86.6              | 81.2              | 83.1              |  |
| 2-Chlorophenol-D4                         | 93951-73-6        | 0.5          | %              | 114               | 107               | 92.6              | 87.1              | 88.0              |  |

| Page       | : 20 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL                                      | Client sample ID |            |                 | VC06_0.3-0.4      | VC06_0.5-0.6      | VC06_0.7-0.8      | VC06_0.8-0.9      | VC06_0.0-0.5      |
|-------------------------------------------------------|------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| (Matrix: SOIL)                                        |                  |            |                 |                   |                   |                   |                   |                   |
|                                                       | Clie             | ent sampli | ing date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                              | CAS Number       | LOR        | Unit            | ES1937483-056     | ES1937483-057     | ES1937483-058     | ES1937483-059     | ES1937483-060     |
|                                                       |                  |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound Surrogates - Continued |                  |            |                 |                   |                   |                   |                   |                   |
| 2.4.6-Tribromophenol                                  | 118-79-6         | 0.5        | %               | 81.1              | 74.8              | 61.8              | 58.4              | 57.8              |
| EP075(SIM)T: PAH Surrogates                           |                  |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                                      | 321-60-8         | 0.5        | %               | 120               | 117               | 108               | 102               | 104               |
| Anthracene-d10                                        | 1719-06-8        | 0.5        | %               | 115               | 119               | 103               | 98.1              | 96.4              |
| 4-Terphenyl-d14                                       | 1718-51-0        | 0.5        | %               | 126               | 121               | 116               | 108               | 109               |

| Page       | : 21 of 37    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID  |             |                | VC06_0.5-1.0      | VC12_0.3-0.4      | VC12_0.5-0.6      | VC12_0.8-0.9      | VC12_1.0-1.1      |  |
|-------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                           | Cli               | ient sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |
| Compound                                  | CAS Number        | LOR         | Unit           | ES1937483-061     | ES1937483-063     | ES1937483-064     | ES1937483-065     | ES1937483-066     |  |
|                                           |                   |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 105-1    | 10°C)             |             |                |                   |                   |                   |                   |                   |  |
| Moisture Content                          |                   | 0.1         | %              | 21.4              | 19.3              | 19.6              | 16.6              | 24.1              |  |
| EG005(ED093)T: Total Metals by ICP-AES    |                   |             |                |                   |                   |                   |                   |                   |  |
| Lead                                      | 7439-92-1         | 5           | mg/kg          | 30                | <5                | <5                | <5                | 32                |  |
| EN33: TCLP Leach                          |                   |             |                |                   |                   |                   |                   |                   |  |
| Initial pH                                |                   | 0.1         | pH Unit        |                   |                   |                   | 8.2               |                   |  |
| After HCI pH                              |                   | 0.1         | pH Unit        |                   |                   |                   | 1.6               |                   |  |
| Extraction Fluid Number                   |                   | 1           | -              |                   |                   |                   | 1                 |                   |  |
| Final pH                                  |                   | 0.1         | pH Unit        |                   |                   |                   | 4.9               |                   |  |
| EP066: Polychlorinated Biphenyls (PCB)    |                   |             |                |                   |                   |                   |                   |                   |  |
| Total Polychlorinated biphenyls           |                   | 0.1         | mg/kg          |                   | <0.1              |                   |                   | <0.1              |  |
| EP075(SIM)B: Polynuclear Aromatic Hyd     | rocarbons         |             |                |                   |                   |                   |                   |                   |  |
| Naphthalene                               | 91-20-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthylene                            | 208-96-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthene                              | 83-32-9           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluorene                                  | 86-73-7           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Phenanthrene                              | 85-01-8           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Anthracene                                | 120-12-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluoranthene                              | 206-44-0          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Pyrene                                    | 129-00-0          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benz(a)anthracene                         | 56-55-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Chrysene                                  | 218-01-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(b+j)fluoranthene 2                  | 205-99-2 205-82-3 | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(k)fluoranthene                      | 207-08-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(a)pyrene                            | 50-32-8           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Dibenz(a.h)anthracene                     | 53-70-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(g.h.i)perylene                      | 191-24-2          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Sum of polycyclic aromatic hydrocarbons |                   | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (zero)               |                   | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (half LOR)           |                   | 0.5         | mg/kg          | 0.6               | 0.6               | 0.6               | 0.6               | 0.6               |  |
| ^ Benzo(a)pyrene TEQ (LOR)                |                   | 0.5         | mg/kg          | 1.2               | 1.2               | 1.2               | 1.2               | 1.2               |  |
| EP066S: PCB Surrogate                     |                   |             |                |                   |                   |                   |                   |                   |  |
| Decachlorobiphenyl                        | 2051-24-3         | 0.1         | %              |                   | 102               |                   |                   | 97.0              |  |
| EP075(SIM)S: Phenolic Compound Surro      | ogates            |             |                |                   |                   |                   |                   |                   |  |

| Page       | : 22 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID      |             |                 | VC06_0.5-1.0      | VC12_0.3-0.4      | VC12_0.5-0.6      | VC12_0.8-0.9      | VC12_1.0-1.1      |
|------------------------------------|-----------------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cli                   | ient sampli | ing date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                           | CAS Number            | LOR         | Unit            | ES1937483-061     | ES1937483-063     | ES1937483-064     | ES1937483-065     | ES1937483-066     |
|                                    |                       |             |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound S   | urrogates - Continued | ł           |                 |                   |                   |                   |                   |                   |
| Phenol-d6                          | 13127-88-3            | 0.5         | %               | 81.5              | 94.6              | 81.8              | 84.2              | 97.5              |
| 2-Chlorophenol-D4                  | 93951-73-6            | 0.5         | %               | 86.5              | 111               | 86.7              | 89.1              | 115               |
| 2.4.6-Tribromophenol               | 118-79-6              | 0.5         | %               | 55.7              | 78.7              | 55.4              | 55.0              | 83.8              |
| EP075(SIM)T: PAH Surrogates        |                       |             |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                   | 321-60-8              | 0.5         | %               | 101               | 129               | 102               | 105               | 125               |
| Anthracene-d10                     | 1719-06-8             | 0.5         | %               | 95.1              | 123               | 97.7              | 99.4              | 124               |
| 4-Terphenyl-d14                    | 1718-51-0             | 0.5         | %               | 109               | 123               | 110               | 112               | 122               |

| Page       | : 23 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     | Client sample ID                          |             |                | VC08_0.0-0.1      | VC08_0.3-0.4      | VC08_0.5-0.6      | VC08_0.7-0.8      | VC08_1.0-1.1      |  |  |
|----------------------------------------|-------------------------------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                        | Cl                                        | ient sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |
| Compound                               | CAS Number                                | LOR         | Unit           | ES1937483-069     | ES1937483-070     | ES1937483-071     | ES1937483-072     | ES1937483-073     |  |  |
|                                        |                                           |             |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EA055: Moisture Content (Dried @       | 105-110°C)                                |             |                |                   |                   |                   |                   |                   |  |  |
| Moisture Content                       |                                           | 0.1         | %              |                   | 46.0              | 31.3              | 27.1              | 18.6              |  |  |
| EG005(ED093)T: Total Metals by ICP-AES |                                           |             |                |                   |                   |                   |                   |                   |  |  |
| Lead                                   | 7439-92-1                                 | 5           | mg/kg          |                   | 216               | 19                | 6                 | 6                 |  |  |
| EG035T: Total Recoverable Mercur       | EG035T: Total Recoverable Mercury by FIMS |             |                |                   |                   |                   |                   |                   |  |  |
| Mercury                                | 7439-97-6                                 | 0.1         | mg/kg          |                   | 2.5               |                   |                   |                   |  |  |
| EN33: TCLP Leach                       |                                           |             |                |                   |                   |                   |                   |                   |  |  |
| Initial pH                             |                                           | 0.1         | pH Unit        | 9.2               | 9.2               |                   |                   |                   |  |  |
| After HCI pH                           |                                           | 0.1         | pH Unit        | 5.4               | 5.2               |                   |                   |                   |  |  |
| Extraction Fluid Number                |                                           | 1           | -              | 2                 | 2                 |                   |                   |                   |  |  |
| Final pH                               |                                           | 0.1         | pH Unit        | 6.0               | 6.1               |                   |                   |                   |  |  |
| EP066: Polychlorinated Biphenyls (     | (PCB)                                     |             |                |                   |                   |                   |                   |                   |  |  |
| Total Polychlorinated biphenyls        |                                           | 0.1         | mg/kg          |                   | <0.1              |                   |                   |                   |  |  |
| EP075(SIM)B: Polynuclear Aromatic      | c Hydrocarbons                            |             |                |                   |                   |                   |                   |                   |  |  |
| Naphthalene                            | 91-20-3                                   | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |  |  |
| Acenaphthylene                         | 208-96-8                                  | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |  |  |
| Acenaphthene                           | 83-32-9                                   | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |  |  |
| Fluorene                               | 86-73-7                                   | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |  |  |
| Phenanthrene                           | 85-01-8                                   | 0.5         | mg/kg          |                   | 2.7               | <0.5              | <0.5              | <0.5              |  |  |
| Anthracene                             | 120-12-7                                  | 0.5         | mg/kg          |                   | 0.8               | <0.5              | <0.5              | <0.5              |  |  |
| Fluoranthene                           | 206-44-0                                  | 0.5         | mg/kg          |                   | 4.6               | <0.5              | <0.5              | <0.5              |  |  |
| Pyrene                                 | 129-00-0                                  | 0.5         | mg/kg          |                   | 5.0               | <0.5              | <0.5              | <0.5              |  |  |
| Benz(a)anthracene                      | 56-55-3                                   | 0.5         | mg/kg          |                   | 2.0               | <0.5              | <0.5              | <0.5              |  |  |
| Chrysene                               | 218-01-9                                  | 0.5         | mg/kg          |                   | 2.0               | <0.5              | <0.5              | <0.5              |  |  |
| Benzo(b+j)fluoranthene                 | 205-99-2 205-82-3                         | 0.5         | mg/kg          |                   | 3.0               | <0.5              | <0.5              | <0.5              |  |  |
| Benzo(k)fluoranthene                   | 207-08-9                                  | 0.5         | mg/kg          |                   | 1.3               | <0.5              | <0.5              | <0.5              |  |  |
| Benzo(a)pyrene                         | 50-32-8                                   | 0.5         | mg/kg          |                   | 3.0               | <0.5              | <0.5              | <0.5              |  |  |
| Indeno(1.2.3.cd)pyrene                 | 193-39-5                                  | 0.5         | mg/kg          |                   | 0.9               | <0.5              | <0.5              | <0.5              |  |  |
| Dibenz(a.h)anthracene                  | 53-70-3                                   | 0.5         | mg/kg          |                   | <0.5              | <0.5              | <0.5              | <0.5              |  |  |
| Benzo(g.h.i)perylene                   | 191-24-2                                  | 0.5         | mg/kg          |                   | 1.1               | <0.5              | <0.5              | <0.5              |  |  |
| ^ Sum of polycyclic aromatic hydrocart | oons                                      | 0.5         | mg/kg          |                   | 26.4              | <0.5              | <0.5              | <0.5              |  |  |
| ^ Benzo(a)pyrene TEQ (zero)            |                                           | 0.5         | mg/kg          |                   | 3.8               | <0.5              | <0.5              | <0.5              |  |  |
| ^ Benzo(a)pyrene TEQ (half LOR)        |                                           | 0.5         | mg/kg          |                   | 4.0               | 0.6               | 0.6               | 0.6               |  |  |
| ^ Benzo(a)pyrene TEQ (LOR)             |                                           | 0.5         | mg/kg          |                   | 4.2               | 1.2               | 1.2               | 1.2               |  |  |
| EP066S: PCB Surrogate                  |                                           |             |                |                   |                   |                   |                   |                   |  |  |

| Page       | : 24 of 37    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   | Client sample ID |            |                | VC08_0.0-0.1      | VC08_0.3-0.4      | VC08_0.5-0.6      | VC08_0.7-0.8      | VC08_1.0-1.1      |
|--------------------------------------|------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Cli              | ent sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                             | CAS Number       | LOR        | Unit           | ES1937483-069     | ES1937483-070     | ES1937483-071     | ES1937483-072     | ES1937483-073     |
|                                      |                  |            |                | Result            | Result            | Result            | Result            | Result            |
| EP066S: PCB Surrogate - Continued    |                  |            |                |                   |                   |                   |                   |                   |
| Decachlorobiphenyl                   | 2051-24-3        | 0.1        | %              |                   | 88.7              |                   |                   |                   |
| EP075(SIM)S: Phenolic Compound Surro | gates            |            |                |                   |                   |                   |                   |                   |
| Phenol-d6                            | 13127-88-3       | 0.5        | %              |                   | 87.6              | 83.5              | 81.6              | 80.4              |
| 2-Chlorophenol-D4                    | 93951-73-6       | 0.5        | %              |                   | 102               | 87.6              | 85.4              | 86.0              |
| 2.4.6-Tribromophenol                 | 118-79-6         | 0.5        | %              |                   | 90.3              | 55.6              | 54.8              | 55.4              |
| EP075(SIM)T: PAH Surrogates          |                  |            |                |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                     | 321-60-8         | 0.5        | %              |                   | 121               | 104               | 100               | 99.7              |
| Anthracene-d10                       | 1719-06-8        | 0.5        | %              |                   | 119               | 99.1              | 96.6              | 94.7              |
| 4-Terphenyl-d14                      | 1718-51-0        | 0.5        | %              |                   | 112               | 109               | 108               | 106               |

| Page       | : 25 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)          | Client sample ID  |             |                | VC08_1.3-1.4      | VC08_1.5-1.6      | VC08_0.0-0.5      | VC08_0.5-1.0      | VC13_0.0-0.1      |  |  |
|---------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                             | Cl                | ient sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |
| Compound                                    | CAS Number        | LOR         | Unit           | ES1937483-074     | ES1937483-075     | ES1937483-076     | ES1937483-077     | ES1937483-079     |  |  |
|                                             |                   |             |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EA055: Moisture Content (Dried @ 105-110°C) |                   |             |                |                   |                   |                   |                   |                   |  |  |
| Moisture Content                            |                   | 0.1         | %              | 18.7              | 15.4              | 36.7              | 27.3              |                   |  |  |
| EG005(ED093)T: Total Metals by ICP-AES      |                   |             |                |                   |                   |                   |                   |                   |  |  |
| Lead                                        | 7439-92-1         | 5           | mg/kg          | 9                 | 11                | 111               | 7                 |                   |  |  |
| EN33: TCLP Leach                            |                   |             |                |                   |                   |                   |                   |                   |  |  |
| Initial pH                                  |                   | 0.1         | pH Unit        |                   |                   |                   |                   | 9.0               |  |  |
| After HCI pH                                |                   | 0.1         | pH Unit        |                   |                   |                   |                   | 5.4               |  |  |
| Extraction Fluid Number                     |                   | 1           | -              |                   |                   |                   |                   | 2                 |  |  |
| Final pH                                    |                   | 0.1         | pH Unit        |                   |                   |                   |                   | 6.0               |  |  |
| EP075(SIM)B: Polynuclear Aromatic F         | lydrocarbons      |             |                |                   |                   |                   |                   |                   |  |  |
| Naphthalene                                 | 91-20-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Acenaphthylene                              | 208-96-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Acenaphthene                                | 83-32-9           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Fluorene                                    | 86-73-7           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Phenanthrene                                | 85-01-8           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Anthracene                                  | 120-12-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Fluoranthene                                | 206-44-0          | 0.5         | mg/kg          | <0.5              | <0.5              | 0.7               | <0.5              |                   |  |  |
| Pyrene                                      | 129-00-0          | 0.5         | mg/kg          | <0.5              | <0.5              | 0.8               | <0.5              |                   |  |  |
| Benz(a)anthracene                           | 56-55-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Chrysene                                    | 218-01-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Benzo(b+j)fluoranthene                      | 205-99-2 205-82-3 | 0.5         | mg/kg          | <0.5              | <0.5              | 0.7               | <0.5              |                   |  |  |
| Benzo(k)fluoranthene                        | 207-08-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Benzo(a)pyrene                              | 50-32-8           | 0.5         | mg/kg          | <0.5              | <0.5              | 0.6               | <0.5              |                   |  |  |
| Indeno(1.2.3.cd)pyrene                      | 193-39-5          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Dibenz(a.h)anthracene                       | 53-70-3           | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| Benzo(g.h.i)perylene                        | 191-24-2          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              |                   |  |  |
| ^ Sum of polycyclic aromatic hydrocarbor    | ıs                | 0.5         | mg/kg          | <0.5              | <0.5              | 2.8               | <0.5              |                   |  |  |
| ^ Benzo(a)pyrene TEQ (zero)                 |                   | 0.5         | mg/kg          | <0.5              | <0.5              | 0.7               | <0.5              |                   |  |  |
| ^ Benzo(a)pyrene TEQ (half LOR)             |                   | 0.5         | mg/kg          | 0.6               | 0.6               | 1.0               | 0.6               |                   |  |  |
| ^ Benzo(a)pyrene TEQ (LOR)                  |                   | 0.5         | mg/kg          | 1.2               | 1.2               | 1.3               | 1.2               |                   |  |  |
| EP075(SIM)S: Phenolic Compound Su           | irrogates         |             |                |                   |                   |                   |                   |                   |  |  |
| Phenol-d6                                   | 13127-88-3        | 0.5         | %              | 81.1              | 84.3              | 84.1              | 86.1              |                   |  |  |
| 2-Chlorophenol-D4                           | 93951-73-6        | 0.5         | %              | 86.3              | 89.7              | 89.0              | 91.1              |                   |  |  |
| 2.4.6-Tribromophenol                        | 118-79-6          | 0.5         | %              | 53.9              | 56.3              | 60.1              | 59.8              |                   |  |  |
| EP075(SIM)T: PAH Surrogates                 |                   |             |                |                   |                   |                   |                   |                   |  |  |

| Page       | : 26 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      |            | Clie       | ent sample ID  | VC08_1.3-1.4      | VC08_1.5-1.6      | VC08_0.0-0.5      | VC08_0.5-1.0      | VC13_0.0-0.1      |
|-----------------------------------------|------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                         | Cli        | ent sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                | CAS Number | LOR        | Unit           | ES1937483-074     | ES1937483-075     | ES1937483-076     | ES1937483-077     | ES1937483-079     |
|                                         |            |            |                | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)T: PAH Surrogates - Continued |            |            |                |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                        | 321-60-8   | 0.5        | %              | 101               | 105               | 104               | 105               |                   |
| Anthracene-d10                          | 1719-06-8  | 0.5        | %              | 95.8              | 99.0              | 97.7              | 102               |                   |
| 4-Terphenyl-d14                         | 1718-51-0  | 0.5        | %              | 107               | 111               | 107               | 112               |                   |

| Page       | : 27 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID                       |             |                | VC13_0.3-0.4      | VC13_0.5-0.6      | VC13_0.7-0.8      | VC13_1.0-1.1      | VC13_0.0-0.5      |  |  |  |
|-------------------------------------------|----------------------------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|--|
|                                           | Cli                                    | ient sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |  |
| Compound                                  | CAS Number                             | LOR         | Unit           | ES1937483-080     | ES1937483-081     | ES1937483-082     | ES1937483-083     | ES1937483-084     |  |  |  |
|                                           |                                        |             |                | Result            | Result            | Result            | Result            | Result            |  |  |  |
| EA055: Moisture Content (Dried @ 105      | 5-110°C)                               |             |                |                   |                   |                   |                   |                   |  |  |  |
| Moisture Content                          |                                        | 0.1         | %              | 30.5              | 15.4              | 14.8              | 13.6              | 30.0              |  |  |  |
| EG005(ED093)T: Total Metals by ICP-A      | EG005(ED093)T: Total Metals by ICP-AES |             |                |                   |                   |                   |                   |                   |  |  |  |
| Lead                                      | 7439-92-1                              | 5           | mg/kg          | 18                | 6                 | 16                | 7                 | 84                |  |  |  |
| EG035T: Total Recoverable Mercury by FIMS |                                        |             |                |                   |                   |                   |                   |                   |  |  |  |
| Mercury                                   | 7439-97-6                              | 0.1         | mg/kg          | 0.3               |                   |                   |                   |                   |  |  |  |
| EN33: TCLP Leach                          |                                        |             |                |                   |                   |                   |                   |                   |  |  |  |
| Initial pH                                |                                        | 0.1         | pH Unit        | 9.3               |                   |                   |                   |                   |  |  |  |
| After HCI pH                              |                                        | 0.1         | pH Unit        | 5.1               |                   |                   |                   |                   |  |  |  |
| Extraction Fluid Number                   |                                        | 1           | -              | 2                 |                   |                   |                   |                   |  |  |  |
| Final pH                                  |                                        | 0.1         | pH Unit        | 5.8               |                   |                   |                   |                   |  |  |  |
| EP075(SIM)B: Polynuclear Aromatic H       | ydrocarbons                            |             |                |                   |                   |                   |                   |                   |  |  |  |
| Naphthalene                               | 91-20-3                                | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |  |  |
| Acenaphthylene                            | 208-96-8                               | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |  |  |
| Acenaphthene                              | 83-32-9                                | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |  |  |
| Fluorene                                  | 86-73-7                                | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |  |  |
| Phenanthrene                              | 85-01-8                                | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 0.8               |  |  |  |
| Anthracene                                | 120-12-7                               | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |  |  |
| Fluoranthene                              | 206-44-0                               | 0.5         | mg/kg          | 0.9               | <0.5              | <0.5              | <0.5              | 2.0               |  |  |  |
| Pyrene                                    | 129-00-0                               | 0.5         | mg/kg          | 1.0               | <0.5              | <0.5              | <0.5              | 2.1               |  |  |  |
| Benz(a)anthracene                         | 56-55-3                                | 0.5         | mg/kg          | 0.5               | <0.5              | <0.5              | <0.5              | 1.0               |  |  |  |
| Chrysene                                  | 218-01-9                               | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 0.9               |  |  |  |
| Benzo(b+j)fluoranthene                    | 205-99-2 205-82-3                      | 0.5         | mg/kg          | 0.8               | <0.5              | <0.5              | <0.5              | 1.2               |  |  |  |
| Benzo(k)fluoranthene                      | 207-08-9                               | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | 0.5               |  |  |  |
| Benzo(a)pyrene                            | 50-32-8                                | 0.5         | mg/kg          | 0.7               | <0.5              | <0.5              | <0.5              | 1.0               |  |  |  |
| Indeno(1.2.3.cd)pyrene                    | 193-39-5                               | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |  |  |
| Dibenz(a.h)anthracene                     | 53-70-3                                | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |  |  |
| Benzo(g.h.i)perylene                      | 191-24-2                               | 0.5         | mg/kg          | 0.5               | <0.5              | <0.5              | <0.5              | 0.7               |  |  |  |
| ^ Sum of polycyclic aromatic hydrocarbon  | s                                      | 0.5         | mg/kg          | 4.4               | <0.5              | <0.5              | <0.5              | 10.2              |  |  |  |
| ^ Benzo(a)pyrene TEQ (zero)               |                                        | 0.5         | mg/kg          | 0.8               | <0.5              | <0.5              | <0.5              | 1.3               |  |  |  |
| A Benzo(a)pyrene TEQ (half LOR)           |                                        | 0.5         | mg/kg          | 1.1               | 0.6               | 0.6               | 0.6               | 1.6               |  |  |  |
| ^ Benzo(a)pyrene TEQ (LOR)                |                                        | 0.5         | mg/kg          | 1.4               | 1.2               | 1.2               | 1.2               | 1.8               |  |  |  |
| EP075(SIM)S: Phenolic Compound Su         | rrogates                               |             |                |                   |                   |                   |                   |                   |  |  |  |
| Phenol-d6                                 | 13127-88-3                             | 0.5         | %              | 87.2              | 82.6              | 82.8              | 84.4              | 81.5              |  |  |  |
| 2-Chlorophenol-D4                         | 93951-73-6                             | 0.5         | %              | 91.9              | 87.4              | 87.8              | 88.9              | 87.1              |  |  |  |

| Page       | : 28 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                 | Client sample ID |            |                 | VC13_0.3-0.4      | VC13_0.5-0.6      | VC13_0.7-0.8      | VC13_1.0-1.1      | VC13_0.0-0.5      |
|----------------------------------|------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| (Matrix: SOIL)                   |                  |            |                 |                   |                   |                   |                   |                   |
|                                  | Cli              | ent sampli | ing date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                         | CAS Number       | LOR        | Unit            | ES1937483-080     | ES1937483-081     | ES1937483-082     | ES1937483-083     | ES1937483-084     |
|                                  |                  |            |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound S |                  |            |                 |                   |                   |                   |                   |                   |
| 2.4.6-Tribromophenol             | 118-79-6         | 0.5        | %               | 63.3              | 57.3              | 54.9              | 57.3              | 58.8              |
| EP075(SIM)T: PAH Surrogates      |                  |            |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                 | 321-60-8         | 0.5        | %               | 107               | 101               | 101               | 104               | 101               |
| Anthracene-d10                   | 1719-06-8        | 0.5        | %               | 102               | 97.7              | 97.2              | 99.8              | 97.6              |
| 4-Terphenyl-d14                  | 1718-51-0        | 0.5        | %               | 112               | 108               | 108               | 110               | 105               |

| Page       | : 29 of 37    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)         | Client sample ID |             |                | VC13_0.5-1.0      | VC14_0.0-0.1      | VC14_0.3-0.4      | VC14-0.5-0.6      | VC14_0.7-0.8      |  |
|--------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
|                                            | Cli              | ent sampliı | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |
| Compound C                                 | CAS Number       | LOR         | Unit           | ES1937483-085     | ES1937483-086     | ES1937483-087     | ES1937483-088     | ES1937483-089     |  |
|                                            |                  |             |                | Result            | Result            | Result            | Result            | Result            |  |
| EA055: Moisture Content (Dried @ 105-110°C | ;)               |             |                |                   |                   |                   |                   |                   |  |
| Moisture Content                           |                  | 0.1         | %              | 15.0              | 35.7              | 34.0              | 30.8              | 26.1              |  |
| EG005(ED093)T: Total Metals by ICP-AES     |                  |             |                |                   |                   |                   |                   |                   |  |
| Lead                                       | 7439-92-1        | 5           | mg/kg          | 9                 | 57                | 20                | 6                 | <5                |  |
| EG035T: Total Recoverable Mercury by FIMS  |                  |             |                |                   |                   |                   |                   |                   |  |
| Mercury                                    | 7439-97-6        | 0.1         | mg/kg          |                   | 0.7               |                   |                   | <0.1              |  |
| EN33: TCLP Leach                           |                  |             |                |                   |                   |                   |                   |                   |  |
| Initial pH                                 |                  | 0.1         | pH Unit        |                   | 9.3               |                   |                   | 9.4               |  |
| After HCI pH                               |                  | 0.1         | pH Unit        |                   | 5.2               |                   |                   | 5.3               |  |
| Extraction Fluid Number                    |                  | 1           | -              |                   | 2                 |                   |                   | 2                 |  |
| Final pH                                   |                  | 0.1         | pH Unit        |                   | 6.0               |                   |                   | 6.0               |  |
| EP075(SIM)B: Polynuclear Aromatic Hydroca  | rbons            |             |                |                   |                   |                   |                   |                   |  |
| Naphthalene                                | 91-20-3          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthylene                             | 208-96-8         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Acenaphthene                               | 83-32-9          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluorene                                   | 86-73-7          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Phenanthrene                               | 85-01-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Anthracene                                 | 120-12-7         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Fluoranthene                               | 206-44-0         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Pyrene                                     | 129-00-0         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benz(a)anthracene                          | 56-55-3          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Chrysene                                   | 218-01-9         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(b+j)fluoranthene 205-99              | 9-2 205-82-3     | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(k)fluoranthene                       | 207-08-9         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(a)pyrene                             | 50-32-8          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Indeno(1.2.3.cd)pyrene                     | 193-39-5         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Dibenz(a.h)anthracene                      | 53-70-3          | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Benzo(g.h.i)perylene                       | 191-24-2         | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Sum of polycyclic aromatic hydrocarbons  |                  | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (zero)                |                  | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (half LOR)            |                  | 0.5         | mg/kg          | 0.6               | 0.6               | 0.6               | 0.6               | 0.6               |  |
| ^ Benzo(a)pyrene TEQ (LOR)                 |                  | 0.5         | mg/kg          | 1.2               | 1.2               | 1.2               | 1.2               | 1.2               |  |
| EP075(SIM)S: Phenolic Compound Surrogate   | es               |             |                |                   |                   |                   |                   |                   |  |
| Phenol-d6                                  | 13127-88-3       | 0.5         | %              | 89.4              | 80.8              | 83.4              | 82.9              | 87.4              |  |
| 2-Chlorophenol-D4                          | 93951-73-6       | 0.5         | %              | 94.0              | 85.5              | 89.2              | 88.5              | 93.7              |  |

| Page       | : 30 of 37    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                      | Client sample ID |           |                 | VC13_0.5-1.0      | VC14_0.0-0.1      | VC14_0.3-0.4      | VC14-0.5-0.6      | VC14_0.7-0.8      |
|-------------------------------------------------------|------------------|-----------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| (Matrix: SOIL)                                        |                  |           |                 |                   |                   |                   |                   |                   |
|                                                       | Cli              | ent sampl | ing date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                              | CAS Number       | LOR       | Unit            | ES1937483-085     | ES1937483-086     | ES1937483-087     | ES1937483-088     | ES1937483-089     |
|                                                       |                  |           |                 | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)S: Phenolic Compound Surrogates - Continued |                  |           |                 |                   |                   |                   |                   |                   |
| 2.4.6-Tribromophenol                                  | 118-79-6         | 0.5       | %               | 62.9              | 55.8              | 76.9              | 72.6              | 77.3              |
| EP075(SIM)T: PAH Surrogates                           |                  |           |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                                      | 321-60-8         | 0.5       | %               | 109               | 97.8              | 97.7              | 99.1              | 97.1              |
| Anthracene-d10                                        | 1719-06-8        | 0.5       | %               | 106               | 96.1              | 98.1              | 95.9              | 104               |
| 4-Terphenyl-d14                                       | 1718-51-0        | 0.5       | %               | 116               | 105               | 93.4              | 93.5              | 100               |

| Page       | : 31 of 37    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)          | Client sample ID                               |             |                | VC14_1.3-1.4      | VC14_0.0-0.5      | VC14_0.5-1.0      |  |  |  |  |
|---------------------------------------------|------------------------------------------------|-------------|----------------|-------------------|-------------------|-------------------|--|--|--|--|
|                                             | Cli                                            | ient sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |  |  |
| Compound                                    | CAS Number                                     | LOR         | Unit           | ES1937483-091     | ES1937483-092     | ES1937483-093     |  |  |  |  |
|                                             |                                                |             |                | Result            | Result            | Result            |  |  |  |  |
| EA055: Moisture Content (Dried @ 105-110°C) |                                                |             |                |                   |                   |                   |  |  |  |  |
| Moisture Content                            |                                                | 0.1         | %              | 17.9              | 38.0              | 31.7              |  |  |  |  |
| EG005(ED093)T: Total Metals by ICP-AES      |                                                |             |                |                   |                   |                   |  |  |  |  |
| Lead                                        | 7439-92-1                                      | 5           | mg/kg          | 8                 | 14                | 6                 |  |  |  |  |
| EP075(SIM)B: Polynuclear Aromatic H         | EP075(SIM)B: Polynuclear Aromatic Hydrocarbons |             |                |                   |                   |                   |  |  |  |  |
| Naphthalene                                 | 91-20-3                                        | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Acenaphthylene                              | 208-96-8                                       | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Acenaphthene                                | 83-32-9                                        | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Fluorene                                    | 86-73-7                                        | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Phenanthrene                                | 85-01-8                                        | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Anthracene                                  | 120-12-7                                       | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Fluoranthene                                | 206-44-0                                       | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Pyrene                                      | 129-00-0                                       | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Benz(a)anthracene                           | 56-55-3                                        | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Chrysene                                    | 218-01-9                                       | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Benzo(b+j)fluoranthene                      | 205-99-2 205-82-3                              | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Benzo(k)fluoranthene                        | 207-08-9                                       | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Benzo(a)pyrene                              | 50-32-8                                        | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Indeno(1.2.3.cd)pyrene                      | 193-39-5                                       | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Dibenz(a.h)anthracene                       | 53-70-3                                        | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| Benzo(g.h.i)perylene                        | 191-24-2                                       | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| ^ Sum of polycyclic aromatic hydrocarbo     | ns                                             | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| ^ Benzo(a)pyrene TEQ (zero)                 |                                                | 0.5         | mg/kg          | <0.5              | <0.5              | <0.5              |  |  |  |  |
| ^ Benzo(a)pyrene TEQ (half LOR)             |                                                | 0.5         | mg/kg          | 0.6               | 0.6               | 0.6               |  |  |  |  |
| ^ Benzo(a)pyrene TEQ (LOR)                  |                                                | 0.5         | mg/kg          | 1.2               | 1.2               | 1.2               |  |  |  |  |
| EP075(SIM)S: Phenolic Compound Su           | urrogates                                      |             |                |                   |                   |                   |  |  |  |  |
| Phenol-d6                                   | 13127-88-3                                     | 0.5         | %              | 88.1              | 85.6              | 86.4              |  |  |  |  |
| 2-Chlorophenol-D4                           | 93951-73-6                                     | 0.5         | %              | 93.6              | 90.4              | 92.7              |  |  |  |  |
| 2.4.6-Tribromophenol                        | 118-79-6                                       | 0.5         | %              | 72.5              | 71.5              | 69.9              |  |  |  |  |
| EP075(SIM)T: PAH Surrogates                 |                                                |             |                |                   |                   |                   |  |  |  |  |
| 2-Fluorobiphenyl                            | 321-60-8                                       | 0.5         | %              | 94.9              | 91.8              | 94.0              |  |  |  |  |
| Anthracene-d10                              | 1719-06-8                                      | 0.5         | %              | 104               | 101               | 100               |  |  |  |  |
| 4-Terphenyl-d14                             | 1718-51-0                                      | 0.5         | %              | 101               | 94.3              | 98.5              |  |  |  |  |

| Page       | : 32 of 37    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) | Client sample ID |             | VC11_0.0-0.2    | VC07_0.2-0.4      | VC09_0.7-0.8      | VC07_0.5-0.6      | VC07_1.0-1.2      |                   |
|----------------------------------------------|------------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl               | ient sampli | ing date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                                     | CAS Number       | LOR         | Unit            | ES1937483-001     | ES1937483-006     | ES1937483-009     | ES1937483-014     | ES1937483-016     |
|                                              |                  |             |                 | Result            | Result            | Result            | Result            | Result            |
| EG005(ED093)C: Leachable Metals b            | y ICPAES         |             |                 |                   |                   |                   |                   |                   |
| Lead                                         | 7439-92-1        | 0.1         | mg/L            | <0.1              |                   | <0.1              |                   |                   |
| EG035C: Leachable Mercury by FIMS            | 3                |             |                 |                   |                   |                   |                   |                   |
| Mercury                                      | 7439-97-6        | 0.0010      | mg/L            | <0.0010           | <0.0010           |                   | <0.0010           | <0.0010           |
| EP075(SIM)B: Polynuclear Aromatic            | Hydrocarbons     |             |                 |                   |                   |                   |                   |                   |
| Benzo(a)pyrene                               | 50-32-8          | 0.5         | µg/L            | <0.5              |                   | <0.5              |                   |                   |
| EP075(SIM)S: Phenolic Compound S             | urrogates        |             |                 |                   |                   |                   |                   |                   |
| Phenol-d6                                    | 13127-88-3       | 1.0         | %               | 18.8              |                   | 22.7              |                   |                   |
| 2-Chlorophenol-D4                            | 93951-73-6       | 1.0         | %               | 47.6              |                   | 56.9              |                   |                   |
| 2.4.6-Tribromophenol                         | 118-79-6         | 1.0         | %               | 43.2              |                   | 43.6              |                   |                   |
| EP075(SIM)T: PAH Surrogates                  |                  |             |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                             | 321-60-8         | 1.0         | %               | 67.6              |                   | 68.0              |                   |                   |
| Anthracene-d10                               | 1719-06-8        | 1.0         | %               | 64.8              |                   | 74.4              |                   |                   |
| 4-Terphenyl-d14                              | 1718-51-0        | 1.0         | %               | 69.0              |                   | 75.8              |                   |                   |

| Page       | : 33 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) | Client sample ID |              | VC07_0.0-0.5    | VC05_0.0-0.1      | VC03_0.0-0.2      | VC04_0.0-0.1      | VC04_0.7-0.8      |                   |
|----------------------------------------------|------------------|--------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl               | lient sampli | ing date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                     | CAS Number       | LOR          | Unit            | ES1937483-017     | ES1937483-019     | ES1937483-024     | ES1937483-031     | ES1937483-034     |
|                                              |                  |              |                 | Result            | Result            | Result            | Result            | Result            |
| EG005(ED093)C: Leachable Metals by           | ICPAES           |              |                 |                   |                   |                   |                   |                   |
| Lead                                         | 7439-92-1        | 0.1          | mg/L            | 0.1               | <0.1              | <0.1              | <0.1              | <0.1              |
| EG035C: Leachable Mercury by FIMS            |                  |              |                 |                   |                   |                   |                   |                   |
| Mercury                                      | 7439-97-6        | 0.0010       | mg/L            |                   | <0.0010           |                   | <0.0010           |                   |
| EP075(SIM)B: Polynuclear Aromatic H          | ydrocarbons      |              |                 |                   |                   |                   |                   |                   |
| Benzo(a)pyrene                               | 50-32-8          | 0.5          | µg/L            | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| EP075(SIM)S: Phenolic Compound Su            | rrogates         |              |                 |                   |                   |                   |                   |                   |
| Phenol-d6                                    | 13127-88-3       | 1.0          | %               | 19.1              | 17.8              | 22.4              | 16.9              | 23.7              |
| 2-Chlorophenol-D4                            | 93951-73-6       | 1.0          | %               | 46.2              | 41.5              | 54.7              | 44.2              | 54.3              |
| 2.4.6-Tribromophenol                         | 118-79-6         | 1.0          | %               | 45.3              | 42.7              | 40.3              | 49.9              | 39.4              |
| EP075(SIM)T: PAH Surrogates                  |                  |              |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                             | 321-60-8         | 1.0          | %               | 65.3              | 70.0              | 70.7              | 70.0              | 71.8              |
| Anthracene-d10                               | 1719-06-8        | 1.0          | %               | 65.5              | 61.6              | 70.2              | 67.1              | 67.3              |
| 4-Terphenyl-d14                              | 1718-51-0        | 1.0          | %               | 69.9              | 69.2              | 74.7              | 72.3              | 69.2              |

| Page       | : 34 of 37    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) | Client sample ID |              |                | VC02_0.0-0.2      | VC02_0.5-0.6      | VC02_1.0-1.2      | VC01_0.0-0.2      | VC10_0.0-0.2      |
|----------------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl               | lient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                     | CAS Number       | LOR          | Unit           | ES1937483-038     | ES1937483-039     | ES1937483-040     | ES1937483-043     | ES1937483-048     |
|                                              |                  |              |                | Result            | Result            | Result            | Result            | Result            |
| EG005(ED093)C: Leachable Metals by I         | CPAES            |              |                |                   |                   |                   |                   |                   |
| Lead                                         | 7439-92-1        | 0.1          | mg/L           | 0.2               |                   | <0.1              | <0.1              | <0.1              |
| EG035C: Leachable Mercury by FIMS            |                  |              |                |                   |                   |                   |                   |                   |
| Mercury                                      | 7439-97-6        | 0.0010       | mg/L           |                   | <0.0010           | <0.0010           | <0.0010           | <0.0010           |
| EP075(SIM)B: Polynuclear Aromatic Hy         | /drocarbons      |              |                |                   |                   |                   |                   |                   |
| Benzo(a)pyrene                               | 50-32-8          | 0.5          | µg/L           | <0.5              |                   | <0.5              | <0.5              | <0.5              |
| EP075(SIM)S: Phenolic Compound Sur           | rogates          |              |                |                   |                   |                   |                   |                   |
| Phenol-d6                                    | 13127-88-3       | 1.0          | %              | 19.3              |                   | 22.5              | 19.6              | 21.1              |
| 2-Chlorophenol-D4                            | 93951-73-6       | 1.0          | %              | 42.1              |                   | 53.0              | 41.1              | 45.0              |
| 2.4.6-Tribromophenol                         | 118-79-6         | 1.0          | %              | 36.0              |                   | 50.7              | 39.7              | 46.6              |
| EP075(SIM)T: PAH Surrogates                  |                  |              |                |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                             | 321-60-8         | 1.0          | %              | 63.8              |                   | 67.8              | 67.8              | 68.0              |
| Anthracene-d10                               | 1719-06-8        | 1.0          | %              | 61.1              |                   | 61.7              | 61.0              | 62.0              |
| 4-Terphenyl-d14                              | 1718-51-0        | 1.0          | %              | 61.9              |                   | 63.2              | 60.4              | 66.4              |

| Page       | : 35 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) | Client sample ID |             |                | VC02_0.0-0.5      | VC06_0.0-0.1      | VC06_0.3-0.4      | VC12_0.8-0.9      | VC08_0.0-0.1      |
|----------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl               | ient sampli | ng date / time | 30-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |
| Compound                                     | CAS Number       | LOR         | Unit           | ES1937483-053     | ES1937483-055     | ES1937483-056     | ES1937483-065     | ES1937483-069     |
|                                              |                  |             |                | Result            | Result            | Result            | Result            | Result            |
| EG005(ED093)C: Leachable Metals by           | ICPAES           |             |                |                   |                   |                   |                   |                   |
| Lead                                         | 7439-92-1        | 0.1         | mg/L           | 0.7               | 0.8               |                   | <0.1              | <0.1              |
| EG035C: Leachable Mercury by FIMS            |                  |             |                |                   |                   |                   |                   |                   |
| Mercury                                      | 7439-97-6        | 0.0010      | mg/L           | <0.0010           |                   | <0.0010           |                   |                   |
| EP075(SIM)B: Polynuclear Aromatic H          | lydrocarbons     |             |                |                   |                   |                   |                   |                   |
| Benzo(a)pyrene                               | 50-32-8          | 0.5         | µg/L           | <0.5              | <0.5              |                   | <0.5              | <0.5              |
| EP075(SIM)S: Phenolic Compound Su            | ırrogates        |             |                |                   |                   |                   |                   |                   |
| Phenol-d6                                    | 13127-88-3       | 1.0         | %              | 20.7              | 18.2              |                   | 20.8              | 21.2              |
| 2-Chlorophenol-D4                            | 93951-73-6       | 1.0         | %              | 35.9              | 43.9              |                   | 43.9              | 40.2              |
| 2.4.6-Tribromophenol                         | 118-79-6         | 1.0         | %              | 44.1              | 48.4              |                   | 48.1              | 45.8              |
| EP075(SIM)T: PAH Surrogates                  |                  |             |                |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                             | 321-60-8         | 1.0         | %              | 62.3              | 71.7              |                   | 63.1              | 65.4              |
| Anthracene-d10                               | 1719-06-8        | 1.0         | %              | 61.1              | 66.4              |                   | 65.4              | 67.6              |
| 4-Terphenyl-d14                              | 1718-51-0        | 1.0         | %              | 62.6              | 67.1              |                   | 64.4              | 68.4              |

| Page       | : 36 of 37    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) |                                           | Cli         | ent sample ID   | VC08_0.3-0.4      | VC13_0.0-0.1      | VC13_0.3-0.4      | VC14_0.0-0.1      | VC14_0.7-0.8      |  |  |
|----------------------------------------------|-------------------------------------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                              | Cl                                        | ient sampli | ing date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |
| Compound                                     | CAS Number                                | LOR         | Unit            | ES1937483-070     | ES1937483-079     | ES1937483-080     | ES1937483-086     | ES1937483-089     |  |  |
|                                              |                                           |             |                 | Result            | Result            | Result            | Result            | Result            |  |  |
| EG005(ED093)C: Leachable Metals by           | EG005(ED093)C: Leachable Metals by ICPAES |             |                 |                   |                   |                   |                   |                   |  |  |
| Lead                                         | 7439-92-1                                 | 0.1         | mg/L            |                   | <0.1              |                   | <0.1              | <0.1              |  |  |
| EG035C: Leachable Mercury by FIMS            | ;                                         |             |                 |                   |                   |                   |                   |                   |  |  |
| Mercury                                      | 7439-97-6                                 | 0.0010      | mg/L            | <0.0010           |                   | <0.0010           | <0.0010           | <0.0010           |  |  |
| EP075(SIM)B: Polynuclear Aromatic I          | Hydrocarbons                              |             |                 |                   |                   |                   |                   |                   |  |  |
| Benzo(a)pyrene                               | 50-32-8                                   | 0.5         | µg/L            |                   | <0.5              |                   | <0.5              | <0.5              |  |  |
| EP075(SIM)S: Phenolic Compound S             | urrogates                                 |             |                 |                   |                   |                   |                   |                   |  |  |
| Phenol-d6                                    | 13127-88-3                                | 1.0         | %               |                   | 20.8              |                   | 22.6              | 19.5              |  |  |
| 2-Chlorophenol-D4                            | 93951-73-6                                | 1.0         | %               |                   | 41.2              |                   | 56.1              | 52.2              |  |  |
| 2.4.6-Tribromophenol                         | 118-79-6                                  | 1.0         | %               |                   | 45.7              |                   | 50.4              | 45.2              |  |  |
| EP075(SIM)T: PAH Surrogates                  |                                           |             |                 |                   |                   |                   |                   |                   |  |  |
| 2-Fluorobiphenyl                             | 321-60-8                                  | 1.0         | %               |                   | 64.6              |                   | 65.2              | 64.4              |  |  |
| Anthracene-d10                               | 1719-06-8                                 | 1.0         | %               |                   | 63.7              |                   | 76.3              | 67.8              |  |  |
| 4-Terphenyl-d14                              | 1718-51-0                                 | 1.0         | %               |                   | 66.4              |                   | 79.2              | 71.7              |  |  |

| Page       | : 37 of 37    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



# Surrogate Control Limits

| Sub-Matrix: SOIL                          |            | Recovery | Limits (%) |
|-------------------------------------------|------------|----------|------------|
| Compound                                  | CAS Number | Low      | High       |
| EP066S: PCB Surrogate                     |            |          |            |
| Decachlorobiphenyl                        | 2051-24-3  | 39       | 149        |
| EP075(SIM)S: Phenolic Compound Surrogates |            |          |            |
| Phenol-d6                                 | 13127-88-3 | 63       | 123        |
| 2-Chlorophenol-D4                         | 93951-73-6 | 66       | 122        |
| 2.4.6-Tribromophenol                      | 118-79-6   | 40       | 138        |
| EP075(SIM)T: PAH Surrogates               |            |          |            |
| 2-Fluorobiphenyl                          | 321-60-8   | 70       | 122        |
| Anthracene-d10                            | 1719-06-8  | 66       | 128        |
| 4-Terphenyl-d14                           | 1718-51-0  | 65       | 129        |
| EP090S: Organotin Surrogate               |            |          |            |
| Tripropyltin                              |            | 35       | 130        |
| Sub-Matrix: TCLP LEACHATE                 |            | Recovery | Limits (%) |
| Compound                                  | CAS Number | Low      | High       |
| EP075(SIM)S: Phenolic Compound Surrogates |            |          |            |
| Phenol-d6                                 | 13127-88-3 | 10       | 44         |
| 2-Chlorophenol-D4                         | 93951-73-6 | 14       | 94         |
| 2.4.6-Tribromophenol                      | 118-79-6   | 17       | 125        |
| EP075(SIM)T: PAH Surrogates               |            |          |            |
| 2-Fluorobiphenyl                          | 321-60-8   | 20       | 104        |
| Anthracene-d10                            | 1719-06-8  | 27       | 113        |
| 4-Terphenyl-d14                           | 1718-51-0  | 32       | 112        |



#### **QUALITY CONTROL REPORT**

| Work Order              | : ES1937483                                                      | Page                    | : 1 of 14                                             |           |
|-------------------------|------------------------------------------------------------------|-------------------------|-------------------------------------------------------|-----------|
| Client                  | : GHD PTY LTD                                                    | Laboratory              | : Environmental Division Sydney                       |           |
| Contact                 | : SARAH ECCLESHALL                                               | Contact                 | : Customer Services ES                                |           |
| Address                 | : LEVEL 15, 133 CASTLEREAGH STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |           |
| Telephone               | :                                                                | Telephone               | : +61-2-8784 8555                                     |           |
| Project                 | : 12517046                                                       | Date Samples Received   | : 13-Nov-2019                                         |           |
| Order number            | :                                                                | Date Analysis Commenced | : 14-Nov-2019                                         |           |
| C-O-C number            | :                                                                | Issue Date              | 25-Nov-2019                                           | TA        |
| Sampler                 | :                                                                |                         | Hac-MRA NA                                            | A         |
| Site                    | :                                                                |                         |                                                       |           |
| Quote number            | : SY/522/19                                                      |                         | Accorditation                                         | No 925    |
| No. of samples received | : 100                                                            |                         | Accredited for complian                               | nce with  |
| No. of samples analysed | : 73                                                             |                         | ISO/IEC 17025                                         | - Testing |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position                      | Accreditation Category             |
|------------------|-------------------------------|------------------------------------|
| Ankit Joshi      | Inorganic Chemist             | Sydney Inorganics, Smithfield, NSW |
| Celine Conceicao | Senior Spectroscopist         | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar   | Organic Coordinator           | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar   | Organic Coordinator           | Sydney Organics, Smithfield, NSW   |
| Evie Sidarta     | Inorganic Chemist             | Sydney Inorganics, Smithfield, NSW |
| Ivan Taylor      | Analyst                       | Sydney Inorganics, Smithfield, NSW |
| Kim McCabe       | Senior Inorganic Chemist      | Brisbane Inorganics, Stafford, QLD |
| Sarah Ashworth   | Laboratory Manager - Brisbane | Brisbane Organics, Stafford, QLD   |

| Page       | : 2 of 14     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                                  |                          | Laboratory Duplicate (DUP) Report |     |       |                 |                  |         |                     |
|----------------------|----------------------------------|--------------------------|-----------------------------------|-----|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID                 | Method: Compound         | CAS Number                        | LOR | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EG005(ED093)T: Tot   | al Metals by ICP-AE              | S (QC Lot: 2707726)      |                                   |     |       |                 |                  |         |                     |
| ES1937419-031        | Anonymous                        | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | 5               | <5               | 0.00    | No Limit            |
| ES1937483-001        | VC11_0.0-0.2                     | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | 55              | 50               | 10.9    | 0% - 50%            |
| EG005(ED093)T: Tot   | al Metals by ICP-AE              | S (QC Lot: 2707768)      |                                   |     |       |                 |                  |         |                     |
| ES1937483-028        | VC03_1.0-1.2                     | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | <5              | <5               | 0.00    | No Limit            |
| ES1937483-014        | VC07_0.5-0.6                     | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | 10              | 7                | 32.9    | No Limit            |
| EG005(ED093)T: Tot   | al Metals by ICP-AE              | S (QC Lot: 2707770)      |                                   |     |       |                 |                  |         |                     |
| ES1937483-043        | VC01_0.0-0.2                     | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | 156             | 166              | 6.24    | 0% - 20%            |
| ES1937483-061        | VC06_0.5-1.0                     | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | 30              | 8                | 117     | No Limit            |
| EG005(ED093)T: Tot   | al Metals by ICP-AE              | S (QC Lot: 2707800)      |                                   |     |       |                 |                  |         |                     |
| ES1937483-087        | VC14_0.3-0.4                     | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | 20              | 12               | 52.5    | No Limit            |
| ES1937483-080        | VC13_0.3-0.4                     | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | 18              | 37               | 69.7    | No Limit            |
| EG005(ED093)T: Tot   | al Metals by ICP-AE              | S (QC Lot: 2710607)      |                                   |     |       |                 |                  |         |                     |
| ES1937483-006        | VC07_0.2-0.4                     | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | 89              | 79               | 11.0    | 0% - 50%            |
| ES1938021-008        | Anonymous                        | EG005T: Lead             | 7439-92-1                         | 5   | mg/kg | 54              | 43               | 22.9    | 0% - 50%            |
| EA055: Moisture Co   | ntent (Dried @ 105- <sup>-</sup> | 110°C) (QC Lot: 2707729) |                                   |     |       |                 |                  |         |                     |
| ES1937419-034        | Anonymous                        | EA055: Moisture Content  |                                   | 0.1 | %     | 3.4             | 3.8              | 12.8    | No Limit            |
| ES1937483-005        | VC11_0.5-1.0                     | EA055: Moisture Content  |                                   | 0.1 | %     | 29.0            | 27.8             | 4.01    | 0% - 20%            |
| EA055: Moisture Co   | ntent (Dried @ 105- <sup>-</sup> | 110°C) (QC Lot: 2707771) |                                   |     |       |                 |                  |         |                     |
| ES1937483-016        | VC07_1.0-1.2                     | EA055: Moisture Content  |                                   | 0.1 | %     | 17.4            | 18.5             | 6.24    | 0% - 20%            |
| ES1937483-033        | VC04_0.5-0.6                     | EA055: Moisture Content  |                                   | 0.1 | %     | 15.9            | 15.1             | 5.04    | 0% - 20%            |
| EA055: Moisture Co   | ntent (Dried @ 105-*             | 110°C) (QC Lot: 2707772) |                                   |     |       |                 |                  |         |                     |
| ES1937483-048        | VC10_0.0-0.2                     | EA055: Moisture Content  |                                   | 0.1 | %     | 19.4            | 22.5             | 15.2    | 0% - 20%            |
| ES1937483-065        | VC12_0.8-0.9                     | EA055: Moisture Content  |                                   | 0.1 | %     | 16.6            | 16.0             | 3.95    | 0% - 20%            |

| Page       | : 3 of 14     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                        |                                        | [          |     |       | Laboratory L    | Duplicate (DUP) Report | t       |                     |
|----------------------|------------------------|----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                       | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA055: Moisture Co   | ntent (Dried @ 105-110 | °C) (QC Lot: 2707804)                  |            |     |       |                 |                        |         |                     |
| ES1937483-077        | VC08_0.5-1.0           | EA055: Moisture Content                |            | 0.1 | %     | 27.3            | 25.3                   | 7.39    | 0% - 20%            |
| ES1937483-091        | VC14_1.3-1.4           | EA055: Moisture Content                |            | 0.1 | %     | 17.9            | 18.3                   | 2.30    | 0% - 20%            |
| EA055: Moisture Co   | ntent (Dried @ 105-110 | °C) (QC Lot: 2710241)                  |            |     |       |                 |                        |         |                     |
| ES1937483-053        | VC02_0.0-0.5           | EA055: Moisture Content                |            | 0.1 | %     | 49.8            | 51.7                   | 3.66    | 0% - 20%            |
| ES1937840-003        | Anonymous              | EA055: Moisture Content                |            | 0.1 | %     | 7.2             | 6.7                    | 6.94    | 0% - 20%            |
| EA055: Moisture Co   | ntent (Dried @ 105-110 | °C) (QC Lot: 2713070)                  |            |     |       |                 |                        |         |                     |
| ES1937483-029        | VC12_0.0-0.5           | EA055: Moisture Content                |            | 0.1 | %     | 18.4            | 18.2                   | 0.934   | 0% - 20%            |
| EG035T: Total Reco   | overable Mercury by Fl | MS (QC Lot: 2707727)                   |            |     |       |                 |                        |         |                     |
| ES1937483-001        | VC11_0.0-0.2           | EG035T: Mercury                        | 7439-97-6  | 0.1 | mg/kg | 0.8             | 0.4                    | 74.3    | No Limit            |
| ES1937419-031        | Anonymous              | EG035T: Mercury                        | 7439-97-6  | 0.1 | mg/kg | <0.1            | <0.1                   | 0.00    | No Limit            |
| EG035T: Total Reco   | overable Mercury by Fl | MS (QC Lot: 2707769)                   |            |     |       |                 |                        |         |                     |
| ES1937483-014        | VC07_0.5-0.6           | EG035T: Mercury                        | 7439-97-6  | 0.1 | mg/kg | <0.1            | <0.1                   | 0.00    | No Limit            |
| EG035T: Total Reco   | verable Mercurv bv Fl  | MS (QC Lot: 2707801)                   |            |     |       |                 |                        |         |                     |
| ES1937483-080        | VC13 0.3-0.4           | EG035T: Mercury                        | 7439-97-6  | 0.1 | ma/ka | 0.3             | 0.3                    | 0.00    | No Limit            |
| ES1937501-020        | Anonymous              | EG035T: Mercury                        | 7439-97-6  | 0.1 | mg/kg | <0.1            | <0.1                   | 0.00    | No Limit            |
| EG035T: Total Reco   | verable Mercury by Fl  | MS (QC Lot: 2710606)                   |            |     | 0.0   |                 |                        |         |                     |
| ES1937483-006        | VC07 0.2-0.4           | EG035T: Mercury                        | 7439-97-6  | 0.1 | ma/ka | 1.0             | 1.0                    | 0.00    | 0% - 50%            |
| ES1938021-008        | Anonymous              | EG035T: Mercury                        | 7439-97-6  | 0.1 | mg/kg | 0.1             | <0.1                   | 0.00    | No Limit            |
| EP066: Polvchlorina  | ted Biphenvls (PCB) (  | QC Lot: 2701079)                       |            |     |       |                 |                        |         |                     |
| ES1937483-008        | VC09_0.4-0.6           | EP066: Total Polychlorinated biphenyls |            | 0.1 | mg/kg | <0.1            | <0.1                   | 0.00    | No Limit            |
| EP075(SIM)B: Polvn   | uclear Aromatic Hvdro  | carbons (QC Lot: 2701078)              |            |     |       |                 |                        |         |                     |
| ES1937483-014        | VC07 0.5-0.6           | EP075(SIM): Naphthalene                | 91-20-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      | _                      | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Fluorene                   | 86-73-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Anthracene                 | 120-12-7   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Fluoranthene               | 206-44-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Pyrene                     | 129-00-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Benz(a)anthracene          | 56-55-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Chrysene                   | 218-01-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Benzo(b+j)fluoranthene     | 205-99-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        |                                        | 205-82-3   |     |       |                 |                        |         |                     |
|                      |                        | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Benzo(a)pyrene             | 50-32-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                        | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |

| Page       | : 4 of 14     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                           |                                                        |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|---------------------------|--------------------------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                                       | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP075(SIM)B: Polynu  | clear Aromatic Hydrocarbo | ons (QC Lot: 2701078) - continued                      |            |                                   |       |                 |                  |         |                     |
| ES1937483-014        | VC07_0.5-0.6              | EP075(SIM): Sum of polycyclic aromatic<br>hydrocarbons |            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Benzo(a)pyrene TEQ (zero)                  |            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| ES1937483-008        | VC09_0.4-0.6              | EP075(SIM): Naphthalene                                | 91-20-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Acenaphthylene                             | 208-96-8   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Acenaphthene                               | 83-32-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Fluorene                                   | 86-73-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Phenanthrene                               | 85-01-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Anthracene                                 | 120-12-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Fluoranthene                               | 206-44-0   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Pyrene                                     | 129-00-0   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Benz(a)anthracene                          | 56-55-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Chrysene                                   | 218-01-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Benzo(b+j)fluoranthene                     | 205-99-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           |                                                        | 205-82-3   |                                   |       |                 |                  |         |                     |
|                      |                           | EP075(SIM): Benzo(k)fluoranthene                       | 207-08-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Benzo(a)pyrene                             | 50-32-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Indeno(1.2.3.cd)pyrene                     | 193-39-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Dibenz(a.h)anthracene                      | 53-70-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Benzo(g.h.i)perylene                       | 191-24-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Sum of polycyclic aromatic                 |            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | hydrocarbons                                           |            |                                   |       |                 |                  |         |                     |
|                      |                           | EP075(SIM): Benzo(a)pyrene TEQ (zero)                  |            | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| EP075(SIM)B: Polynu  | clear Aromatic Hydrocarbo | ons (QC Lot: 2701090)                                  |            |                                   |       |                 |                  |         |                     |
| ES1937483-024        | VC03_0.0-0.2              | EP075(SIM): Naphthalene                                | 91-20-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Acenaphthylene                             | 208-96-8   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Acenaphthene                               | 83-32-9    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Fluorene                                   | 86-73-7    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Phenanthrene                               | 85-01-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Anthracene                                 | 120-12-7   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Fluoranthene                               | 206-44-0   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Pyrene                                     | 129-00-0   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Benz(a)anthracene                          | 56-55-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Chrysene                                   | 218-01-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Benzo(b+j)fluoranthene                     | 205-99-2   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           |                                                        | 205-82-3   |                                   |       |                 |                  |         |                     |
|                      |                           | EP075(SIM): Benzo(k)fluoranthene                       | 207-08-9   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Benzo(a)pyrene                             | 50-32-8    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Indeno(1.2.3.cd)pyrene                     | 193-39-5   | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
|                      |                           | EP075(SIM): Dibenz(a.h)anthracene                      | 53-70-3    | 0.5                               | mg/kg | <0.5            | <0.5             | 0.00    | No Limit            |
| Page       | 5 of 14       |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                                    |                                        |            |       |       |                 |                  |          |                     |
|----------------------|------------------------------------|----------------------------------------|------------|-------|-------|-----------------|------------------|----------|---------------------|
| Laboratory sample ID | Client sample ID                   | Method: Compound                       | CAS Number | LOR   | Unit  | Original Result | Duplicate Result | RPD (%)  | Recovery Limits (%) |
| EP075(SIM)B: Polynu  | uclear Aromatic Hydroca            | rbons (QC Lot: 2701090) - continued    |            |       |       |                 |                  |          |                     |
| ES1937483-024        | VC03_0.0-0.2                       | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Sum of polycyclic aromatic |            | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | hydrocarbons                           |            |       |       |                 |                  |          |                     |
|                      |                                    | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |            | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
| ES1937483-039        | VC02_0.5-0.6                       | EP075(SIM): Naphthalene                | 91-20-3    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Fluorene                   | 86-73-7    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Anthracene                 | 120-12-7   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Fluoranthene               | 206-44-0   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Pyrene                     | 129-00-0   | 0.5   | mg/kg | 0.5             | 0.5              | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Benz(a)anthracene          | 56-55-3    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Chrysene                   | 218-01-9   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Benzo(b+j)fluoranthene     | 205-99-2   | 0.5   | mg/kg | 0.5             | 0.5              | 0.00     | No Limit            |
|                      |                                    |                                        | 205-82-3   |       |       |                 |                  |          |                     |
|                      |                                    | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Benzo(a)pyrene             | 50-32-8    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      | EP075(SIM): Indeno(1.2.3.cd)pyrene | 193-39-5                               | 0.5        | mg/kg | <0.5  | <0.5            | 0.00             | No Limit |                     |
| EP075(SIM): Diber    |                                    | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      | EP075(SIM): Benzo(g.h.i)perylene   |                                        | 191-24-2   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Sum of polycyclic aromatic |            | 0.5   | mg/kg | 1.0             | 1.0              | 0.00     | No Limit            |
|                      |                                    | hydrocarbons                           |            |       |       |                 |                  |          |                     |
|                      |                                    | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |            | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
| EP075(SIM)B: Polynu  | uclear Aromatic Hydroca            | rbons (QC Lot: 2701091)                |            |       |       |                 |                  |          |                     |
| ES1937483-058        | VC06_0.7-0.8                       | EP075(SIM): Naphthalene                | 91-20-3    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Fluorene                   | 86-73-7    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Anthracene                 | 120-12-7   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Fluoranthene               | 206-44-0   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Pyrene                     | 129-00-0   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Benz(a)anthracene          | 56-55-3    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Chrysene                   | 218-01-9   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Benzo(b+j)fluoranthene     | 205-99-2   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    |                                        | 205-82-3   |       |       |                 |                  |          |                     |
|                      |                                    | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Benzo(a)pyrene             | 50-32-8    | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |
|                      |                                    | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5   | 0.5   | mg/kg | <0.5            | <0.5             | 0.00     | No Limit            |

| Page       | : 6 of 14     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Laboratory sample ID         Method: Compound         CAR         Unit         Original Result         Duplicate Result         RPD (%)         Recovery Limits (%)           EP075(SIM)3: Polynuclear Aromatic Hydrocarbons         (QC L-01: 2701091) - continued         5         mg/kg         <0.5         <0.5         <0.5         0.00         No Limit           ES1937483-058         VCG6_0.7-0.8         EP075(SIM): Benzo(g.h.)perylene         191-24-2         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           ES1937483-075         VCG8_1.5-1.6         EP075(SIM): Benzo(g.hyrene TEQ (zero)          0.5         mg/kg         <0.5         <0.00         No Limit           ES1937483-075         VCG8_1.5-1.6         EP075(SIM): Acenaphthylene         209-96-8         0.5         mg/kg         <0.5         <0.00         No Limit           EP075(SIM): Acenaphthylene         209-96-8         0.5         mg/kg         <0.5         <0.00         No Limit           EP075(SIM): Acenaphthylene         209-96-8         0.5         mg/kg         <0.5         <0.00         No Limit           EP075(SIM): Acenaphthylene         209-96-8         0.5         mg/kg         <0.5         <0.00         No Limit           EP075(SIM): Antracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sub-Matrix: SOIL                                                      |                           |                                        |            |     |       | Laboratory L    | Duplicate (DUP) Report |         |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|----------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| EP075(SIM)8: Polynuclear Aromatic Hydrocarbons (QC Lot: 2701091) - continued           ES1937483-058         VC06_0.7-0.8         EP075(SIM): Denz(a,h)anthracene         53-70.3         0.5         mg/kg         <0.5         <0.0         No Limit           ES1937483-058         VC06_0.7-0.8         EP075(SIM): Denz(a,h)perylene         191-24-2         0.5         mg/kg         <0.5         <0.0         No Limit           EP075(SIM): Enzo(a)prene TEQ (zero)          0.5         mg/kg         <0.5         <0.0         No Limit           ES1937483-075         VC08_1.5-1.6         EP075(SIM): Aconaphthylene         <0.5         mg/kg         <0.5         <0.0         No Limit           EP075(SIM): Aconaphthylene         0.40         mg/kg         <0.5         <0.5         <0.00         No Limit           EP075(SIM): Aconaphthylene         0.40         mg/kg         <0.5         <0.5         <0.00         No Limit           EP075(SIM): Planothylene         2049-66         0.5         mg/kg         <0.5         <0.5         <0.00         No Limit           EP075(SIM): Planothylene         2049-60         0.5         mg/kg         <0.5         <0.5         <0.00         No Limit           EP075(SIM): Planothylene         20-12          <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Laboratory sample ID                                                  | Client sample ID          | Method: Compound                       | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| ES1937483-058         VC06_0.7-0.8         EP075(SIM): Dibenz(a,h)apthracene         53-70-3         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Benzo(g,h,i)perylene         191-24-2         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EP075(SIM)B: Polynu                                                   | clear Aromatic Hydrocarbo | ons (QC Lot: 2701091) - continued      |            |     |       |                 |                        |         |                     |
| EP075(SIM): Benzo(g.h.i)perylene         191-24-2         0.5         mg/kg         <0.5         <0.0         No Limit           EP075(SIM): Sum of polycyclic aromatic<br>hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ES1937483-058                                                         | VC06_0.7-0.8              | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Sum of polycyclic aromatic          0.5         mg/kg         <0.5         <0.0         No Limit           ES1937483-075         VC08_1.5-1.6         EP075(SIM): Benzo(a)pyrene TEQ (zero)          0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                           | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| hydrocarbons         Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                           | EP075(SIM): Sum of polycyclic aromatic |            | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Benzo(a)pyrene TEQ (zero)          0.5         mg/kg         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                           | hydrocarbons                           |            |     |       |                 |                        |         |                     |
| ES1937483-075         VC08_1.5-1.6         EP075(SIM): Naphthalene         91-20-3         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Acenaphthylene         208-96-8         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                           | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |            | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Acenaphthylene         208-96-8         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Acenaphthene         83-32-9         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ES1937483-075                                                         | VC08_1.5-1.6              | EP075(SIM): Naphthalene                | 91-20-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Acenaphthene         83-32-9         0.5         mg/kg         <0.5         <0.0         No Limit           EP075(SIM): Fluorene         86-73-7         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                           | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Fluorene         86-73-7         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Phenanthrene         85-01-8         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                           | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Phenanthrene         85-01-8         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Anthracene         120-12-7         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                           | EP075(SIM): Fluorene                   | 86-73-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Anthracene         120-12-7         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Fluoranthene         206-44-0         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                           | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Fluoranthene         206-44-0         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Pyrene         129-00-0         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                           | EP075(SIM): Anthracene                 | 120-12-7   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Pyrene         129-00-         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Benz(a)anthracene         56-55-3         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                           | EP075(SIM): Fluoranthene               | 206-44-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Benz(a)anthracene         56-55-3         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Chrysene         218-01-9         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                           | EP075(SIM): Pyrene                     | 129-00-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Chrysene         218-01-9         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Benzo(b+j)fluoranthene         205-99-2         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                           | EP075(SIM): Benz(a)anthracene          | 56-55-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Benzo(b+j)fluoranthene         205-99-2<br>205-82-3         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Benzo(k)fluoranthene         207-08-9         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                           | EP075(SIM): Chrysene                   | 218-01-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| 205-82-3         Image: Construction of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o |                                                                       |                           | EP075(SIM): Benzo(b+j)fluoranthene     | 205-99-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Benzo(k)fluoranthene         207-08-9         0.5         mg/kg         <0.5         0.00         No Limit           EP075(SIM): Benzo(a)pyrene         50-32-8         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                           |                                        | 205-82-3   |     |       |                 |                        |         |                     |
| EP075(SIM): Benzo(a)pyrene         50-32-8         0.5         mg/kg         <0.5         <0.5         0.00         No Limit           EP075(SIM): Indeno(1.2.3.cd)pyrene         193-39-5         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                           | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Indeno(1.2.3.cd)pyrene         193-39-5         0.5         mg/kg         <0.5         0.00         No Limit           EP075(SIM): Dibenz(a.h)anthracene         53-70-3         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                           | EP075(SIM): Benzo(a)pyrene             | 50-32-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Dibenz(a.h)anthracene         53-70-3         0.5         mg/kg         <0.5         <0.00         No Limit           EP075(SIM): Benzo(g.h.i)perylene         191-24-2         0.5         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |                           | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Benzo(g.h.i)perylene         191-24-2         0.5         mg/kg         <0.5         <0.00         No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EP075(SIM): Dibenz(a.h)anthracene<br>EP075(SIM): Benzo(g.h.i)perylene |                           | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                           | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Sum of polycyclic aromatic U.S mig/kg <-U.S < < U.S mig/kg < < U.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                           | EP075(SIM): Sum of polycyclic aromatic |            | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                           | hydrocarbons                           |            |     |       |                 |                        |         |                     |
| EP075(SIM): Benzo(a)pyrene TEQ (zero) 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                           | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |            | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 2701122)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EP075(SIM)B: Polynu                                                   | clear Aromatic Hydrocarbo | ons (QC Lot: 2701122)                  |            |     |       |                 |                        |         |                     |
| ES1937404-028 Anonymous EP075(SIM): Naphthalene 91-20-3 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ES1937404-028                                                         | Anonymous                 | EP075(SIM); Naphthalene                | 91-20-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Acenaphthylene 208-96-8 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                           | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Acenaphthene 83-32-9 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                           | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Fluorene 86-73-7 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                           | EP075(SIM): Fluorene                   | 86-73-7    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Phenanthrene 85-01-8 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                           | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Anthracene 120-12-7 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                           | EP075(SIM): Anthracene                 | 120-12-7   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Fluoranthene 206-44-0 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                           | EP075(SIM): Eluoranthene               | 206-44-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Pyrene         129-00-0         0.5         mg/kg         <0.5         0.00         No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |                           | EP075(SIM): Pyrene                     | 129-00-0   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Benz(a)anthracene 56-55-3 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                           | EP075(SIM): Benz(a)anthracene          | 56-55-3    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Chrysene 218-01-9 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                           | EP075(SIM): Chrysene                   | 218-01-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Benzo(b+i)fluoranthene 205-99-2 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |                           | EP075(SIM): Benzo(b+i)fluoranthene     | 205-99-2   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| 205-82-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |                           |                                        | 205-82-3   |     | 55    |                 |                        |         |                     |
| EP075(SIM): Benzo(k)fluoranthene 207-08-9 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                           | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM): Benzo(a)pyrene 50-32-8 0.5 mg/kg <0.5 <0.5 0.00 No Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                           | EP075(SIM): Benzo(a)pyrene             | 50-32-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |

| Page       | : 7 of 14     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                                 |                                        |            |        |         | Laboratory L    | Duplicate (DUP) Report |         |                     |
|----------------------|---------------------------------|----------------------------------------|------------|--------|---------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID                | Method: Compound                       | CAS Number | LOR    | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP075(SIM)B: Polynu  | clear Aromatic Hydrocarbo       | ns (QC Lot: 2701122) - continued       |            |        |         |                 |                        |         |                     |
| ES1937404-028        | Anonymous                       | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3    | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Sum of polycyclic aromatic |            | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | hydrocarbons                           |            |        |         |                 |                        |         |                     |
|                      |                                 | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |            | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
| ES1937404-040        | Anonymous                       | EP075(SIM): Naphthalene                | 91-20-3    | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Acenaphthylene             | 208-96-8   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Acenaphthene               | 83-32-9    | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Fluorene                   | 86-73-7    | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Phenanthrene               | 85-01-8    | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Anthracene                 | 120-12-7   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Fluoranthene               | 206-44-0   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Pyrene                     | 129-00-0   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Benz(a)anthracene          | 56-55-3    | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Chrysene                   | 218-01-9   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Benzo(b+j)fluoranthene     | 205-99-2   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 |                                        | 205-82-3   |        |         |                 |                        |         |                     |
|                      |                                 | EP075(SIM): Benzo(k)fluoranthene       | 207-08-9   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Benzo(a)pyrene             | 50-32-8    | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Indeno(1.2.3.cd)pyrene     | 193-39-5   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Dibenz(a.h)anthracene      | 53-70-3    | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Benzo(g.h.i)perylene       | 191-24-2   | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EP075(SIM): Sum of polycyclic aromatic |            | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | hydrocarbons                           |            |        |         |                 |                        |         |                     |
|                      |                                 | EP075(SIM): Benzo(a)pyrene TEQ (zero)  |            | 0.5    | mg/kg   | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP090: Organotin Co  | mpounds (QC Lot: 271306         | ))                                     |            |        |         |                 |                        |         |                     |
| ES1937483-051        | VC10_0.0-0.5                    | EP090: Tributyltin                     | 56573-85-4 | 0.5    | µgSn/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| Sub-Matrix: WATER    |                                 |                                        |            |        |         | Laboratory L    | Duplicate (DUP) Report |         |                     |
| Laboratory sample ID | Client sample ID                | Method: Compound                       | CAS Number | LOR    | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG005(ED093)C: Lead  | chable Metals by ICPAES(        | QC Lot: 2706695)                       |            |        |         |                 |                        |         |                     |
| ES1937276-001        | Anonymous                       | EG005C: Lead                           | 7439-92-1  | 0.1    | mg/L    | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES1937423-002        | Anonymous                       | EG005C: Lead                           | 7439-92-1  | 0.1    | mg/L    | <0.1            | <0.1                   | 0.00    | No Limit            |
| EG005(ED093)C: Lead  | chable Metals by ICPAES(        | QC Lot: 2706696)                       |            |        |         |                 |                        |         |                     |
| ES1937483-043        | VC01_0.0-0.2                    | EG005C: Lead                           | 7439-92-1  | 0.1    | mg/L    | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES1937535-003        | Anonymous                       | EG005C: Lead                           | 7439-92-1  | 0.1    | mg/L    | 0.1             | 0.1                    | 0.00    | No Limit            |
| EG035C: Leachable M  | /<br>Iercury by FIMS (QC Lot: 2 | 707496)                                |            |        |         |                 |                        |         |                     |
| ES1937422-015        | Anonymous                       | EG035C: Mercury                        | 7439-97-6  | 0.0001 | mg/L    | <0.0010         | <0.0010                | 0.00    | No Limit            |
| ES1937535-003        | Anonymous                       | EG035C: Mercury                        | 7439-97-6  | 0.0001 | mg/L    | <0.0010         | <0.0010                | 0.00    | No Limit            |

| Page       | : 8 of 14    |
|------------|--------------|
| Work Order | ES1937483    |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Sub-Matrix: WATER                                   |                             |                  |            |        |      | Laboratory D    | Duplicate (DUP) Report |         |                     |
|-----------------------------------------------------|-----------------------------|------------------|------------|--------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID                                | Client sample ID            | Method: Compound | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG035C: Leachable M                                 | lercury by FIMS (QC Lot: 27 | 711136)          |            |        |      |                 |                        |         |                     |
| ES1937418-002                                       | Anonymous                   | EG035C: Mercury  | 7439-97-6  | 0.0001 | mg/L | <0.0010         | <0.0010                | 0.00    | No Limit            |
| ES1937701-003                                       | Anonymous                   | EG035C: Mercury  | 7439-97-6  | 0.0001 | mg/L | <0.0010         | <0.0010                | 0.00    | No Limit            |
| EG035C: Leachable Mercury by FIMS (QC Lot: 2713255) |                             |                  |            |        |      |                 |                        |         |                     |
| ES1937483-080                                       | VC13_0.3-0.4                | EG035C: Mercury  | 7439-97-6  | 0.0001 | mg/L | <0.0010         | <0.0010                | 0.00    | No Limit            |



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                            |     |         | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-------------------------------------------------------------|-----|---------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                             | -   |         | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound CAS Number                                 | LOR | Unit    | Result            | Concentration                         | LCS                | Low      | High       |  |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 2707726)     |     |         |                   |                                       |                    |          |            |  |
| EG005T: Lead 7439-92-1                                      | 5   | mg/kg   | <5                | 40 mg/kg                              | 91.8               | 80.0     | 114        |  |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 2707768)     |     |         |                   |                                       |                    |          |            |  |
| EG005T: Lead 7439-92-1                                      | 5   | mg/kg   | <5                | 40 mg/kg                              | 90.7               | 80.0     | 114        |  |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 2707770)     |     |         |                   |                                       |                    |          |            |  |
| EG005T: Lead 7439-92-1                                      | 5   | mg/kg   | <5                | 40 mg/kg                              | 94.4               | 80.0     | 114        |  |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 2707800)     |     |         |                   |                                       |                    |          |            |  |
| EG005T: Lead 7439-92-1                                      | 5   | mg/kg   | <5                | 40 mg/kg                              | 97.4               | 80.0     | 114        |  |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 2710607)     |     |         |                   |                                       |                    |          |            |  |
| EG005T: Lead 7439-92-1                                      | 5   | mg/kg   | <5                | 40 mg/kg                              | 103                | 80.0     | 114        |  |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: 2707727)  |     |         |                   |                                       |                    |          |            |  |
| EG035T: Mercury 7439-97-6                                   | 0.1 | mg/kg   | <0.1              | 2.57 mg/kg                            | 82.9               | 70.0     | 105        |  |
| EG035T: Total Recoverable Mercury by EIMS (OCI of: 2707769) |     |         |                   |                                       |                    |          |            |  |
| EG035T: Mercury 7439-97-6                                   | 0.1 | mg/kg   | <0.1              | 2.57 mg/kg                            | 93.3               | 70.0     | 105        |  |
| EG035T: Total Recoverable Mercury by EIMS (OCI of: 2707801) |     |         |                   |                                       |                    |          |            |  |
| EG035T: Mercury 7439-97-6                                   | 0.1 | mg/kg   | <0.1              | 2.57 mg/kg                            | 93.7               | 70.0     | 105        |  |
| EG035T: Total Recoverable Mercury by FIMS (OCLot: 2710606)  |     |         |                   |                                       |                    |          |            |  |
| EG035T: Mercury 7439-97-6                                   | 0.1 | mg/kg   | <0.1              | 2.57 mg/kg                            | 92.9               | 70.0     | 105        |  |
| EN33: TCL P Leach (OCL of: 2701092)                         |     |         |                   |                                       |                    |          |            |  |
| EN33a: Initial pH                                           | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: After HCl pH                                         | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: Final pH                                             | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33: TCLP Leach (QCLot: 2701093)                           |     |         |                   |                                       |                    |          |            |  |
| EN33a: Initial pH                                           | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: After HCl pH                                         | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: Final pH                                             | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33: TCLP Leach (QCLot: 2701094)                           |     |         |                   |                                       |                    |          |            |  |
| EN33a: Initial pH                                           | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: After HCl pH                                         | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: Final pH                                             | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33: TCLP Leach (QCLot: 2705480)                           |     |         |                   |                                       |                    |          |            |  |
| EN33a: Initial pH                                           | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: After HCl pH                                         | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |

| Page       | : 10 of 14   |
|------------|--------------|
| Work Order | ES1937483    |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Sub-Matrix: SOIL                                    |                      |     |         | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-----------------------------------------------------|----------------------|-----|---------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                     |                      |     |         | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                    | CAS Number           | LOR | Unit    | Result            | Concentration                         | LCS                | Low      | High       |  |
| EN33: TCLP Leach (QCLot: 2705480) - continued       |                      |     |         |                   |                                       |                    |          |            |  |
| EN33a: Final pH                                     |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33: TCLP Leach (QCLot: 2706713)                   |                      |     |         |                   |                                       |                    |          |            |  |
| EN33a: Initial pH                                   |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: After HCl pH                                 |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: Final pH                                     |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33: TCLP Leach (QCLot: 2706714)                   |                      |     |         |                   |                                       |                    |          |            |  |
| EN33a: Initial pH                                   |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: After HCl pH                                 |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: Final pH                                     |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33: TCLP Leach (QCLot: 2711098)                   |                      |     |         |                   |                                       |                    |          |            |  |
| EN33a: Initial pH                                   |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: After HCl pH                                 |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EN33a: Final pH                                     |                      | 0.1 | pH Unit | 1.0               |                                       |                    |          |            |  |
| EP066: Polychlorinated Biphenyls (PCB) (QCLot: 2701 | 079)                 |     |         |                   |                                       |                    |          |            |  |
| EP066: Total Polychlorinated biphenyls              |                      | 0.1 | mg/kg   | <0.1              | 1 mg/kg                               | 94.0               | 62.0     | 126        |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC  | CLot: 2701078)       |     |         |                   |                                       |                    |          |            |  |
| EP075(SIM): Naphthalene                             | 91-20-3              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 90.4               | 77.0     | 125        |  |
| EP075(SIM): Acenaphthylene                          | 208-96-8             | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 89.7               | 72.0     | 124        |  |
| EP075(SIM): Acenaphthene                            | 83-32-9              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 92.5               | 73.0     | 127        |  |
| EP075(SIM): Fluorene                                | 86-73-7              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 91.5               | 72.0     | 126        |  |
| EP075(SIM): Phenanthrene                            | 85-01-8              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 94.1               | 75.0     | 127        |  |
| EP075(SIM): Anthracene                              | 120-12-7             | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 94.1               | 77.0     | 127        |  |
| EP075(SIM): Fluoranthene                            | 206-44-0             | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 92.9               | 73.0     | 127        |  |
| EP075(SIM): Pyrene                                  | 129-00-0             | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 92.1               | 74.0     | 128        |  |
| EP075(SIM): Benz(a)anthracene                       | 56-55-3              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 89.8               | 69.0     | 123        |  |
| EP075(SIM): Chrysene                                | 218-01-9             | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 93.6               | 75.0     | 127        |  |
| EP075(SIM): Benzo(b+j)fluoranthene                  | 205-99-2<br>205-82-3 | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 88.4               | 68.0     | 116        |  |
| EP075(SIM): Benzo(k)fluoranthene                    | 207-08-9             | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 92.0               | 74.0     | 126        |  |
| EP075(SIM): Benzo(a)pyrene                          | 50-32-8              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 90.3               | 70.0     | 126        |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                  | 193-39-5             | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 88.0               | 61.0     | 121        |  |
| EP075(SIM): Dibenz(a.h)anthracene                   | 53-70-3              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 85.0               | 62.0     | 118        |  |
| EP075(SIM): Benzo(g.h.i)perylene                    | 191-24-2             | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 89.5               | 63.0     | 121        |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC  | CLot: 2701090)       |     |         |                   |                                       |                    |          |            |  |
| EP075(SIM): Naphthalene                             | 91-20-3              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 121                | 77.0     | 125        |  |
| EP075(SIM): Acenaphthylene                          | 208-96-8             | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 120                | 72.0     | 124        |  |
| EP075(SIM): Acenaphthene                            | 83-32-9              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 120                | 73.0     | 127        |  |
| EP075(SIM): Fluorene                                | 86-73-7              | 0.5 | mg/kg   | <0.5              | 6 mg/kg                               | 122                | 72.0     | 126        |  |

| Page       | : 11 of 14    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL                                  |                     |          | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                    |          |                    |  |
|---------------------------------------------------|---------------------|----------|-------------------|---------------------------------------|---------------|--------------------|----------|--------------------|--|
|                                                   |                     | Report   |                   | Report                                | Spike         | Spike Recovery (%) | Recovery | ecovery Limits (%) |  |
| Method: Compound                                  | CAS Number          | LOR      | Unit              | Result                                | Concentration | LCS                | Low      | High               |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (C | QCLot: 2701090) - c | ontinued |                   |                                       |               |                    |          |                    |  |
| EP075(SIM): Phenanthrene                          | 85-01-8             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 126                | 75.0     | 127                |  |
| EP075(SIM): Anthracene                            | 120-12-7            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 125                | 77.0     | 127                |  |
| EP075(SIM): Fluoranthene                          | 206-44-0            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 124                | 73.0     | 127                |  |
| EP075(SIM): Pyrene                                | 129-00-0            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 124                | 74.0     | 128                |  |
| EP075(SIM): Benz(a)anthracene                     | 56-55-3             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 120                | 69.0     | 123                |  |
| EP075(SIM): Chrysene                              | 218-01-9            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 122                | 75.0     | 127                |  |
| EP075(SIM): Benzo(b+j)fluoranthene                | 205-99-2            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 111                | 68.0     | 116                |  |
|                                                   | 205-82-3            |          |                   |                                       |               |                    |          |                    |  |
| EP075(SIM): Benzo(k)fluoranthene                  | 207-08-9            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 118                | 74.0     | 126                |  |
| EP075(SIM): Benzo(a)pyrene                        | 50-32-8             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 121                | 70.0     | 126                |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                | 193-39-5            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 112                | 61.0     | 121                |  |
| EP075(SIM): Dibenz(a.h)anthracene                 | 53-70-3             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 109                | 62.0     | 118                |  |
| EP075(SIM): Benzo(g.h.i)perylene                  | 191-24-2            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 113                | 63.0     | 121                |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (0 | QCLot: 2701091)     |          |                   |                                       |               |                    |          |                    |  |
| EP075(SIM): Naphthalene                           | 91-20-3             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 97.8               | 77.0     | 125                |  |
| EP075(SIM): Acenaphthylene                        | 208-96-8            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 97.8               | 72.0     | 124                |  |
| EP075(SIM): Acenaphthene                          | 83-32-9             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 97.7               | 73.0     | 127                |  |
| EP075(SIM): Fluorene                              | 86-73-7             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 97.3               | 72.0     | 126                |  |
| EP075(SIM): Phenanthrene                          | 85-01-8             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 100                | 75.0     | 127                |  |
| EP075(SIM): Anthracene                            | 120-12-7            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 102                | 77.0     | 127                |  |
| EP075(SIM): Fluoranthene                          | 206-44-0            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 100                | 73.0     | 127                |  |
| EP075(SIM): Pyrene                                | 129-00-0            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 100                | 74.0     | 128                |  |
| EP075(SIM): Benz(a)anthracene                     | 56-55-3             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 98.7               | 69.0     | 123                |  |
| EP075(SIM): Chrysene                              | 218-01-9            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 101                | 75.0     | 127                |  |
| EP075(SIM): Benzo(b+j)fluoranthene                | 205-99-2            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 99.8               | 68.0     | 116                |  |
|                                                   | 205-82-3            |          |                   |                                       |               |                    |          |                    |  |
| EP075(SIM): Benzo(k)fluoranthene                  | 207-08-9            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 102                | 74.0     | 126                |  |
| EP075(SIM): Benzo(a)pyrene                        | 50-32-8             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 96.5               | 70.0     | 126                |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                | 193-39-5            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 92.0               | 61.0     | 121                |  |
| EP075(SIM): Dibenz(a.h)anthracene                 | 53-70-3             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 87.2               | 62.0     | 118                |  |
| EP075(SIM): Benzo(g.h.i)perylene                  | 191-24-2            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 94.7               | 63.0     | 121                |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (C | QCLot: 2701122)     |          |                   |                                       |               |                    |          |                    |  |
| EP075(SIM): Naphthalene                           | 91-20-3             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 98.0               | 77.0     | 125                |  |
| EP075(SIM): Acenaphthylene                        | 208-96-8            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 93.8               | 72.0     | 124                |  |
| EP075(SIM): Acenaphthene                          | 83-32-9             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 99.1               | 73.0     | 127                |  |
| EP075(SIM): Fluorene                              | 86-73-7             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 97.1               | 72.0     | 126                |  |
| EP075(SIM): Phenanthrene                          | 85-01-8             | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 95.2               | 75.0     | 127                |  |
| EP075(SIM): Anthracene                            | 120-12-7            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 93.6               | 77.0     | 127                |  |
| EP075(SIM): Fluoranthene                          | 206-44-0            | 0.5      | mg/kg             | <0.5                                  | 6 mg/kg       | 96.6               | 73.0     | 127                |  |

| Page       | : 12 of 14    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Out Matter 201                                      |                      |        |         | Mothod Blank (MB) | Laboratory Control Snike (LCS) Penort |                              |           |            |  |
|-----------------------------------------------------|----------------------|--------|---------|-------------------|---------------------------------------|------------------------------|-----------|------------|--|
| Sub-Matrix: SOIL                                    |                      |        |         | Report            | Sniko                                 | Spike Pecovery (%)           | Bocovoru  | Limite (%) |  |
| Matheads Operational                                | CAS Number           | LOR    | Unit    | Posult            | Concentration                         |                              | Low       | High       |  |
| ED075(CIMA)D: Deluguele en Anemetie Undresenhene (O |                      | - Lon  | onn     | Kesun             | Concentration                         | 200                          | 200       | ingii      |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (Q   | 120 00 0             |        | ma/ka   | <0.5              | 6 ma/ka                               | 08.0                         | 74.0      | 128        |  |
|                                                     | 56 55 3              | 0.5    | mg/kg   | <0.5              | 6 mg/kg                               | 90.9                         | 69.0      | 120        |  |
| EP075(SIM): Benz(a)anthracene                       | 218 01 0             | 0.5    | mg/kg   | <0.5              | 6 mg/kg                               | 91.0                         | 75.0      | 125        |  |
| EP075(SIM): Chrysene                                | 210-01-9             | 0.5    | mg/kg   | <0.5              | 6 mg/kg                               | 100                          | 68.0      | 127        |  |
| EP075(SIM): Benzo(b+J)nuorantnene                   | 205-99-2<br>205-82-3 | 0.5    | iiig/kg | -0.5              | o nig/kg                              | 100                          | 00.0      | 110        |  |
| EP075(SIM): Benzo(k)fluoranthene                    | 207-08-9             | 0.5    | mg/kg   | <0.5              | 6 mg/kg                               | 95.4                         | 74.0      | 126        |  |
| EP075(SIM): Benzo(a)pyrene                          | 50-32-8              | 0.5    | mg/kg   | <0.5              | 6 mg/kg                               | 89.2                         | 70.0      | 126        |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                  | 193-39-5             | 0.5    | mg/kg   | <0.5              | 6 mg/kg                               | 91.0                         | 61.0      | 121        |  |
| EP075(SIM): Dibenz(a.h)anthracene                   | 53-70-3              | 0.5    | mg/kg   | <0.5              | 6 mg/kg                               | 97.7                         | 62.0      | 118        |  |
| EP075(SIM): Benzo(g.h.i)perylene                    | 191-24-2             | 0.5    | mg/kg   | <0.5              | 6 mg/kg                               | 91.4                         | 63.0      | 121        |  |
| EP090: Organotin Compounds (QCLot: 2713069)         |                      |        |         |                   |                                       |                              |           |            |  |
| EP090: Tributyltin                                  | 56573-85-4           | 0.5    | µgSn/kg | <0.5              | 1.25 µgSn/kg                          | 104                          | 52.0      | 139        |  |
| Sub-Matrix: WATER                                   |                      |        |         | Method Blank (MB) |                                       | Laboratory Control Spike (LC | S) Report |            |  |
|                                                     |                      |        |         | Report            | Spike                                 | Spike Recovery (%)           | Recovery  | Limits (%) |  |
| Method: Compound                                    | CAS Number           | LOR    | Unit    | Result            | Concentration                         | LCS                          | Low       | High       |  |
| EG005(ED093)C: Leachable Metals by ICPAES (QCLot    | t: 2706695)          |        |         |                   |                                       |                              |           |            |  |
| EG005C: Lead                                        | 7439-92-1            | 0.1    | mg/L    | <0.1              | 0.1 mg/L                              | 96.9                         | 80.0      | 118        |  |
| EG005(ED093)C: Leachable Metals by ICPAES (QCLot    | t: 2706696)          |        |         |                   |                                       |                              |           |            |  |
| EG005C: Lead                                        | 7439-92-1            | 0.1    | mg/L    | <0.1              | 0.1 mg/L                              | 96.4                         | 80.0      | 118        |  |
| EG035C: Leachable Mercury by FIMS (QCLot: 2707496   | 6)                   |        |         |                   |                                       |                              |           |            |  |
| EG035C: Mercury                                     | 7439-97-6            | 0.0001 | mg/L    | <0.0001           | 0.01 mg/L                             | 99.4                         | 79.0      | 109        |  |
| EG035C: Leachable Mercury by FIMS (QCLot: 271113)   | 6)                   |        |         |                   |                                       |                              |           |            |  |
| EG035C: Mercury                                     | 7439-97-6            | 0.0001 | mg/L    | <0.0001           | 0.01 mg/L                             | 99.0                         | 79.0      | 109        |  |
| EG035C: Leachable Mercury by FIMS (QCLot: 271325    | 5)                   |        |         |                   |                                       |                              |           |            |  |
| EG035C: Mercury                                     | 7439-97-6            | 0.0001 | mg/L    | <0.0001           | 0.01 mg/L                             | 104                          | 79.0      | 109        |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(Q    | CLot: 2705372)       |        |         |                   |                                       |                              |           |            |  |
| EP075(SIM): Benzo(a)pyrene                          | 50-32-8              | 0.5    | μg/L    | <0.5              | 5 µg/L                                | 79.7                         | 63.3      | 117        |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(Q    | CLot: 2707071)       |        |         |                   |                                       |                              |           |            |  |
| EP075(SIM): Benzo(a)pyrene                          | 50-32-8              | 0.5    | μg/L    | <0.5              | 5 µg/L                                | 86.6                         | 63.3      | 117        |  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL                      |                             | Ма            | atrix Spike (MS) Repor | t          |           |
|---------------------------------------|-----------------------------|---------------|------------------------|------------|-----------|
|                                       |                             | Spike         | SpikeRecovery(%)       | Recovery L | imits (%) |
| Laboratory sample ID Client sample ID | Method: Compound CAS Number | Concentration | MS                     | Low        | High      |

| Page       | : 13 of 14    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: SOIL     |                                                |                                        | [          | Ма            | ntrix Spike (MS) Report |              |         |
|----------------------|------------------------------------------------|----------------------------------------|------------|---------------|-------------------------|--------------|---------|
|                      |                                                |                                        |            | Spike         | SpikeRecovery(%)        | Recovery Lim | its (%) |
| Laboratory sample ID | Client sample ID                               | Method: Compound                       | CAS Number | Concentration | MS                      | Low          | High    |
| EG005(ED093)T: T     | otal Metals by ICP-AES (QCLot: 2707726)        |                                        |            |               |                         |              |         |
| ES1937419-031        | Anonymous                                      | EG005T: Lead                           | 7439-92-1  | 250 mg/kg     | 93.4                    | 70.0         | 130     |
| EG005(ED093)T: T     | otal Metals by ICP-AES (QCLot: 2707768)        |                                        |            |               |                         |              |         |
| ES1937483-014        | VC07_0.5-0.6                                   | EG005T: Lead                           | 7439-92-1  | 250 mg/kg     | 95.4                    | 70.0         | 130     |
| EG005(ED093)T: T     | otal Metals by ICP-AES (QCLot: 2707770)        |                                        |            |               |                         |              |         |
| ES1937483-043        | VC01_0.0-0.2                                   | EG005T: Lead                           | 7439-92-1  | 250 mg/kg     | 89.6                    | 70.0         | 130     |
| EG005(ED093)T: T     | otal Metals by ICP-AES (QCLot: 2707800)        |                                        |            |               |                         |              |         |
| ES1937483-080        | VC13_0.3-0.4                                   | EG005T: Lead                           | 7439-92-1  | 250 mg/kg     | 91.6                    | 70.0         | 130     |
| EG005(ED093)T: T     | otal Metals by ICP-AES (QCLot: 2710607)        |                                        |            |               |                         |              |         |
| ES1937483-006        | VC07_0.2-0.4                                   | EG005T: Lead                           | 7439-92-1  | 250 mg/kg     | 94.4                    | 70.0         | 130     |
| EG035T: Total Red    | coverable Mercury by FIMS (QCLot: 2707727)     |                                        |            |               |                         |              |         |
| ES1937419-031        | Anonymous                                      | EG035T: Mercury                        | 7439-97-6  | 5 mg/kg       | 89.2                    | 70.0         | 130     |
| EG035T: Total Red    | coverable Mercury by FIMS (QCLot: 2707769)     |                                        |            |               |                         |              |         |
| ES1937483-014        | VC07_0.5-0.6                                   | EG035T: Mercury                        | 7439-97-6  | 5 mg/kg       | 98.0                    | 70.0         | 130     |
| EG035T: Total Red    | coverable Mercury by FIMS (QCLot: 2707801)     |                                        |            |               |                         |              |         |
| ES1937483-080        | VC13_0.3-0.4                                   | EG035T: Mercury                        | 7439-97-6  | 5 mg/kg       | 95.6                    | 70.0         | 130     |
| EG035T: Total Red    | coverable Mercury by FIMS (QCLot: 2710606)     |                                        |            |               |                         |              |         |
| ES1937483-006        | VC07_0.2-0.4                                   | EG035T: Mercury                        | 7439-97-6  | 5 mg/kg       | 91.0                    | 70.0         | 130     |
| EP066: Polychlorir   | nated Biphenyls (PCB) (QCLot: 2701079)         |                                        |            |               |                         |              |         |
| ES1937483-008        | VC09_0.4-0.6                                   | EP066: Total Polychlorinated biphenyls |            | 1 mg/kg       | 84.0                    | 70.0         | 130     |
| EP075(SIM)B: Poly    | nuclear Aromatic Hydrocarbons (QCLot: 2701078) |                                        |            |               |                         |              |         |
| ES1937483-008        | VC09_0.4-0.6                                   | EP075(SIM): Acenaphthene               | 83-32-9    | 10 mg/kg      | 128                     | 70.0         | 130     |
|                      |                                                | EP075(SIM): Pyrene                     | 129-00-0   | 10 mg/kg      | # 140                   | 70.0         | 130     |
| EP075(SIM)B: Poly    | nuclear Aromatic Hydrocarbons (QCLot: 2701090) |                                        |            |               |                         |              |         |
| ES1937483-024        | VC03_0.0-0.2                                   | EP075(SIM): Acenaphthene               | 83-32-9    | 10 mg/kg      | 114                     | 70.0         | 130     |
|                      |                                                | EP075(SIM): Pyrene                     | 129-00-0   | 10 mg/kg      | 110                     | 70.0         | 130     |
| EP075(SIM)B: Poly    | nuclear Aromatic Hydrocarbons (QCLot: 2701091) |                                        |            |               |                         |              |         |
| ES1937483-058        | VC06_0.7-0.8                                   | EP075(SIM): Acenaphthene               | 83-32-9    | 10 mg/kg      | 93.8                    | 70.0         | 130     |
|                      |                                                | EP075(SIM): Pyrene                     | 129-00-0   | 10 mg/kg      | 92.2                    | 70.0         | 130     |
| EP075(SIM)B: Poly    | nuclear Aromatic Hydrocarbons (QCLot: 2701122) |                                        |            |               |                         |              |         |
| ES1937404-028        | Anonymous                                      | EP075(SIM): Acenaphthene               | 83-32-9    | 10 mg/kg      | 100                     | 70.0         | 130     |
|                      |                                                | EP075(SIM): Pyrene                     | 129-00-0   | 10 mg/kg      | 98.0                    | 70.0         | 130     |
| EP090: Organotin     | Compounds (QCLot: 2713069)                     |                                        |            |               |                         |              |         |
| ES1937483-053        | VC02_0.0-0.5                                   | EP090: Tributyltin                     | 56573-85-4 | 1.25 µgSn/kg  | 106                     | 20.0         | 130     |
| Sub-Matrix: WATER    |                                                |                                        |            | Ма            | trix Spike (MS) Report  |              |         |

| Page       | : 14 of 14    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Sub-Matrix: WATER    |                                            |                  | Γ          | Ма            | trix Spike (MS) Report |              |          |
|----------------------|--------------------------------------------|------------------|------------|---------------|------------------------|--------------|----------|
|                      |                                            |                  |            | Spike         | SpikeRecovery(%)       | Recovery Lir | nits (%) |
| Laboratory sample ID | Client sample ID                           | Method: Compound | CAS Number | Concentration | MS                     | Low          | High     |
| EG005(ED093)C: L     | eachable Metals by ICPAES (QCLot: 2706695) |                  |            |               |                        |              |          |
| ES1937276-002        | Anonymous                                  | EG005C: Lead     | 7439-92-1  | 1 mg/L        | 93.8                   | 70.0         | 130      |
| EG005(ED093)C: L     | eachable Metals by ICPAES (QCLot: 2706696) |                  |            |               |                        |              |          |
| ES1937483-048        | VC10_0.0-0.2                               | EG005C: Lead     | 7439-92-1  | 1 mg/L        | 106                    | 70.0         | 130      |
| EG035C: Leachabl     | e Mercury by FIMS (QCLot: 2707496)         |                  |            |               |                        |              |          |
| ES1937483-001        | VC11_0.0-0.2                               | EG035C: Mercury  | 7439-97-6  | 0.01 mg/L     | 88.1                   | 70.0         | 130      |
| EG035C: Leachabl     | e Mercury by FIMS (QCLot: 2711136)         |                  |            |               |                        |              |          |
| ES1937422-017        | Anonymous                                  | EG035C: Mercury  | 7439-97-6  | 0.01 mg/L     | 84.9                   | 70.0         | 130      |
| EG035C: Leachabl     | e Mercury by FIMS (QCLot: 2713255)         |                  |            |               |                        |              |          |
| ES1937483-080        | VC13_0.3-0.4                               | EG035C: Mercury  | 7439-97-6  | 0.01 mg/L     | 73.4                   | 70.0         | 130      |



| QA/QC Compliance Assessment to assist with Quality Review |                    |                         |                                 |  |  |  |  |
|-----------------------------------------------------------|--------------------|-------------------------|---------------------------------|--|--|--|--|
| Work Order                                                | ES1937483          | Page                    | : 1 of 16                       |  |  |  |  |
| Client                                                    |                    | Laboratory              | : Environmental Division Sydney |  |  |  |  |
| Contact                                                   | : SARAH ECCLESHALL | Telephone               | : +61-2-8784 8555               |  |  |  |  |
| Project                                                   | : 12517046         | Date Samples Received   | : 13-Nov-2019                   |  |  |  |  |
| Site                                                      | :                  | Issue Date              | : 25-Nov-2019                   |  |  |  |  |
| Sampler                                                   | :                  | No. of samples received | : 100                           |  |  |  |  |
| Order number                                              | :                  | No. of samples analysed | : 73                            |  |  |  |  |
|                                                           |                    |                         |                                 |  |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

#### **Outliers : Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.



## **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: SOIL

| Compound Group Name                            | Laboratory Sample ID | Client Sample ID | Analyte | CAS Number | Data  | Limits    | Comment                          |
|------------------------------------------------|----------------------|------------------|---------|------------|-------|-----------|----------------------------------|
| Matrix Spike (MS) Recoveries                   |                      |                  |         |            |       |           |                                  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons | ES1937483008         | VC09_0.4-0.6     | Pyrene  | 129-00-0   | 140 % | 70.0-130% | Recovery greater than upper data |
|                                                |                      |                  |         |            |       |           | quality objective                |

#### Regular Sample Surrogates

#### Sub-Matrix: SOIL

| Compound Group Name                       | Laboratory Sample ID | Client Sample ID     | Analyte           | CAS Number | Data   | Limits        | Comment                          |
|-------------------------------------------|----------------------|----------------------|-------------------|------------|--------|---------------|----------------------------------|
| Samples Submitted                         |                      |                      |                   |            |        |               |                                  |
| EP075(SIM)S: Phenolic Compound Surrogates | ES1937483-031        | VC04_0.0-0.1         | 2-Chlorophenol-D4 | 93951-73-6 | 123 %  | 66.0-122      | Recovery greater than upper data |
|                                           |                      |                      |                   |            |        | %             | quality objective                |
| EP075(SIM)T: PAH Surrogates               | ES1937483-001        | VC11_0.0-0.2         | 2-Fluorobiphenyl  | 321-60-8   | 129 %  | 70.0-122      | Recovery greater than upper data |
|                                           |                      |                      |                   |            |        | %             | quality objective                |
| EP075(SIM)T: PAH Surrogates               | ES1937483-003        | VC11_1.0-1.2         | 2-Fluorobiphenyl  | 321-60-8   | 126 %  | 70.0-122      | Recovery greater than upper data |
|                                           |                      |                      |                   |            |        | %             | quality objective                |
| EP075(SIM)T: PAH Surrogates               | ES1937483-004        | VC11_0.0-0.5         | 2-Fluorobiphenyl  | 321-60-8   | 123 %  | 70.0-122      | Recovery greater than upper data |
|                                           |                      |                      |                   |            |        | %             | quality objective                |
| EP075(SIM)T: PAH Surrogates               | ES1937483-005        | VC11_0.5-1.0         | 2-Fluorobiphenyl  | 321-60-8   | 126 %  | 70.0-122      | Recovery greater than upper data |
|                                           |                      |                      |                   |            |        | %             | quality objective                |
| EP075(SIM)T: PAH Surrogates               | ES1937483-006        | VC07_0.2-0.4         | 2-Fluorobiphenyl  | 321-60-8   | 127 %  | 70.0-122      | Recovery greater than upper data |
|                                           | E0 4007 400 000      | N (000 0 / 0 0       |                   |            | 107.0/ | %             | quality objective                |
| EP075(SIM)T: PAH Surrogates               | ES1937483-008        | VC09_0.4-0.6         | 2-Fluorobiphenyl  | 321-60-8   | 127 %  | 70.0-122      | Recovery greater than upper data |
|                                           | E04007400.004        | 1004.07.00           |                   |            | 404.0/ | %             | quality objective                |
| EP075(SIM)1: PAH Surrogates               | ES1937483-034        | VC04_0.7-0.8         | 2-Fluorobiphenyl  | 321-60-8   | 124 %  | 70.0-122      | Recovery greater than upper data |
|                                           | E04007400.044        | V(C00, 0, 0, 0, 0, 5 |                   |            | 400.0/ | %             | quality objective                |
| EP075(SIM)1: PAH Surrogates               | ES1937483-011        | VC09_0.0-0.5         | 2-Fluorobiphenyl  | 321-60-8   | 128 %  | 70.0-122      | Recovery greater than upper data |
|                                           | E04007400.040        | V(000, 0, 5, 4, 0    |                   |            | 405.0/ | %             | quality objective                |
| EP075(SIM)1: PAH Surrogates               | ES1937483-012        | VC09_0.5-1.0         | 2-Fluorobiphenyl  | 321-60-8   | 125 %  | 70.0-122      | Recovery greater than upper data |
|                                           | E 21027492 015       |                      |                   | 001.00.0   | 105.0/ | %             | quality objective                |
| EP075(SIM)1: PAH Surrogates               | ES 193/403-015       | VC07_0.7-0.8         | 2-Fluorobiphenyl  | 321-60-8   | 123 %  | 70.0-122      | Recovery greater than upper data |
| ED075/SIMIT: DALL Surregator              | ES1037/83 016        | VC07 1012            | 0 Elucarabiah and | 201.00.0   | 126 %  | %             | quality objective                |
| EF075(SIM)1. FAH Sulfogales               | L31957405-010        | VC07_1.0-1.2         | 2-Fluorobipnenyi  | 321-60-8   | 120 /0 | 70.0-122      | Recovery greater than upper data |
|                                           | ES1027492 019        | VC07 0 5 1 0         |                   | 001.00.0   | 122 0/ | %             |                                  |
| EP075(SIM)1. PAR Surrogates               | E31937403-010        | VC07_0.5-1.0         | 2-Fluorobipnenyi  | 321-60-8   | 133 70 | 70.0-122      | Recovery greater than upper data |
| ED075/SIM)T: DAH Surrogates               | ES1037/83-010        | VC05_0_0_0_1         | 2 Elucrobinhonyl  | 201 60 8   | 128 %  | %<br>70.0.100 | quality objective                |
| LF 075(SIM)T. FAIT Surroyates             | 201007400-010        | V005_0.0-0.1         | 2-Fluorobiphenyi  | 321-00-0   | 120 /0 | 10.0-122      | Recovery greater than upper data |
| EP075/SIM)T: PAH Surrogates               | ES1937483-020        | VC05_0.5-0.7         | 2 Elucrobinhonyl  | 221 60 9   | 128 %  | 70            | quality objective                |
|                                           | 201007400-020        | 000_0.0 0.1          | 2-riuoropiphenyi  | 321-00-0   | 120 /0 | 10.0-122      | Recovery greater than upper data |
| EP075(SIM)T: PAH Surrogates               | ES1937483-023        | VC05_0.5-0.9         | 2 Elucrobinhonyl  | 221 60 9   | 126 %  | 70            | quality objective                |
| LF 075(SIM)1. FAIT SUITOYALES             | L01907400-020        | v000_0.0-0.8         | ∠-Fiuorobipnenyi  | 321-00-8   | 120 /0 | 10.0-122      | Recovery greater than upper data |
|                                           |                      |                      |                   |            |        | 70            |                                  |

| Page       | : 3 of 16     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



#### Sub-Matrix: SOIL

| Compound Group Name           | Laboratory Sample ID | Client Sample ID | Analyte          | CAS Number | Data  | Limits   | Comment                          |
|-------------------------------|----------------------|------------------|------------------|------------|-------|----------|----------------------------------|
| Samples Submitted - Continued |                      |                  |                  |            |       |          |                                  |
| EP075(SIM)T: PAH Surrogates   | ES1937483-049        | VC10_0.5-0.6     | 2-Fluorobiphenyl | 321-60-8   | 135 % | 70.0-122 | Recovery greater than upper data |
|                               |                      |                  |                  |            |       | %        | quality objective                |
| EP075(SIM)T: PAH Surrogates   | ES1937483-063        | VC12_0.3-0.4     | 2-Fluorobiphenyl | 321-60-8   | 129 % | 70.0-122 | Recovery greater than upper data |
|                               |                      |                  |                  |            |       | %        | quality objective                |
| EP075(SIM)T: PAH Surrogates   | ES1937483-066        | VC12_1.0-1.1     | 2-Fluorobiphenyl | 321-60-8   | 125 % | 70.0-122 | Recovery greater than upper data |
|                               |                      |                  |                  |            |       | %        | quality objective                |

## **Outliers : Analysis Holding Time Compliance**

| Method         Date stratebin / Program         Exaction / Program         Date analyses         Due for enalyses         Due for enalyses <th>Matrix: SOIL</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matrix: SOIL                               |               |              |                          |                 |               |                  |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|--------------|--------------------------|-----------------|---------------|------------------|-----------------|
| Container / Client Sample (D(s)         Date extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method                                     |               |              | Extraction / Preparation |                 |               | Analysis         |                 |
| Soli Glass Jar - Unpreserved         Soli Glass Jar - Unpreserved           18-Nov-2019       13-Nov-2019       5         VC11_0.0-0.5,       VC11_0.12,            18-Nov-2019       5         VC11_0.0-0.5,       VC11_0.0-0.5,       VC00_0.0-0.5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Container / Client Sample ID(s)            |               | Date extract | d Due for extraction     | Days<br>overdue | Date analysed | Due for analysis | Days<br>overdue |
| Soil Glass Jar - Unpreserved           18-Nov-2019       13-Nov-2019       5         VC11_0.0-0.2,       VC11_0.5.1.0,       VC09_0.4-0.6,       VC09_0.7-0.8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EA055: Moisture Content (Dried @ 105-110°C | C)            |              |                          |                 |               |                  |                 |
| VC11_0.0-0.2,       VC11_0.1.2,            18-Nov-2019       13-Nov-2019       5         VC11_0.0-0.5,       VC10_0.5.1.0,       VC09_0.0.6,       VC09_0.0.6,       VC09_0.0.6,       VC09_0.0.6,       VC09_0.0.6,       VC09_0.0.6,       VC07_0.5.0,       VC03_0.0.0,       VC03_0.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil Glass Jar - Unpreserved               |               |              |                          |                 |               |                  |                 |
| VC11_0.0-0.5,       VC11_0.5-1.0,         VC09_0.4-0.6,       VC09_0.7-0.8,         VC09_0.0-0.5,       VC09_0.0-0.5,         VC09_0.5-1.0,       VC07_0.5-0.6,         VC07_0.7-0.8,       VC07_10-1.2,         VC05_0.5-0.7,       VC05_0.5-0.9,         VC03_0.0-0.2,       VC03_0.4-0.6,         VC03_0.0-0.2,       VC03_0.4-0.6,         VC03_0.0-1.1,       VC04_0.0-0.1,         VC02_0.0-1.2,       VC03_0.4-0.6,         VC03_0.0-0,2,       VC03_0.4-0.6,         VC03_0.0-0,2,       VC03_0.4-0.6,         VC03_0.0-1,1,5,       VC04_0.0-0.1,         VC02_0.0-1,5,       VC02_0.0-0,5         Soli Glass Jar - Unpreserved          VC02_0.0-0,5       VC02_0.0-0,5         VC12_0.0-0,5          VC12_0.0-0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VC11_0.0-0.2,                              | VC11_1.0-1.2, |              |                          |                 | 18-Nov-2019   | 13-Nov-2019      | 5               |
| VC09_0.4-0.6,       VC09_0.7-0.8,         VC09_0.8-1.0,       VC09_0.0-0.5,         VC09_0.5-1.0,       VC07_0.5-0.6,         VC07_0.7-0.8,       VC07_0.10-1.2,         VC07_0.5-1.0,       VC05_0.5-0.9,         VC03_0.6-0.7,       VC03_0.4-0.6,         VC03_0.6-0.7,       VC03_0.4-0.6,         VC03_0.5-1.0,       VC03_0.4-0.6,         VC03_0.5-1.0,       VC03_0.4-0.6,         VC03_0.5-1.0,       VC03_0.4-0.6,         VC03_0.5-1.0,       VC04_0.0-0.1,         VC02_0.10-1.2,       VC02_1.0-1.5,         VC01_0.0-0,2,       vc01_0.4-0.6,         VC02_0.5-0.6       VC02_0.0-0.2,         Soli Glass Jar - Unpreserved          VC02_0.5-0.6       VC02_0.0-0.5         VC12_0.0-0.5          VC12_0.0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VC11_0.0-0.5,                              | VC11_0.5-1.0, |              |                          |                 |               |                  |                 |
| VC09_0.8-1.0,       VC09_0.0-0.5,         VC09_0.5-1.0,       VC07_0.5-0.6,         VC07_0.7-0.8,       VC07_1.0-1.2,         VC07_0.5-1.0,       VC05_0.5-0.7,         VC03_0.5-0.7,       VC03_0.4-0.6,         VC03_0.6-0.7,       VC03_0.4-0.6,         VC03_0.6-0.7,       VC03_0.4-0.6,         VC03_0.6-0.7,       VC03_0.4-0.6,         VC03_0.6-0.7,       VC03_0.4-0.6,         VC03_0.6-0.7,       VC03_0.4-0.6,         VC03_0.6-1.1,       VC04_0.0-0.1,         VC02_0.5-1.0,       VC02_1.0-1.5,         VC01_0.0-0.2,       vc01_0.4-0.6,         VC02_0.5-1.0       VC02_0.0-0.2,         VC01_0.0-0.2,       vc01_0.4-0.6,         VC02_0.5-1.0       VC02_0.0-0.2,         Soil Glass Jar - Unpreserved          VC02_0.5-0.6,       VC02_0.0-0.5         Soil Glass Jar - Unpreserved          VC12_0.0-0.5          Soil Glass Jar - Unpreserved          VC12_0.0-0.5          VC12_0.0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VC09_0.4-0.6,                              | VC09_0.7-0.8, |              |                          |                 |               |                  |                 |
| VC09_0.5-1.0,       VC07_0.5-0.6,         VC09_0.5-1.0,       VC07_1.0-1.2,         VC07_0.7-0.8,       VC07_0.5-0,         VC05_0.5-0.7,       VC05_0.5-0,         VC03_0.0-0.2,       VC03_0.4-0,         VC03_0.6-0.7,       VC03_1.0-1.2,         VC03_0.5-1.0,       VC04_0.0-0.1,         VC02_1.0-1.2,       VC02_1.0-1.5,         VC01_0.0-0.2,       vC01_0.4-0.6,         VC02_0.5-1.0,       VC02_1.0-1.5,         VC01_0.0-0.2,       vC01_0.4-0.6,         VC02_0.5-1.0,       VC02_1.0-1.5,         VC01_0.0-0.2,       vC01_0.4-0.6,         VC02_0.5-1.0,       VC02_0.0-0.2,         Soli Glass Jar - Unpreserved          VC02_0.5-0,       VC02_0.0-0.2,         VC02_0.5-0,6,       VC02_0.0-0.5         Soli Glass Jar - Unpreserved          VC12_0.0-0.5          VC12_0.0-0.5          VC12_0.0-0.5          VC12_0.0-0.5          VC12_0.0-0.5          VC12_0.0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VC09_0.8-1.0,                              | VC09_0.0-0.5, |              |                          |                 |               |                  |                 |
| VC07_0.7-0.8,       VC07_1.0-1.2,         VC07_0.5-1.0,       VC05_0.0-0.1,         VC05_0.5-0.7,       VC05_0.5-0.9,         VC03_0.0-0.2,       VC03_0.4-0.6,         VC03_0.6-0.7,       VC03_0.1-1.2,         VC03_0.5-1.0,       VC04_0.0-0.1,         VC02_1.0-1.2,       VC02_1.0-1.5,         VC02_0.5-1.0       VC02_1.0-1.5,         VC02_0.5-1.0       VC02_1.0-1.6,         VC02_0.5-1.0       VC02_0.0-0.2,         VC01_0.0-0.2,       vc01_0.4-0.6,         VC02_0.5-1.0       VC02_0.0-0.2,         VC07_0.2-0.4,       VC02_0.0-0.2,         VC02_0.5-0.6,       VC02_0.0-0.5         Soil Glass Jar - Unpreserved          VC12_0.0-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VC09_0.5-1.0,                              | VC07_0.5-0.6, |              |                          |                 |               |                  |                 |
| VC07_0.5-1.0,       VC05_0.0-0.1,       VC05_0.5-0.9,       VC05_0.5-0.9,       VC03_0.0-0.2,       VC03_0.4-0.6,       VC03_0.0-0.2,       VC03_0.0-0.1,       VC03_0.0-0.1,       VC03_0.0-0.1,       VC03_0.0-0.1,       VC03_0.0-0.1,       VC02_0.0-0.1,       VC02_0.0-0.1,       VC02_0.0-0.2,       VC01_0.0-0.2,       VC01_0.0-0.2,       VC02_0.0-0.2,       VC01_0.0-0.2,       VC02_0.0-0.2,       VC01_0.0-0.2,       VC02_0.0-0.2,       VC02_0.0-0.5       I3-Nov-2019       I3-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VC07_0.7-0.8,                              | VC07_1.0-1.2, |              |                          |                 |               |                  |                 |
| VC05_0.5-0.7,       VC05_0.5-0.9,       VC03_0.4-0.6,       VC03_0.4-0.6,       VC03_0.6-0.7,       VC03_1.0-1.2,       VC03_0.1-0.1,       VC04_0.0-0.1,       VC02_1.0-1.5,       VC02_1.0-1.5,       VC01_0.0-0.2,       Image: Non-2019       13-Nov-2019       6         Soil Glass Jar - Unpreserved       Image: Non-2019       Image: Non-2019       Image: Non-2019       13-Nov-2019       7         VC01_0.0-0.5       Image: Non-2019       Image: Non-2019       Image: Non-2019       Image: Non-2019       13-Nov-2019       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VC07_0.5-1.0,                              | VC05_0.0-0.1, |              |                          |                 |               |                  |                 |
| VC03_0.0-0.2,       VC03_0.4-0.6,       VC03_0.6-0.7,       VC03_1.0-1.2,       VC03_0.5-1.0,       VC04_0.0-0.1,       VC02_1.0-1.5,       VC02_1.0-1.5,       VC02_1.0-1.5,       VC01_0.0-0.2,       VC01_0.0-0.2,       VC01_0.0-0.2,       VC01_0.0-0.2,       VC02_0.5-1.0,       VC02_0.5-1.0,       VC02_0.0-0,       Image: Non-2019       Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VC05_0.5-0.7,                              | VC05_0.5-0.9, |              |                          |                 |               |                  |                 |
| VC03_0.6-0.7,       VC03_1.0-1.2,       VC03_0.5-1.0,       VC04_0.0-0.1,       VC02_1.0-1.2,       VC02_1.0-1.5,       VC02_1.0-1.5,       VC01_0.0-0.2,       VC01_0.0-0.4-0.6,       VC02_0.5-1.0       Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o                                                                                          | VC03_0.0-0.2,                              | VC03_0.4-0.6, |              |                          |                 |               |                  |                 |
| VC03_0.5-1.0,       VC04_0.0-0.1,       VC02_1.0-1.5,       VC02_1.0-1.5,       VC02_1.0-1.5,       VC02_0.5-1.0       Image: Constant of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the                                                      | VC03_0.6-0.7,                              | VC03_1.0-1.2, |              |                          |                 |               |                  |                 |
| VC02_1.0-1.2,       VC02_1.0-1.5,       VC02_0.1-0.5,       Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state                           | VC03_0.5-1.0,                              | VC04_0.0-0.1, |              |                          |                 |               |                  |                 |
| VC01_0.0-0.2,       vc01_0.4-0.6,       Image: constraint of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the                   | VC02_1.0-1.2,                              | VC02_1.0-1.5, |              |                          |                 |               |                  |                 |
| VC02_0.5-1.0         Image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constraint of the image: Constrainter of the image: Constrainter of the image: Constra | VC01_0.0-0.2,                              | vc01_0.4-0.6, |              |                          |                 |               |                  |                 |
| Soil Glass Jar - Unpreserved         VC02_0.0-0.2,         VC02_0.0-0.2,         Image: Provide the symbolic term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of term of                   | VC02_0.5-1.0                               |               |              |                          |                 |               |                  |                 |
| VC07_0.2-0.4,         VC02_0.0-0.2,           19-Nov-2019         13-Nov-2019         6           VC02_0.5-0.6,         VC02_0.0-0.5         VC02_0.0-0.5            19-Nov-2019         13-Nov-2019         6           Soil Glass Jar - Unpreserved            20-Nov-2019         13-Nov-2019         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Soil Glass Jar - Unpreserved               |               |              |                          |                 |               |                  |                 |
| VC02_0.5-0.6,         VC02_0.0-0.5         Image: Colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored col          | VC07_0.2-0.4,                              | VC02_0.0-0.2, |              |                          |                 | 19-Nov-2019   | 13-Nov-2019      | 6               |
| Soil Glass Jar - Unpreserved          End         Image: Figure 1         Figure 2         Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VC02_0.5-0.6,                              | VC02_0.0-0.5  |              |                          |                 |               |                  |                 |
| VC12_0.0-0.5 20-Nov-2019 13-Nov-2019 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Soil Glass Jar - Unpreserved               |               |              |                          |                 |               |                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VC12_0.0-0.5                               |               |              |                          |                 | 20-Nov-2019   | 13-Nov-2019      | 7               |

| Page       | : 4 of 16     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



| Matrix: SOIL                                  |                                    |                |                          |                 |               |                  |                 |
|-----------------------------------------------|------------------------------------|----------------|--------------------------|-----------------|---------------|------------------|-----------------|
| Method                                        |                                    |                | Extraction / Preparation |                 |               |                  |                 |
| Container / Client Sample ID(s)               |                                    | Date extracted | Due for extraction       | Days<br>overdue | Date analysed | Due for analysis | Days<br>overdue |
| EA055: Moisture Content (Dried @ 105-110°C)   | - Analysis Holding Time Compliance |                |                          |                 |               |                  |                 |
| Soil Glass Jar - Unpreserved                  |                                    |                |                          |                 |               |                  |                 |
| VC04_0.5-0.6,                                 | VC04_0.7-0.8,                      |                |                          |                 | 18-Nov-2019   | 14-Nov-2019      | 4               |
| VC04_0.9-1.0,                                 | VC10_0.0-0.2,                      |                |                          |                 |               |                  |                 |
| VC10_0.5-0.6,                                 | VC06_0.3-0.4,                      |                |                          |                 |               |                  |                 |
| VC06_0.5-0.6,                                 | VC06_0.7-0.8,                      |                |                          |                 |               |                  |                 |
| VC06_0.8-0.9,                                 | VC06_0.0-0.5,                      |                |                          |                 |               |                  |                 |
| VC06_0.5-1.0,                                 | VC12_0.8-0.9,                      |                |                          |                 |               |                  |                 |
| VC12_1.0-1.1,                                 | VC08_0.3-0.4,                      |                |                          |                 |               |                  |                 |
| VC08_0.5-0.6,                                 | VC08_0.7-0.8,                      |                |                          |                 |               |                  |                 |
| VC08_1.0-1.1,                                 | VC08_1.3-1.4,                      |                |                          |                 |               |                  |                 |
| VC08_1.5-1.6,                                 | VC08_0.0-0.5,                      |                |                          |                 |               |                  |                 |
| VC08_0.5-1.0,                                 | VC13_0.3-0.4,                      |                |                          |                 |               |                  |                 |
| VC13_0.5-0.6,                                 | VC13_0.7-0.8,                      |                |                          |                 |               |                  |                 |
| VC13_1.0-1.1,                                 | VC13_0.0-0.5,                      |                |                          |                 |               |                  |                 |
| VC13_0.5-1.0,                                 | VC14_0.0-0.1,                      |                |                          |                 |               |                  |                 |
| VC14_0.3-0.4,                                 | VC14-0.5-0.6,                      |                |                          |                 |               |                  |                 |
| VC14_0.7-0.8,                                 | VC14_1.3-1.4,                      |                |                          |                 |               |                  |                 |
| VC14_0.0-0.5,                                 | VC14_0.5-1.0                       |                |                          |                 |               |                  |                 |
| Soil Glass Jar - Unpreserved                  |                                    |                |                          |                 |               |                  |                 |
| VC12_0.3-0.4,                                 | VC12_0.5-0.6                       |                |                          |                 | 19-Nov-2019   | 14-Nov-2019      | 5               |
| Soil Glass Jar - Unpreserved                  |                                    |                |                          |                 |               |                  |                 |
| VC10_0.0-0.5                                  |                                    |                |                          |                 | 20-Nov-2019   | 14-Nov-2019      | 6               |
| EN33: TCLP Leach                              |                                    |                |                          |                 |               |                  |                 |
| Non-Volatile Leach: 14 day HT(e.g. SV organic | cs)                                |                |                          |                 |               |                  |                 |
| VC11_0.0-0.2,                                 | VC09_0.7-0.8,                      | 14-Nov-2019    | 13-Nov-2019              | 1               |               |                  |                 |
| VC07_0.0-0.5,                                 | VC05_0.0-0.1,                      |                |                          |                 |               |                  |                 |
| VC03_0.0-0.2,                                 | VC04_0.0-0.1,                      |                |                          |                 |               |                  |                 |
| VC02_0.0-0.2,                                 | VC01_0.0-0.2,                      |                |                          |                 |               |                  |                 |
| VC02_0.0-0.5                                  |                                    |                |                          |                 |               |                  |                 |
| Non-Volatile Leach: 14 day HT(e.g. SV organic | cs)                                |                |                          |                 |               |                  |                 |
| VC02_1.0-1.2                                  |                                    | 15-Nov-2019    | 13-Nov-2019              | 2               |               |                  |                 |
| Non-Volatile Leach: 14 day HT(e.g. SV organic | cs)                                |                |                          |                 |               |                  |                 |
| VC04_0.7-0.8,                                 | VC06_0.0-0.1                       | 15-Nov-2019    | 14-Nov-2019              | 1               |               |                  |                 |
| EP066: Polychlorinated Biphenyls (PCB)        |                                    |                |                          |                 |               |                  |                 |
| Soil Glass Jar - Unpreserved                  |                                    |                |                          |                 |               |                  |                 |
| VC09_0.4-0.6,                                 | VC07_0.5-1.0,                      | 14-Nov-2019    | 13-Nov-2019              | 1               |               |                  |                 |
| VC05_0.0-0.1                                  |                                    |                |                          |                 |               |                  |                 |
| EP075/SIM)B: Polynuclear Aromatic Hydrocart   | one                                |                |                          |                 |               |                  |                 |

| Page       | : 5 of 16     |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



#### Matrix: SOIL Method Extraction / Preparation Analysis Due for analysis Container / Client Sample ID(s) Date extracted Due for extraction Date analysed Days Days overdue overdue EP075(SIM)B: Polynuclear Aromatic Hydrocarbons - Analysis Holding Time Compliance Soil Glass Jar - Unpreserved VC11 0.0-0.2, VC11 1.0-1.2, 14-Nov-2019 13-Nov-2019 1 ----\_\_\_\_ ----VC11 0.0-0.5, VC11 0.5-1.0, VC07\_0.2-0.4, VC09\_0.4-0.6, VC09\_0.7-0.8, VC09\_0.8-1.0, VC09 0.0-0.5, VC09 0.5-1.0, VC07\_0.5-0.6, VC07\_0.7-0.8, VC07\_1.0-1.2, VC07\_0.5-1.0, VC05 0.0-0.1, VC05\_0.5-0.7, VC05 0.5-0.9 Soil Glass Jar - Unpreserved VC03\_0.0-0.2, VC03\_0.4-0.6, 14-Nov-2019 13-Nov-2019 1 ----\_\_\_\_ ----VC03\_0.6-0.7, VC03\_1.0-1.2, VC03\_0.5-1.0, VC04\_0.0-0.1, VC02\_0.0-0.2, VC02\_0.5-0.6, VC02\_1.0-1.2, VC02\_1.0-1.5, VC01 0.0-0.2, vc01\_0.4-0.6, VC02\_0.5-1.0 Soil Glass Jar - Unpreserved 15-Nov-2019 14-Nov-2019 VC14\_0.3-0.4, VC14-0.5-0.6, 1 \_\_\_\_ \_\_\_\_ ----VC14 0.7-0.8, VC14\_1.3-1.4, VC14 0.0-0.5, VC14 0.5-1.0 EP090: Organotin Compounds Soil Glass Jar - Unpreserved VC12\_0.0-0.5, VC02\_0.0-0.5 20-Nov-2019 13-Nov-2019 7 ----\_\_\_\_ ----Soil Glass Jar - Unpreserved VC10 0.0-0.5 20-Nov-2019 14-Nov-2019 6 ------------

#### **Outliers : Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type | Co | unt     | Rate   | e (%)    | Quality Control Specification  |
|-----------------------------|----|---------|--------|----------|--------------------------------|
| Method                      | QC | Regular | Actual | Expected |                                |
| Laboratory Duplicates (DUP) |    |         |        |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0  | 32      | 0.00   | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)          |    |         |        |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0  | 32      | 0.00   | 5.00     | NEPM 2013 B3 & ALS QC Standard |

| Page       | : 6 of 16   |
|------------|-------------|
| Work Order | ES1937483   |
| Client     | GHD PTY LTD |
| Project    | 12517046    |



## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                               |               |             | Evaluation: $*$ = Holding time breach ; $\checkmark$ = V |                          |            |               |                  |            |  |
|--------------------------------------------|---------------|-------------|----------------------------------------------------------|--------------------------|------------|---------------|------------------|------------|--|
| Method Container / Client Sample ID(s)     |               | Sample Date | E                                                        | Extraction / Preparation |            |               | Analysis         |            |  |
|                                            |               |             | Date extracted                                           | Due for extraction       | Evaluation | Date analysed | Due for analysis | Evaluation |  |
| EA055: Moisture Content (Dried @ 105-110°C | )             |             |                                                          |                          |            |               |                  |            |  |
| Soil Glass Jar - Unpreserved (EA055)       |               |             |                                                          |                          |            |               |                  |            |  |
| VC11_0.0-0.2,                              | VC11_1.0-1.2, | 30-Oct-2019 |                                                          |                          |            | 18-Nov-2019   | 13-Nov-2019      | <b></b>    |  |
| VC11_0.0-0.5,                              | VC11_0.5-1.0, |             |                                                          |                          |            |               |                  |            |  |
| VC09_0.4-0.6,                              | VC09_0.7-0.8, |             |                                                          |                          |            |               |                  |            |  |
| VC09_0.8-1.0,                              | VC09_0.0-0.5, |             |                                                          |                          |            |               |                  |            |  |
| VC09_0.5-1.0,                              | VC07_0.5-0.6, |             |                                                          |                          |            |               |                  |            |  |
| VC07_0.7-0.8,                              | VC07_1.0-1.2, |             |                                                          |                          |            |               |                  |            |  |
| VC07_0.5-1.0,                              | VC05_0.0-0.1, |             |                                                          |                          |            |               |                  |            |  |
| VC05_0.5-0.7,                              | VC05_0.5-0.9, |             |                                                          |                          |            |               |                  |            |  |
| VC03_0.0-0.2,                              | VC03_0.4-0.6, |             |                                                          |                          |            |               |                  |            |  |
| VC03_0.6-0.7,                              | VC03_1.0-1.2, |             |                                                          |                          |            |               |                  |            |  |
| VC03_0.5-1.0,                              | VC04_0.0-0.1, |             |                                                          |                          |            |               |                  |            |  |
| VC02_1.0-1.2,                              | VC02_1.0-1.5, |             |                                                          |                          |            |               |                  |            |  |
| VC01_0.0-0.2,                              | vc01_0.4-0.6, |             |                                                          |                          |            |               |                  |            |  |
| VC02_0.5-1.0                               |               |             |                                                          |                          |            |               |                  |            |  |
| Soil Glass Jar - Unpreserved (EA055)       |               |             |                                                          |                          |            |               |                  |            |  |
| VC07_0.2-0.4,                              | VC02_0.0-0.2, | 30-Oct-2019 |                                                          |                          |            | 19-Nov-2019   | 13-Nov-2019      | <b>.</b>   |  |
| VC02_0.5-0.6,                              | VC02_0.0-0.5  |             |                                                          |                          |            |               |                  |            |  |
| Soil Glass Jar - Unpreserved (EA055)       |               |             |                                                          |                          |            |               |                  |            |  |
| VC12_0.0-0.5                               |               | 30-Oct-2019 |                                                          |                          |            | 20-Nov-2019   | 13-Nov-2019      | *          |  |
| Soil Glass Jar - Unpreserved (EA055)       |               |             |                                                          |                          |            |               |                  |            |  |

| Page       | : 7 of 16     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                             |                  |             |                          |                    | Evaluatior | i: × = Holding time | breach ; ✓ = Withi | in holding time. |
|------------------------------------------|------------------|-------------|--------------------------|--------------------|------------|---------------------|--------------------|------------------|
| Method Container / Client Sample ID(s)   |                  | Sample Date | Extraction / Preparation |                    |            | Analysis            |                    |                  |
|                                          |                  |             | Date extracted           | Due for extraction | Evaluation | Date analysed       | Due for analysis   | Evaluation       |
| EA055: Moisture Content (Dried @ 105-110 | 0°C) - Continued |             |                          |                    |            |                     |                    |                  |
| VC04_0.5-0.6,                            | VC04_0.7-0.8,    | 31-Oct-2019 |                          |                    |            | 18-Nov-2019         | 14-Nov-2019        | ×                |
| VC04_0.9-1.0,                            | VC10_0.0-0.2,    |             |                          |                    |            |                     |                    |                  |
| VC10_0.5-0.6,                            | VC06_0.3-0.4,    |             |                          |                    |            |                     |                    |                  |
| VC06_0.5-0.6,                            | VC06_0.7-0.8,    |             |                          |                    |            |                     |                    |                  |
| VC06_0.8-0.9,                            | VC06_0.0-0.5,    |             |                          |                    |            |                     |                    |                  |
| VC06_0.5-1.0,                            | VC12_0.8-0.9,    |             |                          |                    |            |                     |                    |                  |
| VC12_1.0-1.1,                            | VC08_0.3-0.4,    |             |                          |                    |            |                     |                    |                  |
| VC08_0.5-0.6,                            | VC08_0.7-0.8,    |             |                          |                    |            |                     |                    |                  |
| VC08_1.0-1.1,                            | VC08_1.3-1.4,    |             |                          |                    |            |                     |                    |                  |
| VC08_1.5-1.6,                            | VC08_0.0-0.5,    |             |                          |                    |            |                     |                    |                  |
| VC08_0.5-1.0,                            | VC13_0.3-0.4,    |             |                          |                    |            |                     |                    |                  |
| VC13_0.5-0.6,                            | VC13_0.7-0.8,    |             |                          |                    |            |                     |                    |                  |
| VC13_1.0-1.1,                            | VC13_0.0-0.5,    |             |                          |                    |            |                     |                    |                  |
| VC13_0.5-1.0,                            | VC14_0.0-0.1,    |             |                          |                    |            |                     |                    |                  |
| VC14_0.3-0.4,                            | VC14-0.5-0.6,    |             |                          |                    |            |                     |                    |                  |
| VC14_0.7-0.8,                            | VC14_1.3-1.4,    |             |                          |                    |            |                     |                    |                  |
| VC14_0.0-0.5,                            | VC14_0.5-1.0     |             |                          |                    |            |                     |                    |                  |
| Soil Glass Jar - Unpreserved (EA055)     |                  |             |                          |                    |            |                     |                    |                  |
| VC12_0.3-0.4,                            | VC12_0.5-0.6     | 31-Oct-2019 |                          |                    |            | 19-Nov-2019         | 14-Nov-2019        | x                |
| Soil Glass Jar - Unpreserved (EA055)     |                  |             |                          |                    |            |                     |                    |                  |
| VC10_0.0-0.5                             |                  | 31-Oct-2019 |                          |                    |            | 20-Nov-2019         | 14-Nov-2019        | ×                |

| Page       | : 8 of 16     |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                              |               |             |                          | n: 🗴 = Holding time | ne breach ; 🗸 = Within holding time |               |                  |                       |
|-------------------------------------------|---------------|-------------|--------------------------|---------------------|-------------------------------------|---------------|------------------|-----------------------|
| Method Container / Client Sample ID(s)    |               | Sample Date | Extraction / Preparation |                     |                                     | Analysis      |                  |                       |
|                                           |               |             | Date extracted           | Due for extraction  | Evaluation                          | Date analysed | Due for analysis | Evaluation            |
| EG005(ED093)T: Total Metals by ICP-AES    |               |             |                          |                     |                                     |               |                  |                       |
| Soil Glass Jar - Unpreserved (EG005T)     |               |             |                          |                     |                                     |               |                  |                       |
| VC11_0.0-0.2,                             | VC11_1.0-1.2, | 30-Oct-2019 | 18-Nov-2019              | 27-Apr-2020         | ~                                   | 19-Nov-2019   | 27-Apr-2020      | ✓                     |
| VC11_0.0-0.5,                             | VC11_0.5-1.0, |             |                          |                     |                                     |               |                  |                       |
| VC09_0.4-0.6,                             | VC09_0.7-0.8, |             |                          |                     |                                     |               |                  |                       |
| VC09_0.8-1.0,                             | VC09_0.0-0.5, |             |                          |                     |                                     |               |                  |                       |
| VC09_0.5-1.0,                             | VC07_0.5-0.6, |             |                          |                     |                                     |               |                  |                       |
| VC07_0.7-0.8,                             | VC07_1.0-1.2, |             |                          |                     |                                     |               |                  |                       |
| VC07_0.5-1.0,                             | VC05_0.0-0.1, |             |                          |                     |                                     |               |                  |                       |
| VC05_0.5-0.7,                             | VC05_0.5-0.9, |             |                          |                     |                                     |               |                  |                       |
| VC03_0.0-0.2,                             | VC03_0.4-0.6, |             |                          |                     |                                     |               |                  |                       |
| VC03_0.6-0.7,                             | VC03_1.0-1.2, |             |                          |                     |                                     |               |                  |                       |
| VC03_0.5-1.0,                             | VC04_0.0-0.1, |             |                          |                     |                                     |               |                  |                       |
| VC02 1.0-1.2,                             | VC02 1.0-1.5, |             |                          |                     |                                     |               |                  |                       |
| VC01 0.0-0.2,                             | vc01 0.4-0.6, |             |                          |                     |                                     |               |                  |                       |
| VC02 0.5-1.0                              |               |             |                          |                     |                                     |               |                  |                       |
| <br>Soil Glass Jar - Unpreserved (EG005T) |               |             |                          |                     |                                     |               |                  |                       |
| VC07_0.2-0.4,                             | VC02_0.0-0.2, | 30-Oct-2019 | 19-Nov-2019              | 27-Apr-2020         | 1                                   | 19-Nov-2019   | 27-Apr-2020      | <ul> <li>✓</li> </ul> |
| VC02_0.5-0.6                              |               |             |                          |                     |                                     |               |                  |                       |
| Soil Glass Jar - Unpreserved (EG005T)     |               |             |                          |                     |                                     |               |                  |                       |
| VC04_0.5-0.6,                             | VC04_0.7-0.8, | 31-Oct-2019 | 18-Nov-2019              | 28-Apr-2020         | 1                                   | 19-Nov-2019   | 28-Apr-2020      | ✓                     |
| VC04_0.9-1.0,                             | VC10_0.0-0.2, |             |                          |                     |                                     |               |                  |                       |
| VC10_0.5-0.6,                             | VC06_0.3-0.4, |             |                          |                     |                                     |               |                  |                       |
| VC06_0.5-0.6,                             | VC06_0.7-0.8, |             |                          |                     |                                     |               |                  |                       |
| VC06_0.8-0.9,                             | VC06_0.0-0.5, |             |                          |                     |                                     |               |                  |                       |
| VC06_0.5-1.0,                             | VC12_0.8-0.9, |             |                          |                     |                                     |               |                  |                       |
| VC12_1.0-1.1,                             | VC08_0.3-0.4, |             |                          |                     |                                     |               |                  |                       |
| VC08_0.5-0.6,                             | VC08_0.7-0.8, |             |                          |                     |                                     |               |                  |                       |
| VC08 1.0-1.1,                             | VC08 1.3-1.4, |             |                          |                     |                                     |               |                  |                       |
| VC08 1.5-1.6,                             | VC08 0.0-0.5, |             |                          |                     |                                     |               |                  |                       |
| VC08 0.5-1.0.                             | VC13 0.3-0.4. |             |                          |                     |                                     |               |                  |                       |
| VC13 0.5-0.6.                             | VC13 0.7-0.8. |             |                          |                     |                                     |               |                  |                       |
| VC13 1.0-1.1.                             | VC13_0.0-0.5  |             |                          |                     |                                     |               |                  |                       |
| VC13 0.5-1.0.                             | VC14_0.0-0.1. |             |                          |                     |                                     |               |                  |                       |
| VC14 0.3-0.4                              | VC14-0.5-0.6  |             |                          |                     |                                     |               |                  |                       |
| VC14 0 7-0 8                              | VC14 1 3-1 4  |             |                          |                     |                                     |               |                  |                       |
| VC14_0.0-0.5                              | VC14_0.5-1.0  |             |                          |                     |                                     |               |                  |                       |
| Soil Glass Jar - Unpreserved (EG005T)     | 10.01.0       |             |                          |                     |                                     |               |                  |                       |
| VC12 0.3-0.4.                             | VC12 0.5-0.6  | 31-Oct-2019 | 19-Nov-2019              | 28-Apr-2020         | 1                                   | 19-Nov-2019   | 28-Apr-2020      | 1                     |

| Page       | : 9 of 16     |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: <b>SOIL</b> Evaluation: <b>*</b> = Holding time breach ; <b>✓</b> = With |               |             |             |                        | in holding time    |            |               |                  |                       |
|----------------------------------------------------------------------------------|---------------|-------------|-------------|------------------------|--------------------|------------|---------------|------------------|-----------------------|
| Method                                                                           |               | Sample Date |             | traction / Preparation |                    | Analysis   |               |                  |                       |
| Container / Client Sample ID(s)                                                  |               |             |             | Date extracted         | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation            |
| EG035T: Total Recoverable Mercury by FIMS                                        |               |             |             |                        |                    |            |               |                  |                       |
| Soil Glass Jar - Unpreserved (EG035T)                                            |               |             |             |                        |                    |            |               |                  |                       |
| VC11_0.0-0.2                                                                     |               |             | 30-Oct-2019 | 18-Nov-2019            | 27-Nov-2019        | ~          | 19-Nov-2019   | 27-Nov-2019      | ✓                     |
| Soil Glass Jar - Unpreserved (EG035T)                                            |               |             | 00.0-+ 0040 | 40 Nov 0040            | 07 Nov 0040        |            | 00 Nov 0040   | 07 Nov 0010      |                       |
| VC07_0.5-0.6,                                                                    | VC07_1.0-1.2, |             | 30-Oct-2019 | 18-NOV-2019            | 27-NOV-2019        | ~          | 20-NOV-2019   | 27-NOV-2019      | ✓                     |
| VC05_0.0-0.1,                                                                    | VC04_0.0-0.1, |             |             |                        |                    |            |               |                  |                       |
| VC02_1.0-1.2,                                                                    | VC01_0.0-0.2  |             |             |                        |                    |            |               |                  |                       |
| Soil Glass Jar - Unpreserved (EG0351)                                            |               |             | 30-Oct-2019 | 19-Nov-2019            | 27-Nov-2019        |            | 20-Nov-2019   | 27-Nov-2019      |                       |
| Soil Class Jar Uppressrued (EC025T)                                              | VC02_0.5-0.0  |             | 30-001-2013 | 13-1100-2013           | 27-1100-2013       | ✓          | 20-1407-2013  | 27-1100-2013     | <b>▼</b>              |
|                                                                                  | VC06_0.3-0.4  |             | 31-Oct-2019 | 18-Nov-2019            | 28-Nov-2019        | 1          | 20-Nov-2019   | 28-Nov-2019      |                       |
| VC08_0.3-0.4                                                                     | VC13_0.3-0.4  |             |             |                        |                    | -          |               |                  | •                     |
| VC14_0.0-0.1                                                                     | VC14_07-08    |             |             |                        |                    |            |               |                  |                       |
|                                                                                  | V014_0.7 0.0  |             |             |                        |                    |            |               |                  |                       |
| EN33: ICLP Leach                                                                 | (0-)          |             |             |                        |                    |            |               |                  |                       |
| VC11 0 0-0 2                                                                     |               |             | 30-Oct-2019 | 14-Nov-2019            | 13-Nov-2019        | **         |               |                  |                       |
| VC07_0.0.0.5                                                                     | VC05_0.0_0_1  |             | 00 000 2010 | 14 1101 2010           |                    | *          |               |                  |                       |
| VC03_0.0.0.2                                                                     | VC05_0.0-0.1, |             |             |                        |                    |            |               |                  |                       |
| VC02_0.0-0.2,                                                                    | VC04_0.0-0.1, |             |             |                        |                    |            |               |                  |                       |
| VC02_0.0-0.2,                                                                    | VC01_0.0-0.2, |             |             |                        |                    |            |               |                  |                       |
| VC02_0.0-0.5                                                                     | (20)          |             |             |                        |                    |            |               |                  |                       |
| VC02 1 0-1 2                                                                     | 53a)          |             | 30-Oct-2019 | 15-Nov-2019            | 13-Nov-2019        | ~          |               |                  |                       |
| Non-Volatile Leach: 14 day HT(e.g. SV organics) (EN3                             | (3a)          |             |             |                        |                    | <u> </u>   |               |                  |                       |
| VC10 0.0-0.2.                                                                    | VC12 0.8-0.9. |             | 31-Oct-2019 | 14-Nov-2019            | 14-Nov-2019        | 1          |               |                  |                       |
| VC08_0.0-0.1                                                                     | VC13 0.0-0.1  |             |             |                        |                    | _          |               |                  |                       |
| VC14 0.0-0.1.                                                                    | VC14_0.7-0.8  |             |             |                        |                    |            |               |                  |                       |
| Non-Volatile Leach: 14 day HT(e.g. SV organics) (EN3                             | (3a)          |             |             |                        |                    |            |               |                  |                       |
| VC04_0.7-0.8,                                                                    | VC06_0.0-0.1  |             | 31-Oct-2019 | 15-Nov-2019            | 14-Nov-2019        | x          |               |                  |                       |
| Non-Volatile Leach: 28 day HT(e.g. Hg, CrVI) (EN33a)                             |               |             |             |                        |                    |            |               |                  |                       |
| VC07_0.2-0.4,                                                                    | VC07_0.5-0.6, |             | 30-Oct-2019 | 18-Nov-2019            | 27-Nov-2019        | ~          |               |                  |                       |
| VC07_1.0-1.2,                                                                    | VC02_0.5-0.6  |             |             |                        |                    |            |               |                  |                       |
| Non-Volatile Leach: 28 day HT(e.g. Hg, CrVI) (EN33a)                             |               |             |             |                        |                    |            |               |                  |                       |
| VC06_0.3-0.4,                                                                    | VC08_0.3-0.4  |             | 31-Oct-2019 | 18-Nov-2019            | 28-Nov-2019        | ~          |               |                  |                       |
| Non-Volatile Leach: 28 day HT(e.g. Hg, CrVI) (EN33a)                             |               |             |             |                        | 00 NL 00 (0        |            |               |                  |                       |
| VC13_0.3-0.4                                                                     |               |             | 31-Oct-2019 | 19-Nov-2019            | 28-Nov-2019        | ~          |               |                  |                       |
| EP066: Polychlorinated Biphenyls (PCB)                                           |               |             |             |                        |                    |            |               |                  |                       |
| Soil Glass Jar - Unpreserved (EP066)                                             |               |             |             |                        |                    |            |               | 04 D             |                       |
| VC09_0.4-0.6,                                                                    | VC07_0.5-1.0, |             | 30-Oct-2019 | 14-Nov-2019            | 13-Nov-2019        | *          | 17-Nov-2019   | 24-Dec-2019      | <ul> <li>✓</li> </ul> |
| VC05_0.0-0.1                                                                     |               |             |             |                        |                    |            |               |                  |                       |
| Soil Glass Jar - Unpreserved (EP066)                                             |               |             |             |                        | 14 Nov 0010        |            |               | 04 Dec 0040      |                       |
| VC12_0.3-0.4,                                                                    | VC12_1.0-1.1, |             | 31-Oct-2019 | 14-Nov-2019            | 14-NOV-2019        | ~          | 17-Nov-2019   | 24-Dec-2019      | <ul> <li>✓</li> </ul> |
| VC08 0.3-0.4                                                                     |               |             |             |                        |                    |            |               |                  |                       |

| Page       | : 10 of 16    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: SOIL                         |               |             |                                   |                        | Evaluation: $\star$ = Holding time breach ; $\checkmark$ = Within holding time |               |                  |                     |  |
|--------------------------------------|---------------|-------------|-----------------------------------|------------------------|--------------------------------------------------------------------------------|---------------|------------------|---------------------|--|
| Method                               |               |             | Ex                                | traction / Preparation |                                                                                | Analysis      |                  |                     |  |
| Container / Client Sample ID(s)      |               |             | Date extracted Due for extraction |                        | Evaluation                                                                     | Date analysed | Due for analysis | Evaluation          |  |
| EP075(SIM)B: Polynuclear Aromatic    | Hydrocarbons  |             |                                   |                        |                                                                                |               |                  |                     |  |
| Soil Glass Jar - Unpreserved (EP075( | SIM))         |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC11_0.0-0.2,                        | VC11_1.0-1.2, | 30-Oct-2019 | 14-Nov-2019                       | 13-Nov-2019            | <u></u>                                                                        | 15-Nov-2019   | 24-Dec-2019      | ✓                   |  |
| VC11_0.0-0.5,                        | VC11_0.5-1.0, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC07_0.2-0.4,                        | VC09_0.4-0.6, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC09_0.7-0.8,                        | VC09_0.8-1.0, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC09_0.0-0.5,                        | VC09_0.5-1.0, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC07_0.5-0.6,                        | VC07_0.7-0.8, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC07_1.0-1.2,                        | VC07_0.5-1.0, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC05_0.0-0.1,                        | VC05_0.5-0.7, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC05_0.5-0.9                         |               |             |                                   |                        |                                                                                |               |                  |                     |  |
| Soil Glass Jar - Unpreserved (EP075( | SIM))         |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC03_0.0-0.2,                        | VC03_0.4-0.6, | 30-Oct-2019 | 14-Nov-2019                       | 13-Nov-2019            | <u>.</u>                                                                       | 16-Nov-2019   | 24-Dec-2019      | ✓                   |  |
| VC03_0.6-0.7,                        | VC03_1.0-1.2, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC03_0.5-1.0,                        | VC04_0.0-0.1, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC02_0.0-0.2,                        | VC02_0.5-0.6, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC02_1.0-1.2,                        | VC02_1.0-1.5, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC01_0.0-0.2,                        | vc01_0.4-0.6, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC02_0.5-1.0                         |               |             |                                   |                        |                                                                                |               |                  |                     |  |
| Soil Glass Jar - Unpreserved (EP075( | SIM))         |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC12_0.3-0.4,                        | VC12_1.0-1.1, | 31-Oct-2019 | 14-Nov-2019                       | 14-Nov-2019            | 1                                                                              | 15-Nov-2019   | 24-Dec-2019      | ✓                   |  |
| VC08_0.3-0.4                         |               |             |                                   |                        |                                                                                |               |                  |                     |  |
| Soil Glass Jar - Unpreserved (EP075( | SIM))         |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC04_0.5-0.6,                        | VC04_0.7-0.8, | 31-Oct-2019 | 14-Nov-2019                       | 14-Nov-2019            | 1                                                                              | 16-Nov-2019   | 24-Dec-2019      | ✓                   |  |
| VC04_0.9-1.0,                        | VC10_0.0-0.2, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC10_0.5-0.6,                        | VC06_0.3-0.4, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC06_0.5-0.6                         |               |             |                                   |                        |                                                                                |               |                  |                     |  |
| Soil Glass Jar - Unpreserved (EP075( | SIM))         |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC06_0.7-0.8,                        | VC06_0.8-0.9, | 31-Oct-2019 | 14-Nov-2019                       | 14-Nov-2019            | -                                                                              | 18-Nov-2019   | 24-Dec-2019      | ✓                   |  |
| VC06_0.0-0.5,                        | VC06_0.5-1.0, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC12_0.5-0.6,                        | VC12_0.8-0.9, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC08_0.5-0.6,                        | VC08_0.7-0.8, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC08_1.0-1.1,                        | VC08_1.3-1.4, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC08_1.5-1.6,                        | VC08_0.0-0.5, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC08_0.5-1.0,                        | VC13_0.3-0.4, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC13_0.5-0.6,                        | VC13_0.7-0.8, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC13_1.0-1.1,                        | VC13_0.0-0.5, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC13_0.5-1.0,                        | VC14_0.0-0.1  |             |                                   |                        |                                                                                |               |                  |                     |  |
| Soil Glass Jar - Unpreserved (EP075( | SIM))         |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC14_0.3-0.4,                        | VC14-0.5-0.6, | 31-Oct-2019 | 15-Nov-2019                       | 14-Nov-2019            | <u>*</u>                                                                       | 16-Nov-2019   | 25-Dec-2019      | <ul><li>✓</li></ul> |  |
| VC14_0.7-0.8,                        | VC14_1.3-1.4, |             |                                   |                        |                                                                                |               |                  |                     |  |
| VC14 0.0-0.5,                        | VC14 0.5-1.0  |             |                                   |                        |                                                                                |               |                  |                     |  |

| Page       | : 11 of 16   |
|------------|--------------|
| Work Order | ES1937483    |
| Client     | :GHD PTY LTD |
| Project    | : 12517046   |



| Matrix: SOIL                                          |                |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = With  | in holding time       |
|-------------------------------------------------------|----------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------------|
| Method                                                |                |             | Ex             | traction / Preparation |            |                    | Analysis           |                       |
| Container / Client Sample ID(s)                       |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation            |
| EP090: Organotin Compounds                            |                |             |                |                        |            |                    |                    |                       |
| Soil Glass Jar - Unpreserved (EP090)<br>VC12_0.0-0.5, | VC02_0.0-0.5   | 30-Oct-2019 | 20-Nov-2019    | 13-Nov-2019            | ×          | 21-Nov-2019        | 30-Dec-2019        | ✓                     |
| Soil Glass Jar - Unpreserved (EP090)<br>VC10_0.0-0.5  |                | 31-Oct-2019 | 20-Nov-2019    | 14-Nov-2019            | ×          | 21-Nov-2019        | 30-Dec-2019        | 1                     |
| Matrix: WATER                                         |                |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | in holding time       |
| Method                                                |                | Sample Date | E>             | traction / Preparation |            |                    | Analysis           |                       |
| Container / Client Sample ID(s)                       |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation            |
| EG005(ED093)C: Leachable Metals b                     | y ICPAES       |             |                |                        |            |                    |                    |                       |
| Clear Plastic Bottle - Nitric Acid; Unfil             | tered (EG005C) |             |                |                        |            |                    |                    |                       |
| VC11_0.0-0.2,                                         | VC09_0.7-0.8,  | 14-Nov-2019 | 18-Nov-2019    | 12-May-2020            | 1          | 18-Nov-2019        | 12-May-2020        | ✓                     |
| VC07_0.0-0.5,                                         | VC05_0.0-0.1,  |             |                |                        |            |                    |                    |                       |
| VC03_0.0-0.2,                                         | VC04_0.0-0.1,  |             |                |                        |            |                    |                    |                       |
| VC02_0.0-0.2,                                         | VC01_0.0-0.2,  |             |                |                        |            |                    |                    |                       |
| VC10_0.0-0.2,                                         | VC02_0.0-0.5,  |             |                |                        |            |                    |                    |                       |
| VC12_0.8-0.9,                                         | VC08_0.0-0.1,  |             |                |                        |            |                    |                    |                       |
| VC13 0.0-0.1,                                         | VC14 0.0-0.1,  |             |                |                        |            |                    |                    |                       |
| VC14 0.7-0.8                                          | _              |             |                |                        |            |                    |                    |                       |
| Clear Plastic Bottle - Nitric Acid; Unfil             | tered (EG005C) |             |                |                        |            |                    |                    |                       |
| VC04_0.7-0.8,                                         | VC02_1.0-1.2,  | 15-Nov-2019 | 18-Nov-2019    | 13-May-2020            | 1          | 18-Nov-2019        | 13-May-2020        | ✓                     |
| VC06_0.0-0.1                                          |                |             |                |                        |            |                    |                    |                       |
| EG035C: Leachable Mercury by FIMS                     | 5              |             |                |                        |            |                    |                    |                       |
| Clear Plastic Bottle - Nitric Acid; Unfil             | tered (EG035C) |             |                |                        |            |                    |                    |                       |
| VC11_0.0-0.2,                                         | VC05_0.0-0.1,  | 14-Nov-2019 |                |                        |            | 18-Nov-2019        | 12-Dec-2019        | ✓                     |
| VC04_0.0-0.1,                                         | VC01_0.0-0.2,  |             |                |                        |            |                    |                    |                       |
| VC10_0.0-0.2,                                         | VC02_0.0-0.5,  |             |                |                        |            |                    |                    |                       |
| VC14_0.0-0.1,                                         | VC14_0.7-0.8   |             |                |                        |            |                    |                    |                       |
| Clear Plastic Bottle - Nitric Acid; Unfil             | tered (EG035C) |             |                |                        |            |                    |                    |                       |
| VC02_1.0-1.2                                          |                | 15-Nov-2019 |                |                        |            | 18-Nov-2019        | 13-Dec-2019        | ✓                     |
| Clear Plastic Bottle - Nitric Acid; Unfil             | tered (EG035C) |             |                |                        |            |                    |                    |                       |
| VC07_0.2-0.4,                                         | VC07_0.5-0.6,  | 18-Nov-2019 |                |                        |            | 19-Nov-2019        | 16-Dec-2019        | <ul> <li>✓</li> </ul> |
| VC07_1.0-1.2,                                         | VC02_0.5-0.6,  |             |                |                        |            |                    |                    |                       |
| VC06_0.3-0.4,                                         | VC08_0.3-0.4   |             |                |                        |            |                    |                    |                       |
| Clear Plastic Bottle - Nitric Acid; Unfil             | tered (EG035C) |             |                |                        |            |                    |                    |                       |
| VC13 0.3-0.4                                          |                | 19-Nov-2019 |                |                        |            | 20-Nov-2019        | 17-Dec-2019        |                       |

| Page       | : 12 of 16    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: WATER                        |               |             |                                   |                        | Evaluation | : × = Holding time | breach ; ✓ = With | n holding time |
|--------------------------------------|---------------|-------------|-----------------------------------|------------------------|------------|--------------------|-------------------|----------------|
| Method                               |               | Sample Date | Ex                                | traction / Preparation |            | Analysis           |                   |                |
| Container / Client Sample ID(s)      |               |             | Date extracted Due for extraction |                        | Evaluation | Date analysed      | Due for analysis  | Evaluation     |
| EP075(SIM)B: Polynuclear Aromatic I  | Hydrocarbons  |             |                                   |                        |            |                    |                   |                |
| Amber Glass Bottle - Unpreserved (EF | 2075(SIM))    |             |                                   |                        |            |                    |                   |                |
| VC11_0.0-0.2,                        | VC09_0.7-0.8, | 14-Nov-2019 | 18-Nov-2019                       | 21-Nov-2019            | 1          | 18-Nov-2019        | 28-Dec-2019       | ✓              |
| VC07_0.0-0.5,                        | VC05_0.0-0.1, |             |                                   |                        |            |                    |                   |                |
| VC03_0.0-0.2,                        | VC04_0.0-0.1, |             |                                   |                        |            |                    |                   |                |
| VC02_0.0-0.2,                        | VC01_0.0-0.2, |             |                                   |                        |            |                    |                   |                |
| VC10_0.0-0.2,                        | VC02_0.0-0.5, |             |                                   |                        |            |                    |                   |                |
| VC12_0.8-0.9,                        | VC08_0.0-0.1, |             |                                   |                        |            |                    |                   |                |
| VC13_0.0-0.1,                        | VC14_0.0-0.1, |             |                                   |                        |            |                    |                   |                |
| VC14_0.7-0.8                         | _             |             |                                   |                        |            |                    |                   |                |
| Amber Glass Bottle - Unpreserved (EF | P075(SIM))    |             |                                   |                        |            |                    |                   |                |
| VC04_0.7-0.8,                        | VC02_1.0-1.2, | 15-Nov-2019 | 18-Nov-2019                       | 22-Nov-2019            | 1          | 18-Nov-2019        | 28-Dec-2019       | ✓              |
| VC06 0.0-0.1                         |               |             |                                   |                        |            |                    |                   |                |

| Page       | : 13 of 16    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                         |            |    |         | Evaluatio | on: × = Quality Co           | ntrol frequency | not within specification ; 🗸 = Quality Control frequency within specification.           |
|--------------------------------------|------------|----|---------|-----------|------------------------------|-----------------|------------------------------------------------------------------------------------------|
| Quality Control Sample Type          |            | Сс | ount    |           | Rate (%)                     |                 | Quality Control Specification                                                            |
| Analytical Methods                   | Method     | 00 | Reaular | Actual    | Expected                     | Evaluation      |                                                                                          |
| Laboratory Duplicates (DUP)          |            |    |         |           |                              |                 |                                                                                          |
| Moisture Content                     | EA055      | 10 | 95      | 10.53     | 10.00                        | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Organotin Analysis                   | EP090      | 1  | 3       | 33.33     | 10.00                        | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| PAH/Phenols (SIM)                    | EP075(SIM) | 8  | 78      | 10.26     | 10.00                        | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Polychlorinated Biphenyls (PCB)      | EP066      | 1  | 6       | 16.67     | 10.00                        | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Mercury by FIMS                | EG035T     | 7  | 58      | 12.07     | 10.00                        | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Metals by ICP-AES              | EG005T     | 10 | 95      | 10.53     | 10.00                        | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Laboratory Control Samples (LCS)     |            |    |         |           |                              |                 |                                                                                          |
| Organotin Analysis                   | EP090      | 1  | 3       | 33.33     | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| PAH/Phenols (SIM)                    | EP075(SIM) | 4  | 78      | 5.13      | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Polychlorinated Biphenyls (PCB)      | EP066      | 1  | 6       | 16.67     | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Mercury by FIMS                | EG035T     | 4  | 58      | 6.90      | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Metals by ICP-AES              | EG005T     | 5  | 95      | 5.26      | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Method Blanks (MB)                   |            |    |         |           |                              |                 |                                                                                          |
| Organotin Analysis                   | EP090      | 1  | 3       | 33.33     | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| PAH/Phenols (SIM)                    | EP075(SIM) | 4  | 78      | 5.13      | 5.00                         | ~               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Polychlorinated Biphenyls (PCB)      | EP066      | 1  | 6       | 16.67     | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| TCLP for Non & Semivolatile Analytes | EN33a      | 7  | 44      | 15.91     | 9.09                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Mercury by FIMS                | EG035T     | 4  | 58      | 6.90      | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Metals by ICP-AES              | EG005T     | 5  | 95      | 5.26      | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Matrix Spikes (MS)                   |            |    |         |           |                              |                 |                                                                                          |
| Organotin Analysis                   | EP090      | 1  | 3       | 33.33     | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| PAH/Phenols (SIM)                    | EP075(SIM) | 4  | 78      | 5.13      | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Polychlorinated Biphenyls (PCB)      | EP066      | 1  | 6       | 16.67     | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Mercury by FIMS                | EG035T     | 4  | 58      | 6.90      | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Total Metals by ICP-AES              | EG005T     | 5  | 95      | 5.26      | 5.00                         | ✓               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Matrix: WATER                        |            |    |         | Evaluatio | $n: \mathbf{x} = Quality Co$ | ntrol frequency | not within specification : $\checkmark$ = Quality Control frequency within specification |
| Quality Control Sample Type          |            | Co | ount    |           | Rate (%)                     |                 | Quality Control Specification                                                            |
| Analytical Methods                   | Method     | QC | Reaular | Actual    | Expected                     | Evaluation      |                                                                                          |
| Laboratory Duplicates (DUP)          |            |    |         |           |                              |                 |                                                                                          |
| Leachable Mercury by FIMS            | EG035C     | 5  | 27      | 18.52     | 10.00                        | 1               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Leachable Metals by ICPAES           | EG005C     | 4  | 32      | 12.50     | 10.00                        | <u> </u>        | NEPM 2013 B3 & ALS QC Standard                                                           |
| PAH/Phenols (GC/MS - SIM)            | EP075(SIM) | 0  | 32      | 0.00      | 10.00                        | <u> </u>        | NEPM 2013 B3 & ALS QC Standard                                                           |
| Laboratory Control Samples (LCS)     |            |    |         |           |                              |                 |                                                                                          |
| Leachable Mercury by FIMS            | EG035C     | 3  | 27      | 11.11     | 5.00                         | 1               | NEPM 2013 B3 & ALS QC Standard                                                           |
| Leachable Metals by ICPAES           | EG005C     | 2  | 32      | 6.25      | 5.00                         |                 | NEPM 2013 B3 & ALS QC Standard                                                           |
| · · ·                                |            |    |         |           |                              | -               |                                                                                          |

| Page       | : 14 of 16    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: WATER                                |            |    |         | Evaluation | n: × = Quality Co | ntrol frequency n | not within specification ; $\checkmark$ = Quality Control frequency within specification. |  |  |  |
|----------------------------------------------|------------|----|---------|------------|-------------------|-------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Quality Control Sample Type                  |            | Co | ount    |            | Rate (%)          |                   | Quality Control Specification                                                             |  |  |  |
| Analytical Methods                           | Method     | 00 | Reaular | Actual     | Expected          | Evaluation        |                                                                                           |  |  |  |
| Laboratory Control Samples (LCS) - Continued |            |    |         |            |                   |                   |                                                                                           |  |  |  |
| PAH/Phenols (GC/MS - SIM)                    | EP075(SIM) | 2  | 32      | 6.25       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |  |  |  |
| Method Blanks (MB)                           |            |    |         |            |                   |                   |                                                                                           |  |  |  |
| Leachable Mercury by FIMS                    | EG035C     | 3  | 27      | 11.11      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |  |  |  |
| Leachable Metals by ICPAES                   | EG005C     | 2  | 32      | 6.25       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |  |  |  |
| PAH/Phenols (GC/MS - SIM)                    | EP075(SIM) | 2  | 32      | 6.25       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |  |  |  |
| Matrix Spikes (MS)                           |            |    |         |            |                   |                   |                                                                                           |  |  |  |
| Leachable Mercury by FIMS                    | EG035C     | 3  | 27      | 11.11      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |  |  |  |
| Leachable Metals by ICPAES                   | EG005C     | 2  | 32      | 6.25       | 5.00              | 1                 | NEPM 2013 B3 & ALS QC Standard                                                            |  |  |  |
| PAH/Phenols (GC/MS - SIM)                    | EP075(SIM) | 0  | 32      | 0.00       | 5.00              | ×                 | NEPM 2013 B3 & ALS QC Standard                                                            |  |  |  |

| Page       | : 15 of 16    |
|------------|---------------|
| Work Order | : ES1937483   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                         | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                           | EA055      | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                                                        |
| Leachable Metals by ICPAES                                 | EG005C     | SOIL   | In house: referenced to APHA 3120; USEPA SW 846 - 6010: The ICPAES technique ionises leachate sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                              |
| Total Metals by ICP-AES                                    | EG005T     | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                    |
| Leachable Mercury by FIMS                                  | EG035C     | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)<br>FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise<br>any organic mercury compounds in the TCLP solution. The ionic mercury is reduced online to atomic mercury<br>vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance<br>against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Total Mercury by FIMS                                      | EG035T     | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                       |
| Polychlorinated Biphenyls (PCB)                            | EP066      | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)                                                                                                                                                                                                                                                                                        |
| PAH/Phenols (SIM)                                          | EP075(SIM) | SOIL   | In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)                                                                                                                                                                                                                                                   |
| Organotin Analysis                                         | EP090      | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quanitified against an established calibration curve.                                                                                                                                                                                                                                                                                                                                               |
| Preparation Methods                                        | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Digestion for Total Recoverable Metals<br>in TCLP Leachate | EN25C      | SOIL   | In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                       |
| TCLP for Non & Semivolatile Analytes                       | EN33a      | SOIL   | In house QWI-EN/33 referenced to USEPA SW846-1311: The TCLP procedure is designed to determine the mobility of both organic and inorganic analytes present in wastes. The standard TCLP leach is for non-volatile and Semivolatile test parameters.                                                                                                                                                                                                                                                                                     |

| Page       | : 16 of 16    |
|------------|---------------|
| Work Order | ES1937483     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Preparation Methods                                        | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hot Block Digest for metals in soils sediments and sludges | EN69   | SOIL   | In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202) |
| Separatory Funnel Extraction of Liquids                    | ORG14  | SOIL   | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.                                  |
| Tumbler Extraction of Solids                               | ORG17  | SOIL   | In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.                                                                                                                                                                          |
| Organotin Sample Preparation                               | ORG35  | SOIL   | In house: 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.                            |

| Б      |                   | (a            | Date                         |               | Chromium R       | educible Sulphur    | ]                                     |
|--------|-------------------|---------------|------------------------------|---------------|------------------|---------------------|---------------------------------------|
| ļ      | Lab report        | Sample ID     | 20/10/2019                   | 10            | X                |                     | ]                                     |
| 1      | ES1936029         | VC11_0.0-0.1  | 30/10/2019                   | 20-           | <u>+</u>         |                     |                                       |
| 2      | ES1936029         | VC11_0.5-0.6  | 30/10/2019                   | - <u>w</u>    | ×                |                     | <b>1</b> <del>.</del> .               |
| 3      | ES1936029         | VC11_1.0-1.1  | 30/10/2019                   | 10            | <u>^</u>         |                     | nvironmental Division                 |
| 4      | ES1936029         | VC09_0.0-0.1  | 20/10/2019                   | 28            | ╂────            | s                   | Sydney                                |
| S      | ES1936029         | VC09_0.5-0.6  | 5 30/10/2019                 | 2             |                  |                     | FS1937554                             |
| 6      | ES1936029         | VC09_0.9-1.0  | 1 20/10/2019                 | <u></u>       | 1×               |                     |                                       |
| 7      | ES1936029         | VC07_0.0-0    | 1 30/10/2019                 | 71            | +^               |                     | - 唐川 郡道,明之教等(曹) []]                   |
| 8      | ES1936029         | VC07_0.5-0.   | 1 20/10/2019                 | 77            | x                |                     | · · · · · · · · · · · · · · · · · · · |
| ५<br>L | ES1936029         | VC07_1.0-1.   | 1 30/10/2019                 | 12            | <u>x</u>         |                     |                                       |
|        | ES1936029         | VC05_0.0-0.   | 1 30/10/2013<br>c 20/10/2019 |               | <u> </u>         |                     | 61.2.8764 6556                        |
| W      | ES1936029         | VC05_0.5-0.   | 6 30/10/2019<br>0 20/10/2019 | $\frac{1}{2}$ | x                |                     | Telephone + 01-2-01 07                |
| 12     | E\$1936029        | VC05_0.8-1.   | 0 30/10/201                  | <u>, 16</u>   | +^               |                     | ]                                     |
| 13     | ES1936029         | VC03_0.0-0.   | <u>1 30/10/2013</u>          | <u>ין וא</u>  | +                |                     |                                       |
| 14     | E\$1936029        | VC03_0.5-0.   | 1 20/10/201                  |               | ×                |                     |                                       |
| ß      | ES1936029         | VC03_10-1.    | 1 30/10/201                  |               |                  |                     | Chromium site /                       |
| 16     | ES1936029         | VC01_0.0-0    | 1 30/10/201                  |               | _ <u>^</u>       |                     | ALS BRISBANE                          |
| 17     | ES1936029         | 9 vc01_0.5-0. | 6 30/10/201                  | 0 10          |                  |                     | 6 = 10, 17(183                        |
| Ø      | ES193602          | 9 VC01_1.0-1  | .1 30/10/201                 |               |                  | Subcon / Borward L  | ab Spic WOLS19319                     |
| 19     | ES193602          | 9 VC02_0.0-0  | 1 30/10/201                  |               |                  | ab/Analysis:        | Jesiga cose                           |
| 20     | ES193602          | 9 VC02_0.5-0  | 0.6 30/10/201                | <u>a ar</u>   |                  | Organised By / Dat  | 8.                                    |
| ZI     | ES193602          | 9 VC02_0.9-1  | .0 30/10/201                 | <u>9 4</u>    |                  | Relinquished By / I | Date:                                 |
| 72     | ES193602          | 9 VC02_1.5-1  | 1.6 30/10/201                | <u>9 11.</u>  |                  | Connote / Courier:  | (J) > (2) A                           |
| 23     | ES193602          | 9 VC10_0.0-0  | ).1 30/10/20                 | 19 VS         |                  | WU No:              |                                       |
| ĬĢ     | ES193602          | 9 VC10_0.5-0  | ).6 30/10/20                 |               | _ <u>_</u>       | Attached By PO / 1  | nternal Sheet:                        |
| 25     | ES193602          | 9 VC04_0.0-0  | 0.1  30/10/20                | 10 70         | <del>_   _</del> |                     |                                       |
| Ú      | ES193602          | 9 VC04_0.9-1  | 1.0 30/10/20                 | 10 10         |                  |                     | -1                                    |
| 2      | 7 ES193618        | 33 VC06_0.0-0 | 0.1 31/10/20                 |               | <u> </u>         |                     |                                       |
| Ø      | ES193618          | 33 VC06_0.5-  | 0.6 31/10/20                 | 10 74         |                  |                     |                                       |
| 2      | 9 ES193618        | 33 VC12_0.0-  | $0.1 \ 31/10/20$             | $19 0^{-1}$   | _ <u>_</u>       |                     |                                       |
| 30     | 3 ES19361         | 83 VC12_0.5-  | 0.6 31/10/20                 | 19 7C         |                  |                     | 7                                     |
| 3      | ( ES19361         | 83 VC12_1.0-  | 1.1 31/10/20                 | 19 <u>28</u>  |                  |                     |                                       |
| 3.     | 2 ES19361         | 83 VC08_0.0-  | 0.1 31/10/20                 | 10 1          |                  |                     |                                       |
| 3:     | 3 ES19361         | 83 VC08_0.5-  | 0.6 31/10/20                 | 10 8          | - <u>f</u>       |                     | -                                     |
| 30     | $\varphi$ ES19361 | 83 VC08_1.0-  | 1.1 31/10/20                 | 19 0          |                  |                     | An dals.)                             |
| 5      | ς <u>ES19361</u>  | 83_VC08_1.5   | -1.6 31/10/20                | 19 (          | <u>^</u>         |                     |                                       |
| 30     | ς <u>ES19361</u>  | .83 VC13_0.0  | -0.1 $31/10/20$              | 10 1          |                  |                     | 12/11/19                              |
| 37     | ≠ ES19361         | .83 VC13_0.5  | -0.6 31/10/20                | 110 12        | ^                |                     |                                       |
| ₹      | 3 ES19361         | .83 VC13_1.0  | -1.1 - 31/10/20              | 10 10         |                  |                     | CAC.BA                                |
| 3      | 4 ES19361         | 83 VC14_0.0   | -0.1 31/10/2                 | 219 15        | <u> </u>         |                     | - 2220                                |
| ų      | ES19361           | 183 VC14_0.5  | -0.6 31/10/2                 | 010 10        | -+               |                     |                                       |
| ų      | 🥐 ES19361         | 183 VC14_1.0  | -1.1 31/10/2                 | 010 11-       |                  |                     |                                       |
| 1      | 62 1FS19361       | 183 IVC14 1.3 | 5-1,4   31/10/2              |               |                  |                     |                                       |

.3

-



# SAMPLE RECEIPT NOTIFICATION (SRN)

| Work Order                                                    | : ES1937554                                                                                                |                                  |                                           |                                                                                             |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|
| Client<br>Contact<br>Address                                  | E GHD PTY LTD<br>E SARAH ECCLESHALL<br>E LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address | : Enviro<br>: Custor<br>: 277-28<br>NSW / | nmental Division Sydney<br>mer Services ES<br>39 Woodpark Road Smithfield<br>Australia 2164 |
| E-mail<br>Telephone<br>Facsimile                              | : sarah.eccleshall@ghd.com<br>:<br>:                                                                       | E-mail<br>Telephone<br>Facsimile | : ALSEr<br>: +61-2-<br>: +61-2-           | nviro.Sydney@ALSGlobal.com<br>8784 8555<br>8784 8500                                        |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler    | : 12517046<br>:<br>:<br>:                                                                                  | Page<br>Quote number<br>QC Level | : 1 of 3<br>: ES201<br>: NEPM             | 9GHDSER0030 (SY/522/19)<br>2013 B3 & ALS QC Standard                                        |
| Dates<br>Date Samples Receive<br>Client Requested Due<br>Date | ed : 12-Nov-2019 17:22<br>: 22-Nov-2019                                                                    | Issue Date<br>Scheduled Reporti  | ng Date                                   | : 13-Nov-2019<br>: <b>22-Nov-2019</b>                                                       |
| Delivery Detail                                               | ls                                                                                                         |                                  |                                           |                                                                                             |

| Mode of Delivery     | Indefined | Security Seal                      | · Not Available |
|----------------------|-----------|------------------------------------|-----------------|
|                      | Ondenned  | county cour                        |                 |
| No. of coolers/boxes | :         | Temperature                        | : 4.1'c         |
| Receipt Detail       | :         | No. of samples received / analysed | : 42 / 21       |

## **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- This work order is a split from ES1937483 & ES199005.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- EA033 Analysis to be conducted by ALS Brisbane.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
  analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
  temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
  recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

۲033 ۲ Suite for Acid Sulphate Soils

is requested

SOIL

#### • No sample container / preservation non-compliance exists.

### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

#### Matrix: SOIL

| Laboratory sample<br>ID | Client sampling<br>date / time | Client sample ID | (On Hold<br>No analy  | SOIL - E/<br>Chromiur |
|-------------------------|--------------------------------|------------------|-----------------------|-----------------------|
| ES1937554-001           | 30-Oct-2019 00:00              | VC11_0.0-0.1     |                       | ✓                     |
| ES1937554-002           | 30-Oct-2019 00:00              | VC11_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-003           | 30-Oct-2019 00:00              | VC11_1.0-1.1     |                       | ✓                     |
| ES1937554-004           | 30-Oct-2019 00:00              | VC09_0.0-0.1     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-005           | 30-Oct-2019 00:00              | VC09_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-006           | 30-Oct-2019 00:00              | VC09_0.9-1.0     |                       | ✓                     |
| ES1937554-007           | 30-Oct-2019 00:00              | VC07_0.0-0.1     |                       | ✓                     |
| ES1937554-008           | 30-Oct-2019 00:00              | VC07_0.5-0.6     | ✓                     |                       |
| ES1937554-009           | 30-Oct-2019 00:00              | VC07_1.0-1.1     |                       | ✓                     |
| ES1937554-010           | 30-Oct-2019 00:00              | VC05_0.0-0.1     |                       | ✓                     |
| ES1937554-011           | 30-Oct-2019 00:00              | VC05_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-012           | 30-Oct-2019 00:00              | VC05_0.8-1.0     |                       | ✓                     |
| ES1937554-013           | 30-Oct-2019 00:00              | VC03_0.0-0.1     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-014           | 30-Oct-2019 00:00              | VC03_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-015           | 30-Oct-2019 00:00              | VC03_10-1.1      |                       | ✓                     |
| ES1937554-016           | 30-Oct-2019 00:00              | VC01_0.0-0.1     |                       | ✓                     |
| ES1937554-017           | 30-Oct-2019 00:00              | vc01_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-018           | 30-Oct-2019 00:00              | VC01_1.0-1.1     |                       | ✓                     |
| ES1937554-019           | 30-Oct-2019 00:00              | VC02_0.0-0.1     |                       | ✓                     |
| ES1937554-020           | 30-Oct-2019 00:00              | VC02_0.5-0.6     | 1                     |                       |
| ES1937554-021           | 30-Oct-2019 00:00              | VC02_0.9-1.0     | ✓                     |                       |
| ES1937554-022           | 30-Oct-2019 00:00              | VC02_1.5-1.6     |                       | ✓                     |
| ES1937554-023           | 30-Oct-2019 00:00              | VC10_0.0-0.1     | ✓                     |                       |
| ES1937554-024           | 30-Oct-2019 00:00              | VC10_0.5-0.6     |                       | ✓                     |
| ES1937554-025           | 30-Oct-2019 00:00              | VC04_0.0-0.1     | ✓                     |                       |
| ES1937554-026           | 30-Oct-2019 00:00              | VC04_0.9-1.0     |                       | ✓                     |
| ES1937554-027           | 30-Oct-2019 00:00              | VC06_0.0-0.1     |                       | ✓                     |
| ES1937554-028           | 30-Oct-2019 00:00              | VC06_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-029           | 30-Oct-2019 00:00              | VC12_0.0-0.1     |                       | ✓                     |
| ES1937554-030           | 30-Oct-2019 00:00              | VC12_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-031           | 30-Oct-2019 00:00              | VC12_1.0-1.1     | ✓                     |                       |
| ES1937554-032           | 30-Oct-2019 00:00              | VC08_0.0-0.1     | ✓                     |                       |
| ES1937554-033           | 30-Oct-2019 00:00              | VC08_0.5-0.6     |                       | ✓                     |
| ES1937554-034           | 30-Oct-2019 00:00              | VC08_1.0-1.1     | ✓                     |                       |
| ES1937554-035           | 30-Oct-2019 00:00              | VC08_1.5-1.6     |                       | ✓                     |



|               |                   |              | (On Hold) SOIL<br>No analysis requested | SOIL - EA033<br>Chromium Suite for Acid Sulphate Soils |
|---------------|-------------------|--------------|-----------------------------------------|--------------------------------------------------------|
| ES1937554-036 | 30-Oct-2019 00:00 | VC13_0.0-0.1 | ✓                                       |                                                        |
| ES1937554-037 | 30-Oct-2019 00:00 | VC13_0.5-0.6 |                                         | ✓                                                      |
| ES1937554-038 | 30-Oct-2019 00:00 | VC13_1.0-1.1 | ✓                                       |                                                        |
| ES1937554-039 | 30-Oct-2019 00:00 | VC14_0.0-0.1 |                                         | ✓                                                      |
| ES1937554-040 | 30-Oct-2019 00:00 | VC14_0.5-0.6 | ✓                                       |                                                        |
| ES1937554-041 | 30-Oct-2019 00:00 | VC14_1.0-1.1 | ✓                                       |                                                        |
| ES1937554-042 | 30-Oct-2019 00:00 | VC14_1.3-1.4 |                                         | ✓                                                      |

## Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

## Requested Deliverables

| Accounts Payable Australia                                     |       |                           |
|----------------------------------------------------------------|-------|---------------------------|
| - A4 - AU Tax Invoice (INV)                                    | Email | accountspayableAU@ghd.com |
| SARAH ECCLESHALL                                               |       |                           |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)    | Email | sarah.eccleshall@ghd.com  |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)            | Email | sarah.eccleshall@ghd.com  |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN) | Email | sarah.eccleshall@ghd.com  |
| - Chain of Custody (CoC) (COC)                                 | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ENMRG (ENMRG)                                   | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ESDAT (ESDAT)                                   | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - XTab (XTAB)                                     | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>      | Email | sarah.eccleshall@ghd.com  |
|                                                                |       |                           |



# SAMPLE RECEIPT NOTIFICATION (SRN)

| Work Order                                                 | : ES1937554                                                                                                |                                  |                                           |                                                                                             |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|
| Client<br>Contact<br>Address                               | E GHD PTY LTD<br>E SARAH ECCLESHALL<br>E LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address | : Enviro<br>: Custor<br>: 277-28<br>NSW / | nmental Division Sydney<br>mer Services ES<br>39 Woodpark Road Smithfield<br>Australia 2164 |
| E-mail<br>Telephone<br>Facsimile                           | : sarah.eccleshall@ghd.com<br>:<br>:                                                                       | E-mail<br>Telephone<br>Facsimile | : ALSEr<br>: +61-2-<br>: +61-2-           | nviro.Sydney@ALSGlobal.com<br>.8784 8555<br>.8784 8500                                      |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler | : 12517046<br>:<br>:<br>:                                                                                  | Page<br>Quote number<br>QC Level | : 1 of 3<br>: ES201<br>: NEPM             | 19GHDSER0030 (SY/522/19)<br>I 2013 B3 & ALS QC Standard                                     |
| Dates<br>Date Samples Rece<br>Client Requested Do<br>Date  | ived : 12-Nov-2019 17:22<br>ue : 22-Nov-2019                                                               | Issue Date<br>Scheduled Reporti  | ng Date                                   | : 13-Nov-2019<br>: <b>22-Nov-2019</b>                                                       |
| Delivery Deta                                              | nils                                                                                                       |                                  |                                           |                                                                                             |

| Mode of Delivery     | : Undefined | Security Seal                      | : Not Available |
|----------------------|-------------|------------------------------------|-----------------|
| No. of coolers/boxes | :           | Temperature                        | : 4.1'c         |
| Receipt Detail       | :           | No. of samples received / analysed | : 42 / 21       |
|                      |             |                                    |                 |

## **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- This work order is a split from ES1937483 & ES1990050.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- EA033 Analysis to be conducted by ALS Brisbane.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
  analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
  temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
  recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

۲033 ۲ Suite for Acid Sulphate Soils

is requested

SOIL

#### • No sample container / preservation non-compliance exists.

### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

#### Matrix: SOIL

| Laboratory sample<br>ID | Client sampling<br>date / time | Client sample ID | (On Hold<br>No analy  | SOIL - E/<br>Chromiur |
|-------------------------|--------------------------------|------------------|-----------------------|-----------------------|
| ES1937554-001           | 30-Oct-2019 00:00              | VC11_0.0-0.1     |                       | ✓                     |
| ES1937554-002           | 30-Oct-2019 00:00              | VC11_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-003           | 30-Oct-2019 00:00              | VC11_1.0-1.1     |                       | ✓                     |
| ES1937554-004           | 30-Oct-2019 00:00              | VC09_0.0-0.1     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-005           | 30-Oct-2019 00:00              | VC09_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-006           | 30-Oct-2019 00:00              | VC09_0.9-1.0     |                       | ✓                     |
| ES1937554-007           | 30-Oct-2019 00:00              | VC07_0.0-0.1     |                       | ✓                     |
| ES1937554-008           | 30-Oct-2019 00:00              | VC07_0.5-0.6     | ✓                     |                       |
| ES1937554-009           | 30-Oct-2019 00:00              | VC07_1.0-1.1     |                       | ✓                     |
| ES1937554-010           | 30-Oct-2019 00:00              | VC05_0.0-0.1     |                       | ✓                     |
| ES1937554-011           | 30-Oct-2019 00:00              | VC05_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-012           | 30-Oct-2019 00:00              | VC05_0.8-1.0     |                       | ✓                     |
| ES1937554-013           | 30-Oct-2019 00:00              | VC03_0.0-0.1     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-014           | 30-Oct-2019 00:00              | VC03_0.5-0.6     | ✓                     |                       |
| ES1937554-015           | 30-Oct-2019 00:00              | VC03_10-1.1      |                       | ✓                     |
| ES1937554-016           | 30-Oct-2019 00:00              | VC01_0.0-0.1     |                       | ✓                     |
| ES1937554-017           | 30-Oct-2019 00:00              | vc01_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-018           | 30-Oct-2019 00:00              | VC01_1.0-1.1     |                       | ✓                     |
| ES1937554-019           | 30-Oct-2019 00:00              | VC02_0.0-0.1     |                       | ✓                     |
| ES1937554-020           | 30-Oct-2019 00:00              | VC02_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-021           | 30-Oct-2019 00:00              | VC02_0.9-1.0     | ✓                     |                       |
| ES1937554-022           | 30-Oct-2019 00:00              | VC02_1.5-1.6     |                       | ✓                     |
| ES1937554-023           | 30-Oct-2019 00:00              | VC10_0.0-0.1     | ✓                     |                       |
| ES1937554-024           | 30-Oct-2019 00:00              | VC10_0.5-0.6     |                       | ✓                     |
| ES1937554-025           | 30-Oct-2019 00:00              | VC04_0.0-0.1     | ✓                     |                       |
| ES1937554-026           | 30-Oct-2019 00:00              | VC04_0.9-1.0     |                       | ✓                     |
| ES1937554-027           | 30-Oct-2019 00:00              | VC06_0.0-0.1     |                       | ✓                     |
| ES1937554-028           | 30-Oct-2019 00:00              | VC06_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-029           | 30-Oct-2019 00:00              | VC12_0.0-0.1     |                       | ✓                     |
| ES1937554-030           | 30-Oct-2019 00:00              | VC12_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-031           | 30-Oct-2019 00:00              | VC12_1.0-1.1     | ✓                     |                       |
| ES1937554-032           | 30-Oct-2019 00:00              | VC08_0.0-0.1     | ✓                     |                       |
| ES1937554-033           | 30-Oct-2019 00:00              | VC08_0.5-0.6     |                       | ✓                     |
| ES1937554-034           | 30-Oct-2019 00:00              | VC08_1.0-1.1     | ✓                     |                       |
| ES1937554-035           | 30-Oct-2019 00:00              | VC08_1.5-1.6     |                       | ✓                     |



|               |                   |              | (On Hold) SOIL<br>No analysis requested | SOIL - EA033<br>Chromium Suite for Acid Sulphate Soils |
|---------------|-------------------|--------------|-----------------------------------------|--------------------------------------------------------|
| ES1937554-036 | 30-Oct-2019 00:00 | VC13_0.0-0.1 | ✓                                       |                                                        |
| ES1937554-037 | 30-Oct-2019 00:00 | VC13_0.5-0.6 |                                         | ✓                                                      |
| ES1937554-038 | 30-Oct-2019 00:00 | VC13_1.0-1.1 | ✓                                       |                                                        |
| ES1937554-039 | 30-Oct-2019 00:00 | VC14_0.0-0.1 |                                         | ✓                                                      |
| ES1937554-040 | 30-Oct-2019 00:00 | VC14_0.5-0.6 | ✓                                       |                                                        |
| ES1937554-041 | 30-Oct-2019 00:00 | VC14_1.0-1.1 | ✓                                       |                                                        |
| ES1937554-042 | 30-Oct-2019 00:00 | VC14_1.3-1.4 |                                         | ✓                                                      |

## Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

## Requested Deliverables

| Accounts Payable Australia                                     |       |                           |
|----------------------------------------------------------------|-------|---------------------------|
| - A4 - AU Tax Invoice (INV)                                    | Email | accountspayableAU@ghd.com |
| SARAH ECCLESHALL                                               |       |                           |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)    | Email | sarah.eccleshall@ghd.com  |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)            | Email | sarah.eccleshall@ghd.com  |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN) | Email | sarah.eccleshall@ghd.com  |
| - Chain of Custody (CoC) (COC)                                 | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ENMRG (ENMRG)                                   | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ESDAT (ESDAT)                                   | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - XTab (XTAB)                                     | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>      | Email | sarah.eccleshall@ghd.com  |
|                                                                |       |                           |



# SAMPLE RECEIPT NOTIFICATION (SRN)

| Work Order                                                 | : ES1937554                                                                                                |                                  |                                           |                                                                                             |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|
| Client<br>Contact<br>Address                               | E GHD PTY LTD<br>E SARAH ECCLESHALL<br>E LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address | : Enviro<br>: Custor<br>: 277-28<br>NSW / | nmental Division Sydney<br>mer Services ES<br>39 Woodpark Road Smithfield<br>Australia 2164 |
| E-mail<br>Telephone<br>Facsimile                           | : sarah.eccleshall@ghd.com<br>:<br>:                                                                       | E-mail<br>Telephone<br>Facsimile | : ALSEr<br>: +61-2-<br>: +61-2-           | nviro.Sydney@ALSGlobal.com<br>.8784 8555<br>.8784 8500                                      |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler | : 12517046<br>:<br>:<br>:                                                                                  | Page<br>Quote number<br>QC Level | : 1 of 3<br>: ES201<br>: NEPM             | 19GHDSER0030 (SY/522/19)<br>I 2013 B3 & ALS QC Standard                                     |
| Dates<br>Date Samples Rece<br>Client Requested Do<br>Date  | ived : 12-Nov-2019 17:22<br>ue : 22-Nov-2019                                                               | Issue Date<br>Scheduled Reporti  | ng Date                                   | : 13-Nov-2019<br>: <b>22-Nov-2019</b>                                                       |
| Delivery Deta                                              | nils                                                                                                       |                                  |                                           |                                                                                             |

| ,                    |             |                                    |                 |
|----------------------|-------------|------------------------------------|-----------------|
| Mode of Delivery     | : Undefined | Security Seal                      | : Not Available |
| No. of coolers/boxes | :           | Temperature                        | : 4.1'c         |
| Receipt Detail       | :           | No. of samples received / analysed | : 42 / 21       |
|                      |             |                                    |                 |

## **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- This work order is a split from ES1937483 & ES1990050.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- EA033 Analysis to be conducted by ALS Brisbane.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
  analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
  temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
  recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

۲033 ۲ Suite for Acid Sulphate Soils

is requested

SOIL

#### • No sample container / preservation non-compliance exists.

### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

#### Matrix: SOIL

| Laboratory sample<br>ID | Client sampling<br>date / time | Client sample ID | (On Hold<br>No analys | SOIL - E/<br>Chromiur |
|-------------------------|--------------------------------|------------------|-----------------------|-----------------------|
| ES1937554-001           | 31-Oct-2019 00:00              | VC11_0.0-0.1     |                       | ✓                     |
| ES1937554-002           | 30-Oct-2019 00:00              | VC11_0.5-0.6     | ✓                     |                       |
| ES1937554-003           | 30-Oct-2019 00:00              | VC11_1.0-1.1     |                       | ✓                     |
| ES1937554-004           | 30-Oct-2019 00:00              | VC09_0.0-0.1     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-005           | 30-Oct-2019 00:00              | VC09_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-006           | 30-Oct-2019 00:00              | VC09_0.9-1.0     |                       | ✓                     |
| ES1937554-007           | 30-Oct-2019 00:00              | VC07_0.0-0.1     |                       | ✓                     |
| ES1937554-008           | 30-Oct-2019 00:00              | VC07_0.5-0.6     | 1                     |                       |
| ES1937554-009           | 30-Oct-2019 00:00              | VC07_1.0-1.1     |                       | ✓                     |
| ES1937554-010           | 30-Oct-2019 00:00              | VC05_0.0-0.1     |                       | ✓                     |
| ES1937554-011           | 30-Oct-2019 00:00              | VC05_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-012           | 30-Oct-2019 00:00              | VC05_0.8-1.0     |                       | ✓                     |
| ES1937554-013           | 30-Oct-2019 00:00              | VC03_0.0-0.1     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-014           | 30-Oct-2019 00:00              | VC03_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-015           | 30-Oct-2019 00:00              | VC03_10-1.1      |                       | ✓                     |
| ES1937554-016           | 30-Oct-2019 00:00              | VC01_0.0-0.1     |                       | ✓                     |
| ES1937554-017           | 30-Oct-2019 00:00              | vc01_0.5-0.6     | 1                     |                       |
| ES1937554-018           | 30-Oct-2019 00:00              | VC01_1.0-1.1     |                       | ✓                     |
| ES1937554-019           | 30-Oct-2019 00:00              | VC02_0.0-0.1     |                       | ✓                     |
| ES1937554-020           | 30-Oct-2019 00:00              | VC02_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-021           | 30-Oct-2019 00:00              | VC02_0.9-1.0     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-022           | 30-Oct-2019 00:00              | VC02_1.5-1.6     |                       | ✓                     |
| ES1937554-023           | 30-Oct-2019 00:00              | VC10_0.0-0.1     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-024           | 30-Oct-2019 00:00              | VC10_0.5-0.6     |                       | ✓                     |
| ES1937554-025           | 30-Oct-2019 00:00              | VC04_0.0-0.1     | 1                     |                       |
| ES1937554-026           | 30-Oct-2019 00:00              | VC04_0.9-1.0     |                       | ✓                     |
| ES1937554-027           | 30-Oct-2019 00:00              | VC06_0.0-0.1     |                       | ✓                     |
| ES1937554-028           | 31-Oct-2019 00:00              | VC06_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-029           | 31-Oct-2019 00:00              | VC12_0.0-0.1     |                       | ✓                     |
| ES1937554-030           | 31-Oct-2019 00:00              | VC12_0.5-0.6     | <ul> <li>✓</li> </ul> |                       |
| ES1937554-031           | 31-Oct-2019 00:00              | VC12_1.0-1.1     | 1                     |                       |
| ES1937554-032           | 31-Oct-2019 00:00              | VC08_0.0-0.1     | 1                     |                       |
| ES1937554-033           | 31-Oct-2019 00:00              | VC08_0.5-0.6     |                       | ✓                     |
| ES1937554-034           | 31-Oct-2019 00:00              | VC08_1.0-1.1     | 1                     |                       |
| ES1937554-035           | 31-Oct-2019 00:00              | VC08_1.5-1.6     |                       | ✓                     |



|               |                   |              | (On Hold) SOIL<br>No analysis requested | SOIL - EA033<br>Chromium Suite for Acid Sulphate Soils |
|---------------|-------------------|--------------|-----------------------------------------|--------------------------------------------------------|
| ES1937554-036 | 31-Oct-2019 00:00 | VC13_0.0-0.1 | ✓                                       |                                                        |
| ES1937554-037 | 31-Oct-2019 00:00 | VC13_0.5-0.6 |                                         | ✓                                                      |
| ES1937554-038 | 31-Oct-2019 00:00 | VC13_1.0-1.1 | ✓                                       |                                                        |
| ES1937554-039 | 31-Oct-2019 00:00 | VC14_0.0-0.1 |                                         | ✓                                                      |
| ES1937554-040 | 31-Oct-2019 00:00 | VC14_0.5-0.6 | ✓                                       |                                                        |
| ES1937554-041 | 31-Oct-2019 00:00 | VC14_1.0-1.1 | 1                                       |                                                        |
| ES1937554-042 | 31-Oct-2019 00:00 | VC14_1.3-1.4 |                                         | 1                                                      |

## Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

## Requested Deliverables

| Accounts Payable Australia                                     |       |                           |
|----------------------------------------------------------------|-------|---------------------------|
| - A4 - AU Tax Invoice (INV)                                    | Email | accountspayableAU@ghd.com |
| SARAH ECCLESHALL                                               |       |                           |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)    | Email | sarah.eccleshall@ghd.com  |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)            | Email | sarah.eccleshall@ghd.com  |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN) | Email | sarah.eccleshall@ghd.com  |
| - Chain of Custody (CoC) (COC)                                 | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ENMRG (ENMRG)                                   | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ESDAT (ESDAT)                                   | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - XTab (XTAB)                                     | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>      | Email | sarah.eccleshall@ghd.com  |
|                                                                |       |                           |


# SAMPLE RECEIPT NOTIFICATION (SRN)

| Work Order                                                 | : ES1937554                                                                                                       |                                  |                                                                                                                                                  |                                                         |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| Client<br>Contact<br>Address                               | : <b>GHD PTY LTD</b><br>: SARAH ECCLESHALL<br>: LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address | <ul> <li>Environmental Division Sydney</li> <li>Customer Services ES</li> <li>277-289 Woodpark Road Smithfield<br/>NSW Australia 2164</li> </ul> |                                                         |  |  |
| E-mail<br>Telephone<br>Facsimile                           | : sarah.eccleshall@ghd.com<br>:<br>:                                                                              | E-mail<br>Telephone<br>Facsimile | : ALSEr<br>: +61-2-<br>: +61-2-                                                                                                                  | nviro.Sydney@ALSGlobal.com<br>•8784 8555<br>•8784 8500  |  |  |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler | : 12517046<br>:<br>:<br>:                                                                                         | Page<br>Quote number<br>QC Level | : 1 of 3<br>: ES201<br>: NEPM                                                                                                                    | 19GHDSER0030 (SY/522/19)<br>I 2013 B3 & ALS QC Standard |  |  |
| Dates<br>Date Samples Rece<br>Client Requested D<br>Date   | eived : 12-Nov-2019 17:22<br>ue : 22-Nov-2019                                                                     | Issue Date<br>Scheduled Reportir | ng Date                                                                                                                                          | : 18-Nov-2019<br>: <b>22-Nov-2019</b>                   |  |  |
| Delivery Deta                                              | ails                                                                                                              |                                  |                                                                                                                                                  |                                                         |  |  |

| : Undefined | Security Seal                      | : Not Available                                                                                      |
|-------------|------------------------------------|------------------------------------------------------------------------------------------------------|
| :           | Temperature                        | : 4.1'c                                                                                              |
| :           | No. of samples received / analysed | : 42 / 22                                                                                            |
|             | : Undefined<br>:                   | : Undefined     Security Seal       :     Temperature       :     No. of samples received / analysed |

# **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- This work order is a split from ES1937483 & ES1990050.
- This work order is a rebatch of ES1936029/ES1936183 and a split from ES1937483/ES1990050
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- \*18/11/2019\*: SRN has been resent to acknowledge addition of AVS-SEM to samples 'VC07\_0.0-0.1', 'VC02\_0.5-0.6' & 'VC12\_0.0-0.1' received by ALS from Sarah Eccleshall, 15/11/2019. For any further information regarding these adjustments please contact client services at ALSEnviro.Sydney@alsglobal.com.
- EA033 Analysis to be conducted by ALS Brisbane.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
  analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
  temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
  recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exists.

## Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

| tasks. Packages may contain additional analyses, such |                     |                         |                  |             |                |                 |  |  |  |
|-------------------------------------------------------|---------------------|-------------------------|------------------|-------------|----------------|-----------------|--|--|--|
| as the determin                                       | ation of moisture   | content and preparation |                  |             | aneo           |                 |  |  |  |
| tasks, that are included in the package.              |                     |                         |                  |             |                |                 |  |  |  |
| If no sampling                                        | time is provided,   | the sampling time will  |                  | ate S       | s pu           |                 |  |  |  |
| default 00:00 on                                      | the date of samplin | ig. If no sampling date |                  | nlpha       | /S) a          |                 |  |  |  |
| laboratory and                                        | displayed in bra    | ckets without a time    |                  | cid S       | s (A)          |                 |  |  |  |
| component                                             |                     |                         | estec            | for A       | VS_S           | с т<br>С        |  |  |  |
| Matrix: SOIL                                          |                     |                         | requ             | 33<br>Suite | 38-A'<br>e Sul | 55-1(<br>onten  |  |  |  |
|                                                       |                     |                         | old) S<br>alysis | EA0         | EA0<br>olatil  | EA0<br>C        |  |  |  |
| Laboratory sample                                     | Client sampling     | Client sample ID        | Dn Ho            | OIL -       | OIL -<br>cid V | OIL -<br>loistu |  |  |  |
| ES1937554-001                                         | 30-Oct-2019 00:00   | VC11 0.0-0.1            | SZ               | <u>∽ ⊖</u>  | S A            | <u>v &gt;</u>   |  |  |  |
| ES1937554-002                                         | 30-Oct-2019 00:00   | VC11 0.5-0.6            | 1                |             |                |                 |  |  |  |
| ES1937554-003                                         | 30-Oct-2019 00:00   | <br>VC11_1.0-1.1        |                  | ✓           |                |                 |  |  |  |
| ES1937554-004                                         | 30-Oct-2019 00:00   | <br>VC09_0.0-0.1        | 1                |             |                |                 |  |  |  |
| ES1937554-005                                         | 30-Oct-2019 00:00   | <br>VC09_0.5-0.6        | 1                |             |                |                 |  |  |  |
| ES1937554-006                                         | 30-Oct-2019 00:00   | VC09 0.9-1.0            |                  | ✓           |                |                 |  |  |  |
| ES1937554-007                                         | 30-Oct-2019 00:00   | VC07_0.0-0.1            |                  | ·<br>•      | ✓              | 1               |  |  |  |
| ES1937554-008                                         | 30-Oct-2019 00:00   | VC07_0.5-0.6            | 1                |             | -              | -               |  |  |  |
| ES1937554-009                                         | 30-Oct-2019 00:00   | VC07_1.0-1.1            |                  | 1           |                |                 |  |  |  |
| ES1937554-010                                         | 30-Oct-2019 00:00   | VC05_0.0-0.1            |                  | ·<br>•      |                |                 |  |  |  |
| ES1937554-011                                         | 30-Oct-2019 00:00   | VC05_0.5-0.6            | 1                |             |                |                 |  |  |  |
| ES1937554-012                                         | 30-Oct-2019 00:00   | VC05_0.8-1_0            | -                | 1           |                |                 |  |  |  |
| ES1937554-013                                         | 30-Oct-2019 00:00   | VC03_0.0-0.1            | 1                |             |                |                 |  |  |  |
| ES1937554-014                                         | 30-Oct-2019 00:00   | VC03_0.5-0.6            | ·<br>•           |             |                |                 |  |  |  |
| ES1937554-015                                         | 30-Oct-2019 00:00   | VC03_10-1_1             | •                | 1           |                |                 |  |  |  |
| ES1937554-016                                         | 30-Oct-2019 00:00   | VC01_0_0_0_1            |                  | ·<br>•      |                |                 |  |  |  |
| ES1937554-017                                         | 30-Oct-2019 00:00   | vc01_0.5-0.6            | 1                | •           |                |                 |  |  |  |
| ES1937554-018                                         | 30-Oct-2019 00:00   | VC01_1.0-1.1            | -                | 1           |                |                 |  |  |  |
| ES1937554-019                                         | 30-Oct-2019 00:00   | VC02_0.0-0.1            |                  | •           |                |                 |  |  |  |
| ES1937554-020                                         | 30-Oct-2019 00:00   | VC02_0.5-0.6            |                  |             | 1              | 1               |  |  |  |
| ES1937554-021                                         | 30-Oct-2019 00:00   | VC02_0.9-1.0            | 1                |             | •              | -               |  |  |  |
| ES1037554-022                                         | 30-Oct-2019 00:00   | VC02_0.5 1.6            | •                | 1           |                |                 |  |  |  |
| ES1937554-023                                         | 30-Oct-2019 00:00   | VC10_0.0-0.1            | 1                | •           |                |                 |  |  |  |
| ES1937554-024                                         | 30-Oct-2019 00:00   | VC10_0.5-0.6            | •                | 1           |                |                 |  |  |  |
| ES1937554-025                                         | 30-Oct-2019 00:00   | VC04_0.0-0.1            | 1                | •           |                |                 |  |  |  |
| ES1937554-026                                         | 30-Oct-2019 00:00   | VC04_0.9-1.0            | -                | 1           |                |                 |  |  |  |
| ES1937554-027                                         | 31-Oct-2019 00:00   | VC06_0_0-0_1            |                  | ·<br>•      |                |                 |  |  |  |
| ES1937554-028                                         | 31-Oct-2019 00:00   | VC06_0.5-0.6            | 1                |             |                |                 |  |  |  |
| ES1937554-029                                         | 31-Oct-2019 00:00   | VC12_0.0-0.1            | -                | 1           | 1              | 1               |  |  |  |
| ES1937554-030                                         | 31-Oct-2019 00:00   | VC12_0.5-0.6            | 1                | -           | -              | -               |  |  |  |
| ES1937554-031                                         | 31-Oct-2019 00:00   | VC12_1.0-1.1            | ·<br>•           |             |                |                 |  |  |  |
| ES1937554-032                                         | 31-Oct-2019 00:00   | VC08_0.0-0.1            | ·<br>•           |             |                |                 |  |  |  |
| ES1937554_033                                         | 31_Oct_2019 00:00   | VC08_0.5-0.6            | -                | 1           |                |                 |  |  |  |
| ES1937554-034                                         | 31-Oct-2019 00:00   | VC08_1.0-1.1            | 1                | -           |                |                 |  |  |  |
| ES1037554 035                                         | 31_Oct_2019 00:00   | VC08_1.5-1.6            |                  | 1           |                |                 |  |  |  |
| 201901004-000                                         | 51-001-2019 00.00   | v000_1.5-1.0            |                  |             |                |                 |  |  |  |



|               |                   |              | (On Hold) SOIL<br>No analysis requested | SOIL - EA033<br>Chromium Suite for Acid Sulphate Soils | SOIL - EA038-AVS_SEM<br>Acid Volatile Sulphides (AVS) and Simultaneously | SOIL - EA055-103<br>Moisture Content |
|---------------|-------------------|--------------|-----------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|
| ES1937554-036 | 31-Oct-2019 00:00 | VC13_0.0-0.1 | ✓                                       |                                                        |                                                                          |                                      |
| ES1937554-037 | 31-Oct-2019 00:00 | VC13_0.5-0.6 |                                         | 1                                                      |                                                                          |                                      |
| ES1937554-038 | 31-Oct-2019 00:00 | VC13_1.0-1.1 | 1                                       |                                                        |                                                                          |                                      |
| ES1937554-039 | 31-Oct-2019 00:00 | VC14_0.0-0.1 |                                         | 1                                                      |                                                                          |                                      |
| ES1937554-040 | 31-Oct-2019 00:00 | VC14_0.5-0.6 | 1                                       |                                                        |                                                                          |                                      |
| ES1937554-041 | 31-Oct-2019 00:00 | VC14_1.0-1.1 | ✓                                       |                                                        |                                                                          |                                      |
| ES1937554-042 | 31-Oct-2019 00:00 | VC14_1.3-1.4 |                                         | 1                                                      |                                                                          |                                      |

# Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

# Requested Deliverables

| Accounts Payable Australia                                            |       |                           |
|-----------------------------------------------------------------------|-------|---------------------------|
| - A4 - AU Tax Invoice (INV)                                           | Email | accountspayableAU@ghd.com |
| SARAH ECCLESHALL                                                      |       |                           |
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)           | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul> | Email | sarah.eccleshall@ghd.com  |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)        | Email | sarah.eccleshall@ghd.com  |
| - Chain of Custody (CoC) (COC)                                        | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ENMRG (ENMRG)                                          | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - ESDAT (ESDAT)                                          | Email | sarah.eccleshall@ghd.com  |
| - EDI Format - XTab (XTAB)                                            | Email | sarah.eccleshall@ghd.com  |
| <ul> <li>Electronic SRN for ESdat (ESRN_ESDAT)</li> </ul>             | Email | sarah.eccleshall@ghd.com  |
|                                                                       |       |                           |



#### **CERTIFICATE OF ANALYSIS** Work Order : ES1937554 Page : 1 of 7 Amendment :1 Client Laboratory GHD PTY LTD : Environmental Division Svdnev Contact : SARAH ECCLESHALL Contact : Customer Services ES Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000 Telephone Telephone : +61-2-8784 8555 : -----Project : 12517046 **Date Samples Received** : 12-Nov-2019 17:22 Order number Date Analysis Commenced : 18-Nov-2019 · \_\_\_\_ C-O-C number Issue Date · 10-Dec-2019 11:18 · \_\_\_\_ Sampler · \_\_\_\_ Site · \_\_\_\_ Quote number : SY/522/19 Accreditation No. 825 No. of samples received : 42 Accredited for compliance with ISO/IEC 17025 - Testing No. of samples analysed : 22

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                         | Accreditation Category                      |
|--------------------|----------------------------------|---------------------------------------------|
| Ben Felgendrejeris | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |
| Ben Felgendrejeris | Senior Acid Sulfate Soil Chemist | Brisbane Inorganics, Stafford, QLD          |
| Kim McCabe         | Senior Inorganic Chemist         | Brisbane Acid Sulphate Soils, Stafford, QLD |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
  - ^ = This result is computed from individual analyte detections at or above the level of reporting
  - ø = ALS is not NATA accredited for these tests.
  - ~ = Indicates an estimated value.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- Amendment (10/12/2019): This report has been amended to allow the distribution of an reports not previously provided. All analysis results are as per the previous report.
- ASS: EA033 (CRS Suite): Laboratory determinations of ANC needs to be corroborated by effectiveness of the measured ANC in relation to incubation ANC. Unless corroborated, the results of ANC testing should be discounted when determining Net Acidity for comparison with action criteria, or for the determination of the acidity hazard and required liming amounts.
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.

| Page       | : 3 of 7              |
|------------|-----------------------|
| Work Order | ES1937554 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)           | Client sample ID |             | VC11_0.0-0.1   | VC11_1.0-1.1      | VC09_0.9-1.0      | VC07_0.0-0.1      | VC07_1.0-1.1      |                   |
|----------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl               | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                                     | CAS Number       | LOR         | Unit           | ES1937554-001     | ES1937554-003     | ES1937554-006     | ES1937554-007     | ES1937554-009     |
|                                              |                  |             |                | Result            | Result            | Result            | Result            | Result            |
| EA033-A: Actual Acidity                      |                  |             |                |                   |                   |                   |                   |                   |
| рН КСІ (23А)                                 |                  | 0.1         | pH Unit        | 9.2               | 9.2               | 8.9               | 9.2               | 8.9               |
| Titratable Actual Acidity (23F)              |                  | 2           | mole H+ / t    | <2                | <2                | <2                | <2                | <2                |
| sulfidic - Titratable Actual Acidity (s-23F) |                  | 0.02        | % pyrite S     | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |
| EA033-B: Potential Acidity                   |                  |             |                |                   |                   |                   |                   |                   |
| Chromium Reducible Sulfur (22B)              |                  | 0.005       | % S            | 0.195             | 0.286             | 0.015             | 0.107             | 0.023             |
| acidity - Chromium Reducible Sulfur          |                  | 10          | mole H+ / t    | 121               | 178               | <10               | 67                | 14                |
| (a-22B)                                      |                  |             |                |                   |                   |                   |                   |                   |
| EA033-C: Acid Neutralising Capacity          |                  |             |                |                   |                   |                   |                   |                   |
| Acid Neutralising Capacity (19A2)            |                  | 0.01        | % CaCO3        | 35.1              | 22.1              | 0.77              | 28.0              | 1.34              |
| acidity - Acid Neutralising Capacity         |                  | 10          | mole H+ / t    | 7010              | 4410              | 153               | 5590              | 269               |
| (a-19A2)                                     |                  |             |                |                   |                   |                   |                   |                   |
| sulfidic - Acid Neutralising Capacity        |                  | 0.01        | % pyrite S     | 11.2              | 7.07              | 0.24              | 8.96              | 0.43              |
| (s-19A2)                                     |                  |             |                |                   |                   |                   |                   |                   |
| EA033-E: Acid Base Accounting                |                  |             |                |                   |                   |                   |                   |                   |
| ANC Fineness Factor                          |                  | 0.5         | -              | 1.5               | 1.5               | 1.5               | 1.5               | 1.5               |
| Net Acidity (sulfur units)                   |                  | 0.02        | % S            | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |
| Net Acidity (acidity units)                  |                  | 10          | mole H+ / t    | <10               | <10               | <10               | <10               | <10               |
| Liming Rate                                  |                  | 1           | kg CaCO3/t     | <1                | <1                | <1                | <1                | <1                |
| Net Acidity excluding ANC (sulfur units)     |                  | 0.02        | % S            | 0.19              | 0.29              | <0.02             | 0.11              | 0.02              |
| Net Acidity excluding ANC (acidity units)    |                  | 10          | mole H+ / t    | 121               | 178               | <10               | 67                | 14                |
| Liming Rate excluding ANC                    |                  | 1           | kg CaCO3/t     | 9                 | 13                | <1                | 5                 | 1                 |
| EA038 / EG005 (ED093): Simultaneously E      | Extracted Metal  | S           |                |                   |                   |                   |                   |                   |
| Copper                                       | 7440-50-8        | 1.0         | mg/kg          |                   |                   |                   | 48.1              |                   |
| Silver                                       | 7440-22-4        | 1.0         | mg/kg          |                   |                   |                   | <1.0              |                   |
| EA038 / EG005(ED093): Acid Volatile Sulp     | ohides & Simult  | aneously    | Extracted Met  | als               |                   |                   |                   |                   |
| Copper                                       | 7440-50-8        | 0.01        | mmol/kg        |                   |                   |                   | 0.76              |                   |
| Silver                                       | 7440-22-4        | 0.01        | mmol/kg        |                   |                   |                   | <0.01             |                   |

| Page       | : 4 of 7              |
|------------|-----------------------|
| Work Order | ES1937554 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)           | Client sample ID |              |                | VC05_0.0-0.1      | VC05_0.8-1.0      | VC03_10-1.1       | VC01_0.0-0.1      | VC01_1.0-1.1      |
|----------------------------------------------|------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Ci               | lient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                                     | CAS Number       | LOR          | Unit           | ES1937554-010     | ES1937554-012     | ES1937554-015     | ES1937554-016     | ES1937554-018     |
|                                              |                  |              |                | Result            | Result            | Result            | Result            | Result            |
| EA033-A: Actual Acidity                      |                  |              |                |                   |                   |                   |                   |                   |
| рН КСІ (23А)                                 |                  | 0.1          | pH Unit        | 9.1               | 7.4               | 7.0               | 9.0               | 9.2               |
| Titratable Actual Acidity (23F)              |                  | 2            | mole H+/t      | <2                | <2                | <2                | <2                | <2                |
| sulfidic - Titratable Actual Acidity (s-23F) |                  | 0.02         | % pyrite S     | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |
| EA033-B: Potential Acidity                   |                  |              |                |                   |                   |                   |                   |                   |
| Chromium Reducible Sulfur (22B)              |                  | 0.005        | % S            | 0.020             | 0.010             | 0.021             | 0.161             | 0.023             |
| acidity - Chromium Reducible Sulfur          |                  | 10           | mole H+ / t    | 12                | <10               | 13                | 101               | 14                |
| (a-22B)                                      |                  |              |                |                   |                   |                   |                   |                   |
| EA033-C: Acid Neutralising Capacity          |                  |              |                |                   |                   |                   |                   |                   |
| Acid Neutralising Capacity (19A2)            |                  | 0.01         | % CaCO3        | 0.98              | 0.22              | 0.25              | 9.53              | 0.47              |
| acidity - Acid Neutralising Capacity         |                  | 10           | mole H+ / t    | 196               | 45                | 50                | 1900              | 93                |
| (a-19A2)                                     |                  |              |                |                   |                   |                   |                   |                   |
| sulfidic - Acid Neutralising Capacity        |                  | 0.01         | % pyrite S     | 0.31              | 0.07              | 0.08              | 3.05              | 0.15              |
| (s-19A2)                                     |                  |              |                |                   |                   |                   |                   |                   |
| EA033-E: Acid Base Accounting                |                  |              |                |                   |                   |                   |                   |                   |
| ANC Fineness Factor                          |                  | 0.5          | -              | 1.5               | 1.5               | 1.5               | 1.5               | 1.5               |
| Net Acidity (sulfur units)                   |                  | 0.02         | % S            | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |
| Net Acidity (acidity units)                  |                  | 10           | mole H+ / t    | <10               | <10               | <10               | <10               | <10               |
| Liming Rate                                  |                  | 1            | kg CaCO3/t     | <1                | <1                | <1                | <1                | <1                |
| Net Acidity excluding ANC (sulfur units)     |                  | 0.02         | % S            | 0.02              | <0.02             | 0.02              | 0.16              | 0.02              |
| Net Acidity excluding ANC (acidity units)    |                  | 10           | mole H+ / t    | 12                | <10               | 13                | 101               | 14                |
| Liming Rate excluding ANC                    |                  | 1            | kg CaCO3/t     | <1                | <1                | <1                | 8                 | 1                 |

| Page       | 5 of 7                |
|------------|-----------------------|
| Work Order | ES1937554 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)           | Client sample ID |             | VC02_0.0-0.1   | VC02_0.5-0.6      | VC02_1.5-1.6      | VC10_0.5-0.6      | VC04_0.9-1.0      |                   |
|----------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl               | ient sampli | ng date / time | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 | 30-Oct-2019 00:00 |
| Compound                                     | CAS Number       | LOR         | Unit           | ES1937554-019     | ES1937554-020     | ES1937554-022     | ES1937554-024     | ES1937554-026     |
|                                              |                  |             |                | Result            | Result            | Result            | Result            | Result            |
| EA033-A: Actual Acidity                      |                  |             |                |                   |                   |                   |                   |                   |
| рН КСІ (23А)                                 |                  | 0.1         | pH Unit        | 8.9               |                   | 8.1               | 6.7               | 7.2               |
| Titratable Actual Acidity (23F)              |                  | 2           | mole H+/t      | <2                |                   | <2                | <2                | <2                |
| sulfidic - Titratable Actual Acidity (s-23F) |                  | 0.02        | % pyrite S     | <0.02             |                   | <0.02             | <0.02             | <0.02             |
| EA033-B: Potential Acidity                   |                  |             |                |                   |                   |                   |                   |                   |
| Chromium Reducible Sulfur (22B)              |                  | 0.005       | % S            | 0.274             |                   | 0.022             | 0.019             | 0.011             |
| acidity - Chromium Reducible Sulfur          |                  | 10          | mole H+ / t    | 171               |                   | 14                | 12                | <10               |
| (a-22B)                                      |                  |             |                |                   |                   |                   |                   |                   |
| EA033-C: Acid Neutralising Capacity          |                  |             |                |                   |                   |                   |                   |                   |
| Acid Neutralising Capacity (19A2)            |                  | 0.01        | % CaCO3        | 14.8              |                   | 0.76              | 0.35              | 0.43              |
| acidity - Acid Neutralising Capacity         |                  | 10          | mole H+ / t    | 2960              |                   | 151               | 69                | 86                |
| (a-19A2)                                     |                  |             |                |                   |                   |                   |                   |                   |
| sulfidic - Acid Neutralising Capacity        |                  | 0.01        | % pyrite S     | 4.75              |                   | 0.24              | 0.11              | 0.14              |
| (s-19A2)                                     |                  |             |                |                   |                   |                   |                   |                   |
| EA033-E: Acid Base Accounting                |                  |             |                |                   |                   |                   |                   |                   |
| ANC Fineness Factor                          |                  | 0.5         | -              | 1.5               |                   | 1.5               | 1.5               | 1.5               |
| Net Acidity (sulfur units)                   |                  | 0.02        | % S            | <0.02             |                   | <0.02             | <0.02             | <0.02             |
| Net Acidity (acidity units)                  |                  | 10          | mole H+ / t    | <10               |                   | <10               | <10               | <10               |
| Liming Rate                                  |                  | 1           | kg CaCO3/t     | <1                |                   | <1                | <1                | <1                |
| Net Acidity excluding ANC (sulfur units)     |                  | 0.02        | % S            | 0.27              |                   | 0.02              | <0.02             | <0.02             |
| Net Acidity excluding ANC (acidity units)    |                  | 10          | mole H+ / t    | 171               |                   | 14                | 12                | <10               |
| Liming Rate excluding ANC                    |                  | 1           | kg CaCO3/t     | 13                |                   | 1                 | <1                | <1                |
| EA038 / EG005 (ED093): Simultaneously E      | Extracted Metals | 5           |                |                   |                   |                   |                   |                   |
| Copper                                       | 7440-50-8        | 1.0         | mg/kg          |                   | 7.1               |                   |                   |                   |
| Silver                                       | 7440-22-4        | 1.0         | mg/kg          |                   | <1.0              |                   |                   |                   |
| EA038 / EG005(ED093): Acid Volatile Sulp     | hides & Simult   | aneously    | Extracted Met  | als               |                   |                   |                   |                   |
| Copper                                       | 7440-50-8        | 0.01        | mmol/kg        |                   | 0.11              |                   |                   |                   |
| Silver                                       | 7440-22-4        | 0.01        | mmol/kg        |                   | <0.01             |                   |                   |                   |

| Page       | : 6 of 7              |
|------------|-----------------------|
| Work Order | ES1937554 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)           | Client sample ID |             | VC06_0.0-0.1   | VC12_0.0-0.1      | VC08_0.5-0.6      | VC08_1.5-1.6      | VC13_0.5-0.6      |                   |  |  |
|----------------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                              | Cl               | ient sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |
| Compound                                     | CAS Number       | LOR         | Unit           | ES1937554-027     | ES1937554-029     | ES1937554-033     | ES1937554-035     | ES1937554-037     |  |  |
|                                              |                  |             |                | Result            | Result            | Result            | Result            | Result            |  |  |
| EA033-A: Actual Acidity                      |                  |             |                |                   |                   |                   |                   |                   |  |  |
| рН КСІ (23А)                                 |                  | 0.1         | pH Unit        | 8.9               | 9.1               | 9.2               | 9.0               | 9.0               |  |  |
| Titratable Actual Acidity (23F)              |                  | 2           | mole H+ / t    | <2                | <2                | <2                | <2                | <2                |  |  |
| sulfidic - Titratable Actual Acidity (s-23F) |                  | 0.02        | % pyrite S     | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |  |  |
| EA033-B: Potential Acidity                   |                  |             |                |                   |                   |                   |                   |                   |  |  |
| Chromium Reducible Sulfur (22B)              |                  | 0.005       | % S            | 0.610             | 0.087             | 0.295             | 0.056             | 0.040             |  |  |
| acidity - Chromium Reducible Sulfur          |                  | 10          | mole H+ / t    | 381               | 54                | 184               | 35                | 25                |  |  |
| (a-22B)                                      |                  |             |                |                   |                   |                   |                   |                   |  |  |
| EA033-C: Acid Neutralising Capacity          |                  |             |                |                   |                   |                   |                   |                   |  |  |
| Acid Neutralising Capacity (19A2)            |                  | 0.01        | % CaCO3        | 12.5              | 16.4              | 21.2              | 1.27              | 1.11              |  |  |
| acidity - Acid Neutralising Capacity         |                  | 10          | mole H+ / t    | 2500              | 3280              | 4230              | 254               | 222               |  |  |
| (a-19A2)                                     |                  |             |                |                   |                   |                   |                   |                   |  |  |
| sulfidic - Acid Neutralising Capacity        |                  | 0.01        | % pyrite S     | 4.00              | 5.26              | 6.78              | 0.41              | 0.36              |  |  |
| (s-19A2)                                     |                  |             |                |                   |                   |                   |                   |                   |  |  |
| EA033-E: Acid Base Accounting                |                  |             |                |                   |                   |                   |                   |                   |  |  |
| ANC Fineness Factor                          |                  | 0.5         | -              | 1.5               | 1.5               | 1.5               | 1.5               | 1.5               |  |  |
| Net Acidity (sulfur units)                   |                  | 0.02        | % S            | <0.02             | <0.02             | <0.02             | <0.02             | <0.02             |  |  |
| Net Acidity (acidity units)                  |                  | 10          | mole H+ / t    | <10               | <10               | <10               | <10               | <10               |  |  |
| Liming Rate                                  |                  | 1           | kg CaCO3/t     | <1                | <1                | <1                | <1                | <1                |  |  |
| Net Acidity excluding ANC (sulfur units)     |                  | 0.02        | % S            | 0.61              | 0.09              | 0.29              | 0.06              | 0.04              |  |  |
| Net Acidity excluding ANC (acidity units)    |                  | 10          | mole H+ / t    | 381               | 54                | 184               | 35                | 25                |  |  |
| Liming Rate excluding ANC                    |                  | 1           | kg CaCO3/t     | 28                | 4                 | 14                | 3                 | 2                 |  |  |
| EA038 / EG005 (ED093): Simultaneously E      | Extracted Metal  | S           |                |                   |                   |                   |                   |                   |  |  |
| Copper                                       | 7440-50-8        | 1.0         | mg/kg          |                   | 31.5              |                   |                   |                   |  |  |
| Silver                                       | 7440-22-4        | 1.0         | mg/kg          |                   | <1.0              |                   |                   |                   |  |  |
| EA038 / EG005(ED093): Acid Volatile Sulp     | hides & Simult   | aneously    | Extracted Met  | als               |                   |                   |                   |                   |  |  |
| Copper                                       | 7440-50-8        | 0.01        | mmol/kg        |                   | 0.50              |                   |                   |                   |  |  |
| Silver                                       | 7440-22-4        | 0.01        | mmol/kg        |                   | <0.01             |                   |                   |                   |  |  |

| Page       | : 7 of 7              |
|------------|-----------------------|
| Work Order | ES1937554 Amendment 1 |
| Client     | : GHD PTY LTD         |
| Project    | 12517046              |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)           | Sub-Matrix: SOIL Client sample ID (Matrix: SOIL) |              | VC14_0.0-0.1   | VC14_1.3-1.4      |                   |  |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------|--------------|----------------|-------------------|-------------------|--|--|--|--|--|--|
|                                              | C                                                | lient sampli | ng date / time | 31-Oct-2019 00:00 | 31-Oct-2019 00:00 |  |  |  |  |  |  |
| Compound                                     | CAS Number                                       | LOR          | Unit           | ES1937554-039     | ES1937554-042     |  |  |  |  |  |  |
|                                              |                                                  |              |                | Result            | Result            |  |  |  |  |  |  |
| EA033-A: Actual Acidity                      |                                                  |              |                |                   |                   |  |  |  |  |  |  |
| рН КСІ (23А)                                 |                                                  | 0.1          | pH Unit        | 9.1               | 8.9               |  |  |  |  |  |  |
| Titratable Actual Acidity (23F)              |                                                  | 2            | mole H+ / t    | <2                | <2                |  |  |  |  |  |  |
| sulfidic - Titratable Actual Acidity (s-23F) |                                                  | 0.02         | % pyrite S     | <0.02             | <0.02             |  |  |  |  |  |  |
| EA033-B: Potential Acidity                   | EA033-B: Potential Acidity                       |              |                |                   |                   |  |  |  |  |  |  |
| Chromium Reducible Sulfur (22B)              |                                                  | 0.005        | % S            | 0.358             | 0.030             |  |  |  |  |  |  |
| acidity - Chromium Reducible Sulfur          |                                                  | 10           | mole H+ / t    | 224               | 18                |  |  |  |  |  |  |
| (a-22B)                                      |                                                  |              |                |                   |                   |  |  |  |  |  |  |
| EA033-C: Acid Neutralising Capacity          |                                                  |              |                |                   |                   |  |  |  |  |  |  |
| Acid Neutralising Capacity (19A2)            |                                                  | 0.01         | % CaCO3        | 48.0              | 1.65              |  |  |  |  |  |  |
| acidity - Acid Neutralising Capacity         |                                                  | 10           | mole H+ / t    | 9590              | 330               |  |  |  |  |  |  |
| (a-19A2)                                     |                                                  |              |                |                   |                   |  |  |  |  |  |  |
| sulfidic - Acid Neutralising Capacity        |                                                  | 0.01         | % pyrite S     | 15.4              | 0.53              |  |  |  |  |  |  |
| (s-19A2)                                     |                                                  |              |                |                   |                   |  |  |  |  |  |  |
| EA033-E: Acid Base Accounting                |                                                  |              |                |                   |                   |  |  |  |  |  |  |
| ANC Fineness Factor                          |                                                  | 0.5          | -              | 1.5               | 1.5               |  |  |  |  |  |  |
| Net Acidity (sulfur units)                   |                                                  | 0.02         | % S            | <0.02             | <0.02             |  |  |  |  |  |  |
| Net Acidity (acidity units)                  |                                                  | 10           | mole H+ / t    | <10               | <10               |  |  |  |  |  |  |
| Liming Rate                                  |                                                  | 1            | kg CaCO3/t     | <1                | <1                |  |  |  |  |  |  |
| Net Acidity excluding ANC (sulfur units)     |                                                  | 0.02         | % S            | 0.36              | 0.03              |  |  |  |  |  |  |
| Net Acidity excluding ANC (acidity units)    |                                                  | 10           | mole H+ / t    | 224               | 18                |  |  |  |  |  |  |
| Liming Rate excluding ANC                    |                                                  | 1            | kg CaCO3/t     | 17                | 1                 |  |  |  |  |  |  |



#### QUALITY CONTROL REPORT · ES1937554 Work Order Page : 1 of 6 :1 Amendment GHD PTY LTD Laboratory : Environmental Division Sydney Contact : SARAH ECCLESHALL Contact : Customer Services ES Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : LEVEL 15, 133 CASTLEREAGH STREET SYDNEY NSW, AUSTRALIA 2000 Telephone Telephone : -----: +61-2-8784 8555 Date Samples Received : 12517046 : 12-Nov-2019 Order number Date Analysis Commenced : 18-Nov-2019 · \_\_\_\_ Issue Date · 10-Dec-2019 C-O-C number Sampler · \_\_\_\_ · \_\_\_\_ Quote number : SY/522/19

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

: 42

: 22

#### Signatories

No. of samples received

No. of samples analysed

Client

Project

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories        | Position                         | Accreditation Category                      |
|--------------------|----------------------------------|---------------------------------------------|
| Ben Felgendrejeris | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |
| Ben Felgendrejeris | Senior Acid Sulfate Soil Chemist | Brisbane Inorganics, Stafford, QLD          |
| Kim McCabe         | Senior Inorganic Chemist         | Brisbane Acid Sulphate Soils, Stafford, QLD |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL           |                                                     |                                                     |            | Laboratory Duplicate (DUP) Report |             |                 |                  |          |                     |
|----------------------------|-----------------------------------------------------|-----------------------------------------------------|------------|-----------------------------------|-------------|-----------------|------------------|----------|---------------------|
| Laboratory sample ID       | Client sample ID                                    | Method: Compound                                    | CAS Number | LOR                               | Unit        | Original Result | Duplicate Result | RPD (%)  | Recovery Limits (%) |
| EA038 / EG005 (ED0         | 93): Simultaneously Ex                              | tracted Metals (QC Lot: 2719143)                    |            |                                   |             |                 |                  |          |                     |
| ES1937554-007              | VC07_0.0-0.1                                        | EG005-SEM_1: Copper                                 | 7440-50-8  | 1                                 | mg/kg       | 48.1            | 48.2             | 0.00     | 0% - 20%            |
|                            |                                                     | EG005-SEM_1: Silver                                 | 7440-22-4  | 1                                 | mg/kg       | <1.0            | <1.0             | 0.00     | No Limit            |
| EA033-A: Actual Act        | dity (QC Lot: 2705451)                              |                                                     |            |                                   |             |                 |                  |          |                     |
| EB1929789-042              | Anonymous                                           | EA033: sulfidic - Titratable Actual Acidity (s-23F) |            | 0.02                              | % pyrite S  | <0.02           | <0.02            | 0.00     | No Limit            |
|                            |                                                     | EA033: Titratable Actual Acidity (23F)              |            | 2                                 | mole H+ / t | <2              | <2               | 0.00     | No Limit            |
|                            |                                                     | EA033: pH KCI (23A)                                 |            | 0.1                               | pH Unit     | 8.7             | 8.7              | 0.00     | 0% - 20%            |
| ES1937554-007 VC07_0.0-0.1 | EA033: sulfidic - Titratable Actual Acidity (s-23F) |                                                     | 0.02       | % pyrite S                        | <0.02       | <0.02           | 0.00             | No Limit |                     |
|                            |                                                     | EA033: Titratable Actual Acidity (23F)              |            | 2                                 | mole H+ / t | <2              | <2               | 0.00     | No Limit            |
|                            |                                                     | EA033: pH KCI (23A)                                 |            | 0.1                               | pH Unit     | 9.2             | 9.2              | 0.00     | 0% - 20%            |
| EA033-A: Actual Act        | dity (QC Lot: 2705452)                              |                                                     |            |                                   |             |                 |                  |          |                     |
| ES1937554-027              | VC06_0.0-0.1                                        | EA033: sulfidic - Titratable Actual Acidity (s-23F) |            | 0.02                              | % pyrite S  | <0.02           | <0.02            | 0.00     | No Limit            |
|                            |                                                     | EA033: Titratable Actual Acidity (23F)              |            | 2                                 | mole H+ / t | <2              | <2               | 0.00     | No Limit            |
|                            |                                                     | EA033: pH KCI (23A)                                 |            | 0.1                               | pH Unit     | 8.9             | 8.9              | 0.00     | 0% - 20%            |
| EA033-A: Actual Aci        | dity (QC Lot: 2714262)                              |                                                     |            |                                   |             |                 |                  |          |                     |
| EB1929954-001              | Anonymous                                           | EA033: sulfidic - Titratable Actual Acidity (s-23F) |            | 0.02                              | % pyrite S  | <0.02           | <0.02            | 0.00     | No Limit            |
|                            |                                                     | EA033: Titratable Actual Acidity (23F)              |            | 2                                 | mole H+ / t | <2              | <2               | 0.00     | No Limit            |
|                            |                                                     | EA033: pH KCI (23A)                                 |            | 0.1                               | pH Unit     | 8.6             | 8.6              | 0.00     | 0% - 20%            |
| EB1930803-002              | Anonymous                                           | EA033: sulfidic - Titratable Actual Acidity (s-23F) |            | 0.02                              | % pyrite S  | <0.02           | <0.02            | 0.00     | No Limit            |
|                            |                                                     | EA033: Titratable Actual Acidity (23F)              |            | 2                                 | mole H+ / t | <2              | <2               | 0.00     | No Limit            |
|                            |                                                     | EA033: pH KCI (23A)                                 |            | 0.1                               | pH Unit     | 8.7             | 8.7              | 0.00     | 0% - 20%            |
| EA033-A: Actual Act        | dity (QC Lot: 2716904)                              |                                                     |            |                                   |             |                 |                  |          |                     |
| EB1931066-001              | Anonymous                                           | EA033: sulfidic - Titratable Actual Acidity (s-23F) |            | 0.02                              | % pyrite S  | <0.02           | <0.02            | 0.00     | No Limit            |
|                            |                                                     | EA033: Titratable Actual Acidity (23F)              |            | 2                                 | mole H+ / t | <2              | <2               | 0.00     | No Limit            |
|                            |                                                     | EA033: pH KCI (23A)                                 |            | 0.1                               | pH Unit     | 8.4             | 8.4              | 0.00     | 0% - 20%            |



| Sub-Matrix: SOIL     |                        |                                                                      | ]          |       |             | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|----------------------------------------------------------------------|------------|-------|-------------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                                                     | CAS Number | LOR   | Unit        | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA033-A: Actual Acid | lity (QC Lot: 2716904) | - continued                                                          |            |       |             |                 |                        |         |                     |
| EM1919394-001        | Anonymous              | EA033: sulfidic - Titratable Actual Acidity (s-23F)                  |            | 0.02  | % pyrite S  | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                        | EA033: Titratable Actual Acidity (23F)                               |            | 2     | mole H+ / t | <2              | <2                     | 0.00    | No Limit            |
|                      |                        | EA033: pH KCI (23A)                                                  |            | 0.1   | pH Unit     | 10.5            | 10.5                   | 0.00    | 0% - 20%            |
| EA033-B: Potential A | cidity (QC Lot: 270545 | 1)                                                                   |            |       |             |                 |                        |         |                     |
| EB1929789-042        | Anonymous              | EA033: Chromium Reducible Sulfur (22B)                               |            | 0.005 | % S         | 0.689           | 0.705                  | 2.27    | 0% - 20%            |
|                      |                        | EA033: acidity - Chromium Reducible Sulfur                           |            | 10    | mole H+ / t | 430             | 440                    | 2.27    | 0% - 20%            |
|                      |                        | (a-22B)                                                              |            |       |             |                 |                        |         |                     |
| ES1937554-007        | VC07_0.0-0.1           | EA033: Chromium Reducible Sulfur (22B)                               |            | 0.005 | % S         | 0.107           | 0.104                  | 2.51    | 0% - 20%            |
|                      |                        | EA033: acidity - Chromium Reducible Sulfur                           |            | 10    | mole H+ / t | 67              | 65                     | 2.51    | No Limit            |
|                      |                        | (a-22B)                                                              |            |       |             |                 |                        |         |                     |
| EA033-B: Potential A | cidity (QC Lot: 270545 | 2)                                                                   |            |       |             |                 |                        |         |                     |
| ES1937554-027        | VC06_0.0-0.1           | EA033: Chromium Reducible Sulfur (22B)                               |            | 0.005 | % S         | 0.610           | 0.617                  | 1.05    | 0% - 20%            |
|                      |                        | EA033: acidity - Chromium Reducible Sulfur                           |            | 10    | mole H+ / t | 381             | 385                    | 1.05    | 0% - 20%            |
|                      |                        | (a-22B)                                                              |            |       |             |                 |                        |         |                     |
| EA033-B: Potential A | cidity (QC Lot: 271426 | 2)                                                                   |            |       |             |                 |                        |         |                     |
| EB1929954-001        | Anonymous              | EA033: Chromium Reducible Sulfur (22B)                               |            | 0.005 | % S         | 0.969           | 0.938                  | 3.22    | 0% - 20%            |
|                      |                        | EA033: acidity - Chromium Reducible Sulfur                           |            | 10    | mole H+ / t | 604             | 585                    | 3.22    | 0% - 20%            |
|                      |                        | (a-22B)                                                              |            |       |             |                 |                        |         |                     |
| EB1930803-002        | Anonymous              | EA033: Chromium Reducible Sulfur (22B)                               |            | 0.005 | % S         | 0.021           | 0.020                  | 7.60    | No Limit            |
|                      |                        | EA033: acidity - Chromium Reducible Sulfur                           |            | 10    | mole H+ / t | 13              | 12                     | 0.00    | No Limit            |
|                      |                        | (a-22B)                                                              |            |       |             |                 |                        |         |                     |
| EA033-B: Potential A | cidity (QC Lot: 271690 | 4)                                                                   |            |       |             |                 |                        |         |                     |
| EB1931066-001        | Anonymous              | EA033: Chromium Reducible Sulfur (22B)                               |            | 0.005 | % S         | 0.833           | 0.834                  | 0.00    | 0% - 20%            |
|                      |                        | EA033: acidity - Chromium Reducible Sulfur                           |            | 10    | mole H+ / t | 520             | 520                    | 0.00    | 0% - 20%            |
|                      |                        | (a-22B)                                                              |            |       |             |                 |                        |         |                     |
| EM1919394-001        | Anonymous              | EA033: Chromium Reducible Sulfur (22B)                               |            | 0.005 | % S         | 0.125           | 0.124                  | 0.00    | 0% - 20%            |
|                      |                        | EA033: acidity - Chromium Reducible Sulfur                           |            | 10    | mole H+ / t | 78              | 78                     | 0.00    | No Limit            |
|                      |                        | (a-22B)                                                              |            |       |             |                 |                        |         |                     |
| EA033-C: Acid Neutra | alising Capacity (QC L | ot: 2705451)                                                         |            |       |             |                 |                        |         |                     |
| EB1929789-042        | Anonymous              | EA033: Acid Neutralising Capacity (19A2)                             |            | 0.01  | % CaCO3     | 9.30            | 9.28                   | 0.268   | 0% - 20%            |
|                      |                        | EA033: sulfidic - Acid Neutralising Capacity                         |            | 0.01  | % pyrite S  | 2.98            | 2.97                   | 0.00    | 0% - 20%            |
|                      |                        | (s-19A2)                                                             |            | 40    |             | 4000            | 4050                   | 0.000   | 00/ 000/            |
|                      |                        | EA033: acidity - Acid Neutralising Capacity                          |            | 10    | mole H+ / t | 1860            | 1850                   | 0.268   | 0% - 20%            |
| ES1037554 007        |                        | (a-19A2)                                                             |            | 0.01  | % CaCO3     | 28.0            | 27.0                   | 0.162   | 0% 20%              |
| E31937354-007        | VC07_0.0-0.1           | EA033: Acid Neutralising Capacity (19A2)                             |            | 0.01  | % CaCOS     | 20.0            | 27.9<br>8.05           | 0.102   | 0% - 20%            |
|                      |                        | (c-1002)                                                             |            | 0.01  | 70 pyrite S | 0.30            | 0.95                   | 0.102   | 0 /0 - 20 /0        |
|                      |                        | (σ <sup>-</sup> ισκ2)<br>ΕΔ033: acidity - Acid Neutralising Canacity |            | 10    | mole H+/t   | 5590            | 5580                   | 0 162   | 0% - 20%            |
|                      |                        | (a-19A2)                                                             |            | 10    |             | 0000            |                        | 0.102   | 0,0 20,0            |
| EA033-C: Acid Neutr  | alising Capacity (QC L | ot: 2705452)                                                         |            |       | 1           |                 | 1                      |         | 1                   |



| Sub Matrix: SOII     |                       |                                                          | ]          |      |             | Laboratory      | Duplicate (DUP) Report | •       |                     |
|----------------------|-----------------------|----------------------------------------------------------|------------|------|-------------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Mothod: Compound                                         | CAS Number | LOR  | Unit        | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA033-C: Acid Neut   | ralising Capacity (QC | Lot: 2705452) - continued                                |            |      |             |                 |                        |         |                     |
| ES1937554-027        | VC06_0.0-0.1          | EA033: Acid Neutralising Capacity (19A2)                 |            | 0.01 | % CaCO3     | 12.5            | 12.5                   | 0.282   | 0% - 20%            |
|                      |                       | EA033: sulfidic - Acid Neutralising Capacity<br>(s-19A2) |            | 0.01 | % pyrite S  | 4.00            | 4.01                   | 0.282   | 0% - 20%            |
|                      |                       | EA033: acidity - Acid Neutralising Capacity<br>(a-19A2)  |            | 10   | mole H+ / t | 2500            | 2500                   | 0.282   | 0% - 20%            |
| EA033-C: Acid Neut   | ralising Capacity (QC | Lot: 2714262)                                            |            |      |             |                 |                        |         |                     |
| EB1929954-001        | Anonymous             | EA033: Acid Neutralising Capacity (19A2)                 |            | 0.01 | % CaCO3     | 6.77            | 6.66                   | 1.63    | 0% - 20%            |
|                      |                       | EA033: sulfidic - Acid Neutralising Capacity<br>(s-19A2) |            | 0.01 | % pyrite S  | 2.17            | 2.13                   | 1.63    | 0% - 20%            |
|                      |                       | EA033: acidity - Acid Neutralising Capacity<br>(a-19A2)  |            | 10   | mole H+ / t | 1350            | 1330                   | 1.63    | 0% - 20%            |
| EB1930803-002        | Anonymous             | EA033: Acid Neutralising Capacity (19A2)                 |            | 0.01 | % CaCO3     | 8.09            | 7.98                   | 1.36    | 0% - 20%            |
|                      |                       | EA033: sulfidic - Acid Neutralising Capacity<br>(s-19A2) |            | 0.01 | % pyrite S  | 2.59            | 2.56                   | 1.36    | 0% - 20%            |
|                      |                       | EA033: acidity - Acid Neutralising Capacity<br>(a-19A2)  |            | 10   | mole H+ / t | 1620            | 1600                   | 1.36    | 0% - 20%            |
| EA033-C: Acid Neut   | ralising Capacity (QC | Lot: 2716904)                                            |            |      |             |                 |                        |         |                     |
| EB1931066-001        | Anonymous             | EA033: Acid Neutralising Capacity (19A2)                 |            | 0.01 | % CaCO3     | 4.45            | 4.42                   | 0.586   | 0% - 20%            |
|                      |                       | EA033: sulfidic - Acid Neutralising Capacity<br>(s-19A2) |            | 0.01 | % pyrite S  | 1.42            | 1.42                   | 0.00    | 0% - 20%            |
|                      |                       | EA033: acidity - Acid Neutralising Capacity<br>(a-19A2)  |            | 10   | mole H+ / t | 889             | 884                    | 0.586   | 0% - 20%            |
| EM1919394-001        | Anonymous             | EA033: Acid Neutralising Capacity (19A2)                 |            | 0.01 | % CaCO3     | 2.76            | 2.75                   | 0.377   | 0% - 20%            |
|                      |                       | EA033: sulfidic - Acid Neutralising Capacity<br>(s-19A2) |            | 0.01 | % pyrite S  | 0.88            | 0.88                   | 0.00    | 0% - 20%            |
|                      |                       | EA033: acidity - Acid Neutralising Capacity              |            | 10   | mole H+ / t | 552             | 550                    | 0.377   | 0% - 20%            |



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

|                                                       |                                          |       |             | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |
|-------------------------------------------------------|------------------------------------------|-------|-------------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|
|                                                       |                                          |       |             | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                      | CAS Number                               | LOR   | Unit        | Result            | Concentration                         | LCS                | Low      | High       |  |  |
| EA038 / EG005 (ED093): Simultaneously Extracted Metal | s (QCLot: 271914                         | .3)   |             |                   |                                       |                    |          |            |  |  |
| EG005-SEM_1: Copper                                   | 7440-50-8                                | 1     | mg/kg       | <1.0              | 14.507 mg/kg                          | 82.3               | 70.0     | 130        |  |  |
| EG005-SEM_1: Silver                                   | 7440-22-4                                | 1     | mg/kg       | <1.0              | 2.1 mg/kg                             | 88.6               | 70.0     | 130        |  |  |
| EA033-A: Actual Acidity (QCLot: 2705451)              |                                          |       |             |                   |                                       |                    |          |            |  |  |
| EA033: pH KCI (23A)                                   |                                          |       | pH Unit     |                   | 4.4 pH Unit                           | 102                | 91.0     | 107        |  |  |
| EA033: Titratable Actual Acidity (23F)                |                                          | 2     | mole H+ / t | <2                | 20.1 mole H+ / t                      | 122                | 70.0     | 124        |  |  |
| EA033: sulfidic - Titratable Actual Acidity (s-23F)   |                                          | 0.02  | % pyrite S  | <0.02             |                                       |                    |          |            |  |  |
| EA033-A: Actual Acidity (QCLot: 2705452)              |                                          |       |             |                   |                                       |                    |          |            |  |  |
| EA033: pH KCI (23A)                                   |                                          |       | pH Unit     |                   | 4.4 pH Unit                           | 102                | 91.0     | 107        |  |  |
| EA033: Titratable Actual Acidity (23F)                |                                          | 2     | mole H+ / t | <2                | 20.1 mole H+ / t                      | 118                | 70.0     | 124        |  |  |
| EA033: sulfidic - Titratable Actual Acidity (s-23F)   |                                          | 0.02  | % pyrite S  | <0.02             |                                       |                    |          |            |  |  |
| EA033-A: Actual Acidity (QCLot: 2714262)              | EA033-A: Actual Acidity (QCLot: 2714262) |       |             |                   |                                       |                    |          |            |  |  |
| EA033: pH KCI (23A)                                   |                                          |       | pH Unit     |                   | 4.4 pH Unit                           | 97.7               | 91.0     | 107        |  |  |
| EA033: Titratable Actual Acidity (23F)                |                                          | 2     | mole H+ / t | <2                | 20.1 mole H+ / t                      | 106                | 70.0     | 124        |  |  |
| EA033: sulfidic - Titratable Actual Acidity (s-23F)   |                                          | 0.02  | % pyrite S  | <0.02             |                                       |                    |          |            |  |  |
| EA033-A: Actual Acidity (QCLot: 2716904)              |                                          |       |             |                   |                                       |                    |          |            |  |  |
| EA033: pH KCl (23A)                                   |                                          |       | pH Unit     |                   | 4.4 pH Unit                           | 100                | 91.0     | 107        |  |  |
| EA033: Titratable Actual Acidity (23F)                |                                          | 2     | mole H+ / t | <2                | 20.1 mole H+ / t                      | 89.2               | 70.0     | 124        |  |  |
| EA033: sulfidic - Titratable Actual Acidity (s-23F)   |                                          | 0.02  | % pyrite S  | <0.02             |                                       |                    |          |            |  |  |
| EA033-B: Potential Acidity (QCLot: 2705451)           |                                          |       |             |                   |                                       |                    |          |            |  |  |
| EA033: Chromium Reducible Sulfur (22B)                |                                          | 0.005 | % S         | <0.005            | 0.256 % S                             | 90.9               | 77.0     | 121        |  |  |
| EA033: acidity - Chromium Reducible Sulfur (a-22B)    |                                          | 10    | mole H+ / t | <10               |                                       |                    |          |            |  |  |
| EA033-B: Potential Acidity (QCLot: 2705452)           |                                          |       |             |                   |                                       |                    |          |            |  |  |
| EA033: Chromium Reducible Sulfur (22B)                |                                          | 0.005 | % S         | <0.005            | 0.256 % S                             | 88.0               | 77.0     | 121        |  |  |
| EA033: acidity - Chromium Reducible Sulfur (a-22B)    |                                          | 10    | mole H+ / t | <10               |                                       |                    |          |            |  |  |
| EA033-B: Potential Acidity (QCLot: 2714262)           |                                          |       |             |                   |                                       |                    |          |            |  |  |
| EA033: Chromium Reducible Sulfur (22B)                |                                          | 0.005 | % S         | <0.005            | 0.256 % S                             | 92.0               | 77.0     | 121        |  |  |
| EA033: acidity - Chromium Reducible Sulfur (a-22B)    |                                          | 10    | mole H+ / t | <10               |                                       |                    |          |            |  |  |
| EA033-B: Potential Acidity (QCLot: 2716904)           |                                          |       |             |                   |                                       |                    |          |            |  |  |
| EA033: Chromium Reducible Sulfur (22B)                |                                          | 0.005 | % S         | <0.005            | 0.256 % S                             | 92.6               | 77.0     | 121        |  |  |
| EA033: acidity - Chromium Reducible Sulfur (a-22B)    |                                          | 10    | mole H+ / t | <10               |                                       |                    |          |            |  |  |
| EA033-C: Acid Neutralising Capacity (QCLot: 2705451)  |                                          |       |             |                   |                                       |                    |          |            |  |  |
| EA033: Acid Neutralising Capacity (19A2)              |                                          | 0.01  | % CaCO3     | <0.01             | 10 % CaCO3                            | 101                | 91.0     | 112        |  |  |
| EA033: acidity - Acid Neutralising Capacity (a-19A2)  |                                          | 10    | mole H+ / t | <10               |                                       |                    |          |            |  |  |



| Sub-Matrix: SOIL                                      |             |      |             | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-------------------------------------------------------|-------------|------|-------------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                       |             |      |             | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                      | CAS Number  | LOR  | Unit        | Result            | Concentration                         | LCS                | Low      | High       |  |
| EA033-C: Acid Neutralising Capacity (QCLot: 2705451)  | - continued |      |             |                   |                                       |                    |          |            |  |
| EA033: sulfidic - Acid Neutralising Capacity (s-19A2) |             | 0.01 | % pyrite S  | <0.01             |                                       |                    |          |            |  |
| EA033-C: Acid Neutralising Capacity (QCLot: 2705452)  |             |      |             |                   |                                       |                    |          |            |  |
| EA033: Acid Neutralising Capacity (19A2)              |             | 0.01 | % CaCO3     | <0.01             | 10 % CaCO3                            | 99.8               | 91.0     | 112        |  |
| EA033: acidity - Acid Neutralising Capacity (a-19A2)  |             | 10   | mole H+ / t | <10               |                                       |                    |          |            |  |
| EA033: sulfidic - Acid Neutralising Capacity (s-19A2) |             | 0.01 | % pyrite S  | <0.01             |                                       |                    |          |            |  |
| EA033-C: Acid Neutralising Capacity (QCLot: 2714262)  |             |      |             |                   |                                       |                    |          |            |  |
| EA033: Acid Neutralising Capacity (19A2)              |             | 0.01 | % CaCO3     | <0.01             | 10 % CaCO3                            | 100                | 91.0     | 112        |  |
| EA033: acidity - Acid Neutralising Capacity (a-19A2)  |             | 10   | mole H+ / t | <10               |                                       |                    |          |            |  |
| EA033: sulfidic - Acid Neutralising Capacity (s-19A2) |             | 0.01 | % pyrite S  | <0.01             |                                       |                    |          |            |  |
| EA033-C: Acid Neutralising Capacity (QCLot: 2716904)  |             |      |             |                   |                                       |                    |          |            |  |
| EA033: Acid Neutralising Capacity (19A2)              |             | 0.01 | % CaCO3     | <0.01             | 10 % CaCO3                            | 100                | 91.0     | 112        |  |
| EA033: acidity - Acid Neutralising Capacity (a-19A2)  |             | 10   | mole H+ / t | <10               |                                       |                    |          |            |  |
| EA033: sulfidic - Acid Neutralising Capacity (s-19A2) |             | 0.01 | % pyrite S  | <0.01             |                                       |                    |          |            |  |

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.



|              | QA/QC Complianc    | QA/QC Compliance Assessment to assist with Quality Review |                                 |  |  |  |  |  |  |
|--------------|--------------------|-----------------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| Work Order   | : ES1937554        | Page                                                      | : 1 of 6                        |  |  |  |  |  |  |
| Amendment    | : 1                |                                                           |                                 |  |  |  |  |  |  |
| Client       | : GHD PTY LTD      | Laboratory                                                | : Environmental Division Sydney |  |  |  |  |  |  |
| Contact      | : SARAH ECCLESHALL | Telephone                                                 | : +61-2-8784 8555               |  |  |  |  |  |  |
| Project      | : 12517046         | Date Samples Received                                     | : 12-Nov-2019                   |  |  |  |  |  |  |
| Site         | :                  | Issue Date                                                | : 10-Dec-2019                   |  |  |  |  |  |  |
| Sampler      | :                  | No. of samples received                                   | : 42                            |  |  |  |  |  |  |
| Order number | :                  | No. of samples analysed                                   | : 22                            |  |  |  |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.



# Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                    |               |             | Evaluation: <b>*</b> = Holding time breach ; <b>*</b> = Within holding |                    |            |               |                  |                       |  |  |
|---------------------------------|---------------|-------------|------------------------------------------------------------------------|--------------------|------------|---------------|------------------|-----------------------|--|--|
| Method                          |               | Sample Date | Extraction / Preparation                                               |                    |            |               | Analysis         |                       |  |  |
| Container / Client Sample ID(s) |               |             | Date extracted                                                         | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation            |  |  |
| EA033-A: Actual Acidity         |               |             |                                                                        |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EA033)  |               |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC11_0.0-0.1,                   | VC11_1.0-1.1, | 30-Oct-2019 | 18-Nov-2019                                                            | 29-Oct-2020        | ✓          | 18-Nov-2019   | 16-Feb-2020      | ✓                     |  |  |
| VC09_0.9-1.0,                   | VC07_0.0-0.1, |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC07_1.0-1.1,                   | VC05_0.0-0.1, |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC05_0.8-1.0,                   | VC03_10-1.1,  |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC01_0.0-0.1,                   | VC01_1.0-1.1, |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC02_0.0-0.1,                   | VC02_1.5-1.6, |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC10_0.5-0.6                    |               |             |                                                                        |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EA033)  |               |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC04_0.9-1.0                    |               | 30-Oct-2019 | 21-Nov-2019                                                            | 29-Oct-2020        | ✓          | 21-Nov-2019   | 19-Feb-2020      | ✓                     |  |  |
| Snap Lock Bag - frozen (EA033)  |               |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC06_0.0-0.1,                   | VC08_0.5-0.6, | 31-Oct-2019 | 18-Nov-2019                                                            | 30-Oct-2020        | 1          | 18-Nov-2019   | 16-Feb-2020      | ✓                     |  |  |
| VC08_1.5-1.6,                   | VC13_0.5-0.6, |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC14_0.0-0.1,                   | VC14_1.3-1.4  |             |                                                                        |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EA033)  |               |             |                                                                        |                    |            |               |                  |                       |  |  |
| VC12_0.0-0.1                    |               | 31-Oct-2019 | 22-Nov-2019                                                            | 30-Oct-2020        | 1          | 22-Nov-2019   | 20-Feb-2020      | <ul> <li>✓</li> </ul> |  |  |

| Page       | : 3 of 6                |
|------------|-------------------------|
| Work Order | : ES1937554 Amendment 1 |
| Client     | : GHD PTY LTD           |
| Project    | 12517046                |



| Matrix: SOIL                        |               |             |                | : × = Holding time     | = Holding time breach ; $\checkmark$ = Within holding time |               |                  |                       |
|-------------------------------------|---------------|-------------|----------------|------------------------|------------------------------------------------------------|---------------|------------------|-----------------------|
| Method                              |               | Sample Date | Ex             | traction / Preparation |                                                            | Analysis      |                  |                       |
| Container / Client Sample ID(s)     |               |             | Date extracted | Due for extraction     | Evaluation                                                 | Date analysed | Due for analysis | Evaluation            |
| EA033-B: Potential Acidity          |               |             |                |                        |                                                            |               |                  |                       |
| Snap Lock Bag - frozen (EA033)      |               |             |                |                        |                                                            |               |                  |                       |
| VC11_0.0-0.1,                       | VC11_1.0-1.1, | 30-Oct-2019 | 18-Nov-2019    | 29-Oct-2020            | ~                                                          | 18-Nov-2019   | 16-Feb-2020      | ✓                     |
| VC09_0.9-1.0,                       | VC07_0.0-0.1, |             |                |                        |                                                            |               |                  |                       |
| VC07_1.0-1.1,                       | VC05_0.0-0.1, |             |                |                        |                                                            |               |                  |                       |
| VC05_0.8-1.0,                       | VC03_10-1.1,  |             |                |                        |                                                            |               |                  |                       |
| VC01_0.0-0.1,                       | VC01_1.0-1.1, |             |                |                        |                                                            |               |                  |                       |
| VC02_0.0-0.1,                       | VC02_1.5-1.6, |             |                |                        |                                                            |               |                  |                       |
| VC10_0.5-0.6                        |               |             |                |                        |                                                            |               |                  |                       |
| Snap Lock Bag - frozen (EA033)      |               |             |                |                        |                                                            |               |                  |                       |
| VC04_0.9-1.0                        |               | 30-Oct-2019 | 21-Nov-2019    | 29-Oct-2020            | 1                                                          | 21-Nov-2019   | 19-Feb-2020      | <ul> <li>✓</li> </ul> |
| Snap Lock Bag - frozen (EA033)      |               |             |                |                        |                                                            |               |                  |                       |
| VC06_0.0-0.1,                       | VC08_0.5-0.6, | 31-Oct-2019 | 18-Nov-2019    | 30-Oct-2020            | 1                                                          | 18-Nov-2019   | 16-Feb-2020      | <ul> <li>✓</li> </ul> |
| VC08_1.5-1.6,                       | VC13_0.5-0.6, |             |                |                        |                                                            |               |                  |                       |
| VC14_0.0-0.1,                       | VC14_1.3-1.4  |             |                |                        |                                                            |               |                  |                       |
| Snap Lock Bag - frozen (EA033)      |               |             |                |                        |                                                            |               |                  |                       |
| VC12_0.0-0.1                        |               | 31-Oct-2019 | 22-Nov-2019    | 30-Oct-2020            | ✓                                                          | 22-Nov-2019   | 20-Feb-2020      | ✓                     |
| EA033-C: Acid Neutralising Capacity |               |             |                |                        |                                                            |               |                  |                       |
| Snap Lock Bag - frozen (EA033)      |               |             |                |                        |                                                            |               |                  |                       |
| VC11_0.0-0.1,                       | VC11_1.0-1.1, | 30-Oct-2019 | 18-Nov-2019    | 29-Oct-2020            | 1                                                          | 18-Nov-2019   | 16-Feb-2020      | <ul> <li>✓</li> </ul> |
| VC09_0.9-1.0,                       | VC07_0.0-0.1, |             |                |                        |                                                            |               |                  |                       |
| VC07_1.0-1.1,                       | VC05_0.0-0.1, |             |                |                        |                                                            |               |                  |                       |
| VC05_0.8-1.0,                       | VC03_10-1.1,  |             |                |                        |                                                            |               |                  |                       |
| VC01_0.0-0.1,                       | VC01_1.0-1.1, |             |                |                        |                                                            |               |                  |                       |
| VC02_0.0-0.1,                       | VC02_1.5-1.6, |             |                |                        |                                                            |               |                  |                       |
| VC10_0.5-0.6                        |               |             |                |                        |                                                            |               |                  |                       |
| Snap Lock Bag - frozen (EA033)      |               |             |                |                        |                                                            |               |                  |                       |
| VC04_0.9-1.0                        |               | 30-Oct-2019 | 21-Nov-2019    | 29-Oct-2020            | ✓                                                          | 21-Nov-2019   | 19-Feb-2020      | ✓                     |
| Snap Lock Bag - frozen (EA033)      |               |             |                |                        |                                                            |               |                  |                       |
| VC06_0.0-0.1,                       | VC08_0.5-0.6, | 31-Oct-2019 | 18-Nov-2019    | 30-Oct-2020            | ~                                                          | 18-Nov-2019   | 16-Feb-2020      | <ul><li>✓</li></ul>   |
| VC08_1.5-1.6,                       | VC13_0.5-0.6, |             |                |                        |                                                            |               |                  |                       |
| VC14_0.0-0.1,                       | VC14_1.3-1.4  |             |                |                        |                                                            |               |                  |                       |
| Snap Lock Bag - frozen (EA033)      |               |             |                |                        |                                                            |               |                  |                       |
| VC12_0.0-0.1                        |               | 31-Oct-2019 | 22-Nov-2019    | 30-Oct-2020            | $\checkmark$                                               | 22-Nov-2019   | 20-Feb-2020      | <ul> <li>✓</li> </ul> |



| Matrix: SOIL                                         |               |             | Evaluation: × = Holding time |                    |            |               |                  |                       |  |  |
|------------------------------------------------------|---------------|-------------|------------------------------|--------------------|------------|---------------|------------------|-----------------------|--|--|
| Method                                               | Sample Date   | Ex          | traction / Preparation       |                    | Analysis   |               |                  |                       |  |  |
| Container / Client Sample ID(s)                      |               |             | Date extracted               | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation            |  |  |
| EA033-D: Retained Acidity                            |               |             |                              |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EA033)                       |               |             |                              |                    |            |               |                  |                       |  |  |
| VC11_0.0-0.1,                                        | VC11_1.0-1.1, | 30-Oct-2019 | 18-Nov-2019                  | 29-Oct-2020        | 1          | 18-Nov-2019   | 16-Feb-2020      | ✓                     |  |  |
| VC09_0.9-1.0,                                        | VC07_0.0-0.1, |             |                              |                    |            |               |                  |                       |  |  |
| VC07_1.0-1.1,                                        | VC05_0.0-0.1, |             |                              |                    |            |               |                  |                       |  |  |
| VC05_0.8-1.0,                                        | VC03_10-1.1,  |             |                              |                    |            |               |                  |                       |  |  |
| VC01_0.0-0.1,                                        | VC01_1.0-1.1, |             |                              |                    |            |               |                  |                       |  |  |
| VC02_0.0-0.1,                                        | VC02_1.5-1.6, |             |                              |                    |            |               |                  |                       |  |  |
| VC10_0.5-0.6                                         |               |             |                              |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EA033)<br>VC04_0.9-1.0       |               | 30-Oct-2019 | 21-Nov-2019                  | 29-Oct-2020        | ~          | 21-Nov-2019   | 19-Feb-2020      | 1                     |  |  |
| Snap Lock Bag - frozen (EA033)                       |               |             |                              |                    |            |               |                  |                       |  |  |
| VC06_0.0-0.1,                                        | VC08_0.5-0.6, | 31-Oct-2019 | 18-Nov-2019                  | 30-Oct-2020        | 1          | 18-Nov-2019   | 16-Feb-2020      | ✓                     |  |  |
| VC08_1.5-1.6,                                        | VC13_0.5-0.6, |             |                              |                    |            |               |                  |                       |  |  |
| VC14_0.0-0.1,                                        | VC14_1.3-1.4  |             |                              |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EA033)                       |               |             |                              |                    |            |               |                  |                       |  |  |
| VC12_0.0-0.1                                         |               | 31-Oct-2019 | 22-Nov-2019                  | 30-Oct-2020        | ✓          | 22-Nov-2019   | 20-Feb-2020      | <ul> <li>✓</li> </ul> |  |  |
| EA033-E: Acid Base Accounting                        |               |             |                              |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EA033)                       |               |             |                              |                    |            |               |                  |                       |  |  |
| VC11_0.0-0.1,                                        | VC11_1.0-1.1, | 30-Oct-2019 | 18-Nov-2019                  | 29-Oct-2020        | 1          | 18-Nov-2019   | 16-Feb-2020      | ✓                     |  |  |
| VC09_0.9-1.0,                                        | VC07_0.0-0.1, |             |                              |                    |            |               |                  |                       |  |  |
| VC07_1.0-1.1,                                        | VC05_0.0-0.1, |             |                              |                    |            |               |                  |                       |  |  |
| VC05_0.8-1.0,                                        | VC03_10-1.1,  |             |                              |                    |            |               |                  |                       |  |  |
| VC01_0.0-0.1,                                        | VC01_1.0-1.1, |             |                              |                    |            |               |                  |                       |  |  |
| VC02_0.0-0.1,                                        | VC02_1.5-1.6, |             |                              |                    |            |               |                  |                       |  |  |
| VC10_0.5-0.6                                         |               |             |                              |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EA033)                       |               |             |                              |                    |            |               |                  |                       |  |  |
| VC04_0.9-1.0                                         |               | 30-Oct-2019 | 21-Nov-2019                  | 29-Oct-2020        | <b>√</b>   | 21-Nov-2019   | 19-Feb-2020      | ✓                     |  |  |
| Snap Lock Bag - frozen (EA033)                       |               |             |                              |                    |            |               |                  |                       |  |  |
| VC06_0.0-0.1,                                        | VC08_0.5-0.6, | 31-Oct-2019 | 18-Nov-2019                  | 30-Oct-2020        | ~          | 18-Nov-2019   | 16-Feb-2020      | ✓                     |  |  |
| VC08_1.5-1.6,                                        | VC13_0.5-0.6, |             |                              |                    |            |               |                  |                       |  |  |
| VC14_0.0-0.1,                                        | VC14_1.3-1.4  |             |                              |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EA033)<br>VC12_0.0-0.1       |               | 31-Oct-2019 | 22-Nov-2019                  | 30-Oct-2020        | 1          | 22-Nov-2019   | 20-Feb-2020      | ~                     |  |  |
| EA038 / EG005 (ED093): Simultaneously Extrac         | cted Metals   |             |                              |                    |            |               |                  |                       |  |  |
| Snap Lock Bag - frozen (EG005-SEM_1)                 |               |             |                              |                    |            |               |                  |                       |  |  |
| VC07_0.0-0.1,                                        | VC02_0.5-0.6  | 30-Oct-2019 | 22-Nov-2019                  | 29-Oct-2020        | -          | 22-Nov-2019   | 20-Feb-2020      | ✓                     |  |  |
| Snap Lock Bag - frozen (EG005-SEM_1)<br>VC12 0.0-0.1 |               | 31-Oct-2019 | 22-Nov-2019                  | 30-Oct-2020        | 1          | 22-Nov-2019   | 20-Feb-2020      | 1                     |  |  |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                           |             |    | Evaluation: * = Quality Control frequency not within specification ; 🗸 = Quality Control frequency within specification |          |          |              |                                |
|----------------------------------------|-------------|----|-------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------|--------------------------------|
| Quality Control Sample Type            |             | Co | ount                                                                                                                    | Rate (%) |          |              | Quality Control Specification  |
| Analytical Methods                     | Method      | 00 | Reaular                                                                                                                 | Actual   | Expected | Evaluation   |                                |
| Laboratory Duplicates (DUP)            |             |    |                                                                                                                         |          |          |              |                                |
| 1M HCI Extractable Metals              | EG005-SEM_1 | 1  | 3                                                                                                                       | 33.33    | 10.00    | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |
| Chromium Suite for Acid Sulphate Soils | EA033       | 7  | 66                                                                                                                      | 10.61    | 10.00    | $\checkmark$ | NEPM 2013 B3 & ALS QC Standard |
| Laboratory Control Samples (LCS)       |             |    |                                                                                                                         |          |          |              |                                |
| 1M HCI Extractable Metals              | EG005-SEM_1 | 1  | 3                                                                                                                       | 33.33    | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Chromium Suite for Acid Sulphate Soils | EA033       | 4  | 66                                                                                                                      | 6.06     | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Method Blanks (MB)                     |             |    |                                                                                                                         |          |          |              |                                |
| 1M HCI Extractable Metals              | EG005-SEM_1 | 1  | 3                                                                                                                       | 33.33    | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |
| Chromium Suite for Acid Sulphate Soils | EA033       | 4  | 66                                                                                                                      | 6.06     | 5.00     | ✓            | NEPM 2013 B3 & ALS QC Standard |



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                 | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chromium Suite for Acid Sulphate Soils             | EA033       | SOIL   | In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCI; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5. |
| 1M HCI Extractable Metals                          | EG005-SEM 1 | SOIL   | In house: Referenced to Simpson et al. 2005; Handbook for Sediment Quality Assessment. AVS is defined as the fraction of sulfides extracted from sediments by cold digestion using HCI. The remaining solution is then run on the ICP to determine concentration of various metals and SEM is calculated as sum of Cd, Cu, Ni, Pb, Zn in mmol/kg.                                                                                                                                 |
| Simultaneously Extractable Metals<br>(SEM)         | EG005-SEM 2 | SOIL   | In house: Referenced to Simpson et al. 2005; Handbook for Sediment Quality Assessment. AVS is defined as the fraction of sulfides extracted from sediments by cold digestion using HCI. The remaining solution is then run on the ICP to determine concentration of various metals and SEM is calculated as sum of Cd, Cu, Ni, Pb, Zn in mmol/kg.                                                                                                                                 |
| Preparation Methods                                | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Drying at 85 degrees, bagging and labelling (ASS)  | EN020PR     | SOIL   | In house                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1M HCI Extraction for Metals in Sediments (1 hour) | EN71-SEM    | SOIL   | In house: Referenced to Simpson et al. 2005; Handbook for Sediment Quality Assessment. 2g of as received sample is leached at room temperature for 1 hour in 1N hydrochloric acid.                                                                                                                                                                                                                                                                                                |



# **Vishal Patel**

| From:    | Angus Harding                                             |
|----------|-----------------------------------------------------------|
| Sent:    | Friday, 15 November 2019 4:12 PM                          |
| To:      | Vishal Patel                                              |
| Cc:      | Loren Schiavon; Helen Simpson                             |
| Subject: | FW: [EXTERNAL] - Additional analyses for project 12517046 |

Hey Vishal,

Could we please organise the compositing of the samples listed below so that we have enough volume to run porewater and elutriates. I believe samples should be in ES1937483.

Let me know if you need help or more details.

Cheers.

Kind Regards,

# Angus Harding

Client Services Officer, Environmental Sydney



T +61 2 8784 8555 <u>F</u> +61 2 8784 8500 <u>D</u> +61 2 8784 8503 <u>angus.harding@alsglobal.com</u> 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA

Subscribe III II III () Win

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how.



- .. . . . . . . . . . .

Δ.



We are keen for your feedback! Please click here for your 3 minute survey

EnviroMail<sup>™</sup> 00 – All EnviroMails<sup>™</sup> in one convenient library. Recent releases (click to access directly): EnviroMail<sup>™</sup> 124 – PFOS Analysis to Freshwater Species Protection LvI 99% EnviroMail<sup>™</sup> 127 – Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here.

Right Solutions · Right Partner www.alsglobal.com

From: Sarah.Eccleshall@ghd.com [mailto:Sarah.Eccleshall@ghd.com] Sent: Friday, 15 November 2019 9:43 AM To: Angus Harding <angus.harding@ALSGlobal.com>; Brenda Hong <Brenda.Hong@alsglobal.com> Cc: Carmen Yi <Carmen.Yi@ghd.com>; Helen Simpson <helen.simpson@alsglobal.com> Subject: RE: [EXTERNAL] - Additional analyses for project 12517046

Hi,

Thanks for the extra info.

After our chat on the phone Angus and having reviewed our sample requirements and what we have left in terms of material we have come up with the following plan. The plan would be to take what remaining samples which fall within the same depth intervals as the homogenised samples we have and create composite samples for <u>opficwater</u> testing. This would comprise any remaining material the 0.0-0.5 depth intervals already requested plus the additional samples for each core (i.e. VC02. VC07, VC12) as in the table below.

Samples analysed using SEM/AVS should not be homogenised according to the NAGD, so can the material for these please be extracted from FD03, VC120.3-0.4 and VC02\_0.0-0.2 prior to homogenisation.

1) Prioritise elutriate for the samples requested for PAH, PCB and copper, mercury and silver, using scaled down elutriation process

2) Porewater for PAH, PCB and copper, mercury and silver

| Sample       |      | Samples which can be combined              |         | _     |         |      |          |      |
|--------------|------|--------------------------------------------|---------|-------|---------|------|----------|------|
| VC07_0.0-0.5 | 417  | FD03, VC07_0.2-0.4, VC07_0.0-<br>0.2       | #6,13   | ESI93 | 16023 # | 82   | 5- 685 - | -697 |
| VC12_0.0-0.5 | #zg  | VC12_0.0-0.1, VC12_0.3-0.4<br>VC12_0.5-0.6 | ++62,63 | ,64   | 5.954   | -361 |          |      |
| VC02_0.0-0.5 | # 53 | VC02_0.0-0.2; VC02_0.5-0.6                 | #38,33  |       |         |      |          |      |

I hope this makes sense, please give me a call if anything needs clarifying.

Thanks for all your help with this.

Sarah Eccleshall PhD MSc BSc Hons Graduate Environmental Scientist Contamination & Environmental Management

GHD Proudly employee owned T: 161 2 9239 7715 | M: +61 459 546 332 | E: <u>sarah.eccleshall@ghd.com</u> Level 15 133 Castlereagh Street Sydney NSW 2000 Australia | www.ghd.com

# Connect

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

From: Angus Harding <<u>angus.harding@ALSGlobai.com</u>> Sent: Thursday, 14 November 2019 4:30 PM



# **SAMPLE RECEIPT NOTIFICATION (SRN)**

| Work Order                                                   | : ES1938004                                                                                                |                                   |                                                                                                                                                  |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Client<br>Contact<br>Address                                 | E GHD PTY LTD<br>E SARAH ECCLESHALL<br>E LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address  | <ul> <li>Environmental Division Sydney</li> <li>Customer Services ES</li> <li>277-289 Woodpark Road Smithfield<br/>NSW Australia 2164</li> </ul> |
| E-mail<br>Telephone<br>Facsimile                             | : sarah.eccleshall@ghd.com<br>:<br>:                                                                       | E-mail<br>Telephone<br>Facsimile  | : ALSEnviro.Sydney@ALSGlobal.com<br>: +61-2-8784 8555<br>: +61-2-8784 8500                                                                       |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler   | : 12517046<br>:<br>:<br>:                                                                                  | Page<br>Quote number<br>QC Level  | : 1 of 3<br>: ES2019GHDSER0030 (SY/522/19)<br>: NEPM 2013 B3 & ALS QC Standard                                                                   |
| Dates<br>Date Samples Receiv<br>Client Requested Due<br>Date | red : 15-Nov-2019 16:15<br>e : 26-Nov-2019                                                                 | Issue Date<br>Scheduled Reporting | : 18-Nov-2019<br>Date : <b>26-Nov-2019</b>                                                                                                       |
| Delivery Detail                                              | /s<br>: Samples On Hand                                                                                    | Security Seal                     | : Not Available                                                                                                                                  |

No. of samples received / analysed

: 15/7

# **General Comments**

Receipt Detail

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Rebatch of ES1937483 and ES1936029.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



## Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

| ES1938004-004 | : [ 30-Oct-2019 ] | : VC07_0.0-0.5 - ELUTRIATE  |
|---------------|-------------------|-----------------------------|
| ES1938004-008 | :[31-Oct-2019]    | : VC12_0.0-0.5 - ELUTRIATE  |
| ES1938004-011 | : [ 30-Oct-2019 ] | : VC02_0.0-0.5 - ELUTRIATE  |
| ES1938004-012 | : [ 30-Oct-2019 ] | : SALTWATER - ELUTRIATE     |
| ES1938004-013 | : [ 30-Oct-2019 ] | : VC07_0.0-0.5 - PORE WATER |
| ES1938004-014 | :[31-Oct-2019]    | : VC12_0.0-0.5 - PORE WATER |
| ES1938004-015 | :[30-Oct-2019]    | : VC02_0.0-0.5 - PORE WATER |

# Summary of Sample(s) and Requested Analysis

| Some items des<br>process necessa<br>tasks. Packages<br>as the determine<br>tasks, that are inclu<br>lf no sampling<br>default 00:00 on<br>is provided, the<br>laboratory and<br>component<br>Matrix: SOIL | cribed below may<br>ry for the executi<br>may contain ad<br>ation of moisture<br>uded in the package.<br>time is provided,<br>the date of samplin<br>sampling date wi<br>displayed in bra | be part of a laboratory<br>on of client requested<br>ditional analyses, such<br>content and preparation<br>the sampling time will<br>g. If no sampling date<br>II be assumed by the<br>ckets without a time<br><i>Client sample ID</i> | DIL - EG035T-LL<br>btal Mercury - Low Level | DIL - EG093-T<br>otal Metals by ORC - Ultra Trace in Saline | DIL - EN020<br>ample Compositing | DIL - EN68-2/3<br>eparation of Elutriates for 2-3 analysis | DIL - EN82<br>Drewater Extraction | DIL - EP131B<br>tra Trace PCB's | JIL - EP132B(PAH)<br>tra Trace Polynuctear Aromatic Compounds |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|----------------------------------|------------------------------------------------------------|-----------------------------------|---------------------------------|---------------------------------------------------------------|
| ID<br>ES1938004-001                                                                                                                                                                                        | 30-Oct-2019 00:00                                                                                                                                                                         | ED03                                                                                                                                                                                                                                   | o ⊢                                         | o ⊢                                                         | ഗഗ                               | ഗപ                                                         | ഗ്                                | ທ ⊃                             | v ⊃                                                           |
| ES1938004-002                                                                                                                                                                                              | 30-Oct-2019 00:00                                                                                                                                                                         | VC07_02-04                                                                                                                                                                                                                             |                                             |                                                             |                                  |                                                            |                                   |                                 |                                                               |
| ES1038004-002                                                                                                                                                                                              | 30-Oct-2019 00:00                                                                                                                                                                         | VC07_0.0_0.2                                                                                                                                                                                                                           |                                             |                                                             | •                                |                                                            |                                   |                                 |                                                               |
| ES1938004-003                                                                                                                                                                                              | 30 Oct 2019 00:00                                                                                                                                                                         |                                                                                                                                                                                                                                        |                                             | 1                                                           | •                                |                                                            |                                   | 1                               | 1                                                             |
| E31930004-004                                                                                                                                                                                              |                                                                                                                                                                                           | VO07_0.0-0.3 ELUTRI                                                                                                                                                                                                                    | v                                           | v                                                           |                                  | v                                                          |                                   | ¥                               | v                                                             |
| ES1938004-005                                                                                                                                                                                              | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.0-0.1                                                                                                                                                                                                                           |                                             |                                                             | <b>√</b>                         |                                                            |                                   |                                 |                                                               |
| ES1938004-006                                                                                                                                                                                              | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.3-0.4                                                                                                                                                                                                                           |                                             |                                                             | ✓                                |                                                            |                                   |                                 |                                                               |
| ES1938004-007                                                                                                                                                                                              | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.5-0.6                                                                                                                                                                                                                           |                                             |                                                             | ✓                                |                                                            |                                   |                                 |                                                               |
| ES1938004-008                                                                                                                                                                                              | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.0-0.5 ELUTRI                                                                                                                                                                                                                    | ✓                                           | ✓                                                           |                                  | ✓                                                          |                                   | ✓                               | ✓                                                             |
| ES1938004-009                                                                                                                                                                                              | 30-Oct-2019 00:00                                                                                                                                                                         | VC02_0.0-0.2                                                                                                                                                                                                                           |                                             |                                                             | ✓                                |                                                            |                                   |                                 |                                                               |
| ES1938004-010                                                                                                                                                                                              | 30-Oct-2019 00:00                                                                                                                                                                         | VC02_0.5-0.6                                                                                                                                                                                                                           |                                             |                                                             | 1                                |                                                            |                                   |                                 |                                                               |
| ES1938004-011                                                                                                                                                                                              | 30-Oct-2019 00:00                                                                                                                                                                         | VC02_0.0-0.5 ELUTRI                                                                                                                                                                                                                    | ✓                                           | ✓                                                           |                                  | ✓                                                          |                                   | ✓                               | ✓                                                             |
| ES1938004-012                                                                                                                                                                                              | 30-Oct-2019 00:00                                                                                                                                                                         | SALTWATER ELUTRIATE                                                                                                                                                                                                                    | ✓                                           | ✓                                                           |                                  | ✓                                                          |                                   | ✓                               | ✓                                                             |
| ES1938004-013                                                                                                                                                                                              | 30-Oct-2019 00:00                                                                                                                                                                         | VC07_0.0-0.5 PORE W                                                                                                                                                                                                                    | ✓                                           | ✓                                                           |                                  |                                                            | ✓                                 | ✓                               | ✓                                                             |
| ES1938004-014                                                                                                                                                                                              | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.0-0.5 PORE W                                                                                                                                                                                                                    | ✓                                           | ✓                                                           |                                  |                                                            | ✓                                 | ✓                               | ✓                                                             |
| ES1938004-015                                                                                                                                                                                              | 30-Oct-2019 00:00                                                                                                                                                                         | VC02_0.0-0.5 PORE W                                                                                                                                                                                                                    | ✓                                           | 1                                                           |                                  |                                                            | 1                                 | 1                               | ✓                                                             |
|                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                        |                                             |                                                             |                                  |                                                            |                                   |                                 |                                                               |

# Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

#### ....

| Matrix: SOIL        |                                 |             |          | Evaluation: × = Ho | olding time bre | ach ; ✓ = Withiı | n holding time. |
|---------------------|---------------------------------|-------------|----------|--------------------|-----------------|------------------|-----------------|
| Method              |                                 | Due for     | Due for  | Samples R          | eceived         | Instructions     | Received        |
| Client Sample ID(s) | Container                       | extraction  | analysis | Date               | Evaluation      | Date             | Evaluation      |
| EN68a: Seawater El  | utriate Testing Procedure       |             |          |                    |                 |                  |                 |
| SALTWATER           | Non-Volatile Leach: 14 day HT(¢ | 13-Nov-2019 |          | 15-Nov-2019        | ×               |                  |                 |
| VC02_0.0-0.5        | Non-Volatile Leach: 14 day HT(¢ | 13-Nov-2019 |          | 15-Nov-2019        | *               |                  |                 |
| VC07_0.0-0.5        | Non-Volatile Leach: 14 day HT(ϵ | 13-Nov-2019 |          | 15-Nov-2019        | *               |                  |                 |
| VC12_0.0-0.5        | Non-Volatile Leach: 14 day HT(¢ | 14-Nov-2019 |          | 15-Nov-2019        | ×               |                  |                 |
| EN82: Porewater Ex  | traction                        |             | -        | -                  |                 |                  | -               |
| VC02_0.0-0.5        | Non-Volatile Leach: 14 day HT(¢ | 13-Nov-2019 |          | 15-Nov-2019        | ×               |                  |                 |
| VC07_0.0-0.5        | Non-Volatile Leach: 14 day HT(e | 13-Nov-2019 |          | 15-Nov-2019        | ×               |                  |                 |

| Issue Date<br>Page<br>Work Order<br>Client     | : 18-Nov-2019<br>: 3 of 3<br>: ES1938004 Amendment 0<br>: GHD PTY LTD |      |             |             |                |    |
|------------------------------------------------|-----------------------------------------------------------------------|------|-------------|-------------|----------------|----|
| VC12_0.0-0.5                                   | Non-Volatile Leach: 14 day HT(  14-Nov-2019                           |      | 15-Nov-2019 | *           |                |    |
| Requested                                      | Deliverables                                                          |      |             |             |                |    |
| Accounts Paya<br>_ A4 - AU Tax<br>GHD LAB REPO | ble Australia<br>< Invoice (INV)<br>ORTS                              |      | Email a     | accountspa  | ayableAU@ghd.c | om |
| - A4 - AU Tax                                  | (Invoice (INV)                                                        |      | Email g     | ghdlabrepc  | orts@ghd.com   |    |
| SARAH ECCLE                                    | SHALL                                                                 |      |             |             |                |    |
| <ul> <li>*AU Interpret</li> </ul>              | etive QC Report - DEFAULT (Anon QCI Rep) (C                           | QCI) | Email s     | sarah.eccle | eshall@ghd.com |    |
| - *AU QC Re                                    | port - DEFAULT (Anon QC Rep) - NATA (QC)                              |      | Email s     | sarah.eccle | eshall@ghd.com |    |
| - A4 - AU Sar                                  | mple Receipt Notification - Environmental HT (S                       | RN)  | Email s     | sarah.eccle | eshall@ghd.com |    |
| - AU Certifica                                 | te of Analysis - NATA (With Guidelines) (COA_                         | GL)  | Email s     | arah.eccle  | eshall@ghd.com |    |
| - Chain of Cu                                  | stody (CoC) (COC)                                                     |      | Email s     | arah.eccle  | eshall@ghd.com |    |
| - EDI Format                                   | - ENMRG (ENMRG)                                                       |      | Email s     | arah.eccle  | eshall@ghd.com |    |
| - EDI Format                                   | - ESDAT (ESDAT)                                                       |      | Email s     | arah.eccle  | eshall@ghd.com |    |
| - EDI Format                                   | - XTab (XTAB)                                                         |      | Email s     | arah.eccle  | eshall@ghd.com |    |

Email

sarah.eccleshall@ghd.com

- Electronic SRN for ESdat (ESRN\_ESDAT)



# **SAMPLE RECEIPT NOTIFICATION (SRN)**

| Work Order                                                    | : ES1938004                                                                                                       |                                  |                                           |                                                                                              |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|
| Client<br>Contact<br>Address                                  | : <b>GHD PTY LTD</b><br>: SARAH ECCLESHALL<br>: LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address | : Enviro<br>: Custor<br>: 277-28<br>NSW / | onmental Division Sydney<br>mer Services ES<br>89 Woodpark Road Smithfield<br>Australia 2164 |
| E-mail<br>Telephone<br>Facsimile                              | : sarah.eccleshall@ghd.com<br>:<br>:                                                                              | E-mail<br>Telephone<br>Facsimile | : ALSEr<br>: +61-2-<br>: +61-2-           | nviro.Sydney@ALSGlobal.com<br>-8784 8555<br>-8784 8500                                       |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler    | : 12517046<br>:<br>:<br>:                                                                                         | Page<br>Quote number<br>QC Level | : 1 of 3<br>: ES201<br>: NEPM             | 19GHDSER0030 (SY/522/19)<br>I 2013 B3 & ALS QC Standard                                      |
| Dates<br>Date Samples Receive<br>Client Requested Due<br>Date | ed : 15-Nov-2019 16:15<br>: 26-Nov-2019                                                                           | Issue Date<br>Scheduled Reportir | ng Date                                   | : 25-Nov-2019<br>: <b>26-Nov-2019</b>                                                        |
| Delivery Details<br>Mode of Delivery<br>No. of coolers/boxes  | S<br>: Samples On Hand<br>:                                                                                       | Security Seal<br>Temperature     |                                           | : Not Available<br>: 4.1'C                                                                   |

No. of samples received / analysed : 15 / 7

# **General Comments**

Receipt Detail

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Rebatch of ES1937483 and ES1936029.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



## Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

| ES1938004-004 | :[30-Oct-2019] | : VC07_0.0-0.5 - ELUTRIATE  |
|---------------|----------------|-----------------------------|
| ES1938004-008 | :[31-Oct-2019] | : VC12_0.0-0.5 - ELUTRIATE  |
| ES1938004-011 | :[30-Oct-2019] | : VC02_0.0-0.5 - ELUTRIATE  |
| ES1938004-012 | :[30-Oct-2019] | : SALTWATER - ELUTRIATE     |
| ES1938004-013 | :[30-Oct-2019] | : VC07_0.0-0.5 - PORE WATER |
| ES1938004-014 | :[31-Oct-2019] | : VC12_0.0-0.5 - PORE WATER |
| ES1938004-015 | :[30-Oct-2019] | : VC02_0.0-0.5 - PORE WATER |

# Summary of Sample(s) and Requested Analysis

| Some items des<br>process necessa<br>tasks. Packages<br>as the determin<br>tasks, that are incl<br>lf no sampling<br>default 00:00 on<br>is provided, the<br>laboratory and<br>component<br>Matrix: SOIL<br>Laboratory sample<br>ID | cribed below may<br>ry for the executi<br>may contain ad<br>ation of moisture<br>uded in the package.<br>time is provided,<br>the date of samplin<br>sampling date wi<br>displayed in bra | be part of a laboratory<br>on of client requested<br>ditional analyses, such<br>content and preparation<br>the sampling time will<br>g. If no sampling date<br>Il be assumed by the<br>ckets without a time<br><i>Client sample ID</i> | SOIL - EG035T-LL<br>Total Mercury - Low Level | SOIL - EG093-T<br>Total Metals by ORC - Ultra Trace in Saline | SOIL - EN020<br>Sample Compositing | SOIL - EN68-2/3<br>Preparation of Elutriates for 2-3 analysis | SOIL - EN82<br>Porewater Extraction | SOIL - EP131B<br>Ultra Trace PCB's | SOIL - EP132-LL<br>Super Ultra Trace PAH |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|------------------------------------|---------------------------------------------------------------|-------------------------------------|------------------------------------|------------------------------------------|
| ES1938004-001                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | FD03                                                                                                                                                                                                                                   |                                               |                                                               | ✓                                  |                                                               |                                     |                                    |                                          |
| ES1938004-002                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | VC07_0.2-0.4                                                                                                                                                                                                                           |                                               |                                                               | ✓                                  |                                                               |                                     |                                    |                                          |
| ES1938004-003                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | VC07_0.0-0.2                                                                                                                                                                                                                           |                                               |                                                               | ✓                                  |                                                               |                                     |                                    |                                          |
| ES1938004-004                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | VC07_0.0-0.5 ELUTRI                                                                                                                                                                                                                    | ✓                                             | ✓                                                             |                                    | ✓                                                             |                                     | ✓                                  | ✓                                        |
| ES1938004-005                                                                                                                                                                                                                       | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.0-0.1                                                                                                                                                                                                                           |                                               |                                                               | ✓                                  |                                                               |                                     |                                    |                                          |
| ES1938004-006                                                                                                                                                                                                                       | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.3-0.4                                                                                                                                                                                                                           |                                               |                                                               | ✓                                  |                                                               |                                     |                                    |                                          |
| ES1938004-007                                                                                                                                                                                                                       | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.5-0.6                                                                                                                                                                                                                           |                                               |                                                               | ✓                                  |                                                               |                                     |                                    |                                          |
| ES1938004-008                                                                                                                                                                                                                       | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.0-0.5 ELUTRI                                                                                                                                                                                                                    | ✓                                             | ✓                                                             |                                    | ✓                                                             |                                     | ✓                                  | ✓                                        |
| ES1938004-009                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | VC02_0.0-0.2                                                                                                                                                                                                                           |                                               |                                                               | ✓                                  |                                                               |                                     |                                    |                                          |
| ES1938004-010                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | VC02_0.5-0.6                                                                                                                                                                                                                           |                                               |                                                               | ✓                                  |                                                               |                                     |                                    |                                          |
| ES1938004-011                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | VC02_0.0-0.5 ELUTRI                                                                                                                                                                                                                    | ✓                                             | ✓                                                             |                                    | ✓                                                             |                                     | ✓                                  | ✓                                        |
| ES1938004-012                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | SALTWATER ELUTRIATE                                                                                                                                                                                                                    | ✓                                             | ✓                                                             |                                    | ✓                                                             |                                     | ✓                                  | ✓                                        |
| ES1938004-013                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | VC07_0.0-0.5 PORE W                                                                                                                                                                                                                    | ✓                                             | ✓                                                             |                                    |                                                               | ✓                                   | ✓                                  | ✓                                        |
| ES1938004-014                                                                                                                                                                                                                       | 31-Oct-2019 00:00                                                                                                                                                                         | VC12_0.0-0.5 PORE W                                                                                                                                                                                                                    | ✓                                             | ✓                                                             |                                    |                                                               | ✓                                   | ✓                                  | ✓                                        |
| ES1938004-015                                                                                                                                                                                                                       | 30-Oct-2019 00:00                                                                                                                                                                         | VC02_0.0-0.5 PORE W                                                                                                                                                                                                                    | ✓                                             | ✓                                                             |                                    |                                                               | ✓                                   | 1                                  | ✓                                        |
|                                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                                                                                        |                                               |                                                               |                                    |                                                               |                                     |                                    |                                          |

# Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

#### ....

| Matrix: SOIL        |                                 |             |          | Evaluation: × = Ho | olding time bre | ach ; ✓ = Withir      | n holding time. |
|---------------------|---------------------------------|-------------|----------|--------------------|-----------------|-----------------------|-----------------|
| Method              |                                 | Due for     | Due for  | Samples R          | eceived         | Instructions Received |                 |
| Client Sample ID(s) | Container                       | extraction  | analysis | Date               | Evaluation      | Date                  | Evaluation      |
| EN68a: Seawater El  | utriate Testing Procedure       |             |          |                    |                 |                       |                 |
| SALTWATER           | Non-Volatile Leach: 14 day HT(¢ | 13-Nov-2019 |          | 15-Nov-2019        | ×               |                       |                 |
| VC02_0.0-0.5        | Non-Volatile Leach: 14 day HT(¢ | 13-Nov-2019 |          | 15-Nov-2019        | *               |                       |                 |
| VC07_0.0-0.5        | Non-Volatile Leach: 14 day HT(ϵ | 13-Nov-2019 |          | 15-Nov-2019        | *               |                       |                 |
| VC12_0.0-0.5        | Non-Volatile Leach: 14 day HT(¢ | 14-Nov-2019 |          | 15-Nov-2019        | ×               |                       |                 |
| EN82: Porewater Ex  | traction                        |             | -        | -                  |                 |                       | -               |
| VC02_0.0-0.5        | Non-Volatile Leach: 14 day HT(¢ | 13-Nov-2019 |          | 15-Nov-2019        | ×               |                       |                 |
| VC07_0.0-0.5        | Non-Volatile Leach: 14 day HT(e | 13-Nov-2019 |          | 15-Nov-2019        | ×               |                       |                 |

| Issue Date<br>Page<br>Work Order<br>Client     | 25-Nov-2019<br>3 of 3<br>ES1938004 Amendment 0<br>GHD PTY LTD |      |             |            |                |    |
|------------------------------------------------|---------------------------------------------------------------|------|-------------|------------|----------------|----|
| VC12_0.0-0.5                                   | Non-Volatile Leach: 14 day HT(  14-Nov-2019                   |      | 15-Nov-2019 | ×          |                |    |
| Requested                                      | Deliverables                                                  |      |             |            |                |    |
| Accounts Paya<br>_ A4 - AU Tax<br>GHD LAB REPO | ble Australia<br>: Invoice (INV)<br>DRTS                      |      | Email a     | accountspa | ayableAU@ghd.c | om |
| - A4 - AU Tax                                  | (INV)                                                         |      | Email g     | ghdlabrepo | rts@ghd.com    |    |
| SARAH ECCLE                                    | SHALL                                                         |      |             |            |                |    |
| <ul> <li>*AU Interpret</li> </ul>              | tive QC Report - DEFAULT (Anon QCI Rep) (C                    | QCI) | Email s     | arah.eccle | eshall@ghd.com |    |
| - *AU QC Re                                    | port - DEFAULT (Anon QC Rep) - NATA (QC)                      |      | Email s     | arah.eccle | shall@ghd.com  |    |
| - A4 - AU Sar                                  | nple Receipt Notification - Environmental HT (S               | RN)  | Email s     | arah.eccle | shall@ghd.com  |    |
| <ul> <li>AU Certifica</li> </ul>               | te of Analysis - NATA (With Guidelines) (COA_                 | GL)  | Email s     | arah.eccle | shall@ghd.com  |    |
| <ul> <li>Chain of Cu</li> </ul>                | stody (CoC) (COC)                                             |      | Email s     | arah.eccle | shall@ghd.com  |    |
| - EDI Format                                   | - ENMRG (ENMRG)                                               |      | Email s     | arah.eccle | shall@ghd.com  |    |
| - EDI Format                                   | - ESDAT (ESDAT)                                               |      | Email s     | arah.eccle | shall@ghd.com  |    |
| - EDI Format                                   | - XTab (XTAB)                                                 |      | Email s     | arah.eccle | eshall@ghd.com |    |

Email

sarah.eccleshall@ghd.com

- Electronic SRN for ESdat (ESRN\_ESDAT)



# **CERTIFICATE OF ANALYSIS with GUIDELINE COMPARISON**

| Work Order   | ES1938004                                                          | Page                   | : 1 of 6                                            |
|--------------|--------------------------------------------------------------------|------------------------|-----------------------------------------------------|
| Client       | : GHD PTY LTD                                                      | Laboratory             | : Environmental Division Sydney                     |
| Contact      | : SARAH ECCLESHALL                                                 | Contact                | : Customer Services ES                              |
| Address      | ELEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                | 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone    | :                                                                  | Telephone              | : +61-2-8784 8555                                   |
| Project      | : 12517046                                                         |                        |                                                     |
| Order number | :                                                                  |                        |                                                     |
| C-O-C number | :                                                                  | No. of samples receive | d : 15                                              |
| Site         | :                                                                  | No. of samples analyse | ed : 4                                              |
| Sampled by   | :                                                                  | Issue Date             | : 03-Dec-2019 12:15                                 |
| Quote number | : ES2019GHDSER0030 (SY/522/19)                                     | Date Samples Receive   | <sup>d</sup> : 15-Nov-2019 16:15                    |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to Assist with Quality Review and Sample Receipt Notification.





Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position (Accreditation Category)

Celine Conceicao Edwandy Fadjar Senior Spectroscopist (Sydney Inorganics, Smithfield, NSW) Organic Coordinator (Sydney Organics, Smithfield, NSW)



The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits, the associated uncertainty **must be** considered. Refer to the ALS Contract <u>Terms and Conditions</u> for details, and EnviroMail 53 for a guide on how to interpret the measurement of uncertainty (MU).

Red shading is applied where the result is equal to or greater than the guideline upper limit or the result is equal to or lower than the guideline lower limit. Any shading applied **does not** take into account measurement uncertainty.

#### Work Order Specific Comments

- EN68: This analysis in accordance with National Ocean Disposal Guidelines, Commonwealth of Australia, 2002 (modified). Results reported are those determined on a 1:4 sediment/seawater elutriate without blank correction.
- EG093: Samples containing high levels of sulfate may precipitate barium under the acidic conditions of this method and may therefore bias results low.

| Sub-Matrix: COMPOSITE                      |                  | Clie       | ent sample ID  | VC07_0.0-0.5              | ;                                      | Guideline c | omparison not           | requested for |
|--------------------------------------------|------------------|------------|----------------|---------------------------|----------------------------------------|-------------|-------------------------|---------------|
|                                            |                  |            |                | ELUTRIATE                 |                                        |             | sample                  |               |
|                                            |                  | Laborate   | ory sample ID  | ES193800400               | 4                                      |             |                         |               |
|                                            | Clier            | nt samplii | ng date / time | 30-Oct-2019 15            | :00                                    |             |                         |               |
| Parameter                                  | CAS Number       | LOR        |                | Result                    | MU                                     |             |                         |               |
| EN68: Seawater Elutriate Testing Procedure |                  |            |                |                           |                                        |             |                         |               |
| Seawater Sampling Date                     |                  | -          | -              | 2019-11-27                |                                        |             |                         |               |
|                                            |                  |            |                |                           |                                        |             |                         |               |
| Sub-Matrix: COMPOSITE                      |                  | Clie       | ent sample ID  | VC12_0.0-0.5<br>ELUTRIATE | ;                                      | Guideline c | omparison not<br>sample | requested for |
|                                            |                  | Laborate   | ory sample ID  | ES193800400               | 8                                      |             |                         |               |
|                                            | Clier            | nt samplii | ng date / time | 31-Oct-2019 15:           | :00                                    |             |                         |               |
| Parameter                                  | CAS Number       | LOR        |                | Result                    | MU                                     |             |                         |               |
| EN68: Seawater Elutriate Testing Procedure |                  |            |                |                           |                                        |             |                         |               |
| Seawater Sampling Date                     |                  | -          | -              | 2019-11-27                |                                        |             |                         |               |
|                                            |                  |            |                |                           | i                                      |             |                         |               |
| Sub-Matrix: COMPOSITE                      | Client sample ID |            | VC02_0.0-0.5   |                           | Guideline comparison not requested for |             |                         |               |
|                                            |                  |            |                | ELUTRIATE                 |                                        |             | sample                  |               |
|                                            |                  | Laborate   | ory sample ID  | ES193800401               | 1                                      |             |                         |               |
|                                            | Cliei            | nt samplii | ng date / time | 30-Oct-2019 15:           | :00                                    |             |                         |               |
| Parameter                                  | CAS Number       | LOR        |                | Result                    | MU                                     |             |                         |               |
| EN68: Seawater Elutriate Testing Procedure |                  |            |                |                           |                                        |             |                         |               |
| Seawater Sampling Date                     |                  | -          | -              | 2019-11-27                |                                        |             |                         |               |
|                                            |                  | Clin       | ant comple ID  |                           |                                        |             |                         |               |
| Sub-Matrix: SEDIMENI                       |                  | Clie       | ent sample ID  | SALTWATER                 |                                        | Guideline c | omparison not           | requested for |
|                                            |                  | 1 - 1 1    |                | ELUIRIATE                 | -                                      |             | sample                  |               |
|                                            |                  | Laborate   | ory sample ID  | ES193800401               | 2                                      |             |                         |               |
|                                            | Clier            | nt samplii | ng date / time | 30-Oct-2019 15:           | :00                                    |             |                         |               |
| Parameter                                  | CAS Number       | LOR        |                | Result                    | MU                                     |             |                         |               |
| EN68: Seawater Elutriate Testing Procedure |                  |            |                |                           |                                        |             |                         |               |
| Seawater Sampling Date                     |                  | -          | -              | 2019-11-27                |                                        |             |                         |               |



| Sub-Matrix: ELUTRIATE                           |            | Clie        | ent sample ID  | VC07_0.0-0.5<br>ELUTRIATE |     | Guideline comparison not re<br>sample |  | requested for |  |
|-------------------------------------------------|------------|-------------|----------------|---------------------------|-----|---------------------------------------|--|---------------|--|
|                                                 |            | Laborato    | ory sample ID  | ES193800400               | 4   |                                       |  |               |  |
|                                                 | Clie       | ent samplir | ng date / time | 30-Oct-2019 15:           | :00 |                                       |  |               |  |
| Parameter                                       | CAS Number | LOR         |                | Result                    | MU  |                                       |  |               |  |
| EG035T: Total Mercury by FIMS                   |            |             |                |                           |     |                                       |  |               |  |
| Mercury                                         | 7439-97-6  | 0.00004     | mg/L           | <0.00004                  |     |                                       |  |               |  |
| EG093T: Total Metals in Saline Water by ORC-ICP | MS         |             |                |                           |     |                                       |  |               |  |
| Copper                                          | 7440-50-8  | 1           | µg/L           | <1                        |     |                                       |  |               |  |
| Silver                                          | 7440-22-4  | 0.1         | µg/L           | <0.1                      |     |                                       |  |               |  |
| EP131B: Polychlorinated Biphenyls (as Aroclors) |            |             |                |                           |     |                                       |  |               |  |
| Total Polychlorinated biphenyls                 |            | 0.10        | µg/L           | <0.10                     |     |                                       |  |               |  |
| Aroclor 1016                                    | 12674-11-2 | 0.10        | µg/L           | <0.10                     |     |                                       |  |               |  |
| Aroclor 1221                                    | 11104-28-2 | 0.10        | µg/L           | <0.10                     |     |                                       |  |               |  |
| Aroclor 1232                                    | 11141-16-5 | 0.10        | µg/L           | <0.10                     |     |                                       |  |               |  |
| Aroclor 1242                                    | 53469-21-9 | 0.10        | µg/L           | <0.10                     |     |                                       |  |               |  |
| Aroclor 1248                                    | 12672-29-6 | 0.10        | µg/L           | <0.10                     |     |                                       |  |               |  |
| Aroclor 1254                                    | 11097-69-1 | 0.10        | µg/L           | <0.10                     |     |                                       |  |               |  |
| Aroclor 1260                                    | 11096-82-5 | 0.10        | µg/L           | <0.10                     |     |                                       |  |               |  |
| EP132B: Polynuclear Aromatic Hydrocarbons       |            |             |                |                           |     |                                       |  |               |  |
| Naphthalene                                     | 91-20-3    | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Acenaphthylene                                  | 208-96-8   | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Acenaphthene                                    | 83-32-9    | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Fluorene                                        | 86-73-7    | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Phenanthrene                                    | 85-01-8    | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Anthracene                                      | 120-12-7   | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Fluoranthene                                    | 206-44-0   | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Pyrene                                          | 129-00-0   | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Benz(a)anthracene                               | 56-55-3    | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Chrysene                                        | 218-01-9   | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Benzo(b+j)fluoranthene                          | 205-99-2   | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
|                                                 | 205-82-3   |             |                |                           |     |                                       |  |               |  |
| Benzo(k)fluoranthene                            | 207-08-9   | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Benzo(a)pyrene                                  | 50-32-8    | 0.005       | µg/L           | <0.005                    |     |                                       |  |               |  |
| Indeno(1.2.3.cd)pyrene                          | 193-39-5   | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Dibenz(a.h)anthracene                           | 53-70-3    | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Benzo(g.h.i)perylene                            | 191-24-2   | 0.02        | µg/L           | <0.02                     |     |                                       |  |               |  |
| Total PAH                                       |            | 0.005       | µg/L           | <0.005                    |     |                                       |  |               |  |
| Benzo(a)pyrene TEQ (zero)                       |            | 0.005       | µg/L           | < 0.005                   |     |                                       |  |               |  |



| Sub-Matrix: ELUTRIATE                         |            | Clie        | ent sample ID  | VC12_0.0-0.5<br>ELUTRIATE | 0.0-0.5 Guideline comparison<br>RIATE sampl |  | ot requested for |  |
|-----------------------------------------------|------------|-------------|----------------|---------------------------|---------------------------------------------|--|------------------|--|
|                                               |            | Laborato    | ory sample ID  | ES1938004008              |                                             |  |                  |  |
|                                               | Clie       | ent samplir | ng date / time | 31-Oct-2019 15:00         |                                             |  |                  |  |
| Parameter                                     | CAS Number | LOR         |                | Result M                  | IU                                          |  |                  |  |
| EG035T: Total Mercury by FIMS                 |            |             |                |                           |                                             |  |                  |  |
| Mercury                                       | 7439-97-6  | 0.00004     | mg/L           | <0.00004                  |                                             |  |                  |  |
| EG093T: Total Metals in Saline Water by ORC-I | CPMS       |             |                |                           |                                             |  |                  |  |
| Copper                                        | 7440-50-8  | 1           | µg/L           | <1                        |                                             |  |                  |  |
| Silver                                        | 7440-22-4  | 0.1         | µg/L           | <0.1                      |                                             |  |                  |  |
| EP131B: Polychlorinated Biphenyls (as Aroclo  | rs)        |             |                |                           |                                             |  |                  |  |
| Total Polychlorinated biphenyls               |            | 0.10        | µg/L           | <0.10                     |                                             |  |                  |  |
| Aroclor 1016                                  | 12674-11-2 | 0.10        | µg/L           | <0.10                     |                                             |  |                  |  |
| Aroclor 1221                                  | 11104-28-2 | 0.10        | µg/L           | <0.10                     |                                             |  |                  |  |
| Aroclor 1232                                  | 11141-16-5 | 0.10        | µg/L           | <0.10                     |                                             |  |                  |  |
| Aroclor 1242                                  | 53469-21-9 | 0.10        | µg/L           | <0.10                     |                                             |  |                  |  |
| Aroclor 1248                                  | 12672-29-6 | 0.10        | µg/L           | <0.10                     |                                             |  |                  |  |
| Aroclor 1254                                  | 11097-69-1 | 0.10        | µg/L           | <0.10                     |                                             |  |                  |  |
| Aroclor 1260                                  | 11096-82-5 | 0.10        | µg/L           | <0.10                     |                                             |  |                  |  |
| EP132B: Polynuclear Aromatic Hydrocarbons     |            |             |                |                           |                                             |  |                  |  |
| Naphthalene                                   | 91-20-3    | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Acenaphthylene                                | 208-96-8   | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Acenaphthene                                  | 83-32-9    | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Fluorene                                      | 86-73-7    | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Phenanthrene                                  | 85-01-8    | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Anthracene                                    | 120-12-7   | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Fluoranthene                                  | 206-44-0   | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Pyrene                                        | 129-00-0   | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Benz(a)anthracene                             | 56-55-3    | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Chrysene                                      | 218-01-9   | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Benzo(b+j)fluoranthene                        | 205-99-2   | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
|                                               | 205-82-3   |             |                |                           |                                             |  |                  |  |
| Benzo(k)fluoranthene                          | 207-08-9   | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Benzo(a)pyrene                                | 50-32-8    | 0.005       | µg/L           | <0.005                    |                                             |  |                  |  |
| Indeno(1.2.3.cd)pyrene                        | 193-39-5   | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Dibenz(a.h)anthracene                         | 53-70-3    | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Benzo(g.h.i)perylene                          | 191-24-2   | 0.02        | µg/L           | <0.02                     |                                             |  |                  |  |
| Total PAH                                     |            | 0.005       | µg/L           | <0.005                    |                                             |  |                  |  |
| Benzo(a)pyrene TEQ (zero)                     |            | 0.005       | µg/L           | <0.005                    |                                             |  |                  |  |



| Sub-Matrix: ELUTRIATE                       |            | Clie        | nt sample ID   | VC02_0.0-0.5<br>ELUTRIATE | Guideline o | Guideline comparison not requested for<br>sample |  |  |
|---------------------------------------------|------------|-------------|----------------|---------------------------|-------------|--------------------------------------------------|--|--|
|                                             |            | Laborato    | ory sample ID  | ES1938004011              |             |                                                  |  |  |
|                                             | Clie       | ent samplir | ng date / time | 30-Oct-2019 15:00         |             |                                                  |  |  |
| Parameter                                   | CAS Number | LOR         |                | Result MI                 | J           |                                                  |  |  |
| EG035T: Total Mercury by FIMS               |            |             |                |                           |             |                                                  |  |  |
| Mercury                                     | 7439-97-6  | 0.00004     | mg/L           | <0.00004                  |             |                                                  |  |  |
| EG093T: Total Metals in Saline Water by ORC | -ICPMS     |             |                |                           |             |                                                  |  |  |
| Copper                                      | 7440-50-8  | 1           | µg/L           | <1                        |             |                                                  |  |  |
| Silver                                      | 7440-22-4  | 0.1         | µg/L           | <0.1                      |             |                                                  |  |  |
| EP131B: Polychlorinated Biphenyls (as Aroc  | lors)      |             |                |                           |             |                                                  |  |  |
| Total Polychlorinated biphenyls             |            | 0.10        | µg/L           | <0.10                     |             |                                                  |  |  |
| Aroclor 1016                                | 12674-11-2 | 0.10        | µg/L           | <0.10                     |             |                                                  |  |  |
| Aroclor 1221                                | 11104-28-2 | 0.10        | µg/L           | <0.10                     |             |                                                  |  |  |
| Aroclor 1232                                | 11141-16-5 | 0.10        | µg/L           | <0.10                     |             |                                                  |  |  |
| Aroclor 1242                                | 53469-21-9 | 0.10        | µg/L           | <0.10                     |             |                                                  |  |  |
| Aroclor 1248                                | 12672-29-6 | 0.10        | µg/L           | <0.10                     |             |                                                  |  |  |
| Aroclor 1254                                | 11097-69-1 | 0.10        | µg/L           | <0.10                     |             |                                                  |  |  |
| Aroclor 1260                                | 11096-82-5 | 0.10        | µg/L           | <0.10                     |             |                                                  |  |  |
| EP132B: Polynuclear Aromatic Hydrocarbon    | S          |             |                |                           |             |                                                  |  |  |
| Naphthalene                                 | 91-20-3    | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Acenaphthylene                              | 208-96-8   | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Acenaphthene                                | 83-32-9    | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Fluorene                                    | 86-73-7    | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Phenanthrene                                | 85-01-8    | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Anthracene                                  | 120-12-7   | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Fluoranthene                                | 206-44-0   | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Pyrene                                      | 129-00-0   | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Benz(a)anthracene                           | 56-55-3    | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Chrysene                                    | 218-01-9   | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Benzo(b+j)fluoranthene                      | 205-99-2   | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
|                                             | 205-82-3   |             |                |                           |             |                                                  |  |  |
| Benzo(k)fluoranthene                        | 207-08-9   | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Benzo(a)pyrene                              | 50-32-8    | 0.005       | µg/L           | < 0.005                   |             |                                                  |  |  |
| Indeno(1.2.3.cd)pyrene                      | 193-39-5   | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Dibenz(a.h)anthracene                       | 53-70-3    | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Benzo(g.h.i)perylene                        | 191-24-2   | 0.02        | µg/L           | <0.02                     |             |                                                  |  |  |
| Total PAH                                   |            | 0.005       | µg/L           | < 0.005                   |             |                                                  |  |  |
| Benzo(a)pyrene TEQ (zero)                   |            | 0.005       | µg/L           | <0.005                    |             |                                                  |  |  |


# **Analytical Results**

| Sub-Matrix: ELUTRIATE                             | Client sample ID |                | SALTWATER<br>ELUTRIATE | Guideline comparison not requested for<br>sample |  |  |
|---------------------------------------------------|------------------|----------------|------------------------|--------------------------------------------------|--|--|
|                                                   | Laborat          | ory sample ID  | ES1938004012           |                                                  |  |  |
| c                                                 | lient sampli     | ng date / time | 30-Oct-2019 15:00      |                                                  |  |  |
| Parameter CAS Numb                                | er LOR           |                | Result MU              |                                                  |  |  |
| EG035T: Total Mercury by FIMS                     |                  |                |                        |                                                  |  |  |
| Mercury 7439-97-                                  | 6 0.00004        | mg/L           | <0.00004               |                                                  |  |  |
| EG093T: Total Metals in Saline Water by ORC-ICPMS |                  |                |                        |                                                  |  |  |
| Copper 7440-50-                                   | 3 1              | µg/L           | <1                     |                                                  |  |  |
| Silver 7440-22-                                   | 0.1              | µg/L           | <0.1                   |                                                  |  |  |
| EP131B: Polychlorinated Biphenyls (as Aroclors)   |                  |                |                        |                                                  |  |  |
| Total Polychlorinated biphenyls                   | - 0.10           | µg/L           | <0.10                  |                                                  |  |  |
| Aroclor 1016 12674-11-2                           | 2 0.10           | µg/L           | <0.10                  |                                                  |  |  |
| Aroclor 1221 11104-28-                            | 2 0.10           | µg/L           | <0.10                  |                                                  |  |  |
| Aroclor 1232 11141-16-                            | 5 0.10           | µg/L           | <0.10                  |                                                  |  |  |
| Aroclor 1242 53469-21-                            | 0.10             | µg/L           | <0.10                  |                                                  |  |  |
| Aroclor 1248 12672-29-                            | 6 0.10           | µg/L           | <0.10                  |                                                  |  |  |
| Aroclor 1254 11097-69-                            | 0.10             | µg/L           | <0.10                  |                                                  |  |  |
| Aroclor 1260 11096-82-                            | 5 0.10           | µg/L           | <0.10                  |                                                  |  |  |
| EP132B: Polynuclear Aromatic Hydrocarbons         |                  |                |                        |                                                  |  |  |
| Naphthalene 91-20-                                | 3 0.02           | µg/L           | <0.02                  |                                                  |  |  |
| Acenaphthylene 208-96-                            | 3 0.02           | µg/L           | <0.02                  |                                                  |  |  |
| Acenaphthene 83-32-                               | 0.02             | µg/L           | <0.02                  |                                                  |  |  |
| Fluorene 86-73-                                   | 0.02             | µg/L           | <0.02                  |                                                  |  |  |
| Phenanthrene 85-01-                               | 3 0.02           | µg/L           | <0.02                  |                                                  |  |  |
| Anthracene 120-12-                                | 0.02             | µg/L           | <0.02                  |                                                  |  |  |
| Fluoranthene 206-44-                              | 0.02             | µg/L           | <0.02                  |                                                  |  |  |
| Pyrene 129-00-                                    | 0.02             | µg/L           | <0.02                  |                                                  |  |  |
| Benz(a)anthracene 56-55-                          | 3 0.02           | µg/L           | <0.02                  |                                                  |  |  |
| Chrysene 218-01-                                  | 0.02             | µg/L           | <0.02                  |                                                  |  |  |
| Benzo(b+j)fluoranthene 205-99-                    | 0.02             | µg/L           | <0.02                  |                                                  |  |  |
| 205-82-                                           | 3                |                |                        |                                                  |  |  |
| Benzo(k)fluoranthene 207-08-                      | 0.02             | µg/L           | <0.02                  |                                                  |  |  |
| Benzo(a)pyrene 50-32-                             | 3 0.005          | µg/L           | <0.005                 |                                                  |  |  |
| Indeno(1.2.3.cd)pyrene 193-39-                    | 5 0.02           | µg/L           | <0.02                  |                                                  |  |  |
| Dibenz(a.h)anthracene 53-70-                      | 3 0.02           | µg/L           | <0.02                  |                                                  |  |  |
| Benzo(g.h.i)perylene 191-24-2                     | 2 0.02           | µg/L           | <0.02                  |                                                  |  |  |
| Total PAH                                         | - 0.005          | µg/L           | <0.005                 |                                                  |  |  |
| Benzo(a)pyrene TEQ (zero)                         | - 0.005          | µg/L           | <0.005                 |                                                  |  |  |

Key:

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

~ = Indicates an estimated value.

ø = ALS is not NATA accredited for these tests.



# **QUALITY CONTROL REPORT**

| Work Order              | : ES1938004                                                      | Page                    | : 1 of 4                                              |
|-------------------------|------------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : GHD PTY LTD                                                    | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | : SARAH ECCLESHALL                                               | Contact                 | : Customer Services ES                                |
| Address                 | : LEVEL 15, 133 CASTLEREAGH STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | :                                                                | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                                                       | Date Samples Received   | : 15-Nov-2019                                         |
| Order number            | :                                                                | Date Analysis Commenced | : 25-Nov-2019                                         |
| C-O-C number            | :                                                                | Issue Date              | 03-Dec-2019                                           |
| Sampler                 | :                                                                |                         | Hac-MRA NATA                                          |
| Site                    | :                                                                |                         |                                                       |
| Quote number            | : SY/522/19                                                      |                         | Accreditation No. 925                                 |
| No. of samples received | : 15                                                             |                         | Accredited for compliance with                        |
| No. of samples analysed | : 4                                                              |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar   | Organic Coordinator   | Sydney Organics, Smithfield, NSW   |

| Page       | : 2 of 4      |
|------------|---------------|
| Work Order | : ES1938004   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                                                                     |                    | Laboratory Duplicate (DUP) Report |         |      |                 |                  |         |                     |
|----------------------|---------------------------------------------------------------------|--------------------|-----------------------------------|---------|------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID                                                    | Method: Compound   | CAS Number                        | LOR     | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EG035T: Total Mercu  | ry by FIMS (QC Lot: 272911                                          | 4)                 |                                   |         |      |                 |                  |         |                     |
| ES1938004-004        | VC07_0.0-0.5 ELUTRIATE                                              | EG035T-LL: Mercury | 7439-97-6                         | 0.00004 | mg/L | <0.00004        | <0.00004         | 0.00    | No Limit            |
| EG093T: Total Metals | EG093T: Total Metals in Saline Water by ORC-ICPMS (QC Lot: 2734492) |                    |                                   |         |      |                 |                  |         |                     |
| ES1938004-004        | VC07_0.0-0.5 ELUTRIATE                                              | EG093A-T: Silver   | 7440-22-4                         | 0.1     | µg/L | <0.1            | <0.1             | 0.00    | No Limit            |
|                      |                                                                     | EG093A-T: Copper   | 7440-50-8                         | 1       | µg/L | <1              | <1               | 0.00    | No Limit            |



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                |                     |         |      |          | Laboratory Control Spike (LCS) Report |                    |          |            |
|--------------------------------------------------|---------------------|---------|------|----------|---------------------------------------|--------------------|----------|------------|
|                                                  |                     |         |      | Report   | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                 | CAS Number          | LOR     | Unit | Result   | Concentration                         | LCS                | Low      | High       |
| EG035T: Total Mercury by FIMS (QCLot: 2729114    | .)                  |         |      |          |                                       |                    |          |            |
| EG035T-LL: Mercury                               | 7439-97-6           | 0.00004 | mg/L | <0.00004 | 0.0001 mg/L                           | 105                | 85.0     | 105        |
| EG093T: Total Metals in Saline Water by ORC-ICPI | MS (QCLot: 2734492) |         |      |          |                                       |                    |          |            |
| EG093A-T: Copper                                 | 7440-50-8           | 1       | µg/L | <1       | 10 µg/L                               | 92.1               | 84.0     | 128        |
| EG093A-T: Silver                                 | 7440-22-4           | 0.1     | µg/L | <0.1     | 2 µg/L                                | 90.0               | 70.0     | 130        |
| EP131B: Polychlorinated Biphenyls (as Aroclors)  | (QCLot: 2729028)    |         |      |          |                                       |                    |          |            |
| EP131B: Total Polychlorinated biphenyls          |                     | 0.1     | µg/L | <0.10    |                                       |                    |          |            |
| EP131B: Aroclor 1254                             | 11097-69-1          |         | µg/L |          | 1 µg/L                                | 71.5               | 51.0     | 133        |
| EP132B: Polynuclear Aromatic Hydrocarbons (Q0    | CLot: 2729031)      |         |      |          |                                       |                    |          |            |
| EP132-LL: Naphthalene                            | 91-20-3             | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 91.5               | 62.0     | 136        |
| EP132-LL: Acenaphthylene                         | 208-96-8            | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 87.4               | 68.0     | 128        |
| EP132-LL: Acenaphthene                           | 83-32-9             | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 91.2               | 69.0     | 121        |
| EP132-LL: Fluorene                               | 86-73-7             | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 89.2               | 69.0     | 131        |
| EP132-LL: Phenanthrene                           | 85-01-8             | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 86.0               | 69.0     | 137        |
| EP132-LL: Anthracene                             | 120-12-7            | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 82.1               | 64.0     | 120        |
| EP132-LL: Fluoranthene                           | 206-44-0            | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 86.4               | 63.0     | 129        |
| EP132-LL: Pyrene                                 | 129-00-0            | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 80.5               | 67.0     | 127        |
| EP132-LL: Benz(a)anthracene                      | 56-55-3             | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 87.6               | 72.0     | 132        |
| EP132-LL: Chrysene                               | 218-01-9            | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 92.0               | 65.0     | 125        |
| EP132-LL: Benzo(b+j)fluoranthene                 | 205-99-2            | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 92.4               | 66.0     | 130        |
|                                                  | 205-82-3            |         |      |          |                                       |                    |          |            |
| EP132-LL: Benzo(k)fluoranthene                   | 207-08-9            | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 84.4               | 64.0     | 130        |
| EP132-LL: Benzo(a)pyrene                         | 50-32-8             | 0.005   | µg/L | <0.005   | 0.25 µg/L                             | 82.3               | 61.0     | 125        |
| EP132-LL: Indeno(1.2.3.cd)pyrene                 | 193-39-5            | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 90.7               | 67.0     | 131        |
| EP132-LL: Dibenz(a.h)anthracene                  | 53-70-3             | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 91.4               | 67.0     | 135        |
| EP132-LL: Benzo(g.h.i)perylene                   | 191-24-2            | 0.02    | µg/L | <0.02    | 0.25 µg/L                             | 97.7               | 66.0     | 130        |
| EP132-LL: Total PAH                              |                     | 0.005   | µg/L | <0.005   |                                       |                    |          |            |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                  |                  | Matrix Spike (MS) Report |               |                  |             |          |
|----------------------|------------------|------------------|--------------------------|---------------|------------------|-------------|----------|
|                      |                  |                  |                          | Spike         | SpikeRecovery(%) | Recovery Li | mits (%) |
| Laboratory sample ID | Client sample ID | Method: Compound | CAS Number               | Concentration | MS               | Low         | High     |

| Page       | : 4 of 4      |
|------------|---------------|
| Work Order | ES1938004     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



|                                                                    |                                                |                    |            |               |                          | (          |           |  |
|--------------------------------------------------------------------|------------------------------------------------|--------------------|------------|---------------|--------------------------|------------|-----------|--|
| Sub-Matrix: WATER                                                  | Sub-Matrix: WATER                              |                    |            |               | Matrix Spike (MS) Report |            |           |  |
|                                                                    |                                                |                    |            | Spike         | SpikeRecovery(%)         | Recovery L | imits (%) |  |
| Laboratory sample ID                                               | Client sample ID                               | Method: Compound   | CAS Number | Concentration | MS                       | Low        | High      |  |
| EG035T: Total Mei                                                  | EG035T: Total Mercury by FIMS (QCLot: 2729114) |                    |            |               |                          |            |           |  |
| ES1938004-008                                                      | VC12_0.0-0.5 ELUTRIATE                         | EG035T-LL: Mercury | 7439-97-6  | 0.0001 mg/L   | 96.0                     | 70.0       | 130       |  |
| EG093T: Total Metals in Saline Water by ORC-ICPMS (QCLot: 2734492) |                                                |                    |            |               |                          |            |           |  |
| ES1938004-008                                                      | VC12_0.0-0.5 ELUTRIATE                         | EG093A-T: Copper   | 7440-50-8  | 50 µg/L       | 105                      | 70.0       | 130       |  |



|              | QA/QC Compliance Assessment to assist with Quality Review |                         |                                 |  |  |  |
|--------------|-----------------------------------------------------------|-------------------------|---------------------------------|--|--|--|
| Work Order   | ES1938004                                                 | Page                    | : 1 of 5                        |  |  |  |
| Client       | : GHD PTY LTD                                             | Laboratory              | : Environmental Division Sydney |  |  |  |
| Contact      | : SARAH ECCLESHALL                                        | Telephone               | : +61-2-8784 8555               |  |  |  |
| Project      | : 12517046                                                | Date Samples Received   | : 15-Nov-2019                   |  |  |  |
| Site         | :                                                         | Issue Date              | : 03-Dec-2019                   |  |  |  |
| Sampler      | :                                                         | No. of samples received | : 15                            |  |  |  |
| Order number | :                                                         | No. of samples analysed | : 4                             |  |  |  |
|              |                                                           |                         |                                 |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

| Page       | : 2 of 5      |
|------------|---------------|
| Work Order | : ES1938004   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



#### **Outliers : Analysis Holding Time Compliance**

| Matrix: | SOIL |  |
|---------|------|--|
| maun.   | 0012 |  |

| Method Extraction / Preparation                     |                |                    |         |               |                  |         |
|-----------------------------------------------------|----------------|--------------------|---------|---------------|------------------|---------|
| Container / Client Sample ID(s)                     | Date extracted | Due for extraction | Days    | Date analysed | Due for analysis | Days    |
|                                                     |                |                    | overdue |               |                  | overdue |
| EN68: Seawater Elutriate Testing Procedure          |                |                    |         |               |                  |         |
| Non-Volatile Leach: 14 day HT(e.g. SV organics)     |                |                    |         |               |                  |         |
| VC07_0.0-0.5 - ELUTRIATE, VC02_0.0-0.5 - ELUTRIATE, | 26-Nov-2019    | 13-Nov-2019        | 13      |               |                  |         |
| SALTWATER - ELUTRIATE                               |                |                    |         |               |                  |         |
| Non-Volatile Leach: 14 day HT(e.g. SV organics)     |                |                    |         |               |                  |         |
| VC12_0.0-0.5 - ELUTRIATE                            | 26-Nov-2019    | 14-Nov-2019        | 12      |               |                  |         |

#### **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

Matrix: SOIL

| Quality Control Sample Type | Co | unt     | Rate (%) |          | Quality Control Specification  |
|-----------------------------|----|---------|----------|----------|--------------------------------|
| Method                      | QC | Regular | Actual   | Expected |                                |
| Laboratory Duplicates (DUP) |    |         |          |          |                                |
| PAH Compounds in Water      | 0  | 4       | 0.00     | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| PCB's (Ultra-trace)         | 0  | 4       | 0.00     | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)          |    |         |          |          |                                |
| PAH Compounds in Water      | 0  | 4       | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |
| PCB's (Ultra-trace)         | 0  | 4       | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |

## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Evaluation: > | = Holdina | time breach : | √ = | Within | holding | time |
|---------------|-----------|---------------|-----|--------|---------|------|
|---------------|-----------|---------------|-----|--------|---------|------|

| Method                                                                                                        |                           |             | Extraction / Preparation |                    |            | Analysis           |                    |                 |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|-----------------|--|
| Container / Client Sample ID(s)                                                                               |                           |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation      |  |
| EN68: Seawater Elutriate Testing Procedure                                                                    |                           |             |                          |                    |            |                    |                    |                 |  |
| Non-Volatile Leach: 14 day HT(e.g. SV organics) (EN68a)<br>VC07_0.0-0.5 - ELUTRIATE,<br>SALTWATER - ELUTRIATE | VC02_0.0-0.5 - ELUTRIATE, | 30-Oct-2019 | 26-Nov-2019              | 13-Nov-2019        | ¥          |                    |                    |                 |  |
| Non-Volatile Leach: 14 day HT(e.g. SV organics) (EN68a)<br>VC12_0.0-0.5 - ELUTRIATE                           |                           | 31-Oct-2019 | 26-Nov-2019              | 14-Nov-2019        | ×          |                    |                    |                 |  |
| Matrix: WATER                                                                                                 |                           |             |                          |                    | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |  |

| Evaluation | <b>x</b> = | Holding | time | breach; | ✓ : | = Within | holding | time |
|------------|------------|---------|------|---------|-----|----------|---------|------|
|------------|------------|---------|------|---------|-----|----------|---------|------|

| Method                          | Sample Date | Sample Date Extraction / Preparation |                    |            | Analysis      |                  |            |  |
|---------------------------------|-------------|--------------------------------------|--------------------|------------|---------------|------------------|------------|--|
| Container / Client Sample ID(s) |             | Date extracted                       | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |  |

| Page       | : 3 of 5      |
|------------|---------------|
| Work Order | : ES1938004   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



| Matrix: WATER                                      |                           |             |                |                        | Evaluation | : × = Holding time | breach ; 🗸 = Withi | n holding time |
|----------------------------------------------------|---------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                             |                           |             | Ex             | traction / Preparation |            | Analysis           |                    |                |
| Container / Client Sample ID(s)                    |                           |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EG035T: Total Mercury by FIMS                      |                           |             |                |                        |            |                    |                    |                |
| Clear HDPE (U-T ORC) - Unfiltered; Lab-acidified ( | EG035T-LL)                |             |                |                        |            |                    |                    |                |
| VC07_0.0-0.5 - ELUTRIATE,                          | VC12_0.0-0.5 - ELUTRIATE, | 26-Nov-2019 |                |                        |            | 28-Nov-2019        | 24-Dec-2019        | ✓              |
| VC02_0.0-0.5 - ELUTRIATE,                          | SALTWATER - ELUTRIATE     |             |                |                        |            |                    |                    |                |
| EG093T: Total Metals in Saline Water by ORC-ICF    | MS                        |             |                |                        |            |                    |                    |                |
| Clear HDPE (U-T ORC) - Unfiltered; Lab-acidified ( | EG093A-T)                 |             |                |                        |            |                    |                    |                |
| VC07_0.0-0.5 - ELUTRIATE,                          | VC12_0.0-0.5 - ELUTRIATE, | 26-Nov-2019 | 30-Nov-2019    | 24-May-2020            | ~          | 30-Nov-2019        | 24-May-2020        | ✓              |
| VC02_0.0-0.5 - ELUTRIATE,                          | SALTWATER - ELUTRIATE     |             |                |                        |            |                    |                    |                |
| EP131B: Polychlorinated Biphenyls (as Aroclors)    |                           |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP131B)          |                           |             |                |                        |            |                    |                    |                |
| VC07_0.0-0.5 - ELUTRIATE,                          | VC12_0.0-0.5 - ELUTRIATE, | 26-Nov-2019 | 28-Nov-2019    | 03-Dec-2019            | ~          | 28-Nov-2019        | 07-Jan-2020        | ✓              |
| VC02_0.0-0.5 - ELUTRIATE,                          | SALTWATER - ELUTRIATE     |             |                |                        |            |                    |                    |                |
| EP132B: Polynuclear Aromatic Hydrocarbons          |                           |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP132-LL)        |                           |             |                |                        |            |                    |                    |                |
| VC07_0.0-0.5 - ELUTRIATE,                          | VC12_0.0-0.5 - ELUTRIATE, | 26-Nov-2019 | 28-Nov-2019    | 03-Dec-2019            | ~          | 28-Nov-2019        | 07-Jan-2020        | ✓              |
| VC02_0.0-0.5 - ELUTRIATE,                          | SALTWATER - ELUTRIATE     |             |                |                        |            |                    |                    |                |

| Page       | : 4 of 5      |
|------------|---------------|
| Work Order | : ES1938004   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: WATER                                     | Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification |    |         |        |          |            |                                |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----|---------|--------|----------|------------|--------------------------------|--|--|
| Quality Control Sample Type                       |                                                                                                                         | Co | ount    |        | Rate (%) |            | Quality Control Specification  |  |  |
| Analytical Methods                                | Method                                                                                                                  | QC | Reaular | Actual | Expected | Evaluation |                                |  |  |
| Laboratory Duplicates (DUP)                       |                                                                                                                         |    |         |        |          |            |                                |  |  |
| PAH Compounds in Water                            | EP132-LL                                                                                                                | 0  | 4       | 0.00   | 10.00    | ×          | NEPM 2013 B3 & ALS QC Standard |  |  |
| PCB's (Ultra-trace)                               | EP131B                                                                                                                  | 0  | 4       | 0.00   | 10.00    | ×          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Mercury by FIMS - Low Level                 | EG035T-LL                                                                                                               | 1  | 4       | 25.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Metals in Saline Water Suite A by ORC-ICPMS | EG093A-T                                                                                                                | 1  | 4       | 25.00  | 9.52     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Laboratory Control Samples (LCS)                  |                                                                                                                         |    |         |        |          |            |                                |  |  |
| PAH Compounds in Water                            | EP132-LL                                                                                                                | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| PCB's (Ultra-trace)                               | EP131B                                                                                                                  | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Mercury by FIMS - Low Level                 | EG035T-LL                                                                                                               | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Metals in Saline Water Suite A by ORC-ICPMS | EG093A-T                                                                                                                | 1  | 4       | 25.00  | 4.76     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Method Blanks (MB)                                |                                                                                                                         |    |         |        |          |            |                                |  |  |
| PAH Compounds in Water                            | EP132-LL                                                                                                                | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| PCB's (Ultra-trace)                               | EP131B                                                                                                                  | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Mercury by FIMS - Low Level                 | EG035T-LL                                                                                                               | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Metals in Saline Water Suite A by ORC-ICPMS | EG093A-T                                                                                                                | 1  | 4       | 25.00  | 4.76     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Matrix Spikes (MS)                                |                                                                                                                         |    |         |        |          |            |                                |  |  |
| PAH Compounds in Water                            | EP132-LL                                                                                                                | 0  | 4       | 0.00   | 5.00     | ×          | NEPM 2013 B3 & ALS QC Standard |  |  |
| PCB's (Ultra-trace)                               | EP131B                                                                                                                  | 0  | 4       | 0.00   | 5.00     | ×          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Mercury by FIMS - Low Level                 | EG035T-LL                                                                                                               | 1  | 4       | 25.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |
| Total Metals in Saline Water Suite A by ORC-ICPMS | EG093A-T                                                                                                                | 1  | 4       | 25.00  | 4.76     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |

| Page       | : 5 of 5      |
|------------|---------------|
| Work Order | ES1938004     |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                             | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------|-----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Mercury by FIMS - Low Level                              | EG035T-LL | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)<br>FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise<br>any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic<br>mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing<br>absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                        |
| Total Metals in Saline Water Suite A by<br>ORC-ICPMS           | EG093A-T  | SOIL   | In house: Referenced to APHA 3125; USEPA SW846 - 6020. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                         |
| PCB's (Ultra-trace)                                            | EP131B    | SOIL   | In house: Referenced to USEPA Method 3640 (GPC cleanup), 3620 (Florisil), 8081/8082 (GC/µECD/µECD). This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PAH Compounds in Water                                         | EP132-LL  | SOIL   | In house, Samples are extracted into solvent in original containers. Determination by large volume injection GCMS in selected ion monitoring (SIM) mode.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Preparation Methods                                            | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Compositing                                             | * EN020   | SOIL   | Equal weights of each original soil are taken, then mixed and homogenised. The combined mixture is labelled as a new sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Digestion for Total Recoverable Metals -<br>ORC                | EN25-ORC  | SOIL   | In house: Referenced to USEPA SW846-3005. This is an Ultrapure Nitric acid digestion procedure used to prepare surface and ground water samples for analysis by ORC- ICPMS. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                |
| Seawater Elutriate Testing Procedure                           | EN68a     | SOIL   | <ul> <li>USEPA Evaluation of Dredged Material Proposed for Ocean Disposal - Testing Guide, 1991, EPA-503/8-91/001,</li> <li>USEPA and US Army Corps of Engineers.</li> <li>ANZECC Interim Ocean Disposal Guidelines, December, 1998</li> <li>This Procedure outlines the preparation of leachate designed to simulate release of contaminants from sediment during the disposal of dredged material. Release can occur by physical processes or a variety of chemical changes such as oxidation of metal sulphides and release of contaminants adsorbed to particles or organic matter.</li> </ul> |
| Porewater Extraction                                           | EN82      | SOIL   | Extraction of porewater from sediment samples using centrifuge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sep. Funnel Extraction /Acetylation of<br>Phenolic Compounds   | ORG14-AC  | SOIL   | In house: Referenced to USEPA 3510 (Extraction) / In-house (Acetylation): A 1L sample is extracted into dichloromethane and concentrated to 1 mL with echange into cyclohexane. Phenolic compounds are reacted with acetic anhydride to yield phenyl acetates suitable for ultra-trace analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.                                                                                                                                                                    |
| Sep. Funnel Extraction of Liquids<br>(Ultra-trace pesticides.) | ORG14-UTP | SOIL   | In house: Referenced to USEPA 3510 Samples are extracted into dichloromethane, concentrated and exchanged into an apporpriate solvent for GPC and florisil cleanup as required. This method is compliant with NEPM (2013) Schedule B(3) . ALS default excludes sediment which may be resident in the container.                                                                                                                                                                                                                                                                                    |

Vishal 13111/2019 1425

# **Vishal Patel**

From:Alice CarneySent:Tuesday, 19 November 2019 2:24 PMTo:Vishal PatelSubject:RESULTS & EDD for ALS Workorder : ES1936922 | Your Reference: 12517046Attachments:ES1936922\_COC.pdf

Hey Vishal,

Can you please arrange this re-batch for me?

WO: ES1936922

Sample: #1 BH05\_4.6-4.7 S-829, 1 B95 in Baisbanc. Analysis: TCLP lead, TCLP benzo(a)pyrene, chromium reducible sulfur suite TAT: Standard

Best regards,

#### Alice Carney

Client Services Officer, Environmental Sydney



<u>T</u> +61 2 8784 8555 <u>D</u> +61 2 8784 8504 <u>F</u> +61 2 8784 8500

Al<u>ice.carney@alsglobal.com</u> 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA

📽 Subscribe 🖬 🎔 🗗 🖻

Environmental Division Sydney Work Order Reference ES1938255



We are keen for your feedback! Please click here for your 3 minute survey

EnviroMail™ 00 - All EnviroMails™ in one convenient library. Recent releases (click to access directly): EnviroMail™ 124 - PFOS Analysis to Freshwater Species Protection LvI 99% EnviroMail™ 127 - Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here.

Right Solutions • Right Partner www.alsglobal.com

From: Carmen Yi [mailto:Carmen.Yi@ghd.com] Sent: Tuesday, 19 November 2019 2:00 PM To: ALSEnviro Sydney <ALSEnviro.Sydney@ALSGlobal.com> Cc: Sarah.Eccleshall@ghd.com Subject: [EXTERNAL] - RE: RESULTS & EDD for ALS Workorder : ES1936922 | Your Reference: 12517046

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi ALS team,

Could I please have the following additional analysis scheduled in for samples from ES1936922 (refer attached COC)?

BH05\_4.6-4.7: TCLP lead, TCLP benzo(a)pyrene, chromium reducible sulfur suite

Please analyse on standard turnaround time and allow for extraction of samples to meet relevant holding time requirements. Any questions please feel free to contact me.

Kind Regards,

# Carmen Yi

Senior Environmental Engineer – Contamination and Environment Management

GHD

#### Proudly employee owned

T: +61 2 9239 7630 ! M: +61 451 962 988 ! E: <u>carmen.yi@ghd.com</u> Level 15, 133 Castlereagh Street, Sydney NSW 2000 Australia <u>} www.ghd.com</u>



WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

From: <u>angel-no-reply@alsglobal.com</u> <<u>angel-no-reply@alsglobal.com</u>> Sent: Friday, 15 November 2019 3:18 PM To: Sarah Eccleshall <<u>Sarah Eccleshall@ghd.com</u>> Subject: RESULTS & EDD for ALS Workorder : ES1936922 | Your Reference: 12517046



# Deliverables for ALS Workorder ES1936922

Project: 12517046

Dear SARAH ECCLESHALL,

Please find enclosed the following deliverables for ES1936922;

- ES1936922\_0\_COA.pdf
- ES1936922\_0\_ENMRG.CSV
- 12517046.ESDAT\_ES1936922\_0.Chemistry2e.CSV
- 12517046.ESDAT\_ES1936922\_0.Header.XML
- 12517046.ESDAT\_ES1936922\_0.Sample2e.CSV
- ES1936922\_0\_QC.pdf
- ES1936922\_0\_QC1.pdf
- ES1936922\_COC.pdf

Report Recipients

- SARAH ECCLESHALL
  - O ES1936922\_0\_COA.pdf (Email)
  - O ES1936922\_0\_ENMRG.CSV (Email)
  - 0 12517046.ESDAT\_ES1936922\_0.Chemistry2e.CSV (Email)
  - 0 12517046.ESDAT\_ES1936922\_0.Header.XML (Email)
  - O 12517046.ESDAT\_ES1936922\_0.Sample2e.CSV (Email)
  - O ES1936922\_0\_QC.pdf (Email)
  - O ES1936922\_0\_QCLpdf (Email)
  - O ES1936922\_COC.pdf (Email)

www.alsglobal.com

# RIGHT SOLUTIONS RIGHT PARTNER

This e-mail has been scanned for viruses

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.



# **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1938255                                                        | Page                    | : 1 of 5                                              |
|-------------------------|------------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : GHD PTY LTD                                                    | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : Jessica Watson                                                 | Contact                 | : Customer Services ES                                |
| Address                 | : LEVEL 15, 133 CASTLEREAGH STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | ;                                                                | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                                                       | Date Samples Received   | : 08-Nov-2019 23:30                                   |
| Order number            | : 12517046                                                       | Date Analysis Commenced | : 20-Nov-2019                                         |
| C-O-C number            | :                                                                | Issue Date              | : 25-Nov-2019 17:23                                   |
| Sampler                 | : CARMEN YI                                                      |                         | Hac-MRA NATA                                          |
| Site                    | :                                                                |                         |                                                       |
| Quote number            | : SY/522/19                                                      |                         | Accreditation No. 935                                 |
| No. of samples received | : 1                                                              |                         | Accredited for compliance with                        |
| No. of samples analysed | : 1                                                              |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

## Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories         | Position                         | Accreditation Category                      |
|---------------------|----------------------------------|---------------------------------------------|
| Celine Conceicao    | Senior Spectroscopist            | Sydney Inorganics, Smithfield, NSW          |
| Edwandy Fadjar      | Organic Coordinator              | Sydney Organics, Smithfield, NSW            |
| Satishkumar Trivedi | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |

| Page       | : 2 of 5      |
|------------|---------------|
| Work Order | : ES1938255   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



## **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

 Key :
 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA033 (CRS Suite): Laboratory determinations of ANC needs to be corroborated by effectiveness of the measured ANC in relation to incubation ANC. Unless corroborated, the results of ANC testing should be discounted when determining Net Acidity for comparison with action criteria, or for the determination of the acidity hazard and required liming amounts.
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.

| Page       | : 3 of 5      |
|------------|---------------|
| Work Order | ES1938255     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



# Analytical Results

| Sub-Matrix: SOIL<br>(Matrix: SOIL)           | x: SOIL Client sample ID OIL) |             | BH05_4.6-4.7   | <br>              | <br> |      |
|----------------------------------------------|-------------------------------|-------------|----------------|-------------------|------|------|
|                                              | Cl                            | ient sampli | ng date / time | 07-Nov-2019 00:00 | <br> | <br> |
| Compound                                     | CAS Number                    | LOR         | Unit           | ES1938255-001     | <br> | <br> |
|                                              |                               |             |                | Result            | <br> | <br> |
| EA033-A: Actual Acidity                      |                               |             |                |                   |      |      |
| рН КСІ (23А)                                 |                               | 0.1         | pH Unit        | 8.6               | <br> | <br> |
| Titratable Actual Acidity (23F)              |                               | 2           | mole H+ / t    | <2                | <br> | <br> |
| sulfidic - Titratable Actual Acidity (s-23F) |                               | 0.02        | % pyrite S     | <0.02             | <br> | <br> |
| EA033-B: Potential Acidity                   |                               |             |                |                   |      |      |
| Chromium Reducible Sulfur (22B)              |                               | 0.005       | % S            | 1.20              | <br> | <br> |
| acidity - Chromium Reducible Sulfur          |                               | 10          | mole H+ / t    | 746               | <br> | <br> |
| EA033-C: Acid Neutralising Canacity          |                               |             |                |                   |      |      |
| Acid Neutralising Capacity (19A2)            |                               | 0.01        | % CaCO3        | 16.5              | <br> | <br> |
| acidity - Acid Neutralising Capacity         |                               | 10          | mole H+/t      | 3300              | <br> | <br> |
| (a-19A2)                                     |                               |             |                |                   |      |      |
| sulfidic - Acid Neutralising Capacity        |                               | 0.01        | % pyrite S     | 5.28              | <br> | <br> |
| (s-19A2)                                     |                               |             |                |                   |      |      |
| EA033-E: Acid Base Accounting                |                               |             |                |                   |      |      |
| ANC Fineness Factor                          |                               | 0.5         | -              | 1.5               | <br> | <br> |
| Net Acidity (sulfur units)                   |                               | 0.02        | % S            | <0.02             | <br> | <br> |
| Net Acidity (acidity units)                  |                               | 10          | mole H+ / t    | <10               | <br> | <br> |
| Liming Rate                                  |                               | 1           | kg CaCO3/t     | <1                | <br> | <br> |
| Net Acidity excluding ANC (sulfur units)     |                               | 0.02        | % S            | 1.20              | <br> | <br> |
| Net Acidity excluding ANC (acidity units)    |                               | 10          | mole H+ / t    | 746               | <br> | <br> |
| Liming Rate excluding ANC                    |                               | 1           | kg CaCO3/t     | 56                | <br> | <br> |
| EN33: TCLP Leach                             |                               |             |                |                   |      |      |
| Initial pH                                   |                               | 0.1         | pH Unit        | 9.2               | <br> | <br> |
| After HCI pH                                 |                               | 0.1         | pH Unit        | 5.4               | <br> | <br> |
| Extraction Fluid Number                      |                               | 1           | -              | 2                 | <br> | <br> |
| Final pH                                     |                               | 0.1         | pH Unit        | 6.3               | <br> | <br> |

| Page       | : 4 of 5      |
|------------|---------------|
| Work Order | ES1938255     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



# Analytical Results

| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) |             | Clie        | ent sample ID  | BH05_4.6-4.7      |  |  |  |  |
|----------------------------------------------|-------------|-------------|----------------|-------------------|--|--|--|--|
|                                              | Cli         | ient sampli | ng date / time | 07-Nov-2019 00:00 |  |  |  |  |
| Compound                                     | CAS Number  | LOR         | Unit           | ES1938255-001     |  |  |  |  |
|                                              |             |             |                | Result            |  |  |  |  |
| EG005(ED093)C: Leachable Metals by I         | CPAES       |             |                |                   |  |  |  |  |
| Lead                                         | 7439-92-1   | 0.1         | mg/L           | <0.1              |  |  |  |  |
| EP075(SIM)B: Polynuclear Aromatic Hy         | /drocarbons |             |                |                   |  |  |  |  |
| Benzo(a)pyrene                               | 50-32-8     | 0.5         | µg/L           | <0.5              |  |  |  |  |
| EP075(SIM)S: Phenolic Compound Sur           | rogates     |             |                |                   |  |  |  |  |
| Phenol-d6                                    | 13127-88-3  | 1.0         | %              | 29.6              |  |  |  |  |
| 2-Chlorophenol-D4                            | 93951-73-6  | 1.0         | %              | 61.5              |  |  |  |  |
| 2.4.6-Tribromophenol                         | 118-79-6    | 1.0         | %              | 69.8              |  |  |  |  |
| EP075(SIM)T: PAH Surrogates                  |             |             |                |                   |  |  |  |  |
| 2-Fluorobiphenyl                             | 321-60-8    | 1.0         | %              | 85.6              |  |  |  |  |
| Anthracene-d10                               | 1719-06-8   | 1.0         | %              | 90.4              |  |  |  |  |
| 4-Terphenyl-d14                              | 1718-51-0   | 1.0         | %              | 74.3              |  |  |  |  |

| Page       | 5 of 5        |
|------------|---------------|
| Work Order | : ES1938255   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



# Surrogate Control Limits

| ry Limits (%) |
|---------------|
| High          |
|               |
| 44            |
| 94            |
| 125           |
|               |
| 104           |
| 113           |
| 112           |
| _             |



# **QUALITY CONTROL REPORT**

| Work Order              | ES1938255                                                      | Page                    | : 1 of 3                                              |
|-------------------------|----------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : GHD PTY LTD                                                  | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | : Jessica Watson                                               | Contact                 | : Customer Services ES                                |
| Address                 | LEVEL 15, 133 CASTLEREAGH STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | :                                                              | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 12517046                                                     | Date Samples Received   | : 08-Nov-2019                                         |
| Order number            | : 12517046                                                     | Date Analysis Commenced | : 20-Nov-2019                                         |
| C-O-C number            | :                                                              | Issue Date              | 25-Nov-2019                                           |
| Sampler                 | : CARMEN YI                                                    |                         | Hac-MRA NATA                                          |
| Site                    | :                                                              |                         |                                                       |
| Quote number            | : SY/522/19                                                    |                         | Accreditation No. 825                                 |
| No. of samples received | : 1                                                            |                         | Accredited for compliance with                        |
| No. of samples analysed | : 1                                                            |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories         | Position                         | Accreditation Category                      |
|---------------------|----------------------------------|---------------------------------------------|
| Celine Conceicao    | Senior Spectroscopist            | Sydney Inorganics, Smithfield, NSW          |
| Edwandy Fadjar      | Organic Coordinator              | Sydney Organics, Smithfield, NSW            |
| Satishkumar Trivedi | Senior Acid Sulfate Soil Chemist | Brisbane Acid Sulphate Soils, Stafford, QLD |

| Page       | : 2 of 3      |
|------------|---------------|
| Work Order | : ES1938255   |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



# **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                              |                                                     |            |       |             | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------------|-----------------------------------------------------|------------|-------|-------------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID             | Method: Compound                                    | CAS Number | LOR   | Unit        | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA033-A: Actual Act  | idity (QC Lot: 2719707)      |                                                     |            |       |             |                 |                        |         |                     |
| EM1919404-001        | Anonymous                    | EA033: sulfidic - Titratable Actual Acidity (s-23F) |            | 0.02  | % pyrite S  | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                              | EA033: Titratable Actual Acidity (23F)              |            | 2     | mole H+ / t | <2              | <2                     | 0.00    | No Limit            |
|                      |                              | EA033: pH KCI (23A)                                 |            | 0.1   | pH Unit     | 6.4             | 6.4                    | 0.00    | 0% - 20%            |
| ES1938255-001        | BH05_4.6-4.7                 | EA033: sulfidic - Titratable Actual Acidity (s-23F) |            | 0.02  | % pyrite S  | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                              | EA033: Titratable Actual Acidity (23F)              |            | 2     | mole H+ / t | <2              | <2                     | 0.00    | No Limit            |
|                      |                              | EA033: pH KCI (23A)                                 |            | 0.1   | pH Unit     | 8.6             | 8.6                    | 0.00    | 0% - 20%            |
| EA033-B: Potential   | Acidity (QC Lot: 2719707)    |                                                     |            |       |             |                 |                        |         |                     |
| EM1919404-001        | Anonymous                    | EA033: Chromium Reducible Sulfur (22B)              |            | 0.005 | % S         | 0.010           | 0.010                  | 0.00    | No Limit            |
|                      |                              | EA033: acidity - Chromium Reducible Sulfur          |            | 10    | mole H+ / t | <10             | <10                    | 0.00    | No Limit            |
|                      |                              | (a-22B)                                             |            |       |             |                 |                        |         |                     |
| ES1938255-001        | BH05_4.6-4.7                 | EA033: Chromium Reducible Sulfur (22B)              |            | 0.005 | % S         | 1.20            | 1.22                   | 2.17    | 0% - 20%            |
|                      |                              | EA033: acidity - Chromium Reducible Sulfur          |            | 10    | mole H+ / t | 746             | 762                    | 2.17    | 0% - 20%            |
|                      |                              | (a-22B)                                             |            |       |             |                 |                        |         |                     |
| EA033-C: Acid Neut   | ralising Capacity (QC Lot: : | 2719707)                                            |            |       |             |                 |                        |         |                     |
| ES1938255-001        | BH05_4.6-4.7                 | EA033: Acid Neutralising Capacity (19A2)            |            | 0.01  | % CaCO3     | 16.5            | 16.5                   | 0.122   | 0% - 20%            |
|                      |                              | EA033: sulfidic - Acid Neutralising Capacity        |            | 0.01  | % pyrite S  | 5.28            | 5.28                   | 0.00    | 0% - 20%            |
|                      |                              | (s-19A2)                                            |            |       |             |                 |                        |         |                     |
|                      |                              | EA033: acidity - Acid Neutralising Capacity         |            | 10    | mole H+ / t | 3300            | 3290                   | 0.122   | 0% - 20%            |
|                      |                              | (a-19A2)                                            |            |       |             |                 |                        |         |                     |
| Sub-Matrix: WATER    |                              |                                                     |            |       |             | Laboratory I    | Duplicate (DUP) Report |         |                     |
| Laboratory sample ID | Client sample ID             | Method: Compound                                    | CAS Number | LOR   | Unit        | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG005(ED093)C: Le    | achable Metals by ICPAES     | (QC Lot: 2718641)                                   |            |       |             |                 |                        |         |                     |
| EM1919589-003        | Anonymous                    | EG005C: Lead                                        | 7439-92-1  | 0.1   | mg/L        | <0.1            | <0.1                   | 0.00    | No Limit            |



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                      |                 |       |             | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                              |           |            |  |
|-------------------------------------------------------|-----------------|-------|-------------|-------------------|---------------------------------------|------------------------------|-----------|------------|--|
|                                                       |                 |       |             | Report            | Spike                                 | Spike Recovery (%)           | Recovery  | Limits (%) |  |
| Method: Compound                                      | CAS Number      | LOR   | Unit        | Result            | Concentration                         | LCS                          | Low       | High       |  |
| EA033-A: Actual Acidity (QCLot: 2719707)              |                 |       |             |                   |                                       |                              |           |            |  |
| EA033: pH KCI (23A)                                   |                 |       | pH Unit     |                   | 4.4 pH Unit                           | 100                          | 91.0      | 107        |  |
| EA033: Titratable Actual Acidity (23F)                |                 | 2     | mole H+ / t | <2                | 20.1 mole H+ / t                      | 86.3                         | 70.0      | 124        |  |
| EA033: sulfidic - Titratable Actual Acidity (s-23F)   |                 | 0.02  | % pyrite S  | <0.02             |                                       |                              |           |            |  |
| EA033-B: Potential Acidity (QCLot: 2719707)           |                 |       |             |                   |                                       |                              |           |            |  |
| EA033: Chromium Reducible Sulfur (22B)                |                 | 0.005 | % S         | <0.005            | 0.256 % S                             | 90.7                         | 77.0      | 121        |  |
| EA033: acidity - Chromium Reducible Sulfur (a-22B)    |                 | 10    | mole H+ / t | <10               |                                       |                              |           |            |  |
| EA033-C: Acid Neutralising Capacity (QCLot: 2719707   | 7)              |       |             |                   |                                       |                              |           |            |  |
| EA033: Acid Neutralising Capacity (19A2)              |                 | 0.01  | % CaCO3     | <0.01             | 10 % CaCO3                            | 102                          | 91.0      | 112        |  |
| EA033: acidity - Acid Neutralising Capacity (a-19A2)  |                 | 10    | mole H+ / t | <10               |                                       |                              |           |            |  |
| EA033: sulfidic - Acid Neutralising Capacity (s-19A2) |                 | 0.01  | % pyrite S  | <0.01             |                                       |                              |           |            |  |
| EN33: TCLP Leach (QCLot: 2712544)                     |                 |       |             |                   |                                       |                              |           |            |  |
| EN33a: Initial pH                                     |                 | 0.1   | pH Unit     | 1.0               |                                       |                              |           |            |  |
| EN33a: After HCl pH                                   |                 | 0.1   | pH Unit     | 1.0               |                                       |                              |           |            |  |
| EN33a: Final pH                                       |                 | 0.1   | pH Unit     | 1.0               |                                       |                              |           |            |  |
| Sub-Matrix: WATER                                     |                 |       |             | Method Blank (MB) |                                       | Laboratory Control Spike (LC | S) Report |            |  |
|                                                       |                 |       |             | Report            | Spike                                 | Spike Recovery (%)           | Recovery  | Limits (%) |  |
| Method: Compound                                      | CAS Number      | LOR   | Unit        | Result            | Concentration                         | LCS                          | Low       | High       |  |
| EG005(ED093)C: Leachable Metals by ICPAES (QCLo       | t: 2718641)     |       |             |                   |                                       |                              |           |            |  |
| EG005C: Lead                                          | 7439-92-1       | 0.1   | mg/L        | <0.1              | 0.1 mg/L                              | 101                          | 80.0      | 118        |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (C     | QCLot: 2716275) |       |             |                   |                                       |                              |           |            |  |
| EP075(SIM): Benzo(a)pyrene                            | 50-32-8         | 0.5   | µg/L        | <0.5              | 5 µg/L                                | 79.1                         | 63.3      | 117        |  |

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                            |                  |            |               | Matrix Spike (MS) Report |            |           |  |  |
|----------------------|--------------------------------------------|------------------|------------|---------------|--------------------------|------------|-----------|--|--|
|                      |                                            |                  |            | Spike         | SpikeRecovery(%)         | Recovery L | imits (%) |  |  |
| Laboratory sample ID | Client sample ID                           | Method: Compound | CAS Number | Concentration | MS                       | Low        | High      |  |  |
| EG005(ED093)C: L     | eachable Metals by ICPAES (QCLot: 2718641) |                  |            |               |                          |            |           |  |  |
| ES1938255-001        | BH05_4.6-4.7                               | EG005C: Lead     | 7439-92-1  | 1 mg/L        | 101                      | 70.0       | 130       |  |  |



| QA/QC Compliance Assessment to assist with Quality Review |                  |                         |                                 |  |  |  |
|-----------------------------------------------------------|------------------|-------------------------|---------------------------------|--|--|--|
| Work Order                                                | ES1938255        | Page                    | : 1 of 5                        |  |  |  |
| Client                                                    | : GHD PTY LTD    | Laboratory              | : Environmental Division Sydney |  |  |  |
| Contact                                                   | : Jessica Watson | Telephone               | : +61-2-8784 8555               |  |  |  |
| Project                                                   | : 12517046       | Date Samples Received   | : 08-Nov-2019                   |  |  |  |
| Site                                                      | :                | Issue Date              | : 25-Nov-2019                   |  |  |  |
| Sampler                                                   | : CARMEN YI      | No. of samples received | : 1                             |  |  |  |
| Order number                                              | : 12517046       | No. of samples analysed | : 1                             |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# Summary of Outliers

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

| Page       | : 2 of 5      |
|------------|---------------|
| Work Order | : ES1938255   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



#### **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type | Count |         | Rate (%)        |       | Quality Control Specification  |
|-----------------------------|-------|---------|-----------------|-------|--------------------------------|
| Method                      | QC    | Regular | Actual Expected |       |                                |
| Laboratory Duplicates (DUP) |       |         |                 |       |                                |
| PAH/Phenols (GC/MS - SIM)   | 0     | 2       | 0.00            | 10.00 | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)          |       |         |                 |       |                                |
| PAH/Phenols (GC/MS - SIM)   | 0     | 2       | 0.00            | 5.00  | NEPM 2013 B3 & ALS QC Standard |

## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                                                            |             |                |                        | Evaluation | : × = Holding time | breach ; 🗸 = Withi | in holding time. |
|-------------------------------------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|------------------|
| Method                                                                  | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                  |
| Container / Client Sample ID(s)                                         |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation       |
| EA033-A: Actual Acidity                                                 |             |                |                        |            |                    |                    |                  |
| Snap Lock Bag - frozen (EA033)<br>BH05_4.6-4.7                          | 07-Nov-2019 | 25-Nov-2019    | 06-Nov-2020            | 1          | 25-Nov-2019        | 23-Feb-2020        | ~                |
| EA033-B: Potential Acidity                                              |             |                |                        |            |                    |                    |                  |
| Snap Lock Bag - frozen (EA033)<br>BH05_4.6-4.7                          | 07-Nov-2019 | 25-Nov-2019    | 06-Nov-2020            | 1          | 25-Nov-2019        | 23-Feb-2020        | ~                |
| EA033-C: Acid Neutralising Capacity                                     |             |                |                        |            |                    |                    |                  |
| Snap Lock Bag - frozen (EA033)<br>BH05_4.6-4.7                          | 07-Nov-2019 | 25-Nov-2019    | 06-Nov-2020            | 1          | 25-Nov-2019        | 23-Feb-2020        | ✓                |
| EA033-D: Retained Acidity                                               |             |                |                        |            |                    |                    |                  |
| Snap Lock Bag - frozen (EA033)<br>BH05_4.6-4.7                          | 07-Nov-2019 | 25-Nov-2019    | 06-Nov-2020            | 1          | 25-Nov-2019        | 23-Feb-2020        | ~                |
| EA033-E: Acid Base Accounting                                           |             |                |                        |            |                    |                    |                  |
| Snap Lock Bag - frozen (EA033)<br>BH05_4.6-4.7                          | 07-Nov-2019 | 25-Nov-2019    | 06-Nov-2020            | 1          | 25-Nov-2019        | 23-Feb-2020        | ~                |
| EN33: TCLP Leach                                                        |             |                |                        |            |                    |                    |                  |
| Non-Volatile Leach: 14 day HT(e.g. SV organics) (EN33a)<br>BH05_4.6-4.7 | 07-Nov-2019 | 20-Nov-2019    | 21-Nov-2019            | 1          |                    |                    |                  |
| Matrix: WATER                                                           |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | in holding time. |
| Method                                                                  | Sample Date | Ex             | traction / Preparation |            | _                  | Analysis           | -                |
| Container / Client Sample ID(s)                                         |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation       |

| Page       | 3 of 5      |
|------------|-------------|
| Work Order | ES1938255   |
| Client     | GHD PTY LTD |
| Project    | 12517046    |



| Matrix: WATER                                                            |             |                          |                    | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|--------------------------------------------------------------------------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|----------------|
| Method                                                                   | Sample Date | Extraction / Preparation |                    |            | Analysis           |                    |                |
| Container / Client Sample ID(s)                                          |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EG005(ED093)C: Leachable Metals by ICPAES                                |             |                          |                    |            |                    |                    |                |
| Clear Plastic Bottle - Nitric Acid; Unspecified (EG005C)<br>BH05_4.6-4.7 | 20-Nov-2019 | 22-Nov-2019              | 18-May-2020        | 4          | 22-Nov-2019        | 18-May-2020        | ~              |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons                           |             |                          |                    |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM))<br>BH05_4.6-4.7            | 20-Nov-2019 | 21-Nov-2019              | 27-Nov-2019        | 1          | 22-Nov-2019        | 31-Dec-2019        | ✓              |

| Page       | : 4 of 5      |
|------------|---------------|
| Work Order | ES1938255     |
| Client     | : GHD PTY LTD |
| Project    | : 12517046    |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                           |            |    |         | Evaluatio | n: 🗴 = Quality Co | ntrol frequency r | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|----------------------------------------|------------|----|---------|-----------|-------------------|-------------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type            |            | Co | ount    |           | Rate (%)          |                   | Quality Control Specification                                                             |
| Analytical Methods                     | Method     | OC | Reaular | Actual    | Expected          | Evaluation        |                                                                                           |
| Laboratory Duplicates (DUP)            |            |    |         |           |                   |                   |                                                                                           |
| Chromium Suite for Acid Sulphate Soils | EA033      | 2  | 14      | 14.29     | 10.00             | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Laboratory Control Samples (LCS)       |            |    |         |           |                   |                   |                                                                                           |
| Chromium Suite for Acid Sulphate Soils | EA033      | 1  | 14      | 7.14      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Method Blanks (MB)                     |            |    |         |           |                   |                   |                                                                                           |
| Chromium Suite for Acid Sulphate Soils | EA033      | 1  | 14      | 7.14      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| TCLP for Non & Semivolatile Analytes   | EN33a      | 1  | 10      | 10.00     | 9.09              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Matrix: WATER                          |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency r | not within specification ; 🗸 = Quality Control frequency within specification.            |
| Quality Control Sample Type            |            | Сс | ount    |           | Rate (%)          |                   | Quality Control Specification                                                             |
| Analytical Methods                     | Method     | QC | Reaular | Actual    | Expected          | Evaluation        |                                                                                           |
| Laboratory Duplicates (DUP)            |            |    |         |           |                   |                   |                                                                                           |
| Leachable Metals by ICPAES             | EG005C     | 1  | 1       | 100.00    | 10.00             | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (GC/MS - SIM)              | EP075(SIM) | 0  | 2       | 0.00      | 10.00             | ×                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Laboratory Control Samples (LCS)       |            |    |         |           |                   |                   |                                                                                           |
| Leachable Metals by ICPAES             | EG005C     | 1  | 1       | 100.00    | 5.00              | $\checkmark$      | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (GC/MS - SIM)              | EP075(SIM) | 1  | 2       | 50.00     | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Method Blanks (MB)                     |            |    |         |           |                   |                   |                                                                                           |
| Leachable Metals by ICPAES             | EG005C     | 1  | 1       | 100.00    | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (GC/MS - SIM)              | EP075(SIM) | 1  | 2       | 50.00     | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Matrix Spikes (MS)                     |            |    |         |           |                   |                   |                                                                                           |
| Leachable Metals by ICPAES             | EG005C     | 1  | 1       | 100.00    | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| PAH/Phenols (GC/MS - SIM)              | EP075(SIM) | 0  | 2       | 0.00      | 5.00              | £                 | NEPM 2013 B3 & ALS QC Standard                                                            |

| Page       | 5 of 5        |
|------------|---------------|
| Work Order | : ES1938255   |
| Client     | : GHD PTY LTD |
| Project    | 12517046      |



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                         | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chromium Suite for Acid Sulphate Soils                     | EA033      | SOIL   | In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCl; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5. |
| Leachable Metals by ICPAES                                 | EG005C     | SOIL   | In house: referenced to APHA 3120; USEPA SW 846 - 6010: The ICPAES technique ionises leachate sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                        |
| PAH/Phenols (GC/MS - SIM)                                  | EP075(SIM) | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                            |
| Preparation Methods                                        | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Drying at 85 degrees, bagging and labelling (ASS)          | EN020PR    | SOIL   | In house                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Digestion for Total Recoverable Metals<br>in TCLP Leachate | EN25C      | SOIL   | In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                 |
| TCLP for Non & Semivolatile Analytes                       | EN33a      | SOIL   | In house QWI-EN/33 referenced to USEPA SW846-1311: The TCLP procedure is designed to determine the mobility of both organic and inorganic analytes present in wastes. The standard TCLP leach is for non-volatile and Semivolatile test parameters.                                                                                                                                                                                                                               |
| Separatory Funnel Extraction of Liquids                    | ORG14      | SOIL   | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.                                                                                            |



Environmental Division

Sydney

Work Order

ES1990048

# Kim Phan

From:Loren SchiavonSent:Thursday, 7 November 2019 10:26 AMTo:Kim PhanSubject:FW: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:Attachments:image001.png; image002.png; image003.png; image004.png

Hi Kim,

Can I get you to assist with this one?

We need to add in the testing requested below to two active work orders. Please leave the current due dates and email CS to send a prelim - we then need to create the separate batches for the dioxins. Vanessa has confirmed 10 days from receipt for the TBT.

Thanks.

Kind Regards Loren Schiavon Sample Administration Coordinator, Environmental

T +61 2 8784 8555 F +61 2 8784 8500 Loren.schiavon@alsglobal.com 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA Subscribe Win a \$500 Visa offt card! Enter of ESI936024) Cubrye / Forward Lab (Split WO) Lab/ Auctoria: Brisbane Organised in / Date: Doxin Mennioished by / Date: 1-3 Connect / Convier: WO No: ESI900048 Attach By PO / Internal Sheet:

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how.

We are keen for your feedback! Please click here for your 3 minute survey EnviroMail™ 00 – All EnviroMails™ in one convenient library. Recent releases (click to access directly):

EnviroMail<sup>™</sup> 124 – PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail<sup>™</sup> 127 – Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here.

Right Solutions • Right Partner

https://aus01.safelinks.protection.outlook.com/?url=www.alsglobal.com&data=02%7C01%7CKim.Phan%40alsglobal.com%7C822e6d0d1a2e415fdefc08d76310b269% 7C485ca04e6f7440509764cdb4bfa89c25%7C0%7C0%7C637086795685299636&sdata=Eyqaw0cQknLkqagzwxAPSDeCzRtw1wXYtpWrHbo9C1E%3D&reserved=0

-----Original Message-----From: Grace White Sent: Thursday, 7 November 2019 8:52 AM To: Loren Schiavon <loren.schiavon@alsglobal.com> Subject: FW: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:

Hey Loren,

Can you please organise making the below amendments?

Thank you!

Grace White Client Services Officer, Environmental Sydney

T +61 2 8784 8555 D +61 2 8784 8531 F +61 2 8784 8500 grace.white@alsglobal.com 277-289 Woodpark Road Smithfield, NSW, 2164

Subscribe

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how. We are keen for your feedback! Please click here for your 3 minute survey EnviroMail™ 00 – All EnviroMails™ in one convenient library. Recent releases (click to access directly):

EnviroMail<sup>™</sup> 124 – PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail<sup>™</sup> 127 – Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here. Right Solutions • Right Partner https://aus01.safelinks.protection.outlook.com/?url=www.alsglobal.com&data=02%7C01%7CKim.Phan%40alsglobal.com%7C822e6d0d1a2e415fdefc08d76310b269%7C485ca04e6f7440509764cdb4bfa89c25%7C0%7C0%7C637086795685299636&sdata=Eygaw0cQknLkgagzwxAPSDeCzRtw1wXYtpWrHbo9C1E%3D&reserved=0

-----Original Message-----From: Carmen Yi [mailto:Carmen.Yi@ghd.com] Sent: Wednesday, 6 November 2019 11:07 PM To: ALSEnviro Sydney <ALSEnviro.Sydney@ALSGlobal.com> Cc: Sarah.Eccleshall@ghd.com; Brenda Hong <Brenda.Hong@alsglobal.com> Subject: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

# Hi ALS team,

We have now received approval to go ahead with the TBT, dioxin and SVOC tests for ES1936183 and ES1936029. Would you please test the following samples on standard turnaround time please?

## ES1936183

VC08\_1.0-1.5

VC12\_0.0-0.5

# ES1936029

VC01\_0.5-1.0 (1) VC04\_0.5-1.0 (2) VC07\_0.0-0.5 (3)

# Kind regards

Carmen Yi

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

\_\_\_\_\_





# SAMPLE RECEIPT NOTIFICATION (SRN)

**Comprehensive Report** 

| Work Order                                                                                                                 | : ES1                         | 990048                                     |                                  |                                 |                                                                                                               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------|----------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Client : GHD PTY LTD<br>Contact : CARMEN YI<br>Address : LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 |                               |                                            | Laboratory<br>Contact<br>Address | : Envi<br>: Cus<br>: 277<br>NSV | nvironmental Division Sydney<br>Customer Services ES<br>77-289 Woodpark Road Smithfield<br>ISW Australia 2164 |  |  |  |
| E-mail<br>Telephone<br>Facsimile                                                                                           | : carme<br>: +61 0<br>: +61 0 | n.yi@ghd.com<br>2 9239 7100<br>2 9239 7199 | E-mail<br>Telephone<br>Facsimile | : ALS<br>: +61<br>: +61         | Enviro.Sydney@alsglobal.com<br>2 8784 8555<br>2 8784 8500                                                     |  |  |  |
| Project<br>Order number                                                                                                    | : 12517<br>:                  | 046                                        | Page                             | : 1 of                          | 2                                                                                                             |  |  |  |
| C-O-C number<br>Site                                                                                                       | :                             |                                            | Quote number                     | :                               |                                                                                                               |  |  |  |
| Sampler                                                                                                                    | : Sarah                       | Eccleshall                                 | QC Level                         | : NEF                           | PM 2013 B3 & ALS QC Standard                                                                                  |  |  |  |
| Dates                                                                                                                      |                               |                                            |                                  |                                 |                                                                                                               |  |  |  |
| Date Samples Rec                                                                                                           | eived                         | : 31-OCT-2019                              | Issue Date                       |                                 | : 14-NOV-2019 18:15                                                                                           |  |  |  |
| Client Requested [                                                                                                         | Due Date                      | : 28-NOV-2019                              | Scheduled Reportir               | ng Date                         | 28-NOV-2019                                                                                                   |  |  |  |
| Delivery Det                                                                                                               | ails                          |                                            |                                  |                                 |                                                                                                               |  |  |  |
| Mode of Delivery                                                                                                           |                               | : Client Drop off                          | Temperature                      |                                 | : 3.9' C - Ice present                                                                                        |  |  |  |
| No. of coolers/boxe                                                                                                        | es                            | : 4                                        | No. of samples rec               | eived                           | : 3                                                                                                           |  |  |  |
| Security Seal                                                                                                              |                               | : N/A                                      | No. of samples ana               | lysed                           | : 3                                                                                                           |  |  |  |

#### **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- SPLIT WORK ORDER FROM ES1936029.
- Samples received in appropriately pretreated and preserved containers.
- Dioxin analysis will be conducted by ALS Brisbane.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

## Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

#### Matrix: SOIL

| laboratory for p<br>bracketed without<br>Matrix: SOIL | processing purposes<br>a time component. | s and will be sr | IMO<br>IMS - Combined<br>and Furans (SOILS) |
|-------------------------------------------------------|------------------------------------------|------------------|---------------------------------------------|
| Laboratory sample<br>ID                               | Client sampling<br>date / time           | Client sample ID | SOIL - H<br>Dioxins a                       |
| ES1990048-001                                         | 30-OCT-2019 15:00                        | VC01_0.5-1.0     | ✓                                           |
| ES1990048-002                                         | 30-OCT-2019 15:00                        | VC04_0.5-1.0     | ✓                                           |
| ES1990048-003                                         | 30-OCT-2019 15:00                        | VC07_0.0-0.5     | ✓                                           |

# Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### **Requested Deliverables**

#### **CARMEN YI**

| - A4 - AU Sample Receipt Notification - Environmental HT ( SRN        | Email | carmen.yi@ghd.com        |
|-----------------------------------------------------------------------|-------|--------------------------|
| <ul> <li>AU Certificate of Analysis - DIOXINS/HRMS (DIONA)</li> </ul> | Email | carmen.yi@ghd.com        |
| - AU QC Report - DIOXINS/HRMS ( DQCNA )                               | Email | carmen.yi@ghd.com        |
| - Chain of Custody (CoC) ( COC )                                      | Email | carmen.yi@ghd.com        |
| LAB REPORTS                                                           |       |                          |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN         | Email | labreports@ghd.com       |
| <ul> <li>AU Certificate of Analysis - DIOXINS/HRMS (DIONA)</li> </ul> | Email | labreports@ghd.com       |
| - AU QC Report - DIOXINS/HRMS ( DQCNA )                               | Email | labreports@ghd.com       |
| - Chain of Custody (CoC) ( COC )                                      | Email | labreports@ghd.com       |
| SARAH ECCLESHALL                                                      |       |                          |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN         | Email | sarah.eccleshall@ghd.com |
| <ul> <li>AU Certificate of Analysis - DIOXINS/HRMS (DIONA)</li> </ul> | Email | sarah.eccleshall@ghd.com |
| <ul> <li>AU QC Report - DIOXINS/HRMS ( DQCNA )</li> </ul>             | Email | sarah.eccleshall@ghd.com |
| <ul> <li>Chain of Custody (CoC) (COC)</li> </ul>                      | Email | sarah.eccleshall@ghd.com |
| THE ACCOUNTS PAYABLE (Brisbane)                                       |       |                          |
| - A4 - AU Tax Invoice ( INV )                                         | Email | ap-fss@ghd.com           |
|                                                                       |       |                          |





|                                                                                                    |                                                                                                                                                                                                                                                   | CE                                                                                                                                         | R T IF IC A                                                                                                                                          | ATE OF ANALYSIS                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                   |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Client                                                                                             | GHD PTY LTD                                                                                                                                                                                                                                       |                                                                                                                                            | Laboratory :                                                                                                                                         | Environmental Division Sydney                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | 1 of 4                                            |
| Contact                                                                                            | CARMEN YI                                                                                                                                                                                                                                         |                                                                                                                                            | Contact                                                                                                                                              | CUSTOMER.SERVICES.ES                                                                                                                                                                                                                                                                                                                                             | Work Order:                                                                                              | ES1990048                                         |
| Address:                                                                                           | LEVEL 15, 133 CASTLEREAGH STREET SYDI<br>NSW, AUSTRALIA 2000                                                                                                                                                                                      | IEY                                                                                                                                        | Address:                                                                                                                                             | 277-289 Woodpark Road<br>Smithfield NSW 2164<br>Australia                                                                                                                                                                                                                                                                                                        |                                                                                                          |                                                   |
| Project                                                                                            | 12517046                                                                                                                                                                                                                                          |                                                                                                                                            | Quote #                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                  | Received:                                                                                                | 31 Oct 2019                                       |
| Order #                                                                                            | - Not provided -                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                  | Issued                                                                                                   | 22 Nov 2019                                       |
| C-O-C #                                                                                            | - Not provided -                                                                                                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                   |
| Site<br>E-mail                                                                                     | - Not provided -<br>carmen.yi@ghd.com                                                                                                                                                                                                             |                                                                                                                                            | E-mail                                                                                                                                               | ALSEnviro.Sydney@alsglobal.com                                                                                                                                                                                                                                                                                                                                   | Number of Sa                                                                                             | amples                                            |
| Phone                                                                                              | 9239 7100                                                                                                                                                                                                                                         |                                                                                                                                            | Phone                                                                                                                                                | +61-2-8784 8555                                                                                                                                                                                                                                                                                                                                                  | Received:                                                                                                | 3                                                 |
| Fax                                                                                                | 9239 7199                                                                                                                                                                                                                                         |                                                                                                                                            | Fax                                                                                                                                                  | +61-2-8784 8500                                                                                                                                                                                                                                                                                                                                                  | Analysed:                                                                                                | 3                                                 |
| <u>Notes</u><br>LOR = Limit<br>I-TEF = Inte<br>I-TEQ = Inte<br>WHO-TEF =<br>WHO-TEQ =<br>Samples a | of reporting<br>rnational toxic equivalency factor<br>rnational toxic equivalence<br>- World Health Organistaion toxic equivalency factor<br>= World Health Organisation toxic equivalence<br>nalysed 'as received' results reported on 'dry weig | <ol> <li>I -TEQ(zero) and</li> <li>I -TEQ(0.5 LOR)</li> <li>I-TEQ(LOR) and</li> <li>4 Totals LORs are</li> <li>5 13C12 Rec(%) =</li> </ol> | d WHO-TEQ(zero) calcu<br>and WHO-TEQ(0.5 zero)<br>d WHO-TEQ(LOR) calcul<br>e calculated by multiply<br>= The absolute recover<br>both quantitate and | lated treating <lor as="" concentration<br="" zero="">calculated treating <lor 0.5="" as="" concentration<br="" lor="">lated treating <lor as="" concentration<br="" lor="">ing the number of peaks by the individual LOR per compound<br/>y of Isotopically labelled compound added by the Laboratory to<br/>d measure extraction efficiency.</lor></lor></lor> | T = tetra<br>Pe = penta<br>Hx = hexa<br>Hp =hepta<br>O = octa<br>CDD, dioxin = chlo<br>CDF, furan = chlo | prinated dibenzo-p-dioxin<br>rinated dibenzofuran |

#### ALSE - Excellence in Analytical Testing



#### **RIGHT SOLUTIONS** RIGHT PARTNER

# Client : GHD PTY LTD

Project : 12517046



ALS Quote Reference : ----



# ANALYTICAL RESULTS FOR DIOXINS AND FURANS

| Method Code EP300 | Laboratory San  | nple ID: | ES1990048001 |          | Qc Lot               | Number:              | 4539274 |        | Γ                  | Date Sampled:      | 30-Oct-2019    |
|-------------------|-----------------|----------|--------------|----------|----------------------|----------------------|---------|--------|--------------------|--------------------|----------------|
|                   | Client Sample I | D: \     | /C01_0.5-1.0 |          | Sample               | Matrix:              | SOIL    |        | Γ                  | Date Extracted:    | 21-Nov-2019    |
|                   |                 |          |              |          |                      |                      |         |        | Γ                  | Date Analysed:     | 21-Nov-2019    |
| Compound          | Conc            | LOR      | WHO-TEF      | WHO-TEQ1 | WHO-TEQ <sub>2</sub> | WHO-TEQ <sub>3</sub> | I-TEF   | I-TEQ1 | I-TEQ <sub>2</sub> | I-TEQ <sub>3</sub> | 13 <b>C</b> 12 |
|                   | pg/g            | pg/g     |              | (zero)   | (0.5 LOR)            | (LOR)                |         | (zero) | (0.5 LOR)          | (LOR)              | Rec(%)         |
| 2378-TCDD         | <0.5            | 0.5      | 1            | 0.00     | 0.25                 | 0.50                 | 1       | 0.00   | 0.25               | 0.50               | 103.7          |
| 12378-PeCDD       | <2.5            | 2.5      | 1            | 0.00     | 1.25                 | 2.50                 | 0.5     | 0.00   | 0.62               | 1.25               | 102.1          |
| 123478-HxCDD      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 66.5           |
| 123678-HxCDD      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 75.8           |
| 123789-HxCDD      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | -              |
| 1234678-HpCDD     | 67.0            | 2.5      | 0.01         | 0.67     | 0.67                 | 0.67                 | 0.01    | 0.67   | 0.67               | 0.67               | 79.7           |
| OCDD              | 23300.0         | 10.0     | 0.0003       | 6.99     | 6.99                 | 6.99                 | 0.001   | 23.30  | 23.30              | 23.30              | 75.0           |
| 2378-TCDF         | <0.5            | 0.5      | 0.1          | 0.00     | 0.02                 | 0.05                 | 0.1     | 0.00   | 0.02               | 0.05               | 85.5           |
| 12378-PeCDF       | <2.5            | 2.5      | 0.03         | 0.00     | 0.04                 | 0.07                 | 0.05    | 0.00   | 0.06               | 0.12               | 98.1           |
| 23478-PeCDF       | <2.5            | 2.5      | 0.3          | 0.00     | 0.37                 | 0.75                 | 0.5     | 0.00   | 0.62               | 1.25               | 103.5          |
| 123478-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 57.6           |
| 123678-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 77.4           |
| 234678-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 74.1           |
| 123789-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 88.7           |
| 1234678-HpCDF     | <2.5            | 2.5      | 0.01         | 0.00     | 0.01                 | 0.02                 | 0.01    | 0.00   | 0.01               | 0.02               | 61.6           |
| 1234789-HpCDF     | <2.5            | 2.5      | 0.01         | 0.00     | 0.01                 | 0.02                 | 0.01    | 0.00   | 0.01               | 0.02               | 90.1           |
| OCDF              | <5.0            | 5.0      | 0.0003       | 0.00     | 0.00                 | 0.00                 | 0.001   | 0.00   | 0.00               | 0.00               | -              |
| Total TEQ         | -               | -        | -            | 7.66     | 10.50                | 13.33                | -       | 23.97  | 26.46              | 28.95              | -              |

| Group Totals  | Conc    | LOR4 | No. of Peaks |
|---------------|---------|------|--------------|
| -             | pg/g    | pg/g |              |
| Tetra-Dioxins | <6.5    | 6.5  | 13           |
| Penta-Dioxins | <15.0   | 15.0 | 6            |
| Hexa-Dioxins  | 19.7    | 7.5  | 3            |
| Hepta-Dioxins | 144.0   | 5.0  | 2            |
| Octa-Dioxin   | 23300.0 | 10.0 | 1            |
| Tetra-Furans  | <0.5    | 0.5  | 1            |
| Penta-Furans  | <2.5    | 2.5  | 1            |
| Hexa-Furans   | <2.5    | 2.5  | 1            |
| Hepta-Furans  | <2.5    | 2.5  | 1            |
| Octa-Furan    | <5.0    | 5.0  | 1            |
| S PCDD/Fs     | 23463.7 | ]    |              |

# Client : GHD PTY LTD

Project : 12517046



ALS Quote Reference : ----



# ANALYTICAL RESULTS FOR DIOXINS AND FURANS

| Method Code EP300 | Laboratory San  | nple ID: | ES1990048002 |          | Qc Lot               | Number:              | 4539274 |        | I                  | Date Sampled:      | 30-Oct-2019    |
|-------------------|-----------------|----------|--------------|----------|----------------------|----------------------|---------|--------|--------------------|--------------------|----------------|
|                   | Client Sample I | D:       | VC04_0.5-1.0 |          | Sample               | Matrix:              | SOIL    |        | I                  | Date Extracted:    | 21-Nov-2019    |
|                   |                 |          |              |          |                      |                      |         |        | I                  | Date Analysed:     | 21-Nov-2019    |
| Compound          | Conc            | LOR      | WHO-TEF      | WHO-TEQ1 | WHO-TEQ <sub>2</sub> | WHO-TEQ <sub>3</sub> | I-TEF   | I-TEQ1 | I-TEQ <sub>2</sub> | I-TEQ <sub>3</sub> | 13 <b>C</b> 12 |
|                   | pg/g            | pg/g     |              | (zero)   | (0.5 LOR)            | (LOR)                |         | (zero) | (0.5 LOR)          | (LOR)              | Rec(%)         |
| 2378-TCDD         | <0.5            | 0.5      | 1            | 0.00     | 0.25                 | 0.50                 | 1       | 0.00   | 0.25               | 0.50               | 87.2           |
| 12378-PeCDD       | <2.5            | 2.5      | 1            | 0.00     | 1.25                 | 2.50                 | 0.5     | 0.00   | 0.62               | 1.25               | 92.8           |
| 123478-HxCDD      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 51.5           |
| 123678-HxCDD      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 69.7           |
| 123789-HxCDD      | 5.3             | 2.5      | 0.1          | 0.53     | 0.53                 | 0.53                 | 0.1     | 0.53   | 0.53               | 0.53               | -              |
| 1234678-HpCDD     | 111.0           | 2.5      | 0.01         | 1.11     | 1.11                 | 1.11                 | 0.01    | 1.11   | 1.11               | 1.11               | 64.8           |
| OCDD              | 34600.0         | 10.0     | 0.0003       | 10.38    | 10.38                | 10.38                | 0.001   | 34.60  | 34.60              | 34.60              | 64.2           |
| 2378-TCDF         | <0.5            | 0.5      | 0.1          | 0.00     | 0.02                 | 0.05                 | 0.1     | 0.00   | 0.02               | 0.05               | 75.1           |
| 12378-PeCDF       | <2.5            | 2.5      | 0.03         | 0.00     | 0.04                 | 0.07                 | 0.05    | 0.00   | 0.06               | 0.12               | 91.9           |
| 23478-PeCDF       | <2.5            | 2.5      | 0.3          | 0.00     | 0.37                 | 0.75                 | 0.5     | 0.00   | 0.62               | 1.25               | 92.9           |
| 123478-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 45.4           |
| 123678-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 61.8           |
| 234678-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 64.9           |
| 123789-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 78.4           |
| 1234678-HpCDF     | <2.5            | 2.5      | 0.01         | 0.00     | 0.01                 | 0.02                 | 0.01    | 0.00   | 0.01               | 0.02               | 46.1           |
| 1234789-HpCDF     | <2.5            | 2.5      | 0.01         | 0.00     | 0.01                 | 0.02                 | 0.01    | 0.00   | 0.01               | 0.02               | 73.1           |
| OCDF              | <5.0            | 5.0      | 0.0003       | 0.00     | 0.00                 | 0.00                 | 0.001   | 0.00   | 0.00               | 0.00               | -              |
| Total TEQ         | -               | -        | -            | 12.02    | 14.73                | 17.44                | -       | 36.24  | 38.61              | 40.97              | -              |

| Group Totals  | Conc    | LOR4 | No. of Peaks |
|---------------|---------|------|--------------|
| -             | pg/g    | pg/g |              |
| Tetra-Dioxins | 27.4    | 3.0  | 6            |
| Penta-Dioxins | <17.5   | 17.5 | 7            |
| Hexa-Dioxins  | 115.0   | 15.0 | 6            |
| Hepta-Dioxins | 252.0   | 5.0  | 2            |
| Octa-Dioxin   | 34600.0 | 10.0 | 1            |
| Tetra-Furans  | <0.5    | 0.5  | 1            |
| Penta-Furans  | <2.5    | 2.5  | 1            |
| Hexa-Furans   | <2.5    | 2.5  | 1            |
| Hepta-Furans  | <2.5    | 2.5  | 1            |
| Octa-Furan    | <5.0    | 5.0  | 1            |
| S PCDD/Fs     | 34994.4 |      |              |
Project : 12517046

Work Order : ES1990048





| Method Code EP300 Laboratory Sample ID:<br>Client Sample ID: |         | nple ID:<br>ID: | ES1990048003<br>VC07_0.0-0.5 | 048003Qc Lot Number:0-0.5Sample Matrix: |                      |                      | 4539274<br>SOIL |        | [<br>[             | Date Sampled:<br>Date Extracted: |                |
|--------------------------------------------------------------|---------|-----------------|------------------------------|-----------------------------------------|----------------------|----------------------|-----------------|--------|--------------------|----------------------------------|----------------|
|                                                              | •       |                 |                              |                                         | ·                    |                      |                 |        | ſ                  | Date Analysed:                   | 21-Nov-2019    |
| Compound                                                     | Conc    | LOR             | WHO-TEF                      | WHO-TEQ1                                | WHO-TEQ <sub>2</sub> | WHO-TEQ <sub>3</sub> | I-TEF           | I-TEQ1 | I-TEQ <sub>2</sub> | I-TEQ <sub>3</sub>               | 13 <b>C</b> 12 |
| -                                                            | pg/g    | pg/g            |                              | (zero)                                  | (0.5 LOR)            | (LOR)                |                 | (zero) | (0.5 LOR)          | (LOR)                            | Rec(%)         |
| 2378-TCDD                                                    | 6.5     | 0.5             | 1                            | 6.49                                    | 6.49                 | 6.49                 | 1               | 6.49   | 6.49               | 6.49                             | 100.8          |
| 12378-PeCDD                                                  | 7.8     | 2.5             | 1                            | 7.83                                    | 7.83                 | 7.83                 | 0.5             | 3.92   | 3.92               | 3.92                             | 109.9          |
| 123478-HxCDD                                                 | 8.8     | 2.5             | 0.1                          | 0.88                                    | 0.88                 | 0.88                 | 0.1             | 0.88   | 0.88               | 0.88                             | 52.4           |
| 123678-HxCDD                                                 | 31.0    | 2.5             | 0.1                          | 3.10                                    | 3.10                 | 3.10                 | 0.1             | 3.10   | 3.10               | 3.10                             | 71.9           |
| 123789-HxCDD                                                 | 29.7    | 2.5             | 0.1                          | 2.97                                    | 2.97                 | 2.97                 | 0.1             | 2.97   | 2.97               | 2.97                             | -              |
| 1234678-HpCDD                                                | 708.0   | 2.5             | 0.01                         | 7.08                                    | 7.08                 | 7.08                 | 0.01            | 7.08   | 7.08               | 7.08                             | 71.7           |
| OCDD                                                         | 19200.0 | 10.0            | 0.0003                       | 5.76                                    | 5.76                 | 5.76                 | 0.001           | 19.20  | 19.20              | 19.20                            | 61.7           |
| 2378-TCDF                                                    | 4.6     | 0.5             | 0.1                          | 0.46                                    | 0.46                 | 0.46                 | 0.1             | 0.46   | 0.46               | 0.46                             | 85.7           |
| 12378-PeCDF                                                  | 4.4     | 2.5             | 0.03                         | 0.13                                    | 0.13                 | 0.13                 | 0.05            | 0.22   | 0.22               | 0.22                             | 94.0           |
| 23478-PeCDF                                                  | 5.7     | 2.5             | 0.3                          | 1.71                                    | 1.71                 | 1.71                 | 0.5             | 2.86   | 2.86               | 2.86                             | 99.8           |
| 123478-HxCDF                                                 | 11.2    | 2.5             | 0.1                          | 1.12                                    | 1.12                 | 1.12                 | 0.1             | 1.12   | 1.12               | 1.12                             | 47.1           |
| 123678-HxCDF                                                 | 5.6     | 2.5             | 0.1                          | 0.56                                    | 0.56                 | 0.56                 | 0.1             | 0.56   | 0.56               | 0.56                             | 66.3           |
| 234678-HxCDF                                                 | 8.1     | 2.5             | 0.1                          | 0.81                                    | 0.81                 | 0.81                 | 0.1             | 0.81   | 0.81               | 0.81                             | 60.9           |
| 123789-HxCDF                                                 | <2.5    | 2.5             | 0.1                          | 0.00                                    | 0.12                 | 0.25                 | 0.1             | 0.00   | 0.12               | 0.25                             | 74.8           |
| 1234678-HpCDF                                                | 123.0   | 2.5             | 0.01                         | 1.23                                    | 1.23                 | 1.23                 | 0.01            | 1.23   | 1.23               | 1.23                             | 52.1           |
| 1234789-HpCDF                                                | 8.8     | 2.5             | 0.01                         | 0.09                                    | 0.09                 | 0.09                 | 0.01            | 0.09   | 0.09               | 0.09                             | 78.3           |
| OCDF                                                         | 363.0   | 5.0             | 0.0003                       | 0.11                                    | 0.11                 | 0.11                 | 0.001           | 0.36   | 0.36               | 0.36                             | -              |
| Total TEQ                                                    | -       | -               | -                            | 40.32                                   | 40.45                | 40.57                | -               | 51.33  | 51.46              | 51.58                            | -              |

| Group Totals  | Conc    | LOR4 | No. of Peaks |
|---------------|---------|------|--------------|
|               | pg/g    | pg/g |              |
| Tetra-Dioxins | 118.0   | 6.5  | 13           |
| Penta-Dioxins | 208.0   | 20.0 | 8            |
| Hexa-Dioxins  | 1240.0  | 17.5 | 7            |
| Hepta-Dioxins | 2230.0  | 5.0  | 2            |
| Octa-Dioxin   | 19200.0 | 10.0 | 1            |
| Tetra-Furans  | 68.5    | 9.0  | 18           |
| Penta-Furans  | 75.9    | 27.5 | 11           |
| Hexa-Furans   | 151.0   | 27.5 | 11           |
| Hepta-Furans  | 344.0   | 10.0 | 4            |
| Octa-Furan    | 363.0   | 5.0  | 1            |
| S PCDD/Fs     | 23998.4 | ]    |              |





|          | QUALT                                                             | Y COI        | NTROL REPOR                      | ст           |             |
|----------|-------------------------------------------------------------------|--------------|----------------------------------|--------------|-------------|
| Client   | GHD PTY LTD                                                       | Laboratory : | Environmental Division Sydney    |              | 1 of 5      |
| Contact  | CARMEN YI                                                         | Contact      | CUSTOMER.SERVICES.ES             | Work Order:  | ES1990048   |
| Address: | LEVEL 15, 133 CASTLEREAGH<br>STREET SYDNEY<br>NSW, AUSTRALIA 2000 | Address:     | Smithfield NSW 2164<br>Australia | Work Order.  | 201000040   |
| Project  | 12517046                                                          | Quote #      |                                  | Received:    | 31 Oct 2019 |
| Order #  | - Not provided -                                                  |              |                                  | Issued       | 22 Nov 2019 |
| C-O-C #  | - Not provided -                                                  |              |                                  |              |             |
| Site     | - Not provided -                                                  |              |                                  |              |             |
| E-mail   | carmen.yi@ghd.com                                                 | E-mail       | ALSEnviro.Sydney@alsglobal.co    | Number of Sa | mples       |
| Phone    | 9239 7100                                                         | Phone        | +61-2-8784 8555                  | Received:    | 3           |
| Fax      | 9239 7199                                                         | Fax          | +61-2-8784 8500                  | Analysed:    | 4           |

Samples analysed 'as received', results reported on 'dry weight' basis.

### ALSE - Excellence in Analytical Testing

|                  | NATA Accredited Laboratory - 825<br>This document is issued in | This document has been digitally signed by those names that appear on<br>this report and are the authorised signatories. Digital signing has been<br>carried out in compliance with procedures specified in 21 CFR Part 11. |                          |            |  |  |
|------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|--|--|
| NAIA             | accordance with NATA's accreditation requirements.             | Signatory<br>Peter Blow                                                                                                                                                                                                     | Position<br>HRMS Chemist | Department |  |  |
| WORLD RECOGNISED | Accredited for compliance<br>with ISO/IED 17025                | T CICI DIOW                                                                                                                                                                                                                 |                          | Brisbane)  |  |  |
| Environmet       | tal 🐊 🛛 👔                                                      | www.alsg                                                                                                                                                                                                                    | lobal.com                |            |  |  |

**RIGHT SOLUTIONS RIGHT PARTNER** 



# **Quality Control Report** Laboratory Duplicates (DUP)

| Original Result Duplicate Result |              |      |             |      | _    |
|----------------------------------|--------------|------|-------------|------|------|
| Laboratory Sample Id :           | EP1990013001 |      | 5592649-026 |      |      |
| Client Sample Id :               | Anonymous    |      | Anonymous   |      |      |
| Sample Mass (g) :                | 10.0         |      | 10.0        |      |      |
| Qc Lot Number :                  | 4539275      |      | 4539275     |      |      |
| Moisture Content (%) :           |              |      |             |      |      |
| Compound                         | Conc         | LOR  | Conc        | LOR  | RPD  |
|                                  | pg/g         | pg/g | pg/g        | pg/g | (%)  |
| 2378-TCDD                        | <0.5         | 0.5  | <0.5        | 0.5  | -    |
| 12378-PeCDD                      | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 123478-HxCDD                     | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 123678-HxCDD                     | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 123789-HxCDD                     | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 1234678-HpCDD                    | 20.8         | 2.5  | 20.7        | 2.5  | 0.5  |
| OCDD                             | 196.0        | 10.0 | 192.0       | 10.0 | 2.1  |
| 2378-TCDF                        | 1.3          | 0.5  | 0.7         | 0.5  | 60.0 |
| 12378-PeCDF                      | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 23478-PeCDF                      | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 123478-HxCDF                     | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 123678-HxCDF                     | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 234678-HxCDF                     | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 123789-HxCDF                     | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| 1234678-HpCDF                    | 4.2          | 2.5  | 4.0         | 2.5  | 4.9  |
| 1234789-HpCDF                    | <2.5         | 2.5  | <2.5        | 2.5  | -    |
| OCDF                             | 9.3          | 5.0  | 8.4         | 5.0  | 10.2 |

| Group Totals  | Conc  | LOR  | Conc  | LOR  | RPD  |
|---------------|-------|------|-------|------|------|
|               | pg/g  | pg/g | pg/g  | pg/g | (%)  |
| Tetra-Dioxins | <0.5  | 0.5  | <0.5  | 0.5  | -    |
| Penta-Dioxins | <15.0 | 15.0 | <20.0 | 20.0 | -    |
| Hexa-Dioxins  | <17.5 | 17.5 | <20.0 | 20.0 | -    |
| Hepta-Dioxins | 38.3  | 5.0  | 39.9  | 5.0  | 4.1  |
| Octa-Dioxin   | 196.0 | 10.0 | 192.0 | 10.0 | 2.1  |
| Tetra-Furans  | 34.5  | 9.0  | 16.5  | 9.0  | 70.6 |
| Penta-Furans  | <25.0 | 25.0 | <29.9 | 29.9 | -    |
| Hexa-Furans   | <30.0 | 30.0 | <27.4 | 27.4 | -    |
| Hepta-Furans  | 10.1  | 10.0 | 10.2  | 10.0 | 1.0  |
| Octa-Furan    | 9.3   | 5.0  | 8.4   | 5.0  | 10.2 |
| S PCDD/Fs     | 288.2 |      | 267.0 |      | 7.6  |

<u>Notes</u> LOR = Limit of reporting T = tetra Pe = penta Hx = hexa Hp = hepta O = octa CDD, dioxin = chlorinated debenzo-p-dioxin CDF, furan = chlorinated debenzofuran RPD = relative per cent difference Permitted ranges for RPD are depencant upon the magnitude of the result in comparison to the LOR. Result < 10x LOR, no limit, result between 10x and 20x LOR, 50%; result > 20x LOR, 20% - = Where results are less than the LOR, no RPD is reported.



# **Quality Control Report** Laboratory Duplicates (DUP)

|                        | Original Result |      | Duplicate Result |      | _   |
|------------------------|-----------------|------|------------------|------|-----|
| Laboratory Sample Id : | ES1990048001    |      | 5592649-007      |      |     |
| Client Sample Id :     | VC01_0.5-1.0    |      | VC01_0.5-1.0     |      |     |
| Sample Mass (g) :      | 10.0            |      | 10.0             |      |     |
| Qc Lot Number :        | 4539275         |      | 4539275          |      |     |
| Moisture Content (%) : |                 |      |                  |      |     |
| Compound               | Conc            | LOR  | Conc             | LOR  | RPD |
|                        | pg/g            | pg/g | pg/g             | pg/g | (%) |
| 2378-TCDD              | <0.5            | 0.5  | <0.5             | 0.5  | -   |
| 12378-PeCDD            | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123478-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123678-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123789-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 1234678-HpCDD          | 67.0            | 2.5  | 64.3             | 2.5  | 4.1 |
| OCDD                   | 23300.0         | 10.0 | 23100.0          | 10.0 | 0.9 |
| 2378-TCDF              | <0.5            | 0.5  | <0.5             | 0.5  | -   |
| 12378-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 23478-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123478-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 234678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123789-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 1234678-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 1234789-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| OCDF                   | <5.0            | 5.0  | <5.0             | 5.0  | -   |

| Group Totals  | Conc    | LOR  | Conc    | LOR  | RPD  |
|---------------|---------|------|---------|------|------|
|               | pg/g    | pg/g | pg/g    | pg/g | (%)  |
| Tetra-Dioxins | <6.5    | 6.5  | <6.5    | 6.5  | -    |
| Penta-Dioxins | <15.0   | 15.0 | <20.0   | 20.0 | -    |
| Hexa-Dioxins  | 19.7    | 7.5  | 23.7    | 17.5 | 18.4 |
| Hepta-Dioxins | 144.0   | 5.0  | 133.0   | 5.0  | 7.9  |
| Octa-Dioxin   | 23300.0 | 10.0 | 23100.0 | 10.0 | 0.9  |
| Tetra-Furans  | <0.5    | 0.5  | <0.5    | 0.5  | -    |
| Penta-Furans  | <2.5    | 2.5  | <2.5    | 2.5  | -    |
| Hexa-Furans   | <2.5    | 2.5  | <2.5    | 2.5  | -    |
| Hepta-Furans  | <2.5    | 2.5  | <2.5    | 2.5  | -    |
| Octa-Furan    | <5.0    | 5.0  | <5.0    | 5.0  | -    |
| S PCDD/Fs     | 23463.7 |      | 23256.7 |      | 0.9  |

<u>Notes</u> LOR = Limit of reporting T = tetra Pe = penta Hx = hexa Hp = hepta O = octa CDD, dioxin = chlorinated debenzo-p-dioxin CDF, furan = chlorinated debenzofuran RPD = relative per cent difference Permitted ranges for RPD are depencant upon the magnitude of the result in comparison to the LOR. Result < 10x LOR, no limit, result between 10x and 20x LOR, 50%; result > 20x LOR, 20% - = Where results are less than the LOR, no RPD is reported.

: ES1990048 : ----



# Quality Control Results Laboratory Control Samples(LCS)

| Laboratory Sample Id : | 5592649-010      |         |         |                |         |         |
|------------------------|------------------|---------|---------|----------------|---------|---------|
| QC Lot Number :        | 4539275          |         |         |                |         |         |
| Sample Name :          | BCR 529 Sandy so | il      |         |                |         |         |
| Compound               | Conc             | Lower 1 | Upper 1 | 13 <b>C</b> 12 | Lower 2 | Upper 2 |
|                        | pg/g             | pg/g    | pg/g    | Rec(%)         | (%)     | (%)     |
| 2378-TCDD              | 4130.0           | 3900    | 5100    | 95.8           | 25      | 164     |
| 12378-PeCDD            | 470.0            | 390     | 490     | 96.5           | 25      | 181     |
| 123478-HxCDD           | 1390.0           | 900     | 1500    | 65.7           | 32      | 141     |
| 123678-HxCDD           | 5820.0           | 4500    | 6300    | 68.3           | 28      | 130     |
| 123789-HxCDD           | 3380.0           | 2600    | 3400    | -              | -       | -       |
| 2378-TCDF              | 70.6             | 65      | 91      | 85.6           | 24      | 169     |
| 12378-PeCDF            | 158.0            | 110     | 170     | 99.3           | 24      | 185     |
| 23478-PeCDF            | 360.0            | 290     | 430     | 102.5          | 21      | 178     |
| 123478-HxCDF           | 3630.0           | 2900    | 3900    | 62.4           | 26      | 152     |
| 123678-HxCDF           | 1220.0           | 940     | 1240    | 85.0           | 26      | 123     |
| 234678-HxCDF           | 401.0            | 330     | 410     | 85.2           | 28      | 136     |
| 123789-HxCDF           | 566.0            | 12      | 32      | 102.3          | 29      | 147     |

<u>Notes</u>

1. Acceptable concentration limits are as quoted on the analytical certificate for the cerified reference material

2. Acceptable recovery limits are derived from EPA1613 Revision B

T = tetra

Pe = penta

Hx = hexa Hp = hepta

O = octa

: ES1990048 Work Order ALS Quote Reference :



# **Quality Control Report** Method Blank (MB)

----

| Laboratory Sample<br>Qc Lot Number : | <b>9 ID:</b> 55<br>45 | 592649-001<br>539275 |            |          |                      |          |          | Sample Ma<br>Date Extrac<br>Date Analy | trix:<br>:ted:<br>sed: | 2      | SOIL<br>21-Nov-2019<br>21-Nov-2019 |
|--------------------------------------|-----------------------|----------------------|------------|----------|----------------------|----------|----------|----------------------------------------|------------------------|--------|------------------------------------|
| Compound                             | Conc                  | LOR                  | WHO-TEF    | WHO-TEQ1 | WHO-TEQ <sub>2</sub> | WHO-TEQ3 | I-TEF    | I-TEQ1                                 | I-TEQ <sub>2</sub>     | I-TEQ₃ | 13C12                              |
|                                      | pg/g                  | pg/g                 |            | (zero)   | (0.5 LOR)            | (LOR)    |          | (zero)                                 | (0.5 LOR)              | (LOR)  | Rec(%)                             |
| 2378-TCDD                            | <0.5                  | 0.5                  | 1          | 0.00     | 0.25                 | 0.50     | 1        | 0.00                                   | 0.25                   | 0.50   | 90.7                               |
| 12378-PeCDD                          | <2.5                  | 2.5                  | 1          | 0.00     | 1.25                 | 2.50     | 0.5      | 0.00                                   | 0.63                   | 1.25   | 107.4                              |
| 123478-HxCDD                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 57.1                               |
| 123678-HxCDD                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 79.6                               |
| 123789-HxCDD                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | -                                  |
| 1234678-HpCD                         | <2.5                  | 2.5                  | 0.01       | 0.00     | 0.01                 | 0.03     | 0.01     | 0.00                                   | 0.01                   | 0.03   | 66.6                               |
| OCDD                                 | <10.0                 | 10.0                 | 0.0003     | 0.00     | 0.00                 | 0.00     | 0.001    | 0.00                                   | 0.01                   | 0.01   | 38.6                               |
| 2378-TCDF                            | <0.5                  | 0.5                  | 0.1        | 0.00     | 0.03                 | 0.05     | 0.1      | 0.00                                   | 0.03                   | 0.05   | 95.6                               |
| 12378-PeCDF                          | <2.5                  | 2.5                  | 0.03       | 0.00     | 0.04                 | 0.08     | 0.05     | 0.00                                   | 0.06                   | 0.13   | 102.0                              |
| 23478-PeCDF                          | <2.5                  | 2.5                  | 0.3        | 0.00     | 0.38                 | 0.75     | 0.5      | 0.00                                   | 0.63                   | 1.25   | 104.1                              |
| 123478-HxCDF                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 50.5                               |
| 123678-HxCDF                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 81.5                               |
| 234678-HxCDF                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 73.9                               |
| 123789-HxCDF                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 69.5                               |
| 1234678-HpCD                         | <2.5                  | 2.5                  | 0.01       | 0.00     | 0.01                 | 0.03     | 0.01     | 0.00                                   | 0.01                   | 0.03   | 50.8                               |
| 1234789-HpCD                         | <2.5                  | 2.5                  | 0.01       | 0.00     | 0.01                 | 0.03     | 0.01     | 0.00                                   | 0.01                   | 0.03   | 65.1                               |
| OCDF                                 | <5.0                  | 5.0                  | 0.0003     | 0.00     | 0.00                 | 0.00     | 0.001    | 0.00                                   | 0.00                   | 0.01   | -                                  |
|                                      |                       | Γ                    | S TEQ(WHO) | 0.00     | 2.89                 | 5.72     | S TEQ(I) | 0.00                                   | 2.55                   | 5.04   | ]                                  |

| Group Totals  | Conc  | LOR4 | No. of |
|---------------|-------|------|--------|
|               | pg/g  | pg/g | Peaks  |
| Tetra-Dioxins | <0.5  | 0.5  | 1      |
| Penta-Dioxins | <2.5  | 2.5  | 1      |
| Hexa-Dioxins  | <2.5  | 2.5  | 1      |
| Hepta-Dioxins | <2.5  | 2.5  | 1      |
| Octa-Dioxin   | <10.0 | 10.0 | 1      |
| Tetra-Furans  | <0.5  | 0.5  | 1      |
| Penta-Furans  | <2.5  | 2.5  | 1      |
| Hexa-Furans   | <2.5  | 2.5  | 1      |
| Hepta-Furans  | <2.5  | 2.5  | 1      |
| Octa-Furan    | <5.0  | 5.0  | 1      |
| S PCDD/Fs     | 0.00  |      |        |

LOR = Limit of reporting I-TEF = International toxic equivalency factor I-TEQ = International toxic equivalence (pg/g) WHO-TEF = World Health Organistaion toxic equivalency factor WHO-TEQ = World Health Organisation toxic equivalence (pg/g) T = tetra Pe = penta Hx = hexa Hp =hepta O = octa CDD, dioxin = chlorinated dibenzo-p-dioxin CDF, furan = chlorinated dibenzofuran 1 I-TEQ(zero) and WHO-TEQ(zero) calculated treating <LOR as zero concentration (pg/g) 2 I-TEQ(0.5 LOR) and WHO-TEQ(0.5 LOR) calculated treating <LOR as 50% LoR concentration (pg/g)  $_3$  I-TEQ(LOR) and WHO-TEQ(LOR) calculated treating <LOR as LoR concentration (pg/g)

4 Totals LORs are calculated by mutiplying the number of peaks by the individual LOR per compound

<u>Notes</u>

26.11.19

# Kim Phan

From:Loren SchiavonSent:Thursday, 7 November 2019 10:26 AMTo:Kim PhanSubject:FW: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:Attachments:image001.png; image002.png; image003.png; image004.png

Sydney Work Order **ES1990049** 

Environmental Division

Hi Kim,

Can I get you to assist with this one?

We need to add in the testing requested below to two active work orders. Please leave the current due dates and email CS to send a prelim - we then need to create the separate batches for the dioxins. Vanessa has confirmed 10 days from receipt for the TBT.

Thanks.

Kind Regards Loren Schiavon Sample Administration Coordinator, Environmental

T +61 2 8784 8555 F +61 2 8784 8500 Loren.schiavon@alsglobal.com 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA Subscribe ES1936183 (Linear) / Convert Lat / Eptil WD and Analysis Brisbane organised By / Mater DioXin Leangement By / Duter 1-2 Chemone / Charler: (ver Son ES1980049 / 11 ph By PO / Internal Shoot:\_\_\_\_\_

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how.

We are keen for your feedback! Please click here for your 3 minute survey EnviroMail<sup>M</sup> 00 – All EnviroMails<sup>M</sup> in one convenient library. Recent releases (click to access directly):

EnviroMail<sup>™</sup> 124 – PFOS Analysis to Freshwater Species Protection LvI 99% EnviroMail<sup>™</sup> 127 – Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here.

**Right Solutions • Right Partner** 

https://aus01.safelinks.protection.outlook.com/?url=www.alsglobal.com&data=02%7C01%7CKim.Phan%40alsglobal.com%7C822e6d0d1a2e415fdefc08d76310b269%7C485ca04e6f7440509764cdb4bfa89c25%7C0%7C0%7C637086795685299636&sdata=Eyqaw0cQknLkqagzwxAPSDeCzRtw1wXYtpWrHbo9C1E%3D&reserved=0

-----Original Message-----From: Grace White Sent: Thursday, 7 November 2019 8:52 AM To: Loren Schiavon <loren.schiavon@alsglobal.com> Subject: FW: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:

Hey Loren,

Can you please organise making the below amendments?

Thank you!

Grace White Client Services Officer, Environmental Sydney

T +61 2 8784 8555 D +61 2 8784 8531 F +61 2 8784 8500 grace.white@alsglobal.com 277-289 Woodpark Road Smithfield, NSW, 2164

Subscribe

Win a \$500 Visa gift card! Enter our ALS Compass photo competition. Find out how. We are keen for your feedback! Please click here for your 3 minute survey EnviroMail™ 00 – All EnviroMails™ in one convenient library. Recent releases (click to access directly): EnviroMail™ 124 – PFOS Analysis to Freshwater Species Protection Lvl 99% EnviroMail™ 127 – Bacterial Diversity Profiling in NGS

See how ALS is making sampling easier! Register your interest here. Right Solutions • Right Partner https://aus01.safelinks.protection.outlook.com/?url=www.alsglobal.com&data=02%7C01%7CKim.Phan%40alsglobal.com%7C822e6d0d1a2e415fdefc08d76310b269%7C485ca04e6f7440509764cdb4bfa89c25%7C0%7C0%7C637086795685299636&sdata=Eygaw0cQknLkgagzwxAPSDeCzRtw1wXYtpWrHbo9C1E%3D&reserved=0

-----Original Message-----

From: Carmen Yi [mailto:Carmen.Yi@ghd.com] Sent: Wednesday, 6 November 2019 11:07 PM To: ALSEnviro Sydney <ALSEnviro.Sydney@ALSGlobal.com> Cc: Sarah.Eccleshall@ghd.com; Brenda Hong <Brenda.Hong@alsglobal.com> Subject: [EXTERNAL] - RE: Additional analysis requerst for: ES1936029:

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

### Hi ALS team,

We have now received approval to go ahead with the TBT, dioxin and SVOC tests for ES1936183 and ES1936029. Would you please test the following samples on standard turnaround time please?

### ES1936183

vc08\_1.0-1.5 (j) vc12\_0.0-0.5 (j)

ES1936029

VC01\_0.5-1.0

VC04\_0.5-1.0

VC07\_0.0-0.5

Kind regards

Carmen Yi

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

·\_\_\_

4





# SAMPLE RECEIPT NOTIFICATION (SRN)

**Comprehensive Report** 

| Work Order                                                                                                                       | : ES1                                                                                         | 990049             |                                  |                                                                                                                                                  |                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Client<br>Contact<br>Address                                                                                                     | GHD PTY LTD<br>CARMEN YI<br>LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 |                    | Laboratory<br>Contact<br>Address | <ul> <li>Environmental Division Sydney</li> <li>Customer Services ES</li> <li>277-289 Woodpark Road Smithfield<br/>NSW Australia 2164</li> </ul> |                                                           |  |
| E-mail         : carmen.yi@ghd.com           Telephone         : +61 02 9239 7100           Facsimile         : +61 02 9239 7199 |                                                                                               |                    | E-mail<br>Telephone<br>Facsimile | : ALS<br>: +61<br>: +61                                                                                                                          | Enviro.Sydney@alsglobal.com<br>2 8784 8555<br>2 8784 8500 |  |
| Project<br>Order number                                                                                                          | : 12517046<br>:                                                                               |                    | Page                             | : 1 of 2                                                                                                                                         |                                                           |  |
| C-O-C number<br>Site                                                                                                             | :                                                                                             |                    | Quote number                     | :                                                                                                                                                |                                                           |  |
| Sampler                                                                                                                          | : Sarah                                                                                       | n Eccleshall       | QC Level                         | : NEF                                                                                                                                            | PM 2013 B3 & ALS QC Standard                              |  |
| Dates                                                                                                                            |                                                                                               |                    |                                  |                                                                                                                                                  |                                                           |  |
| Date Samples Rec                                                                                                                 | eived                                                                                         | : 01-NOV-2019      | Issue Date                       |                                                                                                                                                  | : 14-NOV-2019 18:11                                       |  |
| Client Requested Due Date : 28-NOV-2019                                                                                          |                                                                                               | Scheduled Reportir | ng Date                          | 28-NOV-2019                                                                                                                                      |                                                           |  |
| Delivery Det                                                                                                                     | ails                                                                                          |                    |                                  |                                                                                                                                                  |                                                           |  |
| Mode of Delivery                                                                                                                 |                                                                                               | : Carrier          | Temperature                      |                                                                                                                                                  | : 3.3' C - Ice present                                    |  |
| No. of coolers/boxe                                                                                                              | es                                                                                            | : 6                | No. of samples received          |                                                                                                                                                  | : 2                                                       |  |
| Security Seal :                                                                                                                  |                                                                                               | : N/A              | No. of samples ana               | lysed                                                                                                                                            | : 2                                                       |  |

#### **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Dioxin analysis will be conducted by ALS Brisbane.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Split work order from ES1936183.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

#### Matrix: SOIL

| laboratory for p<br>bracketed without a<br>Matrix: SOIL | rocessing purposes<br>a time component. | s and will   | be    | shown | AS - Combined<br>d Furans (SOILS) |
|---------------------------------------------------------|-----------------------------------------|--------------|-------|-------|-----------------------------------|
| Laboratory sample<br>ID                                 | Client sampling<br>date / time          | Client s     | ample | ID    | SOIL - HRN<br>Dioxins and         |
| ES1990049-001                                           | 31-OCT-2019 20:45                       | VC08_1.0-1.5 | 5     |       | √                                 |
| ES1990049-002                                           | 31-OCT-2019 20:30                       | VC12_0.0-0.5 | 5     |       | 1                                 |

### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### **Requested Deliverables**

#### **CARMEN YI**

| - A4 - AU Sample Receipt Notification - Environmental HT ( SRN        | Email | carmen.yi@ghd.com        |
|-----------------------------------------------------------------------|-------|--------------------------|
| - AU Certificate of Analysis - DIOXINS/HRMS (DIONA)                   | Email | carmen.yi@ghd.com        |
| - AU QC Report - DIOXINS/HRMS ( DQCNA )                               | Email | carmen.yi@ghd.com        |
| - Chain of Custody (CoC) ( COC )                                      | Email | carmen.yi@ghd.com        |
| LAB REPORTS                                                           |       |                          |
| - A4 - AU Sample Receipt Notification - Environmental HT ( SRN        | Email | labreports@ghd.com       |
| - AU Certificate of Analysis - DIOXINS/HRMS (DIONA)                   | Email | labreports@ghd.com       |
| - AU QC Report - DIOXINS/HRMS ( DQCNA )                               | Email | labreports@ghd.com       |
| - Chain of Custody (CoC) ( COC )                                      | Email | labreports@ghd.com       |
| SARAH ECCLESHALL                                                      |       |                          |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN         | Email | sarah.eccleshall@ghd.com |
| <ul> <li>AU Certificate of Analysis - DIOXINS/HRMS (DIONA)</li> </ul> | Email | sarah.eccleshall@ghd.com |
| - AU QC Report - DIOXINS/HRMS ( DQCNA )                               | Email | sarah.eccleshall@ghd.com |
| - Chain of Custody (CoC) ( COC )                                      | Email | sarah.eccleshall@ghd.com |
| THE ACCOUNTS PAYABLE (Brisbane)                                       |       |                          |
| - A4 - AU Tax Invoice ( INV )                                         | Email | ap-fss@ghd.com           |
|                                                                       |       |                          |





|                                                                                       |                                                                                                                                                                                             | CEF                                                                                                           | R T IF IC A                                                                                                                                                                      | ATE OF ANALYSIS                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Client                                                                                | GHD PTY LTD                                                                                                                                                                                 |                                                                                                               | Laboratory :                                                                                                                                                                     | Environmental Division Sydney                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | 1 of 3                                           |
| Contact                                                                               | CARMEN YI                                                                                                                                                                                   |                                                                                                               | Contact                                                                                                                                                                          | CUSTOMER.SERVICES.ES                                                                                                                                                                                                                                                                                                                                             | Work Order:                                                                                              | ES1990049                                        |
| Address:                                                                              | LEVEL 15, 133 CASTLEREAGH STREET SYD<br>NSW, AUSTRALIA 2000                                                                                                                                 | IEY                                                                                                           | Address:                                                                                                                                                                         | 277-289 Woodpark Road<br>Smithfield NSW 2164<br>Australia                                                                                                                                                                                                                                                                                                        |                                                                                                          |                                                  |
| Project                                                                               | 12517046                                                                                                                                                                                    |                                                                                                               | Quote #                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  | Received:                                                                                                | 1 Nov 2019                                       |
| Order #                                                                               | - Not provided -                                                                                                                                                                            |                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  | Issued                                                                                                   | 22 Nov 2019                                      |
| C-O-C #                                                                               | - Not provided -                                                                                                                                                                            |                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                  |
| Site<br>E-mail                                                                        | - Not provided -<br>carmen.yi@ghd.com                                                                                                                                                       |                                                                                                               | E-mail                                                                                                                                                                           | ALSEnviro.Sydney@alsglobal.com                                                                                                                                                                                                                                                                                                                                   | Number of Sa                                                                                             | Imples                                           |
| Phone                                                                                 | 9239 7100                                                                                                                                                                                   |                                                                                                               | Phone                                                                                                                                                                            | +61-2-8784 8555                                                                                                                                                                                                                                                                                                                                                  | Received:                                                                                                | 2                                                |
| Fax                                                                                   | 9239 7199                                                                                                                                                                                   |                                                                                                               | Fax                                                                                                                                                                              | +61-2-8784 8500                                                                                                                                                                                                                                                                                                                                                  | Analysed:                                                                                                | 4                                                |
| <u>Notes</u><br>LOR = Limit<br>I-TEF = Inte<br>I-TEQ = Inte<br>WHO-TEF =<br>WHO-TEQ = | of reporting<br>rnational toxic equivalency factor<br>ernational toxic equivalence<br>• World Health Organistaion toxic equivalency factor<br>= World Health Organisation toxic equivalence | 1 I-TEQ(zero) and V<br>2 I-TEQ(0.5 LOR) ar<br>3 I-TEQ(LOR) and V<br>4 Totals LORs are c<br>5 13C12 Rec(%) = 7 | WHO-TEQ <sub>(zero)</sub> calcul<br>nd WHO-TEQ <sub>(0.5 zero)</sub><br>WHO-TEQ <sub>(LOR)</sub> calcul<br>calculated by multiply<br>The absolute recover<br>both quantitate and | lated treating <lor as="" concentration<br="" zero="">calculated treating <lor 0.5="" as="" concentration<br="" lor="">lated treating <lor as="" concentration<br="" lor="">ing the number of peaks by the individual LOR per compound<br/>y of Isotopically labelled compound added by the Laboratory to<br/>d measure extraction efficiency.</lor></lor></lor> | T = tetra<br>Pe = penta<br>Hx = hexa<br>Hp =hepta<br>O = octa<br>CDD, dioxin = chlo<br>CDF, furan = chlo | prinated dibenzo-p-dioxin<br>inated dibenzofuran |

#### ALSE - Excellence in Analytical Testing



#### **RIGHT SOLUTIONS RIGHT PARTNER**

Project : 12517046

Work Order : ES1990049

ALS Quote Reference : ----



| Method Code EP300 | Laboratory San  | nple ID: | ES1990049001 |          | Qc Lot               | Number:              | 4539275 |        | I                  | Date Sampled:      | 31-Oct-2019    |
|-------------------|-----------------|----------|--------------|----------|----------------------|----------------------|---------|--------|--------------------|--------------------|----------------|
|                   | Client Sample I | D:       | VC08_1.0-1.5 |          | Sample Matrix:       |                      | SOIL    |        | ſ                  | Date Extracted:    |                |
|                   |                 |          |              |          |                      |                      |         |        | I                  | Date Analysed:     | 21-Nov-2019    |
| Compound          | Conc            | LOR      | WHO-TEF      | WHO-TEQ1 | WHO-TEQ <sub>2</sub> | WHO-TEQ <sub>3</sub> | I-TEF   | I-TEQ1 | I-TEQ <sub>2</sub> | I-TEQ <sub>3</sub> | 13 <b>C</b> 12 |
|                   | pg/g            | pg/g     |              | (zero)   | (0.5 LOR)            | (LOR)                |         | (zero) | (0.5 LOR)          | (LOR)              | Rec(%)         |
| 2378-TCDD         | <0.5            | 0.5      | 1            | 0.00     | 0.25                 | 0.50                 | 1       | 0.00   | 0.25               | 0.50               | 102.8          |
| 12378-PeCDD       | 3.0             | 2.5      | 1            | 3.04     | 3.04                 | 3.04                 | 0.5     | 1.52   | 1.52               | 1.52               | 127.3          |
| 123478-HxCDD      | 3.8             | 2.5      | 0.1          | 0.38     | 0.38                 | 0.38                 | 0.1     | 0.38   | 0.38               | 0.38               | 58.5           |
| 123678-HxCDD      | 6.0             | 2.5      | 0.1          | 0.60     | 0.60                 | 0.60                 | 0.1     | 0.60   | 0.60               | 0.60               | 77.5           |
| 123789-HxCDD      | 11.3            | 2.5      | 0.1          | 1.13     | 1.13                 | 1.13                 | 0.1     | 1.13   | 1.13               | 1.13               | -              |
| 1234678-HpCDD     | 170.0           | 2.5      | 0.01         | 1.70     | 1.70                 | 1.70                 | 0.01    | 1.70   | 1.70               | 1.70               | 80.8           |
| OCDD              | 19100.0         | 10.0     | 0.0003       | 5.73     | 5.73                 | 5.73                 | 0.001   | 19.10  | 19.10              | 19.10              | 84.5           |
| 2378-TCDF         | <0.5            | 0.5      | 0.1          | 0.00     | 0.02                 | 0.05                 | 0.1     | 0.00   | 0.02               | 0.05               | 87.0           |
| 12378-PeCDF       | <2.5            | 2.5      | 0.03         | 0.00     | 0.04                 | 0.07                 | 0.05    | 0.00   | 0.06               | 0.12               | 113.3          |
| 23478-PeCDF       | <2.5            | 2.5      | 0.3          | 0.00     | 0.37                 | 0.75                 | 0.5     | 0.00   | 0.62               | 1.25               | 116.1          |
| 123478-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 57.5           |
| 123678-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 79.4           |
| 234678-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 77.5           |
| 123789-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25               | 91.4           |
| 1234678-HpCDF     | <2.5            | 2.5      | 0.01         | 0.00     | 0.01                 | 0.02                 | 0.01    | 0.00   | 0.01               | 0.02               | 60.6           |
| 1234789-HpCDF     | <2.5            | 2.5      | 0.01         | 0.00     | 0.01                 | 0.02                 | 0.01    | 0.00   | 0.01               | 0.02               | 97.0           |
| OCDF              | <5.0            | 5.0      | 0.0003       | 0.00     | 0.00                 | 0.00                 | 0.001   | 0.00   | 0.00               | 0.00               | -              |
| Total TEQ         | -               | -        | -            | 12.58    | 13.79                | 15.01                | -       | 24.43  | 25.92              | 27.41              | -              |

| Group Totals  | Conc    | LOR4 | No. of Peaks |
|---------------|---------|------|--------------|
|               | pg/g    | pg/g |              |
| Tetra-Dioxins | 474.0   | 1.5  | 3            |
| Penta-Dioxins | 129.0   | 15.0 | 6            |
| Hexa-Dioxins  | 708.0   | 17.5 | 7            |
| Hepta-Dioxins | 1160.0  | 5.0  | 2            |
| Octa-Dioxin   | 19100.0 | 10.0 | 1            |
| Tetra-Furans  | <0.5    | 0.5  | 1            |
| Penta-Furans  | <2.5    | 2.5  | 1            |
| Hexa-Furans   | <2.5    | 2.5  | 1            |
| Hepta-Furans  | <7.5    | 7.5  | 3            |
| Octa-Furan    | <5.0    | 5.0  | 1            |
| S PCDD/Fs     | 21571.0 | ]    |              |

Project : 12517046

Work Order : ES1990049

ALS Quote Reference : ----



| Method Code EP300 | Laboratory Sar  | nple ID: | ES1990049002 | 0049002 Qc Lot Number: 4539275 |                      | Γ                    | Date Sampled: | 31-Oct-2019 |                    |                    |                |
|-------------------|-----------------|----------|--------------|--------------------------------|----------------------|----------------------|---------------|-------------|--------------------|--------------------|----------------|
|                   | Client Sample I | D:       | VC12_0.0-0.5 |                                | Sample Matrix:       |                      | SOIL          |             | [                  | Date Extracted:    | 21-Nov-2019    |
|                   |                 |          |              |                                |                      |                      |               |             | [                  | Date Analysed:     | 21-Nov-2019    |
| Compound          | Conc            | LOR      | WHO-TEF      | WHO-TEQ1                       | WHO-TEQ <sub>2</sub> | WHO-TEQ <sub>3</sub> | I-TEF         | I-TEQ1      | I-TEQ <sub>2</sub> | I-TEQ <sub>3</sub> | 13 <b>C</b> 12 |
|                   | pg/g            | pg/g     |              | (zero)                         | (0.5 LOR)            | (LOR)                |               | (zero)      | (0.5 LOR)          | (LOR)              | Rec(%)         |
| 2378-TCDD         | 1.8             | 0.5      | 1            | 1.78                           | 1.78                 | 1.78                 | 1             | 1.78        | 1.78               | 1.78               | 98.9           |
| 12378-PeCDD       | 3.4             | 2.5      | 1            | 3.42                           | 3.42                 | 3.42                 | 0.5           | 1.71        | 1.71               | 1.71               | 106.7          |
| 123478-HxCDD      | 4.4             | 2.5      | 0.1          | 0.44                           | 0.44                 | 0.44                 | 0.1           | 0.44        | 0.44               | 0.44               | 58.7           |
| 123678-HxCDD      | 13.1            | 2.5      | 0.1          | 1.31                           | 1.31                 | 1.31                 | 0.1           | 1.31        | 1.31               | 1.31               | 73.8           |
| 123789-HxCDD      | 13.4            | 2.5      | 0.1          | 1.34                           | 1.34                 | 1.34                 | 0.1           | 1.34        | 1.34               | 1.34               | -              |
| 1234678-HpCDD     | 301.0           | 2.5      | 0.01         | 3.01                           | 3.01                 | 3.01                 | 0.01          | 3.01        | 3.01               | 3.01               | 79.9           |
| OCDD              | 15300.0         | 10.0     | 0.0003       | 4.59                           | 4.59                 | 4.59                 | 0.001         | 15.30       | 15.30              | 15.30              | 78.8           |
| 2378-TCDF         | 1.9             | 0.5      | 0.1          | 0.19                           | 0.19                 | 0.19                 | 0.1           | 0.19        | 0.19               | 0.19               | 85.3           |
| 12378-PeCDF       | <2.5            | 2.5      | 0.03         | 0.00                           | 0.04                 | 0.08                 | 0.05          | 0.00        | 0.06               | 0.13               | 94.2           |
| 23478-PeCDF       | <2.5            | 2.5      | 0.3          | 0.00                           | 0.38                 | 0.75                 | 0.5           | 0.00        | 0.63               | 1.25               | 103.6          |
| 123478-HxCDF      | 3.9             | 2.5      | 0.1          | 0.39                           | 0.39                 | 0.39                 | 0.1           | 0.39        | 0.39               | 0.39               | 52.4           |
| 123678-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00                           | 0.13                 | 0.25                 | 0.1           | 0.00        | 0.13               | 0.25               | 74.9           |
| 234678-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00                           | 0.13                 | 0.25                 | 0.1           | 0.00        | 0.13               | 0.25               | 72.6           |
| 123789-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00                           | 0.13                 | 0.25                 | 0.1           | 0.00        | 0.13               | 0.25               | 83.7           |
| 1234678-HpCDF     | 47.5            | 2.5      | 0.01         | 0.48                           | 0.48                 | 0.48                 | 0.01          | 0.48        | 0.48               | 0.48               | 58.6           |
| 1234789-HpCDF     | 2.8             | 2.5      | 0.01         | 0.03                           | 0.03                 | 0.03                 | 0.01          | 0.03        | 0.03               | 0.03               | 86.3           |
| OCDF              | 137.0           | 5.0      | 0.0003       | 0.04                           | 0.04                 | 0.04                 | 0.001         | 0.14        | 0.14               | 0.14               | -              |
| Total TEQ         | -               | -        | -            | 17.01                          | 17.79                | 18.58                | -             | 26.10       | 27.16              | 28.23              | -              |

| Group Totals  | Conc    | LOR4 | No. of Peaks |
|---------------|---------|------|--------------|
|               | pg/g    | pg/g |              |
| Tetra-Dioxins | 95.8    | 6.5  | 13           |
| Penta-Dioxins | 96.5    | 20.0 | 8            |
| Hexa-Dioxins  | 459.0   | 17.5 | 7            |
| Hepta-Dioxins | 894.0   | 5.0  | 2            |
| Octa-Dioxin   | 15300.0 | 10.0 | 1            |
| Tetra-Furans  | 18.7    | 9.0  | 18           |
| Penta-Furans  | <25.0   | 25.0 | 10           |
| Hexa-Furans   | 54.1    | 27.5 | 11           |
| Hepta-Furans  | 128.0   | 10.0 | 4            |
| Octa-Furan    | 137.0   | 5.0  | 1            |
| S PCDD/Fs     | 17183.1 |      |              |





|          | QUALII                                                            | Y CO         | NTROL REPOR                      |              |             |
|----------|-------------------------------------------------------------------|--------------|----------------------------------|--------------|-------------|
| Client   | GHD PTY LTD                                                       | Laboratory : | Environmental Division Sydney    |              | 1 of 5      |
| Contact  | SARAH ECCLESHALL                                                  | Contact      | CUSTOMER.SERVICES.ES             | Work Order:  | FS1990049   |
| Address: | LEVEL 15, 133 CASTLEREAGH<br>STREET SYDNEY<br>NSW, AUSTRALIA 2000 | Address:     | Smithfield NSW 2164<br>Australia | Work Order.  | 201000040   |
| Project  | 12517046                                                          | Quote #      |                                  | Received:    | 1 Nov 2019  |
| Order #  | - Not provided -                                                  |              |                                  | Issued       | 22 Nov 2019 |
| С-О-С #  | - Not provided -                                                  |              |                                  |              |             |
| Site     | - Not provided -                                                  |              |                                  |              |             |
| E-mail   | sarah.eccleshall@ghd.com                                          | E-mail       | ALSEnviro.Sydney@alsglobal.co    | Number of Sa | mples       |
| Phone    | 9239 7100                                                         | Phone        | +61-2-8784 8555                  | Received:    | 2           |
| Fax      | 9239 7199                                                         | Fax          | +61-2-8784 8500                  | Analysed:    | 4           |

Samples analysed 'as received', results reported on 'dry weight' basis.

### ALSE - Excellence in Analytical Testing

|           | NATA Accredited Laboratory - 825                | This document<br>this report and a<br>carried out in co | This document has been digitally signed by those names that appear on<br>this report and are the authorised signatories. Digital signing has been<br>carried out in compliance with procedures specified in 21 CFR Part 11. |                                         |  |  |
|-----------|-------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| NAIA      | accordance with NATA's                          | Signatory                                               | Position                                                                                                                                                                                                                    | Department                              |  |  |
|           | Accredited for compliance<br>with ISO/IED 17025 | Peter Blow                                              | HRMS Chemist                                                                                                                                                                                                                | GC/HR-MS - NATA 825 (818 -<br>Brisbane) |  |  |
| Environme | tal 💭 👘 👘                                       | www.alsg                                                | lobal.com                                                                                                                                                                                                                   |                                         |  |  |

**RIGHT SOLUTIONS RIGHT PARTNER** 



# **Quality Control Report** Laboratory Duplicates (DUP)

|                        | Original Result |      | Duplicate Result |      | _    |
|------------------------|-----------------|------|------------------|------|------|
| Laboratory Sample Id : | EP1990013001    |      | 5592649-026      |      |      |
| Client Sample Id :     | Anonymous       |      | Anonymous        |      |      |
| Sample Mass (g) :      | 10.0            |      | 10.0             |      |      |
| Qc Lot Number :        | 4539275         |      | 4539275          |      |      |
| Moisture Content (%) : |                 |      |                  |      |      |
| Compound               | Conc            | LOR  | Conc             | LOR  | RPD  |
|                        | pg/g            | pg/g | pg/g             | pg/g | (%)  |
| 2378-TCDD              | <0.5            | 0.5  | <0.5             | 0.5  | -    |
| 12378-PeCDD            | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123478-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123678-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123789-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 1234678-HpCDD          | 20.8            | 2.5  | 20.7             | 2.5  | 0.5  |
| OCDD                   | 196.0           | 10.0 | 192.0            | 10.0 | 2.1  |
| 2378-TCDF              | 1.3             | 0.5  | 0.7              | 0.5  | 60.0 |
| 12378-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 23478-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123478-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 234678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123789-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 1234678-HpCDF          | 4.2             | 2.5  | 4.0              | 2.5  | 4.9  |
| 1234789-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| OCDF                   | 9.3             | 5.0  | 8.4              | 5.0  | 10.2 |

| Group Totals  | Conc  | LOR  | Conc  | LOR  | RPD  |
|---------------|-------|------|-------|------|------|
|               | pg/g  | pg/g | pg/g  | pg/g | (%)  |
| Tetra-Dioxins | <0.5  | 0.5  | <0.5  | 0.5  | -    |
| Penta-Dioxins | <15.0 | 15.0 | <20.0 | 20.0 | -    |
| Hexa-Dioxins  | <17.5 | 17.5 | <20.0 | 20.0 | -    |
| Hepta-Dioxins | 38.3  | 5.0  | 39.9  | 5.0  | 4.1  |
| Octa-Dioxin   | 196.0 | 10.0 | 192.0 | 10.0 | 2.1  |
| Tetra-Furans  | 34.5  | 9.0  | 16.5  | 9.0  | 70.6 |
| Penta-Furans  | <25.0 | 25.0 | <29.9 | 29.9 | -    |
| Hexa-Furans   | <30.0 | 30.0 | <27.4 | 27.4 | -    |
| Hepta-Furans  | 10.1  | 10.0 | 10.2  | 10.0 | 1.0  |
| Octa-Furan    | 9.3   | 5.0  | 8.4   | 5.0  | 10.2 |
| S PCDD/Fs     | 288.2 |      | 267.0 |      | 7.6  |

<u>Notes</u> LOR = Limit of reporting T = tetra Pe = penta Hx = hexa Hp = hepta O = octa CDD, dioxin = chlorinated debenzo-p-dioxin CDF, furan = chlorinated debenzofuran RPD = relative per cent difference Permitted ranges for RPD are depencant upon the magnitude of the result in comparison to the LOR. Result < 10x LOR, no limit, result between 10x and 20x LOR, 50%; result > 20x LOR, 20% - = Where results are less than the LOR, no RPD is reported.



# **Quality Control Report** Laboratory Duplicates (DUP)

|                        | Original Result |      | Duplicate Result |      | _   |
|------------------------|-----------------|------|------------------|------|-----|
| Laboratory Sample Id : | ES1990048001    |      | 5592649-007      |      |     |
| Client Sample Id :     | Anonymous       |      | Anonymous        |      |     |
| Sample Mass (g) :      | 10.0            |      | 10.0             |      |     |
| Qc Lot Number :        | 4539275         |      | 4539275          |      |     |
| Moisture Content (%) : |                 |      |                  |      |     |
| Compound               | Conc            | LOR  | Conc             | LOR  | RPD |
|                        | pg/g            | pg/g | pg/g             | pg/g | (%) |
| 2378-TCDD              | <0.5            | 0.5  | <0.5             | 0.5  | -   |
| 12378-PeCDD            | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123478-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123678-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123789-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 1234678-HpCDD          | 67.0            | 2.5  | 64.3             | 2.5  | 4.1 |
| OCDD                   | 23300.0         | 10.0 | 23100.0          | 10.0 | 0.9 |
| 2378-TCDF              | <0.5            | 0.5  | <0.5             | 0.5  | -   |
| 12378-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 23478-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123478-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 234678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123789-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 1234678-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 1234789-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| OCDF                   | <5.0            | 5.0  | <5.0             | 5.0  | -   |

| Group Totals  | Conc    | LOR  | Conc    | LOR  | RPD  |
|---------------|---------|------|---------|------|------|
|               | pg/g    | pg/g | pg/g    | pg/g | (%)  |
| Tetra-Dioxins | <6.5    | 6.5  | <6.5    | 6.5  | -    |
| Penta-Dioxins | <15.0   | 15.0 | <20.0   | 20.0 | -    |
| Hexa-Dioxins  | 19.7    | 7.5  | 23.7    | 17.5 | 18.4 |
| Hepta-Dioxins | 144.0   | 5.0  | 133.0   | 5.0  | 7.9  |
| Octa-Dioxin   | 23300.0 | 10.0 | 23100.0 | 10.0 | 0.9  |
| Tetra-Furans  | <0.5    | 0.5  | <0.5    | 0.5  | -    |
| Penta-Furans  | <2.5    | 2.5  | <2.5    | 2.5  | -    |
| Hexa-Furans   | <2.5    | 2.5  | <2.5    | 2.5  | -    |
| Hepta-Furans  | <2.5    | 2.5  | <2.5    | 2.5  | -    |
| Octa-Furan    | <5.0    | 5.0  | <5.0    | 5.0  | -    |
| S PCDD/Fs     | 23463.7 |      | 23256.7 |      | 0.9  |

<u>Notes</u> LOR = Limit of reporting T = tetra Pe = penta Hx = hexa Hp = hepta O = octa CDD, dioxin = chlorinated debenzo-p-dioxin CDF, furan = chlorinated debenzofuran RPD = relative per cent difference Permitted ranges for RPD are depencant upon the magnitude of the result in comparison to the LOR. Result < 10x LOR, no limit, result between 10x and 20x LOR, 50%; result > 20x LOR, 20% - = Where results are less than the LOR, no RPD is reported.

: ES1990049

: -----



# **Quality Control Results** Laboratory Control Samples(LCS)

| Laboratory Sample Id : | 5592649-010      |         |         |                |         |         |
|------------------------|------------------|---------|---------|----------------|---------|---------|
| QC Lot Number :        | 4539275          |         |         |                |         |         |
| Sample Name :          | BCR 529 Sandy so | il      |         |                |         |         |
| Compound               | Conc             | Lower 1 | Upper 1 | 13 <b>C</b> 12 | Lower 2 | Upper 2 |
|                        | pg/g             | pg/g    | pg/g    | Rec(%)         | (%)     | (%)     |
| 2378-TCDD              | 4130.0           | 3900    | 5100    | 95.8           | 25      | 164     |
| 12378-PeCDD            | 470.0            | 390     | 490     | 96.5           | 25      | 181     |
| 123478-HxCDD           | 1390.0           | 900     | 1500    | 65.7           | 32      | 141     |
| 123678-HxCDD           | 5820.0           | 4500    | 6300    | 68.3           | 28      | 130     |
| 123789-HxCDD           | 3380.0           | 2600    | 3400    | -              | -       | -       |
| 2378-TCDF              | 70.6             | 65      | 91      | 85.6           | 24      | 169     |
| 12378-PeCDF            | 158.0            | 110     | 170     | 99.3           | 24      | 185     |
| 23478-PeCDF            | 360.0            | 290     | 430     | 102.5          | 21      | 178     |
| 123478-HxCDF           | 3630.0           | 2900    | 3900    | 62.4           | 26      | 152     |
| 123678-HxCDF           | 1220.0           | 940     | 1240    | 85.0           | 26      | 123     |
| 234678-HxCDF           | 401.0            | 330     | 410     | 85.2           | 28      | 136     |
| 123789-HxCDF           | 566.0            | 12      | 32      | 102.3          | 29      | 147     |

<u>Notes</u>

1. Acceptable concentration limits are as quoted on the analytical certificate for the cerified reference material

2. Acceptable recovery limits are derived from EPA1613 Revision B

T = tetra

Pe = penta

Hx = hexa Hp = hepta

O = octa

Work Order : ES1990049 ALS Quote Reference : ----



# Quality Control Report Method Blank (MB)

| Laboratory Sample<br>Qc Lot Number : | <b>9 ID:</b> 55<br>45 | 592649-001<br>539275 |            |          |                      |          |          | Sample Ma<br>Date Extrac<br>Date Analy | trix:<br>:ted:<br>sed: | 2      | SOIL<br>21-Nov-2019<br>21-Nov-2019 |
|--------------------------------------|-----------------------|----------------------|------------|----------|----------------------|----------|----------|----------------------------------------|------------------------|--------|------------------------------------|
| Compound                             | Conc                  | LOR                  | WHO-TEF    | WHO-TEQ1 | WHO-TEQ <sub>2</sub> | WHO-TEQ3 | I-TEF    | I-TEQ1                                 | I-TEQ <sub>2</sub>     | I-TEQ₃ | 13C12                              |
|                                      | pg/g                  | pg/g                 |            | (zero)   | (0.5 LOR)            | (LOR)    |          | (zero)                                 | (0.5 LOR)              | (LOR)  | Rec(%)                             |
| 2378-TCDD                            | <0.5                  | 0.5                  | 1          | 0.00     | 0.25                 | 0.50     | 1        | 0.00                                   | 0.25                   | 0.50   | 90.7                               |
| 12378-PeCDD                          | <2.5                  | 2.5                  | 1          | 0.00     | 1.25                 | 2.50     | 0.5      | 0.00                                   | 0.63                   | 1.25   | 107.4                              |
| 123478-HxCDD                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 57.1                               |
| 123678-HxCDD                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 79.6                               |
| 123789-HxCDD                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | -                                  |
| 1234678-HpCD                         | <2.5                  | 2.5                  | 0.01       | 0.00     | 0.01                 | 0.03     | 0.01     | 0.00                                   | 0.01                   | 0.03   | 66.6                               |
| OCDD                                 | <10.0                 | 10.0                 | 0.0003     | 0.00     | 0.00                 | 0.00     | 0.001    | 0.00                                   | 0.01                   | 0.01   | 38.6                               |
| 2378-TCDF                            | <0.5                  | 0.5                  | 0.1        | 0.00     | 0.03                 | 0.05     | 0.1      | 0.00                                   | 0.03                   | 0.05   | 95.6                               |
| 12378-PeCDF                          | <2.5                  | 2.5                  | 0.03       | 0.00     | 0.04                 | 0.08     | 0.05     | 0.00                                   | 0.06                   | 0.13   | 102.0                              |
| 23478-PeCDF                          | <2.5                  | 2.5                  | 0.3        | 0.00     | 0.38                 | 0.75     | 0.5      | 0.00                                   | 0.63                   | 1.25   | 104.1                              |
| 123478-HxCDF                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 50.5                               |
| 123678-HxCDF                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 81.5                               |
| 234678-HxCDF                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 73.9                               |
| 123789-HxCDF                         | <2.5                  | 2.5                  | 0.1        | 0.00     | 0.13                 | 0.25     | 0.1      | 0.00                                   | 0.13                   | 0.25   | 69.5                               |
| 1234678-HpCD                         | <2.5                  | 2.5                  | 0.01       | 0.00     | 0.01                 | 0.03     | 0.01     | 0.00                                   | 0.01                   | 0.03   | 50.8                               |
| 1234789-HpCD                         | <2.5                  | 2.5                  | 0.01       | 0.00     | 0.01                 | 0.03     | 0.01     | 0.00                                   | 0.01                   | 0.03   | 65.1                               |
| OCDF                                 | <5.0                  | 5.0                  | 0.0003     | 0.00     | 0.00                 | 0.00     | 0.001    | 0.00                                   | 0.00                   | 0.01   | -                                  |
|                                      |                       | Γ                    | S TEQ(WHO) | 0.00     | 2.89                 | 5.72     | S TEQ(I) | 0.00                                   | 2.55                   | 5.04   | ]                                  |

| Group Totals  | Conc  | LOR4 | No. of |
|---------------|-------|------|--------|
|               | pg/g  | pg/g | Peaks  |
| Tetra-Dioxins | <0.5  | 0.5  | 1      |
| Penta-Dioxins | <2.5  | 2.5  | 1      |
| Hexa-Dioxins  | <2.5  | 2.5  | 1      |
| Hepta-Dioxins | <2.5  | 2.5  | 1      |
| Octa-Dioxin   | <10.0 | 10.0 | 1      |
| Tetra-Furans  | <0.5  | 0.5  | 1      |
| Penta-Furans  | <2.5  | 2.5  | 1      |
| Hexa-Furans   | <2.5  | 2.5  | 1      |
| Hepta-Furans  | <2.5  | 2.5  | 1      |
| Octa-Furan    | <5.0  | 5.0  | 1      |
| S PCDD/Fs     | 0.00  |      |        |

LOR = Limit of reporting I-TEF = International toxic equivalency factor I-TEQ = International toxic equivalence (pg/g) WHO-TEF = World Health Organisation toxic equivalency factor WHO-TEQ = World Health Organisation toxic equivalence (pg/g) T = tetra Pe = penta Hx = hexa Hp =hepta O = octa CDD, dioxin = chlorinated dibenzo-p-dioxin CDF, furan = chlorinated dibenzofuran 1 I-TEQ(zero) and WHO-TEQ(zero) calculated treating <LOR as zero concentration (pg/g) 2 I-TEQ(LOR) and WHO-TEQ(LOR) calculated treating <LOR as LOR concentration (pg/g) 3 I-TEQ(LOR) and WHO-TEQ(LOR) calculated treating <LOR as LOR concentration (pg/g)

4 Totals LORs are calculated by mutiplying the number of peaks by the individual LOR per compound

<u>Notes</u>

From: <u>Sarah.Eccleshall@ghd.com</u> [mailto:Sarah.Eccleshall@ghd.com] Sent: Thursday, 12 December 2019 5:56 AM To: Angus Harding <<u>angus.harding@ALSGlobal.com</u>> Subject: RE: [EXTERNAL] - Additional analyses for project 12517046

Hi Angus,

One more analysis request.

Can the following three samples which had dioxin extract as part of work order attached please be analysed for dioxins.

VC03\_0.0-0.5 VC10\_0.0-0.5 VC02\_0.0-0.5

Thanks,

· .

Sarah Eccleshall PhD MSc BSc Hons Graduate Environmental Scientist Contamination & Environmental Management



Environmental Division

Brisbane

Work Order

EB1990410

Telephone : +61-7-3243 7222





# SAMPLE RECEIPT NOTIFICATION (SRN)

#### **Comprehensive Report**

| Client<br>Contact<br>Address                 | GHD PTY LTD<br>CARMEN YI<br>LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Laboratory<br>Contact<br>Address  | <ul> <li>Environmental Division Brisbane</li> <li>Customer Services Brisbane</li> <li>2 Byth Street Stafford QLD Australia<br/>4053</li> </ul> |
|----------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| E-mail<br>Telephone<br>Facsimile             | : carmen.yi@ghd.com<br>: +61 02 9239 7100<br>: +61 02 9239 7199                               | E-mail<br>Telephone<br>Facsimile  | : ALSEnviro.Brisbane@alsglobal.com<br>: +61 7 3243 7222<br>: +61 7 3243 7218                                                                   |
| Project                                      | : 12517046                                                                                    | Page                              | : 1 of 2                                                                                                                                       |
| Order number<br>C-O-C number<br>Site         | :<br>:<br>:                                                                                   | Quote number                      | :                                                                                                                                              |
| Sampler                                      | Sarah Eccleshall                                                                              | QC Level                          | ENEPM 2013 B3 & ALS QC Standard                                                                                                                |
| Dates                                        |                                                                                               |                                   |                                                                                                                                                |
| Date Samples Receive<br>Client Requested Due | ed         : 12-DEC-2019           Date         : 27-DEC-2019                                 | Issue Date<br>Scheduled Reporting | : 18-DEC-2019 08:17<br>Date : 27-DEC-2019                                                                                                      |

# Delivery Details

| Delivery Details     |           |                         |     |
|----------------------|-----------|-------------------------|-----|
| Mode of Delivery     | Carrier   | Temperature             | :   |
| No. of coolers/boxes | : Rebatch | No. of samples received | : 1 |
| Security Seal        | : Intact. | No. of samples analysed | : 1 |

#### General Comments

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- This work order has been created to rebatch samples from ES1936029
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' etc. suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to John Pickering (Samples.Brisbane@alsglobal.com)
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958),
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Address 2 Byth Street Stafford QLD Australia 4053 | PHONE +61-7-3243 7222 | Facsimile +61-7-3243 7218 Environmental Division Brisbane ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Environmental 🔔

www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below. EB1990410-001 : 30-OCT-2019 22:15 : VC03\_0.0-0.5 - ES1936029\_055

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the MS - Combined laboratory for processing purposes and will be shown bracketed without a time component.

#### Matrix: SOIL

| date is provided, the sampling date will be assumed by the<br>laboratory for processing purposes and will be shown<br>bracketed without a time component.<br>Matrix: SOIL |                                |                |        |                |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|--------|----------------|--|--|
| Laboratory sample<br>ID                                                                                                                                                   | Client sampling<br>date / time | Client samp    | ole ID | SOIL - Dioxins |  |  |
| EB1990410-001                                                                                                                                                             | 30-OCT-2019 22:15              | VC03_0.0-0.5 E | S1936  | 1              |  |  |

### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### **Requested Deliverables**

#### **CARMEN YI**

| - A4 - AU Sample Receipt Notification - Environmental HT (SRN  | Email | carmen.yi@ghd.com        |
|----------------------------------------------------------------|-------|--------------------------|
| - A4 - AU Tax Invoice ( INV )                                  | Email | carmen.yi@ghd.com        |
| - AU QC Report - DIOXINS/HRMS ( DQCNA )                        | Email | carmen.yi@ghd.com        |
| - Chain of Custody (CoC) ( COC )                               | Email | carmen.yi@ghd.com        |
| - EDI Format - ENMRG (ENMRG)                                   | Email | carmen.yi@ghd.com        |
| - EDI Format - ESDAT ( ESDAT )                                 | Email | carmen.yi@ghd.com        |
| LAB REPORTS                                                    |       | , 20                     |
| - A4 - AU Sample Receipt Notification - Environmental HT ( SRN | Email | labreports@ghd.com       |
| - AU QC Report - DIOXINS/HRMS ( DQCNA )                        | Email | labreports@ghd.com       |
| - Chain of Custody (CoC) ( COC )                               | Email | labreports@ghd.com       |
| - EDI Format - ENMRG (ENMRG)                                   | Email | labreports@ghd.com       |
| - EDI Format - ESDAT ( ESDAT )                                 | Email | labreports@ghd.com       |
| SARAH ECCLESHALL                                               |       |                          |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN  | Email | sarah.eccleshall@ghd.com |
| - AU QC Report - DIOXINS/HRMS ( DQCNA )                        | Email | sarah.eccleshall@ghd.com |
| - Chain of Custody (CoC) ( COC )                               | Email | sarah.eccleshall@ghd.com |
| - EDI Format - ENMRG (ENMRG)                                   | Email | sarah.eccleshall@ghd.com |
| - EDI Format - ESDAT ( ESDAT )                                 | Email | sarah.eccleshall@ghd.com |
| THE ACCOUNTS PAYABLE (Brisbane)                                |       |                          |
| - A4 - AU Tax Invoice ( INV )                                  | Email | ap-fss@ghd.com           |
|                                                                |       |                          |





|                                                                                                    |                                                                                                                                                                                                                                                     | CE                                                                                                                                     | R T IF IC A                                                                                                                                         | ATE OF ANALYSIS                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |                                                  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Client<br>Contact                                                                                  | GHD PTY LTD<br>LAB REPORTS                                                                                                                                                                                                                          |                                                                                                                                        | Laboratory :<br>Contact                                                                                                                             | Environmental Division Brisbane<br>CUSTOMER.SERVICES.EB                                                                                                                                                                                                                                                                                                           | Work Order:                                                                                                | 1 of 2<br>EB1990410                              |
| Address:                                                                                           | LEVEL 15, 133 CASTLEREAGH STREET SYD<br>NSW, AUSTRALIA 2000                                                                                                                                                                                         | IEY                                                                                                                                    | Address:                                                                                                                                            | 2 Byth Street<br>Stafford QLD 4053<br>Australia                                                                                                                                                                                                                                                                                                                   |                                                                                                            |                                                  |
| Project<br>Order #<br>C-O-C #                                                                      | 12517046<br>- Not provided -<br>- Not provided -                                                                                                                                                                                                    |                                                                                                                                        | Quote #                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                   | Received:<br>Issued                                                                                        | 11 Dec 2019<br>20 Dec 2019                       |
| Site<br>E-mail                                                                                     | - Not provided -<br>labreports@ghd.com                                                                                                                                                                                                              |                                                                                                                                        | E-mail                                                                                                                                              | ALSEnviro.Brisbane@alsglobal.com                                                                                                                                                                                                                                                                                                                                  | Number of Sa                                                                                               | mples                                            |
| Phone<br>Fax                                                                                       | 9239 7100<br>9239 7199                                                                                                                                                                                                                              |                                                                                                                                        | Phone<br>Fax                                                                                                                                        | +61-7-3243 7222<br>+61-7-3243 7218                                                                                                                                                                                                                                                                                                                                | Received:<br>Analysed:                                                                                     | 1<br>2                                           |
| <u>Notes</u><br>LOR = Limit<br>I-TEF = Inte<br>I-TEQ = Inte<br>WHO-TEF =<br>WHO-TEQ =<br>Samples a | of reporting<br>rnational toxic equivalency factor<br>ernational toxic equivalence<br>= World Health Organistaion toxic equivalency factor<br>= World Health Organisation toxic equivalence<br>nalysed 'as received', results reported on 'dry weig | <ol> <li>I -TEQ(zero) and</li> <li>I -TEQ(0.5 LOR)</li> <li>I-TEQ(LOR) and</li> <li>Totals LORs are</li> <li>13C12 Rec(%) =</li> </ol> | d WHO-TEQ(zero) calcu<br>and WHO-TEQ(0.5 zero)<br>d WHO-TEQ(LOR) calcu<br>e calculated by multiply<br>= The absolute recover<br>both quantitate and | lated treating <lor as="" concentration<br="" zero="">calculated treating <lor 0.5="" as="" concentration<br="" lor="">lated treating <lor as="" concentration<br="" lor="">ring the number of peaks by the individual LOR per compound<br/>y of Isotopically labelled compound added by the Laboratory to<br/>d measure extraction efficiency.</lor></lor></lor> | T = tetra<br>Pe = penta<br>Hx = hexa<br>Hp =hepta<br>O = octa<br>CDD, dioxin = chlor<br>CDF, furan = chlor | orinated dibenzo-p-dioxin<br>inated dibenzofuran |

#### ALSE - Excellence in Analytical Testing



#### **RIGHT SOLUTIONS RIGHT PARTNER**

Project : 12517046

Work Order : EB1990410

ALS Quote Reference : ....



| Method Code EP300 | Laboratory Sar | mple ID: | EB1990410001     |           | Qc Lot               | Number:              | 4539552 |        |                    | Date Sampled:   | 30-Oct-2019    |
|-------------------|----------------|----------|------------------|-----------|----------------------|----------------------|---------|--------|--------------------|-----------------|----------------|
|                   | Client Sample  | ID:      | VC03_0.0-0.5ES19 | 36029_055 | Sample               | Matrix:              | SOIL    |        |                    | Date Extracted: | 18-Dec-2019    |
|                   |                |          |                  |           |                      |                      |         |        |                    | Date Analysed:  | 18-Dec-2019    |
| Compound          | Conc           | LOR      | WHO-TEF          | WHO-TEQ1  | WHO-TEQ <sub>2</sub> | WHO-TEQ <sub>3</sub> | I-TEF   | I-TEQ1 | I-TEQ <sub>2</sub> | I-TEQ3          | 13 <b>C</b> 12 |
|                   | pg/g           | pg/g     |                  | (zero)    | (0.5 LOR)            | (LOR)                |         | (zero) | (0.5 LOR)          | (LOR)           | Rec(%)         |
| 2378-TCDD         | 0.9            | 0.5      | 1                | 0.94      | 0.94                 | 0.94                 | 1       | 0.94   | 0.94               | 0.94            | 87.9           |
| 12378-PeCDD       | <2.5           | 2.5      | 1                | 0.00      | 1.23                 | 2.45                 | 0.5     | 0.00   | 0.61               | 1.23            | 103.2          |
| 123478-HxCDD      | <2.5           | 2.5      | 0.1              | 0.00      | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25            | 58.1           |
| 123678-HxCDD      | <2.5           | 2.5      | 0.1              | 0.00      | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25            | 78.8           |
| 123789-HxCDD      | 6.1            | 2.5      | 0.1              | 0.61      | 0.61                 | 0.61                 | 0.1     | 0.61   | 0.61               | 0.61            | -              |
| 1234678-HpCDD     | 192.0          | 2.5      | 0.01             | 1.92      | 1.92                 | 1.92                 | 0.01    | 1.92   | 1.92               | 1.92            | 79.4           |
| OCDD              | 63600.0        | 9.8      | 0.0003           | 19.08     | 19.08                | 19.08                | 0.001   | 63.60  | 63.60              | 63.60           | 82.7           |
| 2378-TCDF         | <0.5           | 0.5      | 0.1              | 0.00      | 0.02                 | 0.05                 | 0.1     | 0.00   | 0.02               | 0.05            | 72.2           |
| 12378-PeCDF       | <2.5           | 2.5      | 0.03             | 0.00      | 0.04                 | 0.07                 | 0.05    | 0.00   | 0.06               | 0.12            | 94.3           |
| 23478-PeCDF       | <2.5           | 2.5      | 0.3              | 0.00      | 0.37                 | 0.74                 | 0.5     | 0.00   | 0.61               | 1.23            | 97.9           |
| 123478-HxCDF      | <2.5           | 2.5      | 0.1              | 0.00      | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25            | 48.7           |
| 123678-HxCDF      | <2.5           | 2.5      | 0.1              | 0.00      | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25            | 80.6           |
| 234678-HxCDF      | <2.5           | 2.5      | 0.1              | 0.00      | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25            | 67.5           |
| 123789-HxCDF      | <2.5           | 2.5      | 0.1              | 0.00      | 0.12                 | 0.25                 | 0.1     | 0.00   | 0.12               | 0.25            | 72.6           |
| 1234678-HpCDF     | <2.5           | 2.5      | 0.01             | 0.00      | 0.01                 | 0.02                 | 0.01    | 0.00   | 0.01               | 0.02            | 59.5           |
| 1234789-HpCDF     | <2.5           | 2.5      | 0.01             | 0.00      | 0.01                 | 0.02                 | 0.01    | 0.00   | 0.01               | 0.02            | 77.6           |
| OCDF              | <4.9           | 4.9      | 0.0003           | 0.00      | 0.00                 | 0.00                 | 0.001   | 0.00   | 0.00               | 0.00            | -              |
| Total TEQ         | -              | -        | -                | 22.55     | 24.96                | 27.38                | -       | 67.07  | 69.14              | 71.22           | -              |

| Group Totals  | Conc    | LOR4 | No. of Peaks |  |
|---------------|---------|------|--------------|--|
|               | pg/g    | pg/g |              |  |
| Tetra-Dioxins | 71.0    | 2.0  | 4            |  |
| Penta-Dioxins | 67.7    | 14.7 | 6            |  |
| Hexa-Dioxins  | 388.0   | 12.3 | 5            |  |
| Hepta-Dioxins | 525.0   | 4.9  | 2            |  |
| Octa-Dioxin   | 63600.0 | 9.8  | 1            |  |
| Tetra-Furans  | <0.5    | 0.5  | 1            |  |
| Penta-Furans  | <2.5    | 2.5  | 1            |  |
| Hexa-Furans   | <2.5    | 2.5  | 1            |  |
| Hepta-Furans  | <2.5    | 2.5  | 1            |  |
| Octa-Furan    | <4.9    | 4.9  | 1            |  |
| S PCDD/Fs     | 64651.7 | ]    |              |  |





|          | QUAL                                                              | $\Pi Y CO$   | NIROL REPOI                     | K 1          |             |
|----------|-------------------------------------------------------------------|--------------|---------------------------------|--------------|-------------|
| Client   | GHD PTY LTD                                                       | Laboratory : | Environmental Division Brisbane |              | 1 of 4      |
| Contact  | LAB REPORTS                                                       | Contact      | CUSTOMER.SERVICES.EB            | Work Order   | FB1990410   |
| Address: | LEVEL 15, 133 CASTLEREAGH<br>STREET SYDNEY<br>NSW, AUSTRALIA 2000 | Address:     | Stafford QLD 4053<br>Australia  | Herk Order.  |             |
| Project  | 12517046                                                          | Quote #      |                                 | Received:    | 11 Dec 2019 |
| Order #  | - Not provided -                                                  |              |                                 | Issued       | 20 Dec 2019 |
| C-O-C #  | - Not provided -                                                  |              |                                 |              |             |
| Site     | - Not provided -                                                  |              |                                 |              |             |
| E-mail   | labreports@ghd.com                                                | E-mail       | ALSEnviro.Brisbane@alsglobal.   | Number of Sa | mples       |
| Phone    | 9239 7100                                                         | Phone        | +61-7-3243 7222                 | Received:    | 1           |
| Fax      | 9239 7199                                                         | Fax          | +61-7-3243 7218                 | Analysed:    | 2           |

Samples analysed 'as received', results reported on 'dry weight' basis.

### ALSE - Excellence in Analytical Testing

|                  | NATA Accredited Laboratory - 825<br>This document is issued in                 | This document has been digitally signed by those names that appear on<br>this report and are the authorised signatories. Digital signing has been<br>carried out in compliance with procedures specified in 21 CFR Part 11. |              |                                         |  |  |
|------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|--|--|
| NAIA             | accordance with NATA's                                                         | Signatory                                                                                                                                                                                                                   | Position     | Department                              |  |  |
| WORLD RECOGNISED | accreditation requirements.<br>Accredited for compliance<br>with ISO/IED 17025 | Peter Blow                                                                                                                                                                                                                  | HRMS Chemist | GC/HR-MS - NATA 825 (818 -<br>Brisbane) |  |  |
| Environme        | tal 🐊                                                                          | www.alsg                                                                                                                                                                                                                    | lobal.com    |                                         |  |  |
|                  | RIGHT SO                                                                       | LUTIONS R                                                                                                                                                                                                                   |              | 1                                       |  |  |



# **Quality Control Report** Laboratory Duplicates (DUP)

|                        | Original Result |      | Duplicate Result |      | _    |
|------------------------|-----------------|------|------------------|------|------|
| Laboratory Sample Id : | EM1990042001    |      | 5593336-007      |      |      |
| Client Sample Id :     | Anonymous       |      | Anonymous        |      |      |
| Sample Mass (g) :      | 10.0            |      | 10.0             |      |      |
| Qc Lot Number :        | 4539553         |      | 4539553          |      |      |
| Moisture Content (%) : |                 |      |                  |      |      |
| Compound               | Conc            | LOR  | Conc             | LOR  | RPD  |
|                        | pg/g            | pg/g | pg/g             | pg/g | (%)  |
| 2378-TCDD              | <0.5            | 0.5  | <0.5             | 0.5  | -    |
| 12378-PeCDD            | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123478-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123678-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123789-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 1234678-HpCDD          | 4.9             | 2.5  | 5.8              | 2.5  | 16.8 |
| OCDD                   | 160.0           | 9.9  | 169.0            | 9.9  | 5.5  |
| 2378-TCDF              | <0.5            | 0.5  | <0.5             | 0.5  | -    |
| 12378-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 23478-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123478-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 234678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123789-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 1234678-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 1234789-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| OCDF                   | <5.0            | 5.0  | <5.0             | 5.0  | -    |

| Group Totals  | Conc  | LOR  | Conc  | LOR  | RPD  |
|---------------|-------|------|-------|------|------|
|               | pg/g  | pg/g | pg/g  | pg/g | (%)  |
| Tetra-Dioxins | 4.4   | 1.5  | 4.3   | 1.5  | 2.3  |
| Penta-Dioxins | 43.6  | 2.5  | 45.5  | 2.5  | 4.3  |
| Hexa-Dioxins  | 25.7  | 14.9 | 24.5  | 12.4 | 4.8  |
| Hepta-Dioxins | 14.5  | 5.0  | 17.3  | 5.0  | 17.6 |
| Octa-Dioxin   | 160.0 | 9.9  | 169.0 | 9.9  | 5.5  |
| Tetra-Furans  | 8.2   | 5.5  | 6.9   | 5.5  | 17.2 |
| Penta-Furans  | <2.5  | 2.5  | <2.5  | 2.5  | -    |
| Hexa-Furans   | <2.5  | 2.5  | <2.5  | 2.5  | -    |
| Hepta-Furans  | <2.5  | 2.5  | <2.5  | 2.5  | -    |
| Octa-Furan    | <5.0  | 5.0  | <5.0  | 5.0  | -    |
| S PCDD/Fs     | 256.4 |      | 267.5 |      | 4.2  |

<u>Notes</u> LOR = Limit of reporting T = tetra Pe = penta Hx = hexa Hp = hepta O = octa CDD, dioxin = chlorinated debenzo-p-dioxin CDF, furan = chlorinated debenzofuran RPD = relative per cent difference Permitted ranges for RPD are dependant upon the magnitude of the result in comparison to the LOR. Pocult < 10x LOP no limit result between 10x and 20x LOP 50% rocult 20x10P 200/

: EB1990410

: ....



# Quality Control Results Laboratory Control Samples(LCS)

| Laboratory Sample Id : | 5593336-010      |         |         |                |         |         |
|------------------------|------------------|---------|---------|----------------|---------|---------|
| QC Lot Number :        | 4539553          |         |         |                |         |         |
| Sample Name :          | BCR 529 Sandy so | il      |         |                |         |         |
| Compound               | Conc             | Lower 1 | Upper 1 | 13 <b>C</b> 12 | Lower 2 | Upper 2 |
|                        | pg/g             | pg/g    | pg/g    | Rec(%)         | (%)     | (%)     |
| 2378-TCDD              | 4130.0           | 3900    | 5100    | 95.8           | 25      | 164     |
| 12378-PeCDD            | 470.0            | 390     | 490     | 96.5           | 25      | 181     |
| 123478-HxCDD           | 1390.0           | 900     | 1500    | 65.7           | 32      | 141     |
| 123678-HxCDD           | 5820.0           | 4500    | 6300    | 68.3           | 28      | 130     |
| 123789-HxCDD           | 3380.0           | 2600    | 3400    | -              | -       | -       |
| 2378-TCDF              | 70.6             | 65      | 91      | 85.6           | 24      | 169     |
| 12378-PeCDF            | 158.0            | 110     | 170     | 99.3           | 24      | 185     |
| 23478-PeCDF            | 360.0            | 290     | 430     | 102.5          | 21      | 178     |
| 123478-HxCDF           | 3630.0           | 2900    | 3900    | 62.4           | 26      | 152     |
| 123678-HxCDF           | 1220.0           | 940     | 1240    | 85.0           | 26      | 123     |
| 234678-HxCDF           | 401.0            | 330     | 410     | 85.2           | 28      | 136     |
| 123789-HxCDF           | 566.0            | 12      | 32      | 102.3          | 29      | 147     |

<u>Notes</u>

1. Acceptable concentration limits are as quoted on the analytical certificate for the cerified reference material

2. Acceptable recovery limits are derived from EPA1613 Revision B

T = tetra

Pe = penta

Hx = hexa

Hp = hepta



# **Quality Control Report** Method Blank (MB)

| Laboratory Sample<br>Qc Lot Number : | e ID: 55<br>45 | 593336-001<br>539553 | I          |         |         |         |          | Sample Ma<br>Date Extrac<br>Date Analy | trix:<br>cted:<br>sed: |        | SOIL<br>18-Dec-2019<br>18-Dec-2019 |
|--------------------------------------|----------------|----------------------|------------|---------|---------|---------|----------|----------------------------------------|------------------------|--------|------------------------------------|
| Compound                             | Conc           | LOR                  | WHO-TEF    | WHO-TEQ | WHO-TEQ | WHO-TEQ | I-TEF    | I-TEQ1                                 | I-TEQ2                 | I-TEQ₃ | 13C12                              |
| •                                    | pg/g           | pg/g                 |            | 1       | 2       | 3       |          | (zero)                                 | (0.5 LOR)              | (LOR)  | Rec(%)                             |
| 2378-TCDD                            | <0.5           | 0.5                  | 1          | 0.00    | 0.25    | 0.50    | 1        | 0.00                                   | 0.25                   | 0.50   | 90.7                               |
| 12378-PeCDD                          | <2.5           | 2.5                  | 1          | 0.00    | 1.25    | 2.50    | 0.5      | 0.00                                   | 0.63                   | 1.25   | 107.4                              |
| 123478-HxCDD                         | <2.5           | 2.5                  | 0.1        | 0.00    | 0.13    | 0.25    | 0.1      | 0.00                                   | 0.13                   | 0.25   | 57.1                               |
| 123678-HxCDD                         | <2.5           | 2.5                  | 0.1        | 0.00    | 0.13    | 0.25    | 0.1      | 0.00                                   | 0.13                   | 0.25   | 79.6                               |
| 123789-HxCDD                         | <2.5           | 2.5                  | 0.1        | 0.00    | 0.13    | 0.25    | 0.1      | 0.00                                   | 0.13                   | 0.25   | -                                  |
| 1234678-HpCD                         | <2.5           | 2.5                  | 0.01       | 0.00    | 0.01    | 0.03    | 0.01     | 0.00                                   | 0.01                   | 0.03   | 66.6                               |
| OCDD                                 | <10.0          | 10.0                 | 0.0003     | 0.00    | 0.00    | 0.00    | 0.001    | 0.00                                   | 0.01                   | 0.01   | 38.6                               |
| 2378-TCDF                            | <0.5           | 0.5                  | 0.1        | 0.00    | 0.03    | 0.05    | 0.1      | 0.00                                   | 0.03                   | 0.05   | 95.6                               |
| 12378-PeCDF                          | <2.5           | 2.5                  | 0.03       | 0.00    | 0.04    | 0.08    | 0.05     | 0.00                                   | 0.06                   | 0.13   | 102.0                              |
| 23478-PeCDF                          | <2.5           | 2.5                  | 0.3        | 0.00    | 0.38    | 0.75    | 0.5      | 0.00                                   | 0.63                   | 1.25   | 104.1                              |
| 123478-HxCDF                         | <2.5           | 2.5                  | 0.1        | 0.00    | 0.13    | 0.25    | 0.1      | 0.00                                   | 0.13                   | 0.25   | 50.5                               |
| 123678-HxCDF                         | <2.5           | 2.5                  | 0.1        | 0.00    | 0.13    | 0.25    | 0.1      | 0.00                                   | 0.13                   | 0.25   | 81.5                               |
| 234678-HxCDF                         | <2.5           | 2.5                  | 0.1        | 0.00    | 0.13    | 0.25    | 0.1      | 0.00                                   | 0.13                   | 0.25   | 73.9                               |
| 123789-HxCDF                         | <2.5           | 2.5                  | 0.1        | 0.00    | 0.13    | 0.25    | 0.1      | 0.00                                   | 0.13                   | 0.25   | 69.5                               |
| 1234678-HpCD                         | <2.5           | 2.5                  | 0.01       | 0.00    | 0.01    | 0.03    | 0.01     | 0.00                                   | 0.01                   | 0.03   | 50.8                               |
| 1234789-HpCD                         | <2.5           | 2.5                  | 0.01       | 0.00    | 0.01    | 0.03    | 0.01     | 0.00                                   | 0.01                   | 0.03   | 65.1                               |
| OCDF                                 | <5.0           | 5.0                  | 0.0003     | 0.00    | 0.00    | 0.00    | 0.001    | 0.00                                   | 0.00                   | 0.01   | -                                  |
|                                      |                |                      | S TEQ(WHO) | 0.00    | 2.89    | 5.72    | S TEQ(I) | 0.00                                   | 2.55                   | 5.04   |                                    |

| Group Totals  | Conc  | LOR4 | No. of |
|---------------|-------|------|--------|
|               | pg/g  | pg/g | Peaks  |
| Tetra-Dioxins | <0.5  | 0.5  | 1      |
| Penta-Dioxins | <2.5  | 2.5  | 1      |
| Hexa-Dioxins  | <2.5  | 2.5  | 1      |
| Hepta-Dioxins | <2.5  | 2.5  | 1      |
| Octa-Dioxin   | <10.0 | 10.0 | 1      |
| Tetra-Furans  | <0.5  | 0.5  | 1      |
| Penta-Furans  | <2.5  | 2.5  | 1      |
| Hexa-Furans   | <2.5  | 2.5  | 1      |
| Hepta-Furans  | <2.5  | 2.5  | 1      |
| Octa-Furan    | <5.0  | 5.0  | 1      |
| S PCDD/Fs     | 0.00  |      |        |

<u>Notes</u> LOR = Limit of reporting I-TEF = International toxic equivalency factor I-TEQ = International toxic equivalence (pg/g) WHO-TEF = World Health Organistaion toxic equivalency factor WHO-TEQ = World Health Organisation toxic equivalence (pg/g) T = tetra Pe = penta Hx = hexa Hp =hepta O = octa CDD, dioxin = chlorinated dibenzo-p-dioxin CDF, furan = chlorinated dibenzofuran 1 I-TEQ(zero) and WHO-TEQ(zero) calculated treating <LOR as zero concentration (pg/g) 2 I-TEQ(0.5 LOR) and WHO-TEQ(0.5 LOR) calculated treating <LOR as 50% LoR concentration (pg/g) 3 I-TEQ(LOR) and WHO-TEQ(LOR) calculated treating <LOR as LoR concentration (pg/g) 4 Totals LORs are calculated by mutiplying the number of peaks by the individual LOR per compound Report version : QC\_NA 3.02 4 of 4





# SAMPLE RECEIPT NOTIFICATION (SRN)

**Comprehensive Report** 

| Work Order                                                                                                                              | : ES19                                                                                                             | 90050                            |                                  |                                                           |                                                                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Client<br>Contact<br>Address                                                                                                            | at : GHD PTY LTD<br>tact : SARAH ECCLESHALL<br>: LEVEL 15, 133 CASTLEREAGH<br>STREET<br>SYDNEY NSW, AUSTRALIA 2000 |                                  | Laboratory<br>Contact<br>Address | : Envi<br>: Cus<br>: 277<br>NSV                           | ironmental Division Sydney<br>tomer Services ES<br>-289 Woodpark Road Smithfield<br>V Australia 2164 |  |
| E-mail         : sarah.eccleshall@ghd.com           Telephone         : +61 02 9239 7100           Facsimile         : +61 02 9239 7199 |                                                                                                                    | E-mail<br>Telephone<br>Facsimile | : ALS<br>: +61<br>: +61          | Enviro.Sydney@alsglobal.com<br>2 8784 8555<br>2 8784 8500 |                                                                                                      |  |
| Project<br>Order number                                                                                                                 | : 19517046<br>·                                                                                                    |                                  | Page                             | : 1 of 2                                                  |                                                                                                      |  |
| C-O-C number<br>Site                                                                                                                    | :                                                                                                                  |                                  | Quote number                     | :                                                         |                                                                                                      |  |
| Sampler                                                                                                                                 | :                                                                                                                  |                                  | QC Level                         | : NEF                                                     | PM 2013 B3 & ALS QC Standard                                                                         |  |
| Dates                                                                                                                                   |                                                                                                                    |                                  |                                  |                                                           |                                                                                                      |  |
| Date Samples Rec                                                                                                                        | eived                                                                                                              | : 12-NOV-2019                    | Issue Date                       |                                                           | : 21-NOV-2019 12:25                                                                                  |  |
| Client Requested [                                                                                                                      | Due Date                                                                                                           | : 29-NOV-2019                    | Scheduled Reporti                | ng Date                                                   | 29-NOV-2019                                                                                          |  |
| Delivery Det                                                                                                                            | ails                                                                                                               |                                  |                                  |                                                           |                                                                                                      |  |
| Mode of Delivery                                                                                                                        |                                                                                                                    | Carrier                          | Temperature                      |                                                           | :                                                                                                    |  |
| No. of coolers/boxe                                                                                                                     | es                                                                                                                 | :                                | No. of samples rec               | eived                                                     | : 3                                                                                                  |  |
| Security Seal                                                                                                                           |                                                                                                                    | : Intact.                        | No. of samples and               | alysed                                                    | : 3                                                                                                  |  |

#### **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Dioxin analysis to be conducted at ALS Brisbane
- This work order is a split from ES1937554 & ES1937483.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

#### Matrix: SOIL

| Matrix: SOIL            | a time component.              | s and will be snow | U<br>RMS - Combined<br>and Furans (SOILS) |
|-------------------------|--------------------------------|--------------------|-------------------------------------------|
| Laboratory sample<br>ID | Client sampling<br>date / time | Client sample ID   | SOIL - H<br>Dioxins a                     |
| ES1990050-001           | 30-OCT-2019 15:00              | VC12_0.0-0.5       | ✓                                         |
| ES1990050-002           | 31-OCT-2019 15:00              | VC10_0.0-0.5       | ✓                                         |
| ES1990050-003           | 30-OCT-2019 15:00              | VC02_0.5-1.0       | <ul> <li>✓</li> </ul>                     |

### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### Requested Deliverables

#### SARAH ECCLESHALL - A4 - AU Sample Receipt Notification - Environmental HT ( SRN Email sarah.eccleshall@ghd.com - AU Certificate of Analysis - DIOXINS/HRMS ( DIONA ) Email sarah.eccleshall@ghd.com - AU QC Report - DIOXINS/HRMS (DQCNA) Email sarah.eccleshall@ghd.com - Chain of Custody (CoC) ( COC ) Email sarah.eccleshall@ghd.com THE ACCOUNTS PAYABLE (Brisbane) - A4 - AU Tax Invoice ( INV ) Email ap-fss@ghd.com





|                                                                                       |                                                                                                                                                                                             | CER                                                                                                             | TIFICA                                                                                                                                    | ATE OF ANALYSIS                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                 |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Client                                                                                | GHD PTY LTD                                                                                                                                                                                 |                                                                                                                 | Laboratory :                                                                                                                              | Environmental Division Sydney                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | 1 of 4                                          |
| Contact                                                                               | SARAH ECCLESHALL                                                                                                                                                                            |                                                                                                                 | Contact                                                                                                                                   | CUSTOMER.SERVICES.ES                                                                                                                                                                                                                                                                                                                                             | Work Order:                                                                                              | ES1990050                                       |
| Address:                                                                              | LEVEL 15, 133 CASTLEREAGH STREET SYDI<br>NSW, AUSTRALIA 2000                                                                                                                                | IEY                                                                                                             | Address:                                                                                                                                  | 277-289 Woodpark Road<br>Smithfield NSW 2164<br>Australia                                                                                                                                                                                                                                                                                                        |                                                                                                          |                                                 |
| Project                                                                               | 19517046                                                                                                                                                                                    |                                                                                                                 | Quote #                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  | Received:                                                                                                | 12 Nov 2019                                     |
| Order #                                                                               | - Not provided -                                                                                                                                                                            |                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                  | Issued                                                                                                   | 27 Nov 2019                                     |
| С-О-С #                                                                               | - Not provided -                                                                                                                                                                            |                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                 |
| Site<br>E-mail                                                                        | - Not provided -<br>sarah.eccleshall@ghd.com                                                                                                                                                |                                                                                                                 | E-mail                                                                                                                                    | ALSEnviro.Sydney@alsglobal.com                                                                                                                                                                                                                                                                                                                                   | Number of Sa                                                                                             | mples                                           |
| Phone                                                                                 | 9239 7100                                                                                                                                                                                   |                                                                                                                 | Phone                                                                                                                                     | +61-2-8784 8555                                                                                                                                                                                                                                                                                                                                                  | Received:                                                                                                | 3                                               |
| Fax                                                                                   | 9239 7199                                                                                                                                                                                   |                                                                                                                 | Fax                                                                                                                                       | +61-2-8784 8500                                                                                                                                                                                                                                                                                                                                                  | Analysed:                                                                                                | 3                                               |
| <u>Notes</u><br>LOR = Limit<br>I-TEF = Inte<br>I-TEQ = Inte<br>WHO-TEF =<br>WHO-TEQ = | of reporting<br>rnational toxic equivalency factor<br>ernational toxic equivalence<br>• World Health Organistaion toxic equivalency factor<br>= World Health Organisation toxic equivalence | 1 I-TEQ(zero) and W<br>2 I-TEQ(0.5 LOR) and<br>3 I-TEQ(LOR) and W<br>4 Totals LORs are ca<br>5 13C12 Rec(%) = T | VHO-TEQ(zero) calcul<br>d WHO-TEQ(0.5 zero)<br>/HO-TEQ(LOR) calcul<br>alculated by multiply<br>he absolute recover<br>both quantitate and | lated treating <lor as="" concentration<br="" zero="">calculated treating <lor 0.5="" as="" concentration<br="" lor="">lated treating <lor as="" concentration<br="" lor="">ing the number of peaks by the individual LOR per compound<br/>y of Isotopically labelled compound added by the Laboratory to<br/>d measure extraction efficiency.</lor></lor></lor> | T = tetra<br>Pe = penta<br>Hx = hexa<br>Hp =hepta<br>O = octa<br>CDD, dioxin = chlo<br>CDF, furan = chlo | rinated dibenzo-p-dioxin<br>inated dibenzofuran |

#### ALSE - Excellence in Analytical Testing



#### **RIGHT SOLUTIONS RIGHT PARTNER**

Project : 19517046

Work Order : ES1990050

ALS Quote Reference : ----



| Method Code EP300 | Laboratory Sar | mple ID:    | ES1990050001 |                    | Qc Lot                            | Number:           | 4539274<br>SOIL |                  | [                   | Date Sampled:                     | 30-Oct-2019                |
|-------------------|----------------|-------------|--------------|--------------------|-----------------------------------|-------------------|-----------------|------------------|---------------------|-----------------------------------|----------------------------|
|                   | Client Sample  | ID:         | VC12_0.0-0.5 |                    | Sample                            | watrix:           | SOIL            |                  | ı<br>I              | Date Extracted:<br>Date Analysed: | 21-Nov-2019<br>21-Nov-2019 |
| Compound          | Conc<br>pg/g   | LOR<br>pg/g | WHO-TEF      | WHO-TEQ1<br>(zero) | WHO-TEQ <sub>2</sub><br>(0.5 LOR) | WHO-TEQ₃<br>(LOR) | I-TEF           | I-TEQ1<br>(zero) | I-TEQ2<br>(0.5 LOR) | I-TEQ₃<br>(LOR)                   | 13C12<br>Rec(%)            |
| 2378-TCDD         | 1.4            | 0.5         | 1            | 1.36               | 1.36                              | 1.36              | 1               | 1.36             | 1.36                | 1.36                              | 100.9                      |
| 12378-PeCDD       | 2.9            | 2.5         | 1            | 2.93               | 2.93                              | 2.93              | 0.5             | 1.47             | 1.47                | 1.47                              | 100.3                      |
| 123478-HxCDD      | 2.7            | 2.5         | 0.1          | 0.27               | 0.27                              | 0.27              | 0.1             | 0.27             | 0.27                | 0.27                              | 61.0                       |
| 123678-HxCDD      | 11.3           | 2.5         | 0.1          | 1.13               | 1.13                              | 1.13              | 0.1             | 1.13             | 1.13                | 1.13                              | 79.2                       |
| 123789-HxCDD      | 10.4           | 2.5         | 0.1          | 1.04               | 1.04                              | 1.04              | 0.1             | 1.04             | 1.04                | 1.04                              | -                          |
| 1234678-HpCDD     | 269.0          | 2.5         | 0.01         | 2.69               | 2.69                              | 2.69              | 0.01            | 2.69             | 2.69                | 2.69                              | 79.6                       |
| OCDD              | 14700.0        | 10.0        | 0.0003       | 4.41               | 4.41                              | 4.41              | 0.001           | 14.70            | 14.70               | 14.70                             | 67.1                       |
| 2378-TCDF         | 1.7            | 0.5         | 0.1          | 0.17               | 0.17                              | 0.17              | 0.1             | 0.17             | 0.17                | 0.17                              | 81.7                       |
| 12378-PeCDF       | <2.5           | 2.5         | 0.03         | 0.00               | 0.04                              | 0.07              | 0.05            | 0.00             | 0.06                | 0.12                              | 95.4                       |
| 23478-PeCDF       | <2.5           | 2.5         | 0.3          | 0.00               | 0.37                              | 0.75              | 0.5             | 0.00             | 0.62                | 1.25                              | 101.9                      |
| 123478-HxCDF      | 3.3            | 2.5         | 0.1          | 0.33               | 0.33                              | 0.33              | 0.1             | 0.33             | 0.33                | 0.33                              | 52.8                       |
| 123678-HxCDF      | <2.5           | 2.5         | 0.1          | 0.00               | 0.12                              | 0.25              | 0.1             | 0.00             | 0.12                | 0.25                              | 77.1                       |
| 234678-HxCDF      | <2.5           | 2.5         | 0.1          | 0.00               | 0.12                              | 0.25              | 0.1             | 0.00             | 0.12                | 0.25                              | 73.2                       |
| 123789-HxCDF      | <2.5           | 2.5         | 0.1          | 0.00               | 0.12                              | 0.25              | 0.1             | 0.00             | 0.12                | 0.25                              | 85.0                       |
| 1234678-HpCDF     | 40.2           | 2.5         | 0.01         | 0.40               | 0.40                              | 0.40              | 0.01            | 0.40             | 0.40                | 0.40                              | 55.2                       |
| 1234789-HpCDF     | <2.5           | 2.5         | 0.01         | 0.00               | 0.01                              | 0.02              | 0.01            | 0.00             | 0.01                | 0.02                              | 88.3                       |
| OCDF              | 111.0          | 5.0         | 0.0003       | 0.03               | 0.03                              | 0.03              | 0.001           | 0.11             | 0.11                | 0.11                              | -                          |
| Total TEQ         | -              | -           | -            | 14.76              | 15.56                             | 16.36             | -               | 23.66            | 24.74               | 25.81                             | -                          |

| Group Totals  | Conc    | LOR4 | No. of Peaks |
|---------------|---------|------|--------------|
|               | pg/g    | pg/g |              |
| Tetra-Dioxins | 58.1    | 6.0  | 12           |
| Penta-Dioxins | 85.8    | 17.5 | 7            |
| Hexa-Dioxins  | 403.0   | 20.0 | 8            |
| Hepta-Dioxins | 811.0   | 5.0  | 2            |
| Octa-Dioxin   | 14700.0 | 10.0 | 1            |
| Tetra-Furans  | 18.7    | 9.0  | 18           |
| Penta-Furans  | <29.9   | 29.9 | 12           |
| Hexa-Furans   | 45.4    | 29.9 | 12           |
| Hepta-Furans  | 113.0   | 10.0 | 4            |
| Octa-Furan    | 111.0   | 5.0  | 1            |
| S PCDD/Fs     | 16346.0 |      |              |

Project : 19517046

Work Order : ES1990050

ALS Quote Reference : ----



| Method Code EP300 | Laboratory Sar<br>Client Sample | nple ID:<br>ID: | ES1990050002<br>VC10_0.0-0.5 |          | Qc Lot<br>Sample     | Number:<br>Matrix:   | 4539274<br>SOIL |        | 1         | Date Sampled:<br>Date Extracted: | 31-Oct-2019<br>21-Nov-2019 |
|-------------------|---------------------------------|-----------------|------------------------------|----------|----------------------|----------------------|-----------------|--------|-----------|----------------------------------|----------------------------|
|                   |                                 |                 |                              |          |                      |                      |                 |        | I         | Date Analysed:                   | 21-Nov-2019                |
| Compound          | Conc                            | LOR             | WHO-TEF                      | WHO-TEQ1 | WHO-TEQ <sub>2</sub> | WHO-TEQ <sub>3</sub> | I-TEF           | I-TEQ1 | I-TEQ2    | I-TEQ <sub>3</sub>               | 13 <b>C</b> 12             |
|                   | pg/g                            | pg/g            |                              | (zero)   | (0.5 LOR)            | (LOR)                |                 | (zero) | (0.5 LOR) | (LOR)                            | Rec(%)                     |
| 2378-TCDD         | <0.5                            | 0.5             | 1                            | 0.00     | 0.25                 | 0.50                 | 1               | 0.00   | 0.25      | 0.50                             | 93.3                       |
| 12378-PeCDD       | <2.5                            | 2.5             | 1                            | 0.00     | 1.25                 | 2.49                 | 0.5             | 0.00   | 0.62      | 1.25                             | 93.3                       |
| 123478-HxCDD      | <2.5                            | 2.5             | 0.1                          | 0.00     | 0.12                 | 0.25                 | 0.1             | 0.00   | 0.12      | 0.25                             | 56.3                       |
| 123678-HxCDD      | <2.5                            | 2.5             | 0.1                          | 0.00     | 0.12                 | 0.25                 | 0.1             | 0.00   | 0.12      | 0.25                             | 82.4                       |
| 123789-HxCDD      | 5.8                             | 2.5             | 0.1                          | 0.58     | 0.58                 | 0.58                 | 0.1             | 0.58   | 0.58      | 0.58                             | -                          |
| 1234678-HpCDD     | 283.0                           | 2.5             | 0.01                         | 2.83     | 2.83                 | 2.83                 | 0.01            | 2.83   | 2.83      | 2.83                             | 72.8                       |
| OCDD              | 73500.0                         | 10.0            | 0.0003                       | 22.05    | 22.05                | 22.05                | 0.001           | 73.50  | 73.50     | 73.50                            | 72.6                       |
| 2378-TCDF         | <0.5                            | 0.5             | 0.1                          | 0.00     | 0.02                 | 0.05                 | 0.1             | 0.00   | 0.02      | 0.05                             | 77.5                       |
| 12378-PeCDF       | <2.5                            | 2.5             | 0.03                         | 0.00     | 0.04                 | 0.07                 | 0.05            | 0.00   | 0.06      | 0.12                             | 99.6                       |
| 23478-PeCDF       | <2.5                            | 2.5             | 0.3                          | 0.00     | 0.37                 | 0.75                 | 0.5             | 0.00   | 0.62      | 1.25                             | 99.9                       |
| 123478-HxCDF      | <2.5                            | 2.5             | 0.1                          | 0.00     | 0.12                 | 0.25                 | 0.1             | 0.00   | 0.12      | 0.25                             | 56.1                       |
| 123678-HxCDF      | <2.5                            | 2.5             | 0.1                          | 0.00     | 0.12                 | 0.25                 | 0.1             | 0.00   | 0.12      | 0.25                             | 94.2                       |
| 234678-HxCDF      | <2.5                            | 2.5             | 0.1                          | 0.00     | 0.12                 | 0.25                 | 0.1             | 0.00   | 0.12      | 0.25                             | 82.6                       |
| 123789-HxCDF      | <2.5                            | 2.5             | 0.1                          | 0.00     | 0.12                 | 0.25                 | 0.1             | 0.00   | 0.12      | 0.25                             | 96.0                       |
| 1234678-HpCDF     | <2.5                            | 2.5             | 0.01                         | 0.00     | 0.01                 | 0.02                 | 0.01            | 0.00   | 0.01      | 0.02                             | 62.8                       |
| 1234789-HpCDF     | <2.5                            | 2.5             | 0.01                         | 0.00     | 0.01                 | 0.02                 | 0.01            | 0.00   | 0.01      | 0.02                             | 101.7                      |
| OCDF              | <5.0                            | 5.0             | 0.0003                       | 0.00     | 0.00                 | 0.00                 | 0.001           | 0.00   | 0.00      | 0.00                             | -                          |
| Total TEQ         | -                               | -               | -                            | 25.46    | 28.16                | 30.87                | -               | 76.91  | 79.27     | 81.62                            | -                          |

| Group Totals  | Conc    | LOR4 | No. of Peaks |  |
|---------------|---------|------|--------------|--|
|               | pg/g    | pg/g |              |  |
| Tetra-Dioxins | 269.0   | 1.5  | 3            |  |
| Penta-Dioxins | 85.1    | 12.5 | 5            |  |
| Hexa-Dioxins  | 518.0   | 17.4 | 7            |  |
| Hepta-Dioxins | 1090.0  | 5.0  | 2            |  |
| Octa-Dioxin   | 73500.0 | 10.0 | 1            |  |
| Tetra-Furans  | <0.5    | 0.5  | 1            |  |
| Penta-Furans  | <2.5    | 2.5  | 1            |  |
| Hexa-Furans   | <2.5    | 2.5  | 1            |  |
| Hepta-Furans  | <2.5    | 2.5  | 1            |  |
| Octa-Furan    | <5.0    | 5.0  | 1            |  |
| S PCDD/Fs     | 75462.1 |      |              |  |

Project : 19517046

Work Order : ES1990050

ALS Quote Reference : ----



| Method Code EP300 | Laboratory San  | nple ID: | ES1990050003 |          | Qc Lot               | Number:              | 4539274 |        | I                  | Date Sampled:      | 30-Oct-2019    |
|-------------------|-----------------|----------|--------------|----------|----------------------|----------------------|---------|--------|--------------------|--------------------|----------------|
|                   | Client Sample I | D:       | VC02_0.5-1.0 |          | Sample               | Matrix:              | SOIL    |        | I                  | Date Extracted:    | 21-Nov-2019    |
|                   |                 |          |              |          |                      |                      |         |        | I                  | Date Analysed:     | 21-Nov-2019    |
| Compound          | Conc            | LOR      | WHO-TEF      | WHO-TEQ1 | WHO-TEQ <sub>2</sub> | WHO-TEQ <sub>3</sub> | I-TEF   | I-TEQ1 | I-TEQ <sub>2</sub> | I-TEQ <sub>3</sub> | 13 <b>C</b> 12 |
|                   | pg/g            | pg/g     |              | (zero)   | (0.5 LOR)            | (LOR)                |         | (zero) | (0.5 LOR)          | (LOR)              | Rec(%)         |
| 2378-TCDD         | 18.4            | 0.5      | 1            | 18.40    | 18.40                | 18.40                | 1       | 18.40  | 18.40              | 18.40              | 110.7          |
| 12378-PeCDD       | 33.1            | 2.5      | 1            | 33.10    | 33.10                | 33.10                | 0.5     | 16.55  | 16.55              | 16.55              | 109.3          |
| 123478-HxCDD      | 35.1            | 2.5      | 0.1          | 3.51     | 3.51                 | 3.51                 | 0.1     | 3.51   | 3.51               | 3.51               | 77.8           |
| 123678-HxCDD      | 128.0           | 2.5      | 0.1          | 12.80    | 12.80                | 12.80                | 0.1     | 12.80  | 12.80              | 12.80              | 69.1           |
| 123789-HxCDD      | 93.0            | 2.5      | 0.1          | 9.30     | 9.30                 | 9.30                 | 0.1     | 9.30   | 9.30               | 9.30               | -              |
| 1234678-HpCDD     | 2400.0          | 2.5      | 0.01         | 24.00    | 24.00                | 24.00                | 0.01    | 24.00  | 24.00              | 24.00              | 82.5           |
| OCDD              | 48000.0         | 10.0     | 0.0003       | 14.40    | 14.40                | 14.40                | 0.001   | 48.00  | 48.00              | 48.00              | 73.5           |
| 2378-TCDF         | 16.7            | 0.5      | 0.1          | 1.67     | 1.67                 | 1.67                 | 0.1     | 1.67   | 1.67               | 1.67               | 95.0           |
| 12378-PeCDF       | 13.4            | 2.5      | 0.03         | 0.40     | 0.40                 | 0.40                 | 0.05    | 0.67   | 0.67               | 0.67               | 94.2           |
| 23478-PeCDF       | 20.5            | 2.5      | 0.3          | 6.15     | 6.15                 | 6.15                 | 0.5     | 10.25  | 10.25              | 10.25              | 109.2          |
| 123478-HxCDF      | 36.8            | 2.5      | 0.1          | 3.68     | 3.68                 | 3.68                 | 0.1     | 3.68   | 3.68               | 3.68               | 59.7           |
| 123678-HxCDF      | 17.9            | 2.5      | 0.1          | 1.79     | 1.79                 | 1.79                 | 0.1     | 1.79   | 1.79               | 1.79               | 72.1           |
| 234678-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.13                 | 0.25                 | 0.1     | 0.00   | 0.13               | 0.25               | 76.6           |
| 123789-HxCDF      | <2.5            | 2.5      | 0.1          | 0.00     | 0.13                 | 0.25                 | 0.1     | 0.00   | 0.13               | 0.25               | 79.4           |
| 1234678-HpCDF     | 440.0           | 2.5      | 0.01         | 4.40     | 4.40                 | 4.40                 | 0.01    | 4.40   | 4.40               | 4.40               | 57.7           |
| 1234789-HpCDF     | 37.0            | 2.5      | 0.01         | 0.37     | 0.37                 | 0.37                 | 0.01    | 0.37   | 0.37               | 0.37               | 86.6           |
| OCDF              | 1300.0          | 5.0      | 0.0003       | 0.39     | 0.39                 | 0.39                 | 0.001   | 1.30   | 1.30               | 1.30               | -              |
| Total TEQ         | -               | -        | -            | 134.36   | 134.61               | 134.86               | -       | 156.69 | 156.94             | 157.19             | -              |

| Group Totals  | Conc    | LOR4 | No. of Peaks |  |
|---------------|---------|------|--------------|--|
|               | pg/g    | pg/g |              |  |
| Tetra-Dioxins | 343.0   | 5.5  | 11           |  |
| Penta-Dioxins | 627.0   | 25.0 | 10           |  |
| Hexa-Dioxins  | 3030.0  | 17.5 | 7            |  |
| Hepta-Dioxins | 7140.0  | 5.0  | 2            |  |
| Octa-Dioxin   | 48000.0 | 10.0 | 1            |  |
| Tetra-Furans  | 234.0   | 9.0  | 18           |  |
| Penta-Furans  | 258.0   | 30.0 | 12           |  |
| Hexa-Furans   | 509.0   | 25.0 | 10           |  |
| Hepta-Furans  | 1350.0  | 10.0 | 4            |  |
| Octa-Furan    | 1300.0  | 5.0  | 1            |  |
| S PCDD/Fs     | 62791.0 | ]    |              |  |





|                                                                            | QUAL                     | TTY CO       | NTROL REPOR                      | ст_          |             |  |
|----------------------------------------------------------------------------|--------------------------|--------------|----------------------------------|--------------|-------------|--|
| Client                                                                     | GHD PTY LTD              | Laboratory : | Environmental Division Sydney    |              | 1 of 5      |  |
| Contact                                                                    | SARAH ECCLESHALL         | Contact      | CUSTOMER.SERVICES.ES             | Work Order:  | ES1990050   |  |
| Address: LEVEL 15, 133 CASTLEREAGH<br>STREET SYDNEY<br>NSW, AUSTRALIA 2000 |                          | Address:     | Smithfield NSW 2164<br>Australia | Work Order.  |             |  |
| Project                                                                    | 19517046                 | Quote #      |                                  | Received:    | 12 Nov 2019 |  |
| Order #                                                                    | - Not provided -         |              |                                  | Issued       | 27 Nov 2019 |  |
| C-O-C #                                                                    | - Not provided -         |              |                                  |              |             |  |
| Site                                                                       | - Not provided -         |              |                                  |              |             |  |
| E-mail                                                                     | sarah.eccleshall@ghd.com | E-mail       | ALSEnviro.Sydney@alsglobal.co    | Number of Sa | mples       |  |
| Phone                                                                      | 9239 7100                | Phone        | +61-2-8784 8555                  | Received:    | 3           |  |
| Fax                                                                        | 9239 7199                | Fax          | +61-2-8784 8500                  | Analysed:    | 5           |  |

Samples analysed 'as received', results reported on 'dry weight' basis.

### ALSE - Excellence in Analytical Testing

|           | NATA Accredited Laboratory - 825                | This document has been digitally signed by those names that appear on<br>this report and are the authorised signatories. Digital signing has been<br>carried out in compliance with procedures specified in 21 CFR Part 11. |              |                                         |  |  |  |
|-----------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|--|--|--|
| NAIA      | accordance with NATA's                          | Signatory                                                                                                                                                                                                                   | Position     | Department                              |  |  |  |
|           | Accredited for compliance<br>with ISO/IED 17025 | Peter Blow                                                                                                                                                                                                                  | HRMS Chemist | GC/HR-MS - NATA 825 (818 -<br>Brisbane) |  |  |  |
| Environme | tal 💭 👘 👘                                       | www.alsg                                                                                                                                                                                                                    | lobal.com    |                                         |  |  |  |

**RIGHT SOLUTIONS RIGHT PARTNER**


### Quality Control Report Laboratory Duplicates (DUP)

|                        | Original Result |      | Duplicate Result |      | _    |
|------------------------|-----------------|------|------------------|------|------|
| Laboratory Sample Id : | EP1990013001    |      | 5592649-026      |      |      |
| Client Sample Id :     | Anonymous       |      | Anonymous        |      |      |
| Sample Mass (g) :      | 10.0            |      | 10.0             |      |      |
| Qc Lot Number :        | 4539275         |      | 4539275          |      |      |
| Moisture Content (%) : |                 |      |                  |      |      |
| Compound               | Conc            | LOR  | Conc             | LOR  | RPD  |
|                        | pg/g            | pg/g | pg/g             | pg/g | (%)  |
| 2378-TCDD              | <0.5            | 0.5  | <0.5             | 0.5  | -    |
| 12378-PeCDD            | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123478-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123678-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123789-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 1234678-HpCDD          | 20.8            | 2.5  | 20.7             | 2.5  | 0.5  |
| OCDD                   | 196.0           | 10.0 | 192.0            | 10.0 | 2.1  |
| 2378-TCDF              | 1.3             | 0.5  | 0.7              | 0.5  | 60.0 |
| 12378-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 23478-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123478-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 234678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 123789-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| 1234678-HpCDF          | 4.2             | 2.5  | 4.0              | 2.5  | 4.9  |
| 1234789-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -    |
| OCDF                   | 9.3             | 5.0  | 8.4              | 5.0  | 10.2 |

| Group Totals  | Conc  | LOR  | Conc  | LOR  | RPD  |
|---------------|-------|------|-------|------|------|
|               | pg/g  | pg/g | pg/g  | pg/g | (%)  |
| Tetra-Dioxins | <0.5  | 0.5  | <0.5  | 0.5  | -    |
| Penta-Dioxins | <15.0 | 15.0 | <20.0 | 20.0 | -    |
| Hexa-Dioxins  | <17.5 | 17.5 | <20.0 | 20.0 | -    |
| Hepta-Dioxins | 38.3  | 5.0  | 39.9  | 5.0  | 4.1  |
| Octa-Dioxin   | 196.0 | 10.0 | 192.0 | 10.0 | 2.1  |
| Tetra-Furans  | 34.5  | 9.0  | 16.5  | 9.0  | 70.6 |
| Penta-Furans  | <25.0 | 25.0 | <29.9 | 29.9 | -    |
| Hexa-Furans   | <30.0 | 30.0 | <27.4 | 27.4 | -    |
| Hepta-Furans  | 10.1  | 10.0 | 10.2  | 10.0 | 1.0  |
| Octa-Furan    | 9.3   | 5.0  | 8.4   | 5.0  | 10.2 |
| S PCDD/Fs     | 288.2 |      | 267.0 |      | 7.6  |

 Notes

 LOR = Limit of reporting

 T = tetra

 Pe = penta

 Hx = hexa

 Hp = hepta

 O = octa

 CDD, dioxin = chlorinated debenzo-p-dioxin

 CDF, furan = chlorinated debenzo-p-dioxin

 RPD = relative per cent difference

 Permitted ranges for RPD are depencant upon the magnitude of the result in comparison to the LOR.

 Result < 10x LOR, no limit, result between 10x and 20x LOR, 50%; result > 20x LOR, 20%

 - = Where results are less than the LOR, no RPD is reported.



### Quality Control Report Laboratory Duplicates (DUP)

|                        | Original Result |      | Duplicate Result |      | _   |
|------------------------|-----------------|------|------------------|------|-----|
| Laboratory Sample Id : | ES1990048001    |      | 5592649-007      |      |     |
| Client Sample Id :     | Anonymous       |      | Anonymous        |      |     |
| Sample Mass (g) :      | 10.0            |      | 10.0             |      |     |
| Qc Lot Number :        | 4539275         |      | 4539275          |      |     |
| Moisture Content (%) : |                 |      |                  |      |     |
| Compound               | Conc            | LOR  | Conc             | LOR  | RPD |
|                        | pg/g            | pg/g | pg/g             | pg/g | (%) |
| 2378-TCDD              | <0.5            | 0.5  | <0.5             | 0.5  | -   |
| 12378-PeCDD            | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123478-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123678-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123789-HxCDD           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 1234678-HpCDD          | 67.0            | 2.5  | 64.3             | 2.5  | 4.1 |
| OCDD                   | 23300.0         | 10.0 | 23100.0          | 10.0 | 0.9 |
| 2378-TCDF              | <0.5            | 0.5  | <0.5             | 0.5  | -   |
| 12378-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 23478-PeCDF            | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123478-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 234678-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 123789-HxCDF           | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 1234678-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| 1234789-HpCDF          | <2.5            | 2.5  | <2.5             | 2.5  | -   |
| OCDF                   | <5.0            | 5.0  | <5.0             | 5.0  | -   |

| Group Totals  | Conc    | LOR  | Conc    | LOR  | RPD  |
|---------------|---------|------|---------|------|------|
|               | pg/g    | pg/g | pg/g    | pg/g | (%)  |
| Tetra-Dioxins | <6.5    | 6.5  | <6.5    | 6.5  | -    |
| Penta-Dioxins | <15.0   | 15.0 | <20.0   | 20.0 | -    |
| Hexa-Dioxins  | 19.7    | 7.5  | 23.7    | 17.5 | 18.4 |
| Hepta-Dioxins | 144.0   | 5.0  | 133.0   | 5.0  | 7.9  |
| Octa-Dioxin   | 23300.0 | 10.0 | 23100.0 | 10.0 | 0.9  |
| Tetra-Furans  | <0.5    | 0.5  | <0.5    | 0.5  | -    |
| Penta-Furans  | <2.5    | 2.5  | <2.5    | 2.5  | -    |
| Hexa-Furans   | <2.5    | 2.5  | <2.5    | 2.5  | -    |
| Hepta-Furans  | <2.5    | 2.5  | <2.5    | 2.5  | -    |
| Octa-Furan    | <5.0    | 5.0  | <5.0    | 5.0  | -    |
| S PCDD/Fs     | 23463.7 |      | 23256.7 |      | 0.9  |

Notes LOR = Limit of reporting T = tetra Pe = penta Hx = hexa Hp = hepta O = octa CDD, dioxin = chlorinated debenzo-p-dioxin CDF, furan = chlorinated debenzofuran RPD = relative per cent difference Permitted ranges for RPD are depencant upon the magnitude of the result in comparison to the LOR. Result < 10x LOR, no limit, result between 10x and 20x LOR, 50%; result > 20x LOR, 20% - = Where results are less than the LOR, no RPD is reported.

: ES1990050

: ----



### Quality Control Results Laboratory Control Samples(LCS)

| Laboratory Sample Id :<br>QC Lot Number : | 5592649-010<br>4539275 |                 |                 |                 |                |                |
|-------------------------------------------|------------------------|-----------------|-----------------|-----------------|----------------|----------------|
| Sample Name :                             | BCR 529 Sandy so       | il              |                 |                 |                |                |
| Compound                                  | Conc<br>pg/g           | Lower 1<br>pg/g | Upper 1<br>pg/g | 13C12<br>Rec(%) | Lower 2<br>(%) | Upper 2<br>(%) |
| 2378-TCDD                                 | 4130.0                 | 3900            | 5100            | 95.8            | 25             | 164            |
| 12378-PeCDD                               | 470.0                  | 390             | 490             | 96.5            | 25             | 181            |
| 123478-HxCDD                              | 1390.0                 | 900             | 1500            | 65.7            | 32             | 141            |
| 123678-HxCDD                              | 5820.0                 | 4500            | 6300            | 68.3            | 28             | 130            |
| 123789-HxCDD                              | 3380.0                 | 2600            | 3400            | -               | -              | -              |
| 2378-TCDF                                 | 70.6                   | 65              | 91              | 85.6            | 24             | 169            |
| 12378-PeCDF                               | 158.0                  | 110             | 170             | 99.3            | 24             | 185            |
| 23478-PeCDF                               | 360.0                  | 290             | 430             | 102.5           | 21             | 178            |
| 123478-HxCDF                              | 3630.0                 | 2900            | 3900            | 62.4            | 26             | 152            |
| 123678-HxCDF                              | 1220.0                 | 940             | 1240            | 85.0            | 26             | 123            |
| 234678-HxCDF                              | 401.0                  | 330             | 410             | 85.2            | 28             | 136            |
| 123789-HxCDF                              | 566.0                  | 12              | 32              | 102.3           | 29             | 147            |

<u>Notes</u>

1. Acceptable concentration limits are as quoted on the analytical certificate for the cerified reference material

2. Acceptable recovery limits are derived from EPA1613 Revision B

T = tetra

Pe = penta

Hx = hexa Hp = hepta

O = octa

: ES1990050 Work Order ALS Quote Reference :

### **Quality Control Report** Method Blank (MB)

----

| Laboratory Sample<br>Qc Lot Number : |       |      |            |          |                      | Sample Ma<br>Date Extrac<br>Date Analy |          | SOIL<br>21-Nov-2019<br>21-Nov-2019 |                    |        |                |
|--------------------------------------|-------|------|------------|----------|----------------------|----------------------------------------|----------|------------------------------------|--------------------|--------|----------------|
| Compound                             | Conc  | LOR  | WHO-TEF    | WHO-TEQ1 | WHO-TEQ <sub>2</sub> | WHO-TEQ3                               | I-TEF    | I-TEQ1                             | I-TEQ <sub>2</sub> | I-TEQ₃ | 13 <b>C</b> 12 |
|                                      | pg/g  | pg/g |            | (zero)   | (0.5 LOR)            | (LOR)                                  |          | (zero)                             | (0.5 LOR)          | (LOR)  | Rec(%)         |
| 2378-TCDD                            | <0.5  | 0.5  | 1          | 0.00     | 0.25                 | 0.50                                   | 1        | 0.00                               | 0.25               | 0.50   | 90.7           |
| 12378-PeCDD                          | <2.5  | 2.5  | 1          | 0.00     | 1.25                 | 2.50                                   | 0.5      | 0.00                               | 0.63               | 1.25   | 107.4          |
| 123478-HxCDD                         | <2.5  | 2.5  | 0.1        | 0.00     | 0.13                 | 0.25                                   | 0.1      | 0.00                               | 0.13               | 0.25   | 57.1           |
| 123678-HxCDD                         | <2.5  | 2.5  | 0.1        | 0.00     | 0.13                 | 0.25                                   | 0.1      | 0.00                               | 0.13               | 0.25   | 79.6           |
| 123789-HxCDD                         | <2.5  | 2.5  | 0.1        | 0.00     | 0.13                 | 0.25                                   | 0.1      | 0.00                               | 0.13               | 0.25   | -              |
| 1234678-HpCD                         | <2.5  | 2.5  | 0.01       | 0.00     | 0.01                 | 0.03                                   | 0.01     | 0.00                               | 0.01               | 0.03   | 66.6           |
| OCDD                                 | <10.0 | 10.0 | 0.0003     | 0.00     | 0.00                 | 0.00                                   | 0.001    | 0.00                               | 0.01               | 0.01   | 38.6           |
| 2378-TCDF                            | <0.5  | 0.5  | 0.1        | 0.00     | 0.03                 | 0.05                                   | 0.1      | 0.00                               | 0.03               | 0.05   | 95.6           |
| 12378-PeCDF                          | <2.5  | 2.5  | 0.03       | 0.00     | 0.04                 | 0.08                                   | 0.05     | 0.00                               | 0.06               | 0.13   | 102.0          |
| 23478-PeCDF                          | <2.5  | 2.5  | 0.3        | 0.00     | 0.38                 | 0.75                                   | 0.5      | 0.00                               | 0.63               | 1.25   | 104.1          |
| 123478-HxCDF                         | <2.5  | 2.5  | 0.1        | 0.00     | 0.13                 | 0.25                                   | 0.1      | 0.00                               | 0.13               | 0.25   | 50.5           |
| 123678-HxCDF                         | <2.5  | 2.5  | 0.1        | 0.00     | 0.13                 | 0.25                                   | 0.1      | 0.00                               | 0.13               | 0.25   | 81.5           |
| 234678-HxCDF                         | <2.5  | 2.5  | 0.1        | 0.00     | 0.13                 | 0.25                                   | 0.1      | 0.00                               | 0.13               | 0.25   | 73.9           |
| 123789-HxCDF                         | <2.5  | 2.5  | 0.1        | 0.00     | 0.13                 | 0.25                                   | 0.1      | 0.00                               | 0.13               | 0.25   | 69.5           |
| 1234678-HpCD                         | <2.5  | 2.5  | 0.01       | 0.00     | 0.01                 | 0.03                                   | 0.01     | 0.00                               | 0.01               | 0.03   | 50.8           |
| 1234789-HpCD                         | <2.5  | 2.5  | 0.01       | 0.00     | 0.01                 | 0.03                                   | 0.01     | 0.00                               | 0.01               | 0.03   | 65.1           |
| OCDF                                 | <5.0  | 5.0  | 0.0003     | 0.00     | 0.00                 | 0.00                                   | 0.001    | 0.00                               | 0.00               | 0.01   |                |
|                                      |       |      | S TEQ(WHO) | 0.00     | 2.89                 | 5.72                                   | S TEQ(I) | 0.00                               | 2.55               | 5.04   | ]              |

| Group Totals  | Conc  | LOR4 | No. of |
|---------------|-------|------|--------|
|               | pg/g  | pg/g | Peaks  |
| Tetra-Dioxins | <0.5  | 0.5  | 1      |
| Penta-Dioxins | <2.5  | 2.5  | 1      |
| Hexa-Dioxins  | <2.5  | 2.5  | 1      |
| Hepta-Dioxins | <2.5  | 2.5  | 1      |
| Octa-Dioxin   | <10.0 | 10.0 | 1      |
| Tetra-Furans  | <0.5  | 0.5  | 1      |
| Penta-Furans  | <2.5  | 2.5  | 1      |
| Hexa-Furans   | <2.5  | 2.5  | 1      |
| Hepta-Furans  | <2.5  | 2.5  | 1      |
| Octa-Furan    | <5.0  | 5.0  | 1      |
| S PCDD/Fs     | 0.00  |      |        |

LOR = Limit of reporting I-TEF = International toxic equivalency factor I-TEQ = International toxic equivalence (pg/g) WHO-TEF = World Health Organistaion toxic equivalency factor WHO-TEQ = World Health Organisation toxic equivalence (pg/g) T = tetra Pe = penta Hx = hexa Hp =hepta O = octa CDD, dioxin = chlorinated dibenzo-p-dioxin CDF, furan = chlorinated dibenzofuran 1 I-TEQ(zero) and WHO-TEQ(zero) calculated treating <LOR as zero concentration (pg/g) 2 I-TEQ(0.5 LOR) and WHO-TEQ(0.5 LOR) calculated treating <LOR as 50% LoR concentration (pg/g)  $_3$  I-TEQ(LOR) and WHO-TEQ(LOR) calculated treating <LOR as LoR concentration (pg/g)

4 Totals LORs are calculated by mutiplying the number of peaks by the individual LOR per compound

<u>Notes</u>

| ,                                        |                                             |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | -                  |                     |                                         |                                                           |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | A                                   | F68                           | 5                                          | 84                     | 5                     |                        |                                            |                 | B        |
|------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|---------------------|-----------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|-------------------------------|--------------------------------------------|------------------------|-----------------------|------------------------|--------------------------------------------|-----------------|----------|
| - Contraction                            | CHAIN C<br>CUSTO<br>ALS Labora<br>please t  | roraka SA 6095<br>elsglebat.com<br>Istefford QED 4053<br>Istikane@alsglobat.com<br>h. Drive Clinten OLD 4690<br>gealsglobai.com | EIMELBOURNE 2-4 Weshall Road Springrals VIC 3171         EIMELBOURNE 2-4 Weshall Road Springrals VIC 3171         EIMELBOURNE 2-4 Weshall Road Springrals VIC 3171           rsm         EIMELBOURNE 2-4 Weshall Road Springrals VIC 3171         EIMEVCA8511E 6 Roads Common Road Wataprovo NSW 233           rsm         EIMELBOURNE 2-4 Weshall Road Springrals VIC 3171         EIMOWER 4/1/3 Geary Place North Howa NSW 2541           rsm         Phr 03 6590 5600 € rsmptles.metbourne@alegiobal.com         Phr 02 482 2083 E: anorte@alegiobal.com           y 4680         CIMUDGEE 27 Syday Road Multidges NSW 2850         EIMERTH 10 Hod Way Malaga WA 6090           Phr 02 6972 6735 E: multiges.metli@alegiobal.com         Phr 06 9209 7655 E: samples.parh@alegiobal.com |                                    |                    |                     |                                         | k NSW 2304<br>JobaLeom<br>NSW 2541<br>J90<br>JlsglobaLeom | Stoff         LISYDNEY 277-288 Woodpark Road Smithald NW 276           m         Pik 02 8794 E655 Examples widnay@lasylobil.com           41         LIYOWLSVILE 14-145 Deama Cont Bolds OLD 4818           Pik 07 4766 0600 E: townswiks-environmental@lasylobil.com           Loom         Pik 02 4225 3125 E: portkambla@lasylobil.com |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                     |                               | 84<br>om<br>500                            |                        |                       |                        |                                            |                 |          |
| LIENT:                                   | GHD Pty Ltd                                 |                                                                                                                                 | TURNAROU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND REQUIREMENT                     | Standa             | ard TAT (Lis        | t due date):                            |                                                           |                                                                                                                                                                                                                                                                                                                                           | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | FOR                                 | LABORAT                       | ORY US                                     |                        | Y (Ci                 | rcle)                  |                                            | and all         | -Section |
| FFICE:                                   | level 15, 133 Castlereagh St, Sydney        |                                                                                                                                 | (Standard TAT some tests e.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | may be longer for<br>. Ultra Trace | Non St             | andard or u         | rgent TAT (Li                           | st due date                                               | ):                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 1 10                            | Custo                               | dy Seal Intac                 | 1?                                         |                        |                       | 1                      | /es                                        | No              | Ð        |
| ROJECT                                   | : 12517046                                  |                                                                                                                                 | ALS QUOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NO.:                               | SY-552-19          | )                   |                                         |                                                           | COC SEQU                                                                                                                                                                                                                                                                                                                                  | JENCE NUMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ER (Circle)                        | Free k                              | cev frozen ic                 | e bricks (                                 | oresent                | upon re               | ceipt?                 | res                                        | No              | N/       |
| RDER N                                   | UMBER:                                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                    |                     |                                         | coc                                                       | * 1) 2                                                                                                                                                                                                                                                                                                                                    | 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 6                                | 7 Rando                             | om Sample T                   | emperati                                   | ure on R               | eceipt:               |                        | 3-9                                        | °C              |          |
| ROJECT                                   | MANAGER: Carmen Yi                          | CONTACT P                                                                                                                       | H: 0451 962 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88                                 |                    |                     | 1                                       | OF                                                        | 1 2                                                                                                                                                                                                                                                                                                                                       | 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 6                                | 7 Other                             | comment:                      | 11.6                                       |                        |                       | 1. 50                  | - 1                                        |                 |          |
| AMPLER                                   | t: Sarah Eccleshall                         | SAMPLER N                                                                                                                       | OBILE: 0459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 546 332                            | RELINQUIS          | SHED BY:            |                                         | REC                                                       | EIVED BY:                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NAL                                | RELINQUIS                           | SHED BY:                      |                                            |                        |                       | RECEN                  | VED BY:                                    | No              |          |
| OC ema                                   | iled to ALS? ( YES / NO)                    | EDD FORM                                                                                                                        | AT (or default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :                                  | S. Ecclesha        | all                 |                                         | X                                                         | p-ALS (                                                                                                                                                                                                                                                                                                                                   | (mous 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VIST                               |                                     |                               |                                            |                        |                       |                        | - as ~1.                                   | A-3             |          |
| mail Rep                                 | orts to: sarah.eccleshall@ghd.com; ca       | armen.yi@ghd.com; labreprots@                                                                                                   | Dghd.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | DATE/TIME          | 1 - 11              | n < .                                   | IC DAT                                                    | E/TIME:                                                                                                                                                                                                                                                                                                                                   | 171-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                  | DATE/TIME                           | :                             |                                            |                        | 2.4                   | DATE/                  | TIME:                                      | a 101           | -        |
| mail Invo                                | pice to (will default to PM if no other add | dresses are listed):                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | 101                | (0/1                | 9 3                                     | ipa s                                                     | 1/10/10                                                                                                                                                                                                                                                                                                                                   | ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u></u>                            | 1.110                               |                               |                                            | 01                     | 1                     | 31                     | lor.                                       | 1 184           | 23       |
| OMMEN                                    | TS/SPECIAL HANDLING/STORAGE O               | R DISPOSAL:                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                    |                     | r                                       |                                                           | 100                                                                                                                                                                                                                                                                                                                                       | hore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 11                               | 11/19                               | 2:                            | 52                                         | pp                     | 2                     |                        |                                            |                 |          |
| ALS<br>USE                               | SAMPLE DETAILS                              | X: SOLID (S) WATER (W)                                                                                                          | an an an an an an an an an an an an an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CONTAINE                           | R INFORMA          | TION                |                                         |                                                           | ANALY<br>Where Metals                                                                                                                                                                                                                                                                                                                     | SIS REQUIRE<br>are required, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D including S<br>pecify Total (    | SUITES (NB. Su<br>unfiltered bottle | uite Codes mi<br>required) or | ust be lis<br>Dissolve                     | ted to at<br>ad (field | tract su<br>filtered  | ite price<br>bottle re | )<br>iquired).                             |                 |          |
| LAB ID                                   | SAMPLE ID                                   | DATE / TIME                                                                                                                     | MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TYPE & PRESER<br>(refer<br>below)  | VATIVE<br>to codes | TOTAL<br>CONTAINERS | ASS Field Screen (pH<br>field ad pHfox) | Phenols                                                   | ТКН                                                                                                                                                                                                                                                                                                                                       | BTEXN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOC                                | TCN                                 | OC/OP/PCB                     | OC/OP/PCB<br>PAH<br>Total Fluoride<br>VOCs |                        | VOCs<br>Particle Size |                        | ICMPS Metals (15<br>metals + low level Hg) |                 | Hold     |
| 1                                        | VC09_0.0-0.2                                | 30/10/2019 20:45                                                                                                                | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 1                   |                                         | x                                                         | x                                                                                                                                                                                                                                                                                                                                         | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                  | x                                   | x                             | ×                                          |                        |                       | ×                      | r                                          |                 |          |
| 2                                        | VC09_0.4-0.6                                | 30/10/2019 20:45                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 1                   | Cui                                     | 00120                                                     | WHERE IS                                                                                                                                                                                                                                                                                                                                  | /Split T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WO                                 | Environm<br>Sydney                  | ental Divis                   | sion                                       |                        |                       |                        |                                            |                 | x        |
| 3                                        | VC09_0.7-0.8                                | 30/10/2019 20:45                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 1                   | Ú.                                      | anist i                                                   | in l'hote                                                                                                                                                                                                                                                                                                                                 | FLUCERDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | & PSD                              | ES1                                 | 9360                          | 29                                         |                        |                       |                        |                                            |                 | x        |
| 4                                        | VC09_0.8-1.0                                | 30/10/2019 20:45                                                                                                                | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 1                   | Cor                                     | nnote / 4                                                 | Leaders.                                                                                                                                                                                                                                                                                                                                  | a car of any an and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the transformed and the second |                                     | 2.0%2° (%)4                   |                                            |                        |                       |                        |                                            |                 | x        |
| 5                                        | VC09_0.0-0.5                                | 30/10/2019 20:45                                                                                                                | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 2                   | Wi<br>Att                               | ) (Mor<br>Lett 12 y 1                                     | Pair / Encer                                                                                                                                                                                                                                                                                                                              | ai Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                     |                               |                                            | -                      |                       |                        |                                            |                 | x        |
| 6                                        | VC09_0.5-1.0                                | 30/10/2019 20:45                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 2                   | 1.1                                     |                                                           |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | elephone : +                        | 61-2-8784 8555                |                                            |                        |                       |                        |                                            |                 | x        |
| 7                                        | VC07_0.0-0.2                                | 30/10/2019 21:00                                                                                                                | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 1                   |                                         | x                                                         | x                                                                                                                                                                                                                                                                                                                                         | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                  | ×                                   | ×                             | ×                                          | x                      | x                     | ×                      | 1                                          |                 |          |
| 3                                        | VC07_0.5-0.6                                | 30/10/2019 21:00                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 1                   | (Cub                                    | Cost 2's                                                  | rvari Los<br>BRIS                                                                                                                                                                                                                                                                                                                         | Split V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO.                                |                                     | Lanco                         | D/Co<br>Analy                              | rwaz<br>sis:_          | ti La                 | 6/SI<br>SCRO           | plit W(                                    | ja l            | х        |
| 9                                        | VC07_0.7-0.8                                | 30/10/2019 21:00                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 1                   | Urg                                     | anisati i                                                 | VERCER                                                                                                                                                                                                                                                                                                                                    | ASS FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ECO                                |                                     | Organ                         | ised f                                     | NY/I                   | ate:<br>7 Do          | F                      | 002                                        |                 | x        |
| 10                                       | VC07_1.0-1.2                                | 30/10/2019 21:00                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 1                   | Con                                     | 105 - 1                                                   | A This same                                                                                                                                                                                                                                                                                                                               | <ul> <li>and the state of the state of the state</li> <li>and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of</li></ul> | and and the set of                 |                                     | Conno                         | te/C                                       | ourie                  | RS                    |                        | and the two and the                        |                 | x        |
| 11                                       | VC07_0.0-0.5                                | 30/10/2019 21:00                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | jar and                            | В                  | 4                   | Atte                                    | cn 3× r                                                   | C. tisk at                                                                                                                                                                                                                                                                                                                                | heet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                  | x                                   | Atten                         | sy P                                       | 0/1                    | atera                 | tal SP                 | Cettan                                     | to all a second |          |
| - 12                                     | VC07_0.5-1.0                                | 30/10/2019 21:00                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jar                                |                    | 3                   |                                         |                                                           |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                     | 1.1                           |                                            |                        |                       |                        |                                            |                 | x        |
|                                          |                                             |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | TOTAL              |                     |                                         |                                                           |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                     |                               |                                            |                        |                       |                        |                                            |                 |          |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | fainer Codes: P = Uppreserved Plastic: N    |                                                                                                                                 | 1 2 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second second              |                    |                     |                                         | 1 States in                                               | A CAR SALE                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                     | ALL STORE                     |                                            |                        |                       |                        |                                            |                 |          |

| CLIENT:                                    | GHD Pty Ltd                                   |                             | TURNAROU                      | ND REQUIREMENT                     | Stand                      | ard TAT (Lis        | t due date):                            |              |                        |             |                                     | FOR                            | LABORAT                      | ORY U                  | SE ON                   | ILY (C                  | ircle)                        |                                            | Cost 14<br>August |            |          |
|--------------------------------------------|-----------------------------------------------|-----------------------------|-------------------------------|------------------------------------|----------------------------|---------------------|-----------------------------------------|--------------|------------------------|-------------|-------------------------------------|--------------------------------|------------------------------|------------------------|-------------------------|-------------------------|-------------------------------|--------------------------------------------|-------------------|------------|----------|
| OFFICE:                                    | level 15, 133 Castlereagh St, Sydney          |                             | (Standard TAT some tests e.g. | may be longer for<br>. Ultra Trace | Non S                      | Standard or u       | rgent TAT (Li                           | st due date) | :                      |             |                                     | Custo                          | dy Seal Inta                 | ct?                    |                         |                         |                               | Yes                                        |                   | No         | G        |
| PROJECT: 12517046 ALS QUOTE NO.: SY-552-19 |                                               |                             |                               |                                    |                            |                     |                                         |              | COC SEQU               | UENCE NUME  | ER (Circle)                         | Free                           | ice / frozen i               | ce bricks              | present                 | t upon r                | receipt                       | Yes                                        |                   | No         | N        |
| ORDER N                                    | IUMBER:                                       |                             | 4                             | coc                                | : 1 2                      | 3 4                 | 5 6                                     | Rand         | om Sample <sup>-</sup> | remperat    | lure on I                           | Receipt                        | t                            | 6                      |                         | .С                      |                               |                                            |                   |            |          |
| PROJECT                                    | MANAGER: Carmen Yi                            | CONTACT P                   | H: 0451 962 9                 | 88                                 |                            |                     |                                         | OF:          | 1 2                    | 3 4         | 5 6                                 | Boher                          | comment:                     |                        |                         |                         | 2                             | 5-7                                        |                   | See.       |          |
| SAMPLE                                     | R: Sarah Eccleshall                           | SAMPLER                     | OBILE: 0459                   | 546 332                            | RELINQUI                   | SHED BY:            |                                         | REC          | EIVED BY:              |             |                                     | RELINQUIS                      | SHED BY:                     |                        |                         |                         | RECE                          | EIVED                                      | BY: L             | 0          |          |
| COC ema                                    | iled to ALS? ( YES / NO)                      | EDD FORM                    | AT (or default)               |                                    | S. Ecclesh                 | nall                |                                         | Sec          | p M.                   |             |                                     |                                |                              |                        |                         |                         | 120                           | 42                                         | N'N               | Jus .      |          |
| Email Rep                                  | ports to: sarah.eccleshall@ghd.com; car       | men.yi@ghd.com; labreprots@ | @ghd.com                      |                                    | DATE/TIM                   | E:                  |                                         | DAT          | E/TIME:                |             |                                     | DATE/TIME                      |                              |                        |                         |                         | DATE                          | TIME                                       | 1101              | 19         | 171.5    |
| Email Inv                                  | oice to (will default to PM if no other addre | esses are listed):          |                               |                                    |                            |                     | -                                       | 1            | INAM                   | .0          | tube                                | ,                              | 120                          | 11.0                   |                         |                         |                               | 21                                         | 1 10 1            | 11         | 10%)     |
| COMMEN                                     | ITS/SPECIAL HANDLING/STORAGE OR               | DISPOSAL:                   |                               |                                    |                            |                     |                                         | -            | for for                | g           | 111/19                              | 2                              | 34                           | M                      |                         |                         |                               |                                            |                   |            |          |
| ALS<br>USE                                 | SAMPLE DETAILS                                | SOLID (S) WATER (W)         |                               | CONTAINE                           | R INFORMA                  | ATION               |                                         |              | ANALY<br>Where Metals  | SIS REQUIRE | D including SU<br>specify Total (un | TES (NB. Su<br>filtered bottle | uite Codes n<br>required) or | nust be lis<br>Dissolv | sted to a<br>red (field | attract s<br>d filtered | uite pric<br>d bottle         | e)<br>require                              | d).               |            |          |
| LAB ID                                     | SAMPLE ID                                     | DATE / TIME                 | MATRIX                        | TYPE & PRESER<br>(rafer<br>below)  | <b>XVATIVE</b><br>to codes | TOTAL<br>CONTAINERS | AS3 Field Screen (pH<br>field ad pHfox) | Phenols      | ТКН                    | BTEXN       | TOC                                 | TCN                            | OC/OP/PCB                    | РАН                    | Total Fluoride          | vocs                    | Particle Size<br>distribution | ICMPS Metals (15<br>metals + Iow level Hg) | 8 metals          | TRH C6-C10 | BTEX     |
| 81                                         | FD01                                          | 30/10/2019                  | s                             | JAR                                |                            | 1                   |                                         | x            | x                      | x           | x                                   | x                              | x                            | x                      |                         |                         |                               | x                                          |                   |            |          |
|                                            | FD02                                          | 30/10/2019                  | s                             | JAR                                | Sec. 2                     | 1                   |                                         | x            | x                      | x           | x                                   | x                              | x                            | x                      | 1980                    |                         |                               | x                                          | Plea              | ise foi    | rward to |
| 2.2                                        | FD03                                          | 30/10/2019                  | S                             | JAR                                |                            |                     |                                         |              |                        |             | 1.180                               |                                |                              |                        |                         |                         |                               |                                            |                   | euro       | x        |
| 9.3                                        | FD05                                          | 31/10/2019                  | s                             | Jar                                |                            | 1                   |                                         | x            | x                      | x           | x                                   | x                              | x                            | x                      |                         |                         | 198                           | x                                          |                   |            |          |
| 24                                         | RIN_01                                        | 30/10/2019 0:00             | W                             |                                    |                            | 4                   |                                         |              | x                      | x           |                                     |                                |                              | x                      |                         |                         |                               |                                            | x                 |            |          |
| .85                                        | TS1                                           | 30/10/2019 0:00             | S                             | jar                                |                            |                     |                                         |              | Sec. 4                 | x           |                                     |                                | Filles                       |                        |                         |                         |                               |                                            |                   |            |          |
| 26                                         | TB1                                           | 30/10/2019 0:00             | S                             | jar                                |                            | 11.1                |                                         | 1000         |                        |             |                                     |                                |                              |                        |                         |                         |                               |                                            | 7                 | к 3        | x        |
| 87                                         | TSC                                           |                             | 1.158.86                      | B. S. RES                          |                            | 1                   |                                         | 1.1          |                        |             | 4.500                               |                                |                              |                        |                         |                         |                               |                                            |                   |            |          |
|                                            |                                               |                             |                               | 1.000                              |                            |                     |                                         |              |                        |             |                                     |                                |                              |                        |                         |                         |                               |                                            |                   |            |          |
|                                            |                                               |                             |                               |                                    |                            |                     |                                         |              |                        |             |                                     |                                | 1                            |                        |                         |                         |                               |                                            |                   |            |          |
| 19.2                                       |                                               |                             | 1.23                          |                                    |                            |                     |                                         |              | 11216                  |             |                                     |                                |                              |                        | 19.5                    |                         |                               | 1                                          |                   |            |          |
|                                            |                                               |                             |                               |                                    |                            |                     | 1                                       |              | -                      | 1           |                                     |                                |                              | -                      |                         |                         |                               |                                            |                   |            |          |

Version Container Container Contest: P = Unpreserved Plastic; N = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; NC = Nutric Preserved Plastic; N



Environment Testing Melbourne 6 Monterey Road Unit F3, Building F Unit F3, Building F Dandenong South Vis 3175 16 Mars Road Place Murarrie QLD 4172 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 16217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

e.mail : EnviroSales@eurofins.com ABN - 50 005 085 521 web : www.eurofins.com.au

Sample Receipt Advice

| Company name:       | GHD Pty Ltd NSW     |
|---------------------|---------------------|
| Contact name:       | Carmen Yi           |
| Project name:       | 12517046            |
| COC number:         | Not provided        |
| Turn around time:   | 5 Day               |
| Date/Time received: | Nov 1, 2019 2:52 PM |
| Eurofins reference: | 685895              |

#### Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- $\checkmark$ Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt : 17.8 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- $\mathbf{V}$ Appropriate sample containers have been used.
- $\times$ Split sample sent to requested external lab.
- $\boxtimes$ Some samples have been subcontracted.
- Custody Seals intact (if used). N/A

### Contact notes

If you have any questions with respect to these samples please contact:

Alena Bounkeua on Phone : or by e.mail: AlenaBounkeua@eurofins.com

Results will be delivered electronically via e.mail to Carmen Yi - carmen.yi@ghd.com.



ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

| Company Name:       GHD Pty Ltd NSW         Address:       Level 15, 133 Castlereagh Street         Sydney       NSW 2000         Project Name:       12517046 |                                                                  |                 |              |        |             |   |   | rder N<br>eport<br>none:<br>ix: | lo.:<br>#:   | 6<br>0<br>0              | 885895<br>12 9239 7100<br>12 9239 7199 | Reco<br>Due:<br>Prio<br>Con<br>Eurofins A | eived:<br>:<br>ity:<br>tact Name:<br>Analytical Servi | Nov 1, 2019 2:52 PM<br>Nov 8, 2019<br>5 Day<br>Carmen Yi<br>ices Manager : Alena Bounkeua |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------|--------------|--------|-------------|---|---|---------------------------------|--------------|--------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                                                                                                                                | Sample Detail<br>Melbourne Laboratory - NATA Site # 1254 & 14271 |                 |              |        |             |   |   | Eurofins   mgt Suite B15        | Moisture Set | Eurofins   mgt Suite B4A |                                        |                                           |                                                       |                                                                                           |
| Melb                                                                                                                                                           | ourne Laborato                                                   | ory - NATA Site | # 1254 & 142 | .71    |             | Х | х | х                               | х            | х                        |                                        |                                           |                                                       |                                                                                           |
| Sydn                                                                                                                                                           | ney Laboratory                                                   | - NATA Site # 1 | 8217         |        |             |   |   |                                 |              |                          | 4                                      |                                           |                                                       |                                                                                           |
| Brisk                                                                                                                                                          | bane Laborator                                                   | / - NATA Site # | 20794        |        |             |   |   |                                 |              |                          | 4                                      |                                           |                                                       |                                                                                           |
| Perth                                                                                                                                                          | rth Laboratory - NATA Site # 23736                               |                 |              |        |             |   |   | -                               |              |                          | -                                      |                                           |                                                       |                                                                                           |
| No                                                                                                                                                             | Sample ID                                                        | Sample Date     | Sampling     | Matrix | LAB ID      |   |   |                                 |              |                          | -                                      |                                           |                                                       |                                                                                           |
| 1                                                                                                                                                              | ED02                                                             | Oct 20, 2010    | Time         | Soil   | S10 No01404 | v | v |                                 | v            | v                        | -                                      |                                           |                                                       |                                                                                           |
| Tost                                                                                                                                                           | Test Counts                                                      |                 |              |        |             |   |   | 1                               | 1            | 1                        | -                                      |                                           |                                                       |                                                                                           |
| rest                                                                                                                                                           | t Counts                                                         |                 |              |        |             |   |   | 1                               |              | 1                        |                                        |                                           |                                                       |                                                                                           |



### Certificate of Analysis

### **Environment Testing**

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

| Attention:   |  |
|--------------|--|
| Report       |  |
| Project name |  |

**Received Date** 

685895-S 12517046 Nov 01, 2019

Carmen Yi

|                                                   | 1    | 1     | 1            |
|---------------------------------------------------|------|-------|--------------|
| Client Sample ID                                  |      |       | FD02         |
| Sample Matrix                                     |      |       | Soil         |
| Eurofins Sample No.                               |      |       | S19-No01404  |
| Date Sampled                                      |      |       | Oct 30, 2019 |
| Test/Reference                                    | LOR  | Unit  |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fract  | ions |       |              |
| TRH C6-C9                                         | 20   | mg/kg | < 20         |
| TRH C10-C14                                       | 20   | mg/kg | < 20         |
| TRH C15-C28                                       | 50   | mg/kg | < 50         |
| TRH C29-C36                                       | 50   | mg/kg | < 50         |
| TRH C10-C36 (Total)                               | 50   | mg/kg | < 50         |
| втех                                              |      |       |              |
| Benzene                                           | 0.1  | mg/kg | < 0.1        |
| Toluene                                           | 0.1  | mg/kg | < 0.1        |
| Ethylbenzene                                      | 0.1  | mg/kg | < 0.1        |
| m&p-Xylenes                                       | 0.2  | mg/kg | < 0.2        |
| o-Xylene                                          | 0.1  | mg/kg | < 0.1        |
| Xylenes - Total                                   | 0.3  | mg/kg | < 0.3        |
| 4-Bromofluorobenzene (surr.)                      | 1    | %     | 86           |
| Total Recoverable Hydrocarbons - 2013 NEPM Fract  | ions |       |              |
| Naphthalene <sup>N02</sup>                        | 0.5  | mg/kg | < 0.5        |
| TRH C6-C10                                        | 20   | mg/kg | < 20         |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20   | mg/kg | < 20         |
| TRH >C10-C16                                      | 50   | mg/kg | < 50         |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50   | mg/kg | < 50         |
| TRH >C16-C34                                      | 100  | mg/kg | < 100        |
| TRH >C34-C40                                      | 100  | mg/kg | < 100        |
| TRH >C10-C40 (total)*                             | 100  | mg/kg | < 100        |
| Polycyclic Aromatic Hydrocarbons                  |      |       |              |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5  | mg/kg | < 0.5        |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5  | mg/kg | 0.6          |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5  | mg/kg | 1.2          |
| Acenaphthene                                      | 0.5  | mg/kg | < 0.5        |
| Acenaphthylene                                    | 0.5  | mg/kg | < 0.5        |
| Anthracene                                        | 0.5  | mg/kg | < 0.5        |
| Benz(a)anthracene                                 | 0.5  | mg/kg | < 0.5        |
| Benzo(a)pyrene                                    | 0.5  | mg/kg | < 0.5        |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5  | mg/kg | < 0.5        |
| Benzo(g.h.i)perylene                              | 0.5  | mg/kg | < 0.5        |
| Benzo(k)fluoranthene                              | 0.5  | mg/kg | < 0.5        |
| Chrysene                                          | 0.5  | mg/kg | < 0.5        |
| Dibenz(a.h)anthracene                             | 0.5  | mg/kg | < 0.5        |



| Client Sample ID                    |      |          | FD02                                  |
|-------------------------------------|------|----------|---------------------------------------|
| Sample Matrix                       |      |          | Soil                                  |
| Eurofins Sample No.                 |      |          | S19-No01404                           |
| Date Sampled                        |      |          | Oct 30, 2019                          |
| Test/Reference                      | LOR  | Unit     |                                       |
| Polycyclic Aromatic Hydrocarbons    |      | 0        |                                       |
| Fluoranthene                        | 0.5  | ma/ka    | < 0.5                                 |
| Fluorene                            | 0.5  | ma/ka    | < 0.5                                 |
| Indeno(1.2.3-cd)pyrene              | 0.5  | ma/ka    | < 0.5                                 |
| Naphthalene                         | 0.5  | ma/ka    | < 0.5                                 |
| Phenanthrene                        | 0.5  | mg/kg    | < 0.5                                 |
| Pyrene                              | 0.5  | mg/kg    | < 0.5                                 |
| Total PAH*                          | 0.5  | mg/kg    | < 0.5                                 |
| 2-Fluorobiphenyl (surr.)            | 1    | %        | 66                                    |
| p-Terphenyl-d14 (surr.)             | 1    | %        | 60                                    |
| Organochlorine Pesticides           |      |          |                                       |
| Chlordanes - Total                  | 0.1  | mg/kg    | < 0.1                                 |
| 4.4'-DDD                            | 0.05 | mg/kg    | < 0.05                                |
| 4.4'-DDE                            | 0.05 | mg/kg    | < 0.05                                |
| 4.4'-DDT                            | 0.05 | mg/kg    | < 0.05                                |
| a-BHC                               | 0.05 | mg/kg    | < 0.05                                |
| Aldrin                              | 0.05 | mg/kg    | < 0.05                                |
| b-BHC                               | 0.05 | mg/kg    | < 0.05                                |
| d-BHC                               | 0.05 | mg/kg    | < 0.05                                |
| Dieldrin                            | 0.05 | mg/kg    | < 0.05                                |
| Endosulfan I                        | 0.05 | mg/kg    | < 0.05                                |
| Endosulfan II                       | 0.05 | mg/kg    | < 0.05                                |
| Endosulfan sulphate                 | 0.05 | mg/kg    | < 0.05                                |
| Endrin                              | 0.05 | mg/kg    | < 0.05                                |
| Endrin aldehyde                     | 0.05 | mg/kg    | < 0.05                                |
| Endrin ketone                       | 0.05 | mg/kg    | < 0.05                                |
| g-BHC (Lindane)                     | 0.05 | mg/kg    | < 0.05                                |
| Heptachlor                          | 0.05 | mg/kg    | < 0.05                                |
| Heptachlor epoxide                  | 0.05 | mg/kg    | < 0.05                                |
| Hexachlorobenzene                   | 0.05 | mg/kg    | < 0.05                                |
| Methoxychlor                        | 0.05 | mg/kg    | < 0.05                                |
| Toxaphene                           | 1    | mg/kg    | < 1                                   |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg    | < 0.05                                |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg    | < 0.05                                |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg    | < 0.1                                 |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg    | < 0.1                                 |
| Dibutylchlorendate (surr.)          | 1    | %        | 83                                    |
| Tetrachloro-m-xylene (surr.)        | 1    | %        | 64                                    |
| Organophosphorus Pesticides         |      |          |                                       |
| Azinphos-methyl                     | 0.2  | mg/kg    | < 0.2                                 |
| Bolstar                             | 0.2  | mg/kg    | < 0.2                                 |
| Chlorevinphos                       | 0.2  | mg/kg    | < 0.2                                 |
| Chlorowites method                  | 0.2  | mg/kg    | < 0.2                                 |
|                                     | 0.2  | mg/kg    | < 0.2                                 |
| Demotor S                           | 2    | mg/kg    | < 2                                   |
| Demeton O                           | 0.2  | mg/kg    | < 0.2                                 |
|                                     | 0.2  | mg/kg    | < 0.2                                 |
|                                     | 0.2  | mg/kg    | < 0.2                                 |
| Dimethoate                          | 0.2  | mg/kg    | ~ 0.2                                 |
| Difformatio                         | 0.2  | i ing/kg | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |



| Client Sample ID             |            |        | FD02         |
|------------------------------|------------|--------|--------------|
| Sample Matrix                |            |        | Soil         |
| Eurofins Sample No.          |            |        | S19-No01404  |
| Date Sampled                 |            |        | Oct 30, 2019 |
| Test/Poforonco               |            | Linit  | 00000, 2010  |
| Organonhosphorus Pesticides  | LOK        | Unit   |              |
| Disulfoton                   | 0.2        | ma/ka  | < 0.2        |
| EPN                          | 0.2        | mg/kg  | < 0.2        |
| Ethion                       | 0.2        | ma/ka  | < 0.2        |
| Ethoprop                     | 0.2        | ma/ka  | < 0.2        |
| Ethyl parathion              | 0.2        | ma/ka  | < 0.2        |
| Fenitrothion                 | 0.2        | ma/ka  | < 0.2        |
| Fensulfothion                | 0.2        | mg/kg  | < 0.2        |
| Fenthion                     | 0.2        | mg/kg  | < 0.2        |
| Malathion                    | 0.2        | mg/kg  | < 0.2        |
| Merphos                      | 0.2        | mg/kg  | < 0.2        |
| Methyl parathion             | 0.2        | mg/kg  | < 0.2        |
| Mevinphos                    | 0.2        | mg/kg  | < 0.2        |
| Monocrotophos                | 2          | mg/kg  | < 2          |
| Naled                        | 0.2        | mg/kg  | < 0.2        |
| Omethoate                    | 2          | mg/kg  | < 2          |
| Phorate                      | 0.2        | mg/kg  | < 0.2        |
| Pirimiphos-methyl            | 0.2        | mg/kg  | < 0.2        |
| Pyrazophos                   | 0.2        | mg/kg  | < 0.2        |
| Ronnel                       | 0.2        | mg/kg  | < 0.2        |
| Terbufos                     | 0.2        | mg/kg  | < 0.2        |
| Tetrachlorvinphos            | 0.2        | mg/kg  | < 0.2        |
| Tokuthion                    | 0.2        | mg/kg  | < 0.2        |
| Trichloronate                | 0.2        | mg/kg  | < 0.2        |
| Triphenylphosphate (surr.)   | 1          | %      | 66           |
| Polychlorinated Biphenyls    |            |        |              |
| Aroclor-1016                 | 0.1        | mg/kg  | < 0.1        |
| Aroclor-1221                 | 0.1        | mg/kg  | < 0.1        |
| Aroclor-1232                 | 0.1        | mg/kg  | < 0.1        |
| Aroclor-1242                 | 0.1        | mg/kg  | < 0.1        |
| Aroclor-1248                 | 0.1        | mg/kg  | < 0.1        |
| Aroclor-1254                 | 0.1        | mg/kg  | < 0.1        |
| Aroclor-1260                 | 0.1        | mg/kg  | < 0.1        |
| Total PCB*                   | 0.1        | mg/kg  | < 0.1        |
| Dibutylchlorendate (surr.)   | 1          | %      | 83           |
| Tetrachloro-m-xylene (surr.) | 1          | %      | 64           |
| Phenois (Halogenated)        | <b>a</b> = |        |              |
| 2-Chlorophenol               | 0.5        | mg/kg  | < 0.5        |
| 2.4-Dichlorophenol           | 0.5        | mg/kg  | < 0.5        |
| 2.4.5-1 richlorophenol       | 1          | mg/kg  | < 1          |
| 2.4.0-1 richlorophenol       | 1          | mg/kg  | < 1          |
|                              | 0.5        | mg/kg  | < 0.5        |
| 4-Onioro-3-metnyipnenoi      | 1          | mg/kg  | < 1          |
|                              | 10         | mg/kg  | < 1          |
|                              | 10         | mg/kg  | < 10         |
| i olar halogenaleu Phenor    |            | ппд/кд | < 1          |



| Client Sample ID<br>Sample Matrix |     |       | FD02<br>Soil |
|-----------------------------------|-----|-------|--------------|
| Eurofins Sample No.               |     |       | S19-No01404  |
| Date Sampled                      |     |       | Oct 30, 2019 |
| Test/Reference                    | LOR | Unit  |              |
| Phenols (non-Halogenated)         |     |       |              |
| 2-Cyclohexyl-4.6-dinitrophenol    | 20  | mg/kg | < 20         |
| 2-Methyl-4.6-dinitrophenol        | 5   | mg/kg | < 5          |
| 2-Methylphenol (o-Cresol)         | 0.2 | mg/kg | < 0.2        |
| 2-Nitrophenol                     | 1.0 | mg/kg | < 1          |
| 2.4-Dimethylphenol                | 0.5 | mg/kg | < 0.5        |
| 2.4-Dinitrophenol                 | 5   | mg/kg | < 5          |
| 3&4-Methylphenol (m&p-Cresol)     | 0.4 | mg/kg | < 0.4        |
| 4-Nitrophenol                     | 5   | mg/kg | < 5          |
| Dinoseb                           | 20  | mg/kg | < 20         |
| Phenol                            | 0.5 | mg/kg | < 0.5        |
| Total Non-Halogenated Phenol*     | 20  | mg/kg | < 20         |
| Phenol-d6 (surr.)                 | 1   | %     | 60           |
|                                   | -   |       |              |
| Cyanide (total)                   | 5   | mg/kg | < 5          |
| Total Organic Carbon              | 0.1 | %     | < 0.1        |
| % Moisture                        | 1   | %     | 15           |



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                              | Testing Site | Extracted    | Holding Time |
|--------------------------------------------------------------------------|--------------|--------------|--------------|
| Eurofins   mgt Suite B4A                                                 |              |              |              |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                     | Melbourne    | Nov 07, 2019 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                        |              |              |              |
| BTEX                                                                     | Melbourne    | Nov 07, 2019 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                        |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                     | Melbourne    | Nov 07, 2019 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                        |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                     | Melbourne    | Nov 07, 2019 |              |
| - Method: LTM-ORG-2010 TRH C6-C40                                        |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                         | Melbourne    | Nov 07, 2019 | 14 Days      |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water                 |              |              |              |
| Phenols (Halogenated)                                                    | Melbourne    | Nov 07, 2019 | 14 Days      |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water                 |              |              |              |
| Phenols (non-Halogenated)                                                | Melbourne    | Nov 07, 2019 | 14 Days      |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water                 |              |              |              |
| Eurofins   mgt Suite B15                                                 |              |              |              |
| Organochlorine Pesticides                                                | Melbourne    | Nov 07, 2019 | 14 Days      |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)          |              |              |              |
| Organophosphorus Pesticides                                              | Melbourne    | Nov 07, 2019 | 14 Days      |
| - Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS (USEPA 8081) |              |              |              |
| Polychlorinated Biphenyls                                                | Melbourne    | Nov 07, 2019 | 28 Days      |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082)          |              |              |              |
| Cyanide (total)                                                          | Melbourne    | Nov 11, 2019 | 14 Days      |
| - Method: LTM-INO-4020 Total Free WAD Cyanide by CFA                     |              |              |              |
| Total Organic Carbon                                                     | Melbourne    | Nov 08, 2019 | 28 Days      |
| - Method: LTM-INO-4060 Total Organic Carbon in water and soil            |              |              |              |
| % Moisture                                                               | Melbourne    | Nov 01, 2019 | 14 Days      |
| - Method: LTM-GEN-7080 Moisture                                          |              |              |              |



ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

| Company Name:GHD Pty Ltd NSWAddress:Level 15, 133 Castlereagh Street<br>Sydney<br>NSW 2000Project Name:12517046 |                |                 | Order No.:Report #:685895Phone:02 9239 7100Fax:02 9239 7199 |          |             | 6<br>0<br>0     | 85895<br>2 9239 7100<br>2 9239 7199<br>Eur | Received:<br>Due:<br>Priority:<br>Contact Name:<br>ofins Analytical Serv | Nov 1, 2019 2:52 PM<br>Nov 8, 2019<br>5 Day<br>Carmen Yi<br>ices Manager : Alena Bounkeua |                          |   |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------|-----------------|-------------------------------------------------------------|----------|-------------|-----------------|--------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------|---|--|--|
|                                                                                                                 |                | Sa              | mple Detail                                                 |          |             | Cyanide (total) | Total Organic Carbon                       | Eurofins   mgt Suite B15                                                 | Moisture Set                                                                              | Eurofins   mgt Suite B4A |   |  |  |
| Melbo                                                                                                           | ourne Laborato | ory - NATA Site | # 1254 & 142                                                | 71       |             | х               | х                                          | х                                                                        | х                                                                                         | Х                        |   |  |  |
| Sydn                                                                                                            | ey Laboratory  | NATA Site # 1   | 8217                                                        |          |             |                 |                                            |                                                                          |                                                                                           |                          | - |  |  |
| Brisb                                                                                                           | ane Laboratory | / - NATA Site # | 20794                                                       |          |             |                 |                                            |                                                                          |                                                                                           |                          |   |  |  |
| Perth                                                                                                           | Laboratory - N | IATA Site # 237 | 36                                                          |          |             |                 |                                            |                                                                          |                                                                                           |                          | - |  |  |
| No                                                                                                              | Sample ID      | Sample Date     | Sampling                                                    | Matrix   |             |                 |                                            |                                                                          |                                                                                           |                          |   |  |  |
|                                                                                                                 | Cample ID      |                 | Time                                                        | INIGU IA |             |                 |                                            |                                                                          |                                                                                           |                          |   |  |  |
| 1                                                                                                               | FD02           | Oct 30, 2019    |                                                             | Soil     | S19-No01404 | Х               | х                                          | Х                                                                        | Х                                                                                         | Х                        |   |  |  |
| Test                                                                                                            | Counts         |                 |                                                             |          |             | 1               | 1                                          | 1                                                                        | 1                                                                                         | 1                        |   |  |  |



#### Internal Quality Control Review and Glossary

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. \*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

| mg/kg: milligrams per kilogram           | mg/L: milligrams per litre         | ug/L: micrograms per litre                                       |
|------------------------------------------|------------------------------------|------------------------------------------------------------------|
| ppm: Parts per million                   | ppb: Parts per billion             | %: Percentage                                                    |
| org/100mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units | MPN/100mL: Most Probable Number of organisms per 100 millilitres |

| Terms            |                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                     |
| LOR              | Limit of Reporting.                                                                                                                                                |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                         |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                              |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                          |
| CRM              | Certified Reference Material - reported as percent recovery.                                                                                                       |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.     |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                         |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                   |
| USEPA            | United States Environmental Protection Agency                                                                                                                      |
| APHA             | American Public Health Association                                                                                                                                 |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                         |
| сос              | Chain of Custody                                                                                                                                                   |
| SRA              | Sample Receipt Advice                                                                                                                                              |
| QSM              | US Department of Defense Quality Systems Manual Version 5.3                                                                                                        |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                              |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within. |
| TEQ              | Toxic Equivalency Quotient                                                                                                                                         |

#### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

| Test                                                 | Units | Result 1 |   | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|-------|----------|---|----------------------|----------------|--------------------|
| Method Blank                                         |       |          |   | 1                    |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |       |          |   |                      |                |                    |
| TRH C6-C9                                            | mg/kg | < 20     |   | 20                   | Pass           |                    |
| TRH C10-C14                                          | mg/kg | < 20     |   | 20                   | Pass           |                    |
| TRH C15-C28                                          | mg/kg | < 50     |   | 50                   | Pass           |                    |
| TRH C29-C36                                          | mg/kg | < 50     |   | 50                   | Pass           |                    |
| Method Blank                                         |       |          | r | 1                    |                |                    |
| ВТЕХ                                                 |       |          |   |                      |                |                    |
| Benzene                                              | mg/kg | < 0.1    |   | 0.1                  | Pass           |                    |
| Toluene                                              | mg/kg | < 0.1    |   | 0.1                  | Pass           |                    |
| Ethylbenzene                                         | mg/kg | < 0.1    |   | 0.1                  | Pass           |                    |
| m&p-Xylenes                                          | mg/kg | < 0.2    |   | 0.2                  | Pass           |                    |
| o-Xylene                                             | mg/kg | < 0.1    |   | 0.1                  | Pass           |                    |
| Xylenes - Total                                      | mg/kg | < 0.3    |   | 0.3                  | Pass           |                    |
| Method Blank                                         |       |          |   | 1                    |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |       |          |   |                      |                |                    |
| Naphthalene                                          | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| TRH C6-C10                                           | mg/kg | < 20     |   | 20                   | Pass           |                    |
| TRH >C10-C16                                         | mg/kg | < 50     |   | 50                   | Pass           |                    |
| TRH >C16-C34                                         | mg/kg | < 100    |   | 100                  | Pass           |                    |
| TRH >C34-C40                                         | mg/kg | < 100    |   | 100                  | Pass           |                    |
| Method Blank                                         |       |          |   | -                    |                |                    |
| Polycyclic Aromatic Hydrocarbons                     |       |          |   |                      |                |                    |
| Acenaphthene                                         | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Acenaphthylene                                       | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Anthracene                                           | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Benz(a)anthracene                                    | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                       | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene                               | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene                                 | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene                                 | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Chrysene                                             | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                                | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Fluoranthene                                         | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
|                                                      | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                               | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Naphthalene                                          | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Prienantriene                                        | mg/kg | < 0.5    |   | 0.5                  | Pass           |                    |
| Pytene<br>Method Plank                               | mg/kg | < 0.5    |   | 0.5                  | Fass           |                    |
| Organachlaring Basticidas                            |       |          |   |                      |                |                    |
| Chlordanes - Total                                   | ma/ka | < 0.1    |   | 0.1                  | Pass           |                    |
|                                                      | mg/kg | < 0.05   |   | 0.05                 | Pass           |                    |
| 4.4-DDE                                              | mg/kg | < 0.05   |   | 0.05                 | Pass           |                    |
|                                                      | mg/kg | < 0.05   |   | 0.05                 | Pass           |                    |
| a-BHC                                                | mg/kg | < 0.05   |   | 0.05                 | Pase           |                    |
| Aldrin                                               | mg/kg | < 0.05   |   | 0.05                 | Pase           |                    |
| h-BHC                                                | ma/ka | < 0.05   |   | 0.05                 | Pase           |                    |
| d-BHC                                                | mg/kg | < 0.05   |   | 0.05                 | Pase           |                    |
| Dieldrin                                             | ma/ka | < 0.05   |   | 0.05                 | Pase           |                    |
| Endosulfan I                                         | ma/ka | < 0.05   |   | 0.05                 | Pass           |                    |
| Endosulfan II                                        | ma/ka | < 0.05   |   | 0.05                 | Pass           |                    |



| Test                        | Units      | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------|------------|----------|----------------------|----------------|--------------------|
| Endosulfan sulphate         | mg/kg      | < 0.05   | 0.05                 | Pass           |                    |
| Endrin                      | mg/kg      | < 0.05   | 0.05                 | Pass           |                    |
| Endrin aldehyde             | mg/kg      | < 0.05   | 0.05                 | Pass           |                    |
| Endrin ketone               | mg/kg      | < 0.05   | 0.05                 | Pass           |                    |
| g-BHC (Lindane)             | mg/kg      | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor                  | mg/kg      | < 0.05   | 0.05                 | Pass           |                    |
| Heptachlor epoxide          | mg/kg      | < 0.05   | 0.05                 | Pass           |                    |
| Hexachlorobenzene           | mg/kg      | < 0.05   | 0.05                 | Pass           |                    |
| Methoxychlor                | mg/kg      | < 0.05   | 0.05                 | Pass           |                    |
| Toxaphene                   | mg/kg      | < 1      | 1                    | Pass           |                    |
| Method Blank                |            |          |                      |                |                    |
| Organophosphorus Pesticides |            |          |                      |                |                    |
| Azinphos-methyl             | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Bolstar                     | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Chlorfenvinphos             | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Chlorpyrifos                | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Chlorpyrifos-methyl         | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Coumaphos                   | mg/kg      | < 2      | 2                    | Pass           |                    |
| Demeton-S                   | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Demeton-O                   | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Diazinon                    | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Dichlorvos                  | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Dimethoate                  | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Disulfoton                  | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| EPN                         | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Ethion                      | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Ethoprop                    | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Ethyl parathion             | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Fenitrothion                | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Fensulfothion               | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Fenthion                    | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Malathion                   | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Merphos                     | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Methyl parathion            | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Mevinphos                   | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Monocrotophos               | mg/kg      | < 2      | 2                    | Pass           |                    |
| Naled                       | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Omethoate                   | mg/kg      | < 2      | 2                    | Pass           | ļ                  |
| Phorate                     | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Pirimiphos-methyl           | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Pyrazophos                  | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Ronnel                      | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Terbufos                    | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Tetrachlorvinphos           | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Tokuthion                   | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Trichloronate               | mg/kg      | < 0.2    | 0.2                  | Pass           |                    |
| Method Blank                |            | i        |                      | 1              |                    |
| Polychlorinated Biphenyls   |            |          |                      |                |                    |
| Arocior-1016                | mg/kg<br>" | < 0.1    | 0.1                  | Pass           |                    |
| Arocior-1221                | mg/kg      | < 0.1    | 0.1                  | Pass           |                    |
| Arocior-1232                | mg/kg      | < 0.1    | 0.1                  | Pass           |                    |
| Arocior-1242                | mg/kg      | < 0.1    | 0.1                  | Pass           |                    |
| Arocior-1248                | mg/kg      | < 0.1    | 0.1                  | Pass           |                    |
| Aroclor-1254                | mg/kg      | < 0.1    | 0.1                  | Pass           | 1                  |



| Test                                                 | Units | Result 1 |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|-------|----------|-----|----------------------|----------------|--------------------|
| Aroclor-1260                                         | mg/kg | < 0.1    |     | 0.1                  | Pass           |                    |
| Total PCB*                                           | mg/kg | < 0.1    |     | 0.1                  | Pass           |                    |
| Method Blank                                         |       |          |     |                      |                |                    |
| Phenols (Halogenated)                                |       |          |     |                      |                |                    |
| 2-Chlorophenol                                       | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| 2.4-Dichlorophenol                                   | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| 2.4.5-Trichlorophenol                                | mg/kg | < 1      |     | 1                    | Pass           |                    |
| 2.4.6-Trichlorophenol                                | mg/kg | < 1      |     | 1                    | Pass           |                    |
| 2.6-Dichlorophenol                                   | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| 4-Chloro-3-methylphenol                              | mg/kg | < 1      |     | 1                    | Pass           |                    |
| Pentachlorophenol                                    | mg/kg | < 1      |     | 1                    | Pass           |                    |
| Tetrachlorophenols - Total                           | mg/kg | < 10     |     | 10                   | Pass           |                    |
| Method Blank                                         | 00    |          |     |                      |                |                    |
| Phenols (non-Halogenated)                            |       |          |     |                      |                |                    |
| 2-Cyclohexyl-4.6-dinitrophenol                       | mg/kg | < 20     |     | 20                   | Pass           |                    |
| 2-Methyl-4.6-dinitrophenol                           | mg/kg | < 5      |     | 5                    | Pass           |                    |
| 2-Methylphenol (o-Cresol)                            | mg/kg | < 0.2    |     | 0.2                  | Pass           |                    |
| 2-Nitrophenol                                        | mg/kg | < 1      |     | 1.0                  | Pass           |                    |
| 2.4-Dimethylphenol                                   | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| 2.4-Dinitrophenol                                    | mg/kg | < 5      |     | 5                    | Pass           |                    |
| 3&4-Methylphenol (m&p-Cresol)                        | ma/ka | < 0.4    |     | 0.4                  | Pass           |                    |
| 4-Nitrophenol                                        | ma/ka | < 5      |     | 5                    | Pass           |                    |
| Dinoseb                                              | ma/ka | < 20     |     | 20                   | Pass           |                    |
| Phenol                                               | ma/ka | < 0.5    |     | 0.5                  | Pass           |                    |
| Method Blank                                         |       |          | 1 1 |                      |                |                    |
| Total Organic Carbon                                 | %     | < 0.1    |     | 0.1                  | Pass           |                    |
| LCS - % Recovery                                     |       | -        |     |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |       |          |     |                      |                |                    |
| TRH C6-C9                                            | %     | 124      |     | 70-130               | Pass           |                    |
| TRH C10-C14                                          | %     | 83       |     | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       |          |     |                      |                |                    |
| BTEX                                                 |       |          |     |                      |                |                    |
| Benzene                                              | %     | 106      |     | 70-130               | Pass           |                    |
| Toluene                                              | %     | 104      |     | 70-130               | Pass           |                    |
| Ethylbenzene                                         | %     | 101      |     | 70-130               | Pass           |                    |
| m&p-Xylenes                                          | %     | 103      |     | 70-130               | Pass           |                    |
| Xylenes - Total                                      | %     | 104      |     | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       |          |     |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |       |          |     |                      |                |                    |
| Naphthalene                                          | %     | 95       |     | 70-130               | Pass           |                    |
| TRH C6-C10                                           | %     | 124      |     | 70-130               | Pass           |                    |
| TRH >C10-C16                                         | %     | 78       |     | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       |          |     |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons                     |       |          |     |                      |                |                    |
| Acenaphthene                                         | %     | 116      |     | 70-130               | Pass           |                    |
| Acenaphthylene                                       | %     | 120      |     | 70-130               | Pass           |                    |
| Anthracene                                           | %     | 109      |     | 70-130               | Pass           |                    |
| Benz(a)anthracene                                    | %     | 105      |     | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                       | %     | 119      |     | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene                               | %     | 115      |     | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene                                 | %     | 80       |     | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene                                 | %     | 92       |     | 70-130               | Pass           |                    |
| Chrysene                                             | %     | 121      |     | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene                                | %     | 129      |     | 70-130               | Pass           |                    |



| Test                           | Units     | Result 1 |          | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|-----------|----------|----------|----------------------|----------------|--------------------|
| Fluoranthene                   | %         | 108      |          | 70-130               | Pass           |                    |
| Fluorene                       | %         | 92       |          | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene         | %         | 78       |          | 70-130               | Pass           |                    |
| Naphthalene                    | %         | 102      |          | 70-130               | Pass           |                    |
| Phenanthrene                   | %         | 109      |          | 70-130               | Pass           |                    |
| Pyrene                         | %         | 112      |          | 70-130               | Pass           |                    |
| LCS - % Recovery               |           |          |          |                      |                |                    |
| Organochlorine Pesticides      |           |          |          |                      |                |                    |
| Chlordanes - Total             | %         | 87       |          | 70-130               | Pass           |                    |
| 4.4'-DDD                       | %         | 93       |          | 70-130               | Pass           |                    |
| 4.4'-DDE                       | %         | 96       |          | 70-130               | Pass           |                    |
| 4.4'-DDT                       | %         | 92       |          | 70-130               | Pass           |                    |
| a-BHC                          | %         | 94       |          | 70-130               | Pass           |                    |
| Aldrin                         | %         | 96       |          | 70-130               | Pass           |                    |
| b-BHC                          | %         | 92       |          | 70-130               | Pass           |                    |
| d-BHC                          | %         | 106      |          | 70-130               | Pass           |                    |
| Dieldrin                       | %         | 102      |          | 70-130               | Pass           |                    |
| Endosulfan I                   | %         | 97       |          | 70-130               | Pass           |                    |
| Endosulfan II                  | %         | 91       |          | 70-130               | Pass           |                    |
| Endosulfan sulphate            | %         | 77       |          | 70-130               | Pass           |                    |
| Endrin                         | %         | 83       |          | 70-130               | Pass           |                    |
| Endrin aldehyde                | %         | 92       |          | 70-130               | Pass           |                    |
| Endrin ketone                  | %         | 102      |          | 70-130               | Pass           |                    |
| g-BHC (Lindane)                | %         | 101      |          | 70-130               | Pass           |                    |
| Heptachlor                     | %         | 95       |          | 70-130               | Pass           |                    |
| Heptachlor epoxide             | %         | 102      |          | 70-130               | Pass           |                    |
| Hexachlorobenzene              | %         | 106      |          | 70-130               | Pass           |                    |
| Methoxychlor                   | %         | 80       |          | 70-130               | Pass           |                    |
| LCS - % Recovery               | 70        | 00       |          | 10 100               | 1 400          |                    |
| Organophosphorus Pesticides    |           |          |          |                      |                |                    |
| Diazinon                       | %         | 82       |          | 70-130               | Pass           |                    |
| Dimethoate                     | %         | 78       |          | 70-130               | Pass           |                    |
| Ethion                         | %         | 72       |          | 70-130               | Pass           |                    |
| Fenitrothion                   | %         | 100      |          | 70-130               | Pass           |                    |
| Methyl parathion               | %         | 103      |          | 70-130               | Pass           |                    |
| Mexinghos                      | %         | 73       |          | 70-130               | Pass           |                    |
| LCS - % Recovery               | /0        | 10       |          | 10 100               | 1 455          |                    |
| Polychlorinated Binhenvis      |           |          |          |                      |                |                    |
| Aroclor-1260                   | %         | 96       |          | 70-130               | Pass           |                    |
| LCS - % Recovery               | /0        |          |          | 10 100               | 1 455          |                    |
| Phenols (Halogenated)          |           |          |          |                      |                |                    |
| 2-Chlorophenol                 | %         | 109      |          | 30-130               | Pass           |                    |
| 2.4-Dichlorophenol             | /0<br>0/_ | 103      |          | 30-130               | Dass           |                    |
| 2.4 5-Trichlorophenol          | 70<br>0/_ | 102      |          | 30-130               | Dass           |                    |
| 2.4.6 Trichlorophonol          | 70<br>0/  | 104      |          | 30 130               | Pass           |                    |
|                                | /0<br>0/  | 110      |          | 30-130               | Pass           |                    |
| 4 Chloro 2 methylphonol        | /0        | 114      |          | 30-130               | Pass           |                    |
| A-Chiolo-3-methyphenol         | 0/        | 64       |          | 30-130               | Pass           |                    |
|                                | -70<br>07 | 104      |          | 20 120               | Page           |                    |
|                                | 70        |          | <u> </u> | 30-130               | F d 55         |                    |
| Dhanala (nen Halageneted)      |           |          |          |                      |                |                    |
| Prienois (non-Halogenated)     | 0/        | 50       |          | 20.400               | Der            |                    |
| 2-Oycionexyi-4.6-dinitrophenoi | <u>%</u>  | 59       |          | 30-130               | Pass           |                    |
|                                | <u>%</u>  | 60       |          | 30-130               | Pass           |                    |
| 2-wetnylphenol (o-Cresol)      | %         | 111      |          | 30-130               | Pass           |                    |



| Test                             |                 |              | Units | Result 1 |  | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|-----------------|--------------|-------|----------|--|----------------------|----------------|--------------------|
| 2-Nitrophenol                    |                 |              | %     | 115      |  | 30-130               | Pass           |                    |
| 2.4-Dimethylphenol               |                 |              | %     | 85       |  | 30-130               | Pass           |                    |
| 2.4-Dinitrophenol                |                 |              | %     | 34       |  | 30-130               | Pass           |                    |
| 3&4-Methylphenol (m&p-Cresol)    |                 |              | %     | 117      |  | 30-130               | Pass           |                    |
| 4-Nitrophenol                    |                 |              | %     | 84       |  | 30-130               | Pass           |                    |
| Dinoseb                          |                 |              | %     | 83       |  | 30-130               | Pass           |                    |
| Phenol                           |                 |              | %     | 110      |  | 30-130               | Pass           |                    |
| LCS - % Recovery                 |                 |              |       |          |  |                      |                |                    |
| Total Organic Carbon             |                 |              | %     | 104      |  | 70-130               | Pass           |                    |
| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |  | Acceptance           | Pass<br>Limits | Qualifying         |
| Spike - % Recovery               |                 | ocuroo       |       |          |  |                      | 2              |                    |
| Total Recoverable Hydrocarbons - | 1999 NEPM Fract | ions         |       | Result 1 |  |                      |                |                    |
| TRH C6-C9                        | M19-No01888     | NCP          | %     | 104      |  | 70-130               | Pass           |                    |
| TRH C10-C14                      | M19-No00059     | NCP          | %     | 109      |  | 70-130               | Pass           |                    |
| Spike - % Recovery               |                 |              |       |          |  |                      |                |                    |
| BTEX                             |                 |              |       | Result 1 |  |                      |                |                    |
| Benzene                          | M19-No01888     | NCP          | %     | 105      |  | 70-130               | Pass           |                    |
| Toluene                          | M19-No01888     | NCP          | %     | 110      |  | 70-130               | Pass           |                    |
| Ethylbenzene                     | M19-No01888     | NCP          | %     | 110      |  | 70-130               | Pass           |                    |
| m&p-Xylenes                      | M19-No01888     | NCP          | %     | 115      |  | 70-130               | Pass           |                    |
| o-Xylene                         | M19-No01888     | NCP          | %     | 114      |  | 70-130               | Pass           |                    |
| Xylenes - Total                  | M19-No01888     | NCP          | %     | 115      |  | 70-130               | Pass           |                    |
| Spike - % Recovery               |                 |              |       |          |  |                      |                |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions         |       | Result 1 |  |                      |                |                    |
| Naphthalene                      | M19-No01888     | NCP          | %     | 94       |  | 70-130               | Pass           |                    |
| TRH C6-C10                       | M19-No01888     | NCP          | %     | 117      |  | 70-130               | Pass           |                    |
| TRH >C10-C16                     | M19-No00059     | NCP          | %     | 103      |  | 70-130               | Pass           |                    |
| Spike - % Recovery               |                 |              |       |          |  |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons |                 |              |       | Result 1 |  |                      |                |                    |
| Acenaphthene                     | M19-No00942     | NCP          | %     | 98       |  | 70-130               | Pass           |                    |
| Acenaphthylene                   | M19-No00942     | NCP          | %     | 102      |  | 70-130               | Pass           |                    |
| Anthracene                       | M19-No00942     | NCP          | %     | 98       |  | 70-130               | Pass           |                    |
| Benz(a)anthracene                | M19-No00942     | NCP          | %     | 86       |  | 70-130               | Pass           |                    |
| Benzo(a)pyrene                   | M19-No00942     | NCP          | %     | 99       |  | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene           | M19-No00942     | NCP          | %     | 118      |  | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene             | M19-No00942     | NCP          | %     | 92       |  | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene             | M19-No00942     | NCP          | %     | 126      |  | 70-130               | Pass           |                    |
| Chrysene                         | M19-No00942     | NCP          | %     | 93       |  | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene            | M19-No00942     | NCP          | %     | 83       |  | 70-130               | Pass           |                    |
| Fluoranthene                     | M19-No00942     | NCP          | %     | 80       |  | 70-130               | Pass           |                    |
| Fluorene                         | M19-No00942     | NCP          | %     | 109      |  | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | M19-No00942     | NCP          | %     | 86       |  | 70-130               | Pass           |                    |
| Naphthalene                      | M19-No00942     | NCP          | %     | 111      |  | 70-130               | Pass           |                    |
| Phenanthrene                     | M19-No00942     | NCP          | %     | 89       |  | 70-130               | Pass           |                    |
| Pyrene                           | M19-No00942     | NCP          | %     | 75       |  | 70-130               | Pass           |                    |
| Spike - % Recovery               |                 |              |       |          |  |                      |                |                    |
| Organochlorine Pesticides        |                 |              |       | Result 1 |  |                      |                |                    |
| Chlordanes - Total               | S19-No00985     | NCP          | %     | 81       |  | 70-130               | Pass           |                    |
| 4.4'-DDD                         | S19-No00985     | NCP          | %     | 80       |  | 70-130               | Pass           |                    |
| 4.4'-DDE                         | S19-No00985     | NCP          | %     | 76       |  | 70-130               | Pass           |                    |
| 4.4'-DDT                         | S19-No00985     | NCP          | %     | 80       |  | 70-130               | Pass           |                    |
| a-BHC                            | S19-No00985     | NCP          | %     | 95       |  | 70-130               | Pass           |                    |
| Aldrin                           | S19-No00985     | NCP          | %     | 104      |  | 70-130               | Pass           |                    |
| b-BHC                            | S19-No00985     | NCP          | %     | 82       |  | 70-130               | Pass           |                    |



| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|-----------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| d-BHC                            | S19-No00985     | NCP          | %     | 93       |          |     | 70-130               | Pass           |                    |
| Dieldrin                         | S19-No00985     | NCP          | %     | 73       |          |     | 70-130               | Pass           |                    |
| Endosulfan I                     | S19-No00985     | NCP          | %     | 107      |          |     | 70-130               | Pass           |                    |
| Endosulfan II                    | S19-No00985     | NCP          | %     | 101      |          |     | 70-130               | Pass           |                    |
| Endosulfan sulphate              | S19-No00985     | NCP          | %     | 87       |          |     | 70-130               | Pass           |                    |
| Endrin                           | S19-No00985     | NCP          | %     | 93       |          |     | 70-130               | Pass           |                    |
| Endrin aldehyde                  | S19-No00985     | NCP          | %     | 102      |          |     | 70-130               | Pass           |                    |
| Endrin ketone                    | S19-No00985     | NCP          | %     | 100      |          |     | 70-130               | Pass           |                    |
| g-BHC (Lindane)                  | S19-No00985     | NCP          | %     | 110      |          |     | 70-130               | Pass           |                    |
| Heptachlor                       | S19-No00985     | NCP          | %     | 91       |          |     | 70-130               | Pass           |                    |
| Heptachlor epoxide               | S19-No00985     | NCP          | %     | 79       |          |     | 70-130               | Pass           |                    |
| Hexachlorobenzene                | S19-No00985     | NCP          | %     | 76       |          |     | 70-130               | Pass           |                    |
| Methoxychlor                     | S19-No00985     | NCP          | %     | 71       |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery               | •               |              |       |          |          |     | •                    |                |                    |
| Organophosphorus Pesticides      |                 |              |       | Result 1 |          |     |                      |                |                    |
| Diazinon                         | Z19-Oc47469     | NCP          | %     | 106      |          |     | 70-130               | Pass           |                    |
| Dimethoate                       | W19-Oc31011     | NCP          | %     | 79       |          |     | 70-130               | Pass           |                    |
| Ethion                           | Z19-Oc47469     | NCP          | %     | 81       |          |     | 70-130               | Pass           |                    |
| Fenitrothion                     | Z19-Oc47469     | NCP          | %     | 97       |          |     | 70-130               | Pass           |                    |
| Methyl parathion                 | Z19-Oc47469     | NCP          | %     | 109      |          |     | 70-130               | Pass           |                    |
| Mevinphos                        | Z19-Oc47469     | NCP          | %     | 78       |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery               | •               |              |       |          |          |     | •                    |                |                    |
| Polychlorinated Biphenyls        |                 |              |       | Result 1 |          |     |                      |                |                    |
| Aroclor-1016                     | M19-Oc49034     | NCP          | %     | 110      |          |     | 70-130               | Pass           |                    |
| Aroclor-1260                     | S19-Oc36566     | NCP          | %     | 90       |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery               | •               |              |       |          |          |     | •                    |                |                    |
| Phenols (Halogenated)            |                 |              |       | Result 1 |          |     |                      |                |                    |
| 2-Chlorophenol                   | M19-No00942     | NCP          | %     | 91       |          |     | 30-130               | Pass           |                    |
| 2.4-Dichlorophenol               | M19-No00942     | NCP          | %     | 89       |          |     | 30-130               | Pass           |                    |
| 2.4.5-Trichlorophenol            | M19-No00942     | NCP          | %     | 93       |          |     | 30-130               | Pass           |                    |
| 2.4.6-Trichlorophenol            | M19-No00942     | NCP          | %     | 84       |          |     | 30-130               | Pass           |                    |
| 2.6-Dichlorophenol               | M19-No00942     | NCP          | %     | 89       |          |     | 30-130               | Pass           |                    |
| 4-Chloro-3-methylphenol          | M19-No00942     | NCP          | %     | 100      |          |     | 30-130               | Pass           |                    |
| Pentachlorophenol                | M19-No00942     | NCP          | %     | 61       |          |     | 30-130               | Pass           |                    |
| Tetrachlorophenols - Total       | M19-No00942     | NCP          | %     | 84       |          |     | 30-130               | Pass           |                    |
| Spike - % Recovery               |                 |              |       |          |          |     |                      |                |                    |
| Phenols (non-Halogenated)        |                 |              |       | Result 1 |          |     |                      |                |                    |
| 2-Cyclohexyl-4.6-dinitrophenol   | M19-No00942     | NCP          | %     | 46       |          |     | 30-130               | Pass           |                    |
| 2-Methyl-4.6-dinitrophenol       | M19-No00942     | NCP          | %     | 55       |          |     | 30-130               | Pass           |                    |
| 2-Methylphenol (o-Cresol)        | M19-No00942     | NCP          | %     | 92       |          |     | 30-130               | Pass           |                    |
| 2-Nitrophenol                    | M19-No00942     | NCP          | %     | 85       |          |     | 30-130               | Pass           |                    |
| 2.4-Dimethylphenol               | M19-No00942     | NCP          | %     | 77       |          |     | 30-130               | Pass           |                    |
| 3&4-Methylphenol (m&p-Cresol)    | M19-No00942     | NCP          | %     | 99       |          |     | 30-130               | Pass           |                    |
| 4-Nitrophenol                    | M19-No00942     | NCP          | %     | 112      |          |     | 30-130               | Pass           |                    |
| Dinoseb                          | M19-No00942     | NCP          | %     | 86       |          |     | 30-130               | Pass           |                    |
| Phenol                           | M19-No00942     | NCP          | %     | 91       |          |     | 30-130               | Pass           |                    |
| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                        |                 |              |       | _        | _        |     |                      |                |                    |
| Total Recoverable Hydrocarbons - | 1999 NEPM Fract | ions         |       | Result 1 | Result 2 | RPD |                      |                |                    |
| 1RH C6-C9                        | M19-No01887     | NCP          | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| IRH C10-C14                      | M19-No00058     | NCP          | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| IRH C15-C28                      | M19-No00058     | NCP          | mg/kg | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| IRH C29-C36                      | M19-No00058     | NCP          | mg/kg | < 50     | < 50     | <1  | 30%                  | Pass           |                    |



| Duplicate                        |                 |      |       |          |          | -   | -   |      |     |
|----------------------------------|-----------------|------|-------|----------|----------|-----|-----|------|-----|
| BTEX                             |                 |      |       | Result 1 | Result 2 | RPD |     |      |     |
| Benzene                          | M19-No01887     | NCP  | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |     |
| Toluene                          | M19-No01887     | NCP  | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |     |
| Ethylbenzene                     | M19-No01887     | NCP  | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |     |
| m&p-Xylenes                      | M19-No01887     | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |     |
| o-Xylene                         | M19-No01887     | NCP  | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |     |
| Xylenes - Total                  | M19-No01887     | NCP  | mg/kg | < 0.3    | < 0.3    | <1  | 30% | Pass |     |
| Duplicate                        |                 |      |       |          |          |     | -   |      |     |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions | -     | Result 1 | Result 2 | RPD |     |      |     |
| Naphthalene                      | M19-No01887     | NCP  | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass |     |
| TRH C6-C10                       | M19-No01887     | NCP  | mg/kg | < 20     | < 20     | <1  | 30% | Pass |     |
| TRH >C10-C16                     | M19-No00058     | NCP  | mg/kg | < 50     | < 50     | <1  | 30% | Pass |     |
| Duplicate                        |                 |      |       | 1        |          |     |     |      |     |
| Polycyclic Aromatic Hydrocarbons |                 |      |       | Result 1 | Result 2 | RPD |     |      |     |
| Acenaphthene                     | M19-No02371     | NCP  | mg/kg | 1.3      | 0.6      | 70  | 30% | Fail | Q15 |
| Acenaphthylene                   | M19-No02371     | NCP  | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass |     |
| Anthracene                       | M19-No02371     | NCP  | mg/kg | 1.3      | < 0.5    | 110 | 30% | Fail | Q15 |
| Benz(a)anthracene                | M19-No02371     | NCP  | mg/kg | 1.5      | < 0.5    | 120 | 30% | Fail | Q15 |
| Benzo(a)pyrene                   | M19-No02371     | NCP  | mg/kg | 1.1      | < 0.5    | 100 | 30% | Fail | Q15 |
| Benzo(b&j)fluoranthene           | M19-No02371     | NCP  | mg/kg | 1.1      | < 0.5    | 110 | 30% | Fail | Q15 |
| Benzo(g.h.i)perylene             | M19-No02371     | NCP  | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass |     |
| Benzo(k)fluoranthene             | M19-No02371     | NCP  | mg/kg | 1.5      | < 0.5    | 110 | 30% | Fail | Q15 |
| Chrysene                         | M19-No02371     | NCP  | mg/kg | 1.4      | < 0.5    | 110 | 30% | Fail | Q15 |
| Dibenz(a.h)anthracene            | M19-No02371     | NCP  | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass |     |
| Fluoranthene                     | M19-No02371     | NCP  | mg/kg | 4.2      | 1.3      | 110 | 30% | Fail | Q15 |
| Fluorene                         | M19-No02371     | NCP  | mg/kg | 0.9      | < 0.5    | 82  | 30% | Fail | Q15 |
| Indeno(1.2.3-cd)pyrene           | M19-No02371     | NCP  | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass |     |
| Naphthalene                      | M19-No02371     | NCP  | mg/kg | 2.5      | 1.8      | 35  | 30% | Fail | Q15 |
| Phenanthrene                     | M19-No02371     | NCP  | mg/kg | 3.1      | 1.1      | 98  | 30% | Fail | Q15 |
| Pyrene                           | M19-No02371     | NCP  | mg/kg | 3.6      | 1.1      | 110 | 30% | Fail | Q15 |
| Duplicate                        |                 |      |       | 1        | -        |     |     |      |     |
| Organochlorine Pesticides        |                 |      |       | Result 1 | Result 2 | RPD |     |      |     |
| Chlordanes - Total               | M19-No02371     | NCP  | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |     |
| 4.4'-DDD                         | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| 4.4'-DDE                         | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| 4.4'-DDT                         | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| а-ВНС                            | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Aldrin                           | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| b-BHC                            | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| d-BHC                            | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Dieldrin                         | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Endosulfan I                     | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Endosulfan II                    | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Endosulfan sulphate              | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Endrin                           | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Endrin aldehyde                  | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Endrin ketone                    | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| g-BHC (Lindane)                  | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Heptachlor                       | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Heptachlor epoxide               | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Hexachlorobenzene                | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Methoxychlor                     | M19-No02371     | NCP  | mg/kg | < 0.05   | < 0.05   | <1  | 30% | Pass |     |
| Toxaphene                        | M19-Oc30269     | NCP  | mg/kg | <1       | < 1      | <1  | 30% | Pass |     |



| Duplicate                   |              |      |       |          |              |     |      |       |   |
|-----------------------------|--------------|------|-------|----------|--------------|-----|------|-------|---|
| Organophosphorus Pesticides |              |      |       | Result 1 | Result 2     | RPD |      |       |   |
| Azinphos-methyl             | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Bolstar                     | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Chlorfenvinphos             | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Chlorpyrifos                | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Chlorpyrifos-methyl         | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Coumaphos                   | M19-No02371  | NCP  | mg/kg | < 2      | < 2          | <1  | 30%  | Pass  |   |
| Demeton-S                   | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Demeton-O                   | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Diazinon                    | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Dichlorvos                  | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Dimethoate                  | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Disulfoton                  | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| EPN                         | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Ethion                      | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Ethoprop                    | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Ethyl parathion             | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Fenitrothion                | M19-No02371  | NCP  | mg/kg | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Fensulfothion               | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Fenthion                    | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Malathion                   | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Merphos                     | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Methyl parathion            | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Mevinphos                   | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Monocrotophos               | M19-No02371  | NCP  | ma/ka | < 2      | < 2          | <1  | 30%  | Pass  |   |
| Naled                       | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Omethoate                   | M19-No02371  | NCP  | ma/ka | < 2      | < 2          | <1  | 30%  | Pass  |   |
| Phorate                     | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Pirimiphos-methyl           | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Pyrazophos                  | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Ronnel                      | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Terbufos                    | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Tetrachlorvinphos           | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Tokuthion                   | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Trichloronate               | M19-No02371  | NCP  | ma/ka | < 0.2    | < 0.2        | <1  | 30%  | Pass  |   |
| Duplicate                   |              |      |       | -        |              |     |      |       |   |
| Polychlorinated Biphenvis   |              |      |       | Result 1 | Result 2     | RPD |      |       |   |
| Aroclor-1016                | M19-No02371  | NCP  | ma/ka | < 0.1    | < 0.1        | <1  | 30%  | Pass  |   |
| Aroclor-1221                | M19-No02371  | NCP  | ma/ka | < 0.1    | < 0.1        | <1  | 30%  | Pass  |   |
| Aroclor-1232                | M19-No02371  | NCP  | ma/ka | < 0.1    | < 0.1        | <1  | 30%  | Pass  |   |
| Aroclor-1242                | M19-No02371  | NCP  | ma/ka | < 0.1    | < 0.1        | <1  | 30%  | Pass  |   |
| Aroclor-1248                | M19-No02371  | NCP  | ma/ka | < 0.1    | < 0.1        | <1  | 30%  | Pass  |   |
| Aroclor-1254                | M19-No02371  | NCP  | ma/ka | < 0.1    | < 0.1        | <1  | 30%  | Pass  |   |
| Aroclor-1260                | M19-No02371  | NCP  | ma/ka | < 0.1    | < 0.1        | <1  | 30%  | Pass  |   |
| Total PCB*                  | M19-No02371  | NCP  | ma/ka | < 0.1    | < 0.1        | <1  | 30%  | Pass  |   |
| Duplicate                   | 111011002011 | 1101 | mg/ng | 4 0.1    | <b>V</b> 0.1 |     | 0070 | 1 400 |   |
| Phenols (Halogenated)       |              |      |       | Result 1 | Result 2     | RPD |      |       |   |
| 2-Chlorophenol              | M19-No02371  | NCP  | ma/ka | < 0.5    | < 0.5        | <1  | 30%  | Pass  |   |
| 2.4-Dichlorophenol          | M19-No02371  | NCP  | ma/ka | < 0.5    | < 0.5        | <1  | 30%  | Pass  |   |
| 2.4.5-Trichlorophenol       | M19-No02371  | NCP  | ma/ka | < 1      | < 1          | <1  | 30%  | Pass  |   |
| 2.4.6-Trichlorophenol       | M19-No02371  | NCP  | ma/ka | < 1      | < 1          | <1  | 30%  | Pass  |   |
| 2.6-Dichlorophenol          | M19-No02371  | NCP  | ma/ka | < 0.5    | < 0.5        | <1  | 30%  | Pass  |   |
| 4-Chloro-3-methylphenol     | M19-No02371  | NCP  | ma/ka | < 1      | < 1          | <1  | 30%  | Pass  |   |
| Pentachlorophenol           | M19-No02371  | NCP  | ma/ka | ~ 1      | < 1          | ~1  | 30%  | Pass  |   |
| Tetrachlorophenols - Total  | M19-No02371  | NCP  | ma/ka | < 10     | < 10         | <1  | 30%  | Pass  |   |
|                             |              |      |       |          |              |     | 0070 |       | i |



| Duplicate                      |             |     |       |          |          |     |     |      |  |
|--------------------------------|-------------|-----|-------|----------|----------|-----|-----|------|--|
| Phenols (non-Halogenated)      |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| 2-Cyclohexyl-4.6-dinitrophenol | M19-No02371 | NCP | mg/kg | < 20     | < 20     | <1  | 30% | Pass |  |
| 2-Methyl-4.6-dinitrophenol     | M19-No02371 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| 2-Methylphenol (o-Cresol)      | M19-No02371 | NCP | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| 2-Nitrophenol                  | M19-No02371 | NCP | mg/kg | < 1      | < 1      | <1  | 30% | Pass |  |
| 2.4-Dimethylphenol             | M19-No02371 | NCP | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass |  |
| 2.4-Dinitrophenol              | M19-No02371 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| 3&4-Methylphenol (m&p-Cresol)  | M19-No02371 | NCP | mg/kg | < 0.4    | < 0.4    | <1  | 30% | Pass |  |
| 4-Nitrophenol                  | M19-No02371 | NCP | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Dinoseb                        | M19-No02371 | NCP | mg/kg | < 20     | < 20     | <1  | 30% | Pass |  |
| Phenol                         | M19-No02371 | NCP | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass |  |
| Duplicate                      |             |     |       |          |          |     |     |      |  |
|                                |             |     |       | Result 1 | Result 2 | RPD |     |      |  |
| Total Organic Carbon           | S19-No01404 | CP  | %     | < 0.1    | < 0.1    | <1  | 30% | Pass |  |
| % Moisture                     | M19-No01150 | NCP | %     | 12       | 11       | 9.0 | 30% | Pass |  |



#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

#### **Qualifier Codes/Comments**

Code Description

| N01 | F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).                                                                                                                                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N02 | Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. |
| N04 | F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.                                                                                                                              |
| N07 | Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs                                                                                                                                                                                                       |
| Q15 | The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.                                                                                                                                                                                                                                                    |

#### Authorised By

| Alena Bounkeua |  |
|----------------|--|
| Harry Bacalis  |  |
| Joseph Edouard |  |
| Julie Kay      |  |

Analytical Services Manager Senior Analyst-Volatile (VIC) Senior Analyst-Organic (VIC) Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

 $^{\star}$  Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please  $\underline{\text{click here.}}$ 

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix F - Calibration certificates

**PhoCheck Tiger** Instrument Serial No. T-111087



### Air-Met Scientific Pty Ltd 1300 137 067

| Item          | Test                    | Pass         |         |        | Comments | S    |            |
|---------------|-------------------------|--------------|---------|--------|----------|------|------------|
| Battery       | Charge Condition        | $\checkmark$ |         |        |          |      |            |
|               | Fuses                   | ✓            |         |        |          |      |            |
|               | Capacity                | 1            |         |        |          |      |            |
|               | Recharge OK?            | ✓            |         |        |          |      |            |
| Switch/keypad | Operation               | 1            |         |        |          |      |            |
| Display       | Intensity               | 1            |         |        |          |      |            |
|               | Operation<br>(segments) | 1            |         |        |          |      |            |
| Grill Filter  | Condition               | √            |         |        |          |      | <b>1</b> 2 |
|               | Seal                    | ✓            |         |        |          |      |            |
| Pump          | Operation               | 1            |         |        |          |      |            |
|               | Filter                  | 1            |         |        |          |      |            |
|               | Flow                    | $\checkmark$ |         |        |          |      |            |
|               | Valves, Diaphragm       | 1            |         |        |          |      |            |
| PCB           | Condition               | 1            |         |        |          |      |            |
| Connectors    | Condition               | 1            |         |        |          |      |            |
| Sensor        | PID                     | ✓            | 10.6 ev |        |          |      |            |
| Alarms        | Beeper                  | ✓            | Low     | High   | TWA      | STEL |            |
|               | Settings                | 1            | 50ppm   | 100ppm |          |      |            |
| Software      | Version                 | 1            |         |        |          |      |            |
| Data logger   | Operation               | 1            |         |        |          |      |            |
| Download      | Operation               | ✓            |         |        |          |      |            |
| Other tests:  |                         |              |         |        |          |      |            |

### Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode Aspirated mode

| Sensor   | Serial no | Calibration gas and | Certified | Gas bottle | Instrument Reading |
|----------|-----------|---------------------|-----------|------------|--------------------|
|          |           | concentration       |           | No         |                    |
| PID Lamp |           | 92ppm Isobutylene   | NATA      | SY245      | 91.3ppm            |
|          | 0         |                     |           |            |                    |

-

Sarabba Calibrated by: Sarah Lian

Calibration date: 30/10/2019 Next calibration due:

27/04/2020

#### Multi Parameter Water Meter

**YSI Quatro Pro Plus** Instrument Serial No. 12D100012



30/10/2019

| Item          | Test                    | Pass         | Comments |
|---------------|-------------------------|--------------|----------|
| Battery       | Charge Condition        | $\checkmark$ |          |
|               | Fuses                   | 1            |          |
|               | Capacity                | ✓            |          |
| Switch/keypad | Operation               | $\checkmark$ |          |
| Display       | Intensity               | 1            |          |
|               | Operation<br>(segments) | ✓            |          |
| Grill Filter  | Condition               | 1            |          |
|               | Seal                    | ✓            |          |
| PCB           | Condition               | 1            |          |
| Connectors    | Condition               | ×            |          |
| Sensor        | 1. pH                   | ✓            |          |
|               | 2. mV                   | 1            |          |
|               | 3. EC                   | 1            |          |
|               | 4. D.O                  | 1            |          |
|               | 5. Temp                 | 1            |          |
| Alarms        | Beeper                  |              |          |
| T-Spectra     | Settings                |              |          |
| Software      | Version                 |              |          |
| Data logger   | Operation               |              |          |
| Download      | Operation               |              |          |
| Other tests:  |                         |              |          |

### Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor      | Serial no   | Standard Solutions | Certified             | Solution Bottle | Instrument Reading |
|-------------|-------------|--------------------|-----------------------|-----------------|--------------------|
|             |             |                    |                       | Number          |                    |
| 1. pH 10.00 |             | pH 10.00           |                       | 324189          | pH 9.48            |
| 2. pH 7.00  | Sec. 1 also | pH 7.00            |                       | 320613          | pH 6.98            |
| 3. pH 4.00  |             | pH 4.00            | and the second second | 330734          | pH 4.25            |
| 4. mV       | 12          | 229.6mV            |                       | 338782/337308   | 229.9mV            |
| 5. EC       | 122         | 2.76mS             |                       | 333787          | 2.75mS             |
| 6. D.O      | made & Call | 0.00ppm            | 1                     | 329994          | 0.00ppm            |
| 7. Temp     | 5 4 S. N.   | 21.6°C             |                       | MultiTherm      | 21.2°C             |

Sarah Lian

Calibration date:

30/10/2019

Next calibration due:

30/11/2019

GHD

Level 15 133 Castlereagh Street Sydney NSW Australia T: 61 2 9239 7100 F: 61 2 9239 7199 E: sydmail@ghd.com

#### © GHD 2020

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

#### 12517046-

52284/https://projectsportal.ghd.com/sites/pp15\_04/circularquayinvestig/ProjectDocs/12517046-REP-0 Sediment assessment\_Rev0.docx

#### **Document Status**

| Revision | Author       | Reviewer      |            | Approved for Issue |            |            |
|----------|--------------|---------------|------------|--------------------|------------|------------|
|          |              | Name          | Signature  | Name               | Signature  | Date       |
| 0        | S.Eccleshall | J. Hallchurch | Abellehinh | J Hallchurch       | Abellehinh | 03/08/2020 |
|          |              |               |            |                    |            |            |
|          |              |               |            |                    |            |            |

## www.ghd.com

